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Some old and new problems in combinatorial

geometry I:

Around Borsuk’s problem

Gil Kalai1

Abstract

Borsuk [16] asked in 1933 if every set of diameter 1 in R
d can

be covered by d + 1 sets of smaller diameter. In 1993, a negative
solution, based on a theorem by Frankl and Wilson [42], was given
by Kahn and Kalai [65]. In this paper I will present questions related
to Borsuk’s problem.

1 Introduction

The title of this paper is borrowed from Paul Erdős who used it (or
a similar title) in many lectures and papers, e.g., [39]. I will describe
several open problems in the interface between combinatorics and geome-
try, mainly convex geometry. In this part, I describe and pose questions
related to the Borsuk conjecture. The selection of problems is based on
my own idiosyncratic tastes. For a fuller picture, the reader is advised
to read the review papers on Borsuk’s problem and related questions by
Raigorodskii [105, 106, 107, 110, 112]. Among other excellent sources are
[13, 14, 18, 89, 99].

Karol Borsuk [16] asked in 1933 if every set of diameter 1 in Rd can be
covered by d+1 sets of smaller diameter. That the answer is positive was
widely believed and referred to as the Borsuk conjecture. However, some
people, including Rogers, Danzer, and Erdős, suggested that a counterex-
ample might be obtained from some clever combinatorial configuration.
In hindsight, the problem is related to several questions that Erdős asked
and its solution was a great triumph for Erdősian mathematics.

2 Better lower bounds to Borsuk’s problem

2.1 The asymptotics

Let f(d) be the smallest integer such that every set of diameter one in
Rd can be covered by f(d) sets of smaller diameter. The set of vertices of
a regular simplex of diameter one demonstrates that f(d) ≥ d + 1. The
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famous Borsuk–Ulam theorem [16] asserts that the d-dimensional ball of
diameter 1 cannot be covered by d sets of smaller diameter. The Borsuk–
Ulam theorem has many important applications in many areas of math-
ematics. See Matousek’s book [90] for applications and connections to
combinatorics. In the same paper [16] Borsuk asked if f(d) ≤ d + 1.
This was proved for d = 2, 3. It was shown by Kahn and Kalai [65] that

f(d) ≥ 1.2
√

d, by Lassak [84] that f(d) ≤ 2d−1 + 1 and by Schramm [116]
that f(d) ≤ (

√

3/2 + o(1))d.

Problem 2.1 Is f(d) exponential in d?

The best shot (in my opinion) at an example leading to a positive
answer is:

(a) Start with binary linear codes of length n (based on algebraic-geometry
codes) with the property that the number of maximal-weight code-
words is exponential in n.

(b) Show that the code cannot be covered by less than an exponential
number of sets that do not realize the maximum distance.

Part (a) should not be difficult, given that it is known that for certain
AG-codes the number of minimal-weight codewords is exponential in n [5].
Part (b) can be difficult, but the algebraic techniques used for the Frankl
and Wilson theorem may apply.

The Kahn–Kalai counterexample and many of the subsequent results
depend on the Frankl–Wilson [42] theorem or on some related algebraically-
based combinatorial results. (One can rely also on the Frankl–Rödl theo-
rem [41], which allows much greater generality but not as good quantitative
estimates.) We will come back to these results later on.

Let g(d) be the smallest integer such that every finite set of diameter
one in Rd can be covered by g(d) sets of smaller diameter.

Problem 2.2 Is f(d) = g(d)?

I am not aware of any reduction from infinite sets to finite sets, and
indeed the proof of Borsuk’s conjecture for d = 2, 3 is easier if one considers
only finite sets. On the other hand, the counterexamples are based on finite
configurations. Perhaps one can demonstrate a gap between the finite and
infinite behavior for some extension or variation of the problem, e.g., for
arbitrary metric spaces. (Our knowledge of f(d) does not seem accurate
enough to hope to prove that such a gap exists for the original problem.)
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2.2 Larman’s conjecture

The counterexample to Borsuk’s conjecture is based on the special case
where the set consists of 0-1 vectors of fixed weight. Here, the conjecture
has an appealing combinatorial formulation.

Problem 2.3 (Larman’s conjecture) Let F be a t-intersecting family
of k sets from [n]. Then F can be covered by n (t + 1)-intersecting sub-
families.

We now know that Larman’s conjecture does not hold in general. How-
ever:

Problem 2.4 Is Larman’s conjecture true for t = 1?

For more discussion of the combinatorics of Larman’s conjecture and
related combinatorial questions on the packing and coloring of graphs and
hypergraphs, see [63]. We can sort of “dualize” the t = 1 case of Larman’s
conjecture by replacing “intersecting” (i.e., “every pair of sets has at least
one common element”) by “nearly disjoint” (namely, “every pair of distinct
sets has at most one common elements”) and thus recover the famous:

Conjecture 2.5 (Erdős–Faber–Lovász) Let F be a family of nearly
disjoint k-sets from [n]. Then F is the union of n matchings.

While the Erdős–Faber–Lovász conjecture is still open it is known that
n is the right number for the fractional version of the problem [66], and
that (1 + o(1))n matchings suffice [62]. Such results are not available for
the t = 1 case of Larman’s conjecture but a counterexample to a certain
strong form of the conjecture is known [64].

2.3 Embedding the elliptic metric into an Euclidean one

Let En be the elliptic metric space of lines through the origin in Rn

where the distance between two lines is the (smallest) angle between them.
So the diameter of En is π/2 and the famous Frankl–Wilson theorem im-
plies that En cannot be covered by less than an exponential number (in d)
of sets of diameter smaller than π/2. The proof by Kahn and Kalai can be
seen as adding a single simple fact: E can be embedded into an Euclidean
space Rn(n+1)/2 by the map

x → x⊗ x.
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The distance between x ⊗ x and y ⊗ y is a simple monotonic function of
the distance between x and y. (Here ||x || 2 = 1 and we note that x and
−x are mapped onto the same point.)

The original counterexample, C1, is the image under this map for (nor-
malized) ±1 vectors of length n with n/2 ’1’s (n divisible by 4). Another
example, C2, is the image of all ±1 vectors, and we can also look at C3

the image of all unit vectors. All these geometric objects are familiar: C3

is the unit vectors in the cone of rank-one positive semi-definite matrices,
C2 is called the cut polytope, and C1 is the polytope of balanced cuts [33].

We can ask if there are more economic embeddings of the elliptic space
into a Euclidean space. Namely, is there an embedding ϕ : En → Rm,
m = o(n2), such that ||ϕ(x) − ϕ(y) || 2 = ϕ(d(x, y)) for some (strictly)
monotone function ϕ?

The answer to this question is negative by an important theorem of de
Caen from 2000 [24].

Theorem 2.6 (de Caen) There are quadratically many equiangular lines
in En.

Weaker forms of embeddings of En into Euclidean spaces possibly with
some symmetry-breaking may still lead to improved lower bounds for f(d),
and are of independent interest.

Problem 2.7 Is there a continuous map ϕ : En → Rm, m = o(n2) so
that ϕ preserves the set of diameters of En?

2.4 Spherical sets without pairwise orthogonal vectors

Regarding En itself, Witsenhausen asked in 1974 [129] what is the max-
imum volume µ(A) of an n-dimensional spherical set A without a pair of
orthogonal vectors. Witsenhausen proved that:

µ(A) ≤ 1/(n+ 1).

The following natural conjecture is very interesting:

Conjecture 2.8 Let A be a measurable subset of Sn and suppose that A
does not contain two orthogonal vectors. Then the volume of A is at most
twice the volume of two spherical caps of radius π/4.

Asymptotically this conjecture asserts that a subset of the n sphere of
measure (1/

√
2+o(1))n must contain a pair of orthogonal vectors. If true,

this can replace the Frankl–Wilson bound and will show that C3 defined
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above is a counterexamples to Borsuk’s conjecture for d > 70 or so. The
Frankl–Wilson theorem gives that if µ(A) > 1.203...−n then A contains
two orthogonal vectors. It seems that the main challenge is to extend
the linear algebra/polynomial method from 0-1 vectors to general vectors.
One important step was taken by Raigorodskii [108] who improved the
bound to 1.225−n.

Remarkably, the upper bound of 1/3 for the two-dimensional case stood
unimproved for 40 years until very recently DeCorte and Pikhurko im-
proved it to 0.31.. –[26]! The proof uses Delsartes’ linear programming
method [31] combined with a combinatorial argument.

2.5 Borsuk’s problem for spherical sets

Borsuk’s problem itself has an important extension to spherical sets.
Consider a set of Euclidean diameter 1 on a d-dimensional sphere Sd−1

r of
radius r.

Problem 2.9 What is the maximum number fr(d) of parts one needs to
partition any set of diameter 1 on Sd

r?

Obviously, one has fr(d) ≤ f(d) for any r, and we as well have f1/2(d) =
d+ 1 due to Borsuk–Ulam theorem.

Kupavskii and Raigorodskii [76] proved the following theorem:

Theorem 2.10 Given k ∈ N, if r > 1
2

√

2k+1
2k , then there exists c > 1

such that fr(d) ≥ (c+ o(1))
2k
√

d. Moreover, there exist a c > 0 such that if
r > 1/2 + c log log d

log d , then for all sufficiently large d we have fr(d) > d+ 1.

The proof is based on mappings involving multiple tensor products. We
note that embeddings of similar nature via multiple tensor-products play
a role also in the disproof of Khot and Vishnoi [69] of the Goemans–Linial
conjecture.

Problem 2.11 Is it the case that for every r < 1/2 there is a constant
Cr > 1 such that

fr(d) ≥ Cd
r ?

2.6 Low dimensions and two-distance sets

The initial counterexample showed that the Borsuk conjecture is false
for n = 1325 and all n > 2014 and there were gradual improvements
over the years down to 946 (Nilli [96]), 903 (Weissbach), 561 (Raigorodski
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[109]), 560 (Weissbach [126]), 323 (Hinrichs [57]), 321 (Pikhurko [102]),
298 (Hinrichs and Richter [58]). The construction of Hinrichs and the
subsequent ones remarkably rely on the Leech lattice.

A two-distance set is a set of vectors in Rd that attain only two dis-
tances. Larman asked early on and asked again recently:

Problem 2.12 Is the Borsuk conjecture correct for two-distance sets?

This has proven to be a very fruitful question. In 2013 Bondarenko [15]
found a two-distance set with 416 points in 65 dimensions that cannot be
partitioned into less than 83 parts of smaller diameter. Remarkable! Jen-
rich [61] pushed the dimension down to 64. These constructions beatifully
relies on known strongly-regular graphs.

Problem 2.13 What is the smallest dimension for which Borsuk’s con-
jecture fails? Is Borsuk’s conjecture correct in dimension 4?

In dimensions 2 and 3 Borsuk’s conjecture is correct. Eggleston gave
the first proof for dimension 3 [35], which was followed by simpler proofs
by Grünbaum [47] and Heppes [54]. A simple proof for finite sets of points
in 3-space was found by Heppes and Revesz [56]. For dimension 2 it follows
from an earlier 1906 result that every set of diameter one can be embedded
into a regular hexagon whose opposite edges are distance one apart. For
a simpler argument see Pak’s book [99]. Here too, for finite configurations
the proof is very simple.

3 Upper bounds for Borsuk’s problem and sets of
constant width

3.1 Improving the upper bound

Lassak [84] proved that for every d, f(d) ≤ 2d−1+1 (and this still gives
the best-known bound when the dimension is not too large). Schramm
[116] proved that every convex body of constant width 1 can be covered
by (

√

3/2 + o(1))d smaller homothets. It is a well-known fact [36] that
every set of diameter one is contained in a set of constant width 1, and,
therefore, for proving an upper bound on f(d) it is enough to consider sets
of constant width. Bourgain and Lindenstrauss [17] showed that every
convex body in Rd of diameter 1 can be covered by (

√

3/2 + o(1))d balls

of diameter 1. Both these results show that f(d) ≤ (
√

3/2 + o(1))d.

Problem 3.1 Prove that f(d) ≤ Cd for some C <
√

3/2.
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We note that Danzer constructed a set of diameter 1 that requires
exponentially many balls to cover. Danzer constructed a set for which
(1.003)d balls needed, and Bourgain and Lindenstrauss in 1991 [17] found
much better bound, (1.064)n.

As for covering by smaller homothets we recall the famous:

Conjecture 3.2 (Hadwiger [52, 53]) Every convex body K in Rd can
be covered by 2d smaller homothets of K.

The case of sets of constant width is of particular interest:

Problem 3.3 Are there ǫ > 0 and sets of constant width in Rn that
require at least (1 + ǫ)n smaller homothets to cover?

Note that a positive answer neither implies nor follows from a (1+ ǫ)d

lower bound for the Borsuk number f(d).

3.2 Volumes of sets of constant width

Let us denote the volume of the n-ball of radius 1/2 by Vn.

Problem 3.4 (Schramm [117]) Is there some ǫ > 0 such that for every
d > 1 there exists a set Kd of constant width 1 in dimension d whose
volume satisfies V OL(Kd) ≤ (1− ǫ)dVd?

Schramm raised a similar question for spherical sets of constant width
and pointed out that a negative answer for spherical sets will push the
(3/2)d/2 upper bound for f(d) to (4/3)d/2.

4 Saving the Borsuk conjecture

4.1 Borsuk’s conjecture under transversality

I would like to examine the possibility that Borsuk’s conjecture is cor-
rect except for some “coincidental” sets. The question is how to properly
define “coincidental,” and we will now give it a try!

Let K be a set of points in Rd and let A be a set of pairs of points in K.
We say that the pair (K,A) is general if for every continuous deformation
of the distances on A there is a deformation K of K which realizes the
deformed distances.

Remark This condition is related to the “strong Arnold property” (a.k.a.
“transversality”) in Colin de Verdiére’s theory of invariants of graphs [21].
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Conjecture 4.1 If D is the set of diameters in K and (K,D) is general
then K can be partitioned into d+ 1 sets of smaller diameter.

We further propose (somewhat more strongly) that this conjecture
holds even when “continuous deformation” is replaced with “infinitesimal
deformation.”

The finite case is of special interest. A graph embedded in Rd is stress-
free if we cannot assign not-all-zero weights to the edges such that the
weighted sum of the edges containing any vertex v (regarded as vectors
from v) is zero for every vertex v. Here we embed the vertices and regard
the edges as straight line segments. (Edges may intersect.) Such a graph
is called a “geometric graph.” When we restrict the conjecture to finite
configurations of points we get:

Conjecture 4.2 If G is a stress-free geometric graph of diameters in Rd

then G is (d+ 1)-colorable.

Remark A stress-free graph for embeddings into Rd has at most dn −
(

d+1
2

)

edges and therefore its chromatic number is at most 2d− 1.

4.2 A weak form of Borsuk’s conjecture

Conjecture 4.3 Every polytope P with m facets can be covered by m sets
of smaller diameter.

This conjecture was motivated by recent important works on projec-
tions of polytopes [40]. A positive answer will give an alternative path for
showing that the cut polytope cannot be described as a projection of a
polytope with only polynomially many facets.

4.3 Classes of bodies for which Borsuk’s conjecture holds

Perhaps the most natural way to “save” Borsuk’s conjecture is given
by:

Problem 4.4 Find large and interesting classes of convex bodies for which
Borsuk’s conjecture holds!

Borsuk’s conjecture is known to be true for centrally symmetric bod-
ies, Hadwiger proved it for smooth convex bodies [53], and Boris Dekster
proved the conjecture both for bodies of revolution [29] and for convex
bodies with a belt of regular points [30].
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4.4 Partitioning the unit ball and diametric codes

The unit ball in Rd can be covered by d + 1 convex sets of smaller
diameter. But how much smaller? We do not know the answer. Let u(d)
be the minimum value of t such that the unit ball in Rd can be covered
by d+ 1 sets of diameter at most t.

Problem 4.5 Determine the behavior of u(d)!

The motivation for this question comes from an even stronger form of
Borsuk’s conjecture asserting that every set of diameter 1 can be covered
by d + 1 sets of diameter u(d). It was also conjectured that the optimal
covering for the sphere is described by a partition based on the Voronoi
regions of a regular simplex that gives u(n) ≤ 1−Ω(1)/n. This is known to
be optimal in dimensions two and three and is open in higher dimensions.
Larman and Tamvakis [81] showed by a volume argument that u(n) ≥
1− 3/2 logn/n+O(1/n). See also [28].

It will be interesting to close the logarithmic gap for u(d). I don’t know
what one should expect for the answer, and it will be quite exciting if the
standard example is not optimal.

We can more pose general questions:

Problem 4.6 (i) What is the smallest number of sets of diameter t that
are needed to cover the unit sphere?

(ii) What is the largest number of convex sets of width ≥ t that can be
packed into the unit sphere? (The width of a convex set is the minimum
distance between opposite supporting hyperplanes.)

Let Ωn = {0, 1}n. We can ask the analogous questions about the binary
cube.

Problem 4.7 (i) What is the smallest number of sets of diameter t that
are needed to cover Ωn?

(ii) What is the largest number of sets of width ≥ t that can be packed
into Ωn?

Here by “diameter” and “width” we refer to the Euclidean notions (for
which, for Problem 4.7, “diameter” essentially coincides with the Hamming
diameter).

5 Unit-distance graphs and complexes

For a subset A of Rn the unit-distance graph is a graph whose set of
edges consists of pairs of points of A of distance 1. If all pairwise distances
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are at most 1, we call the unit-distance graph a diameter graph. If all
the pairwise distances are at least 1 we call it a kissing graph. Borsuk’s
question is a question about coloring diameter graphs.

Problem 5.1 What is the maximum number of edges, the maximum chro-
matic number, and the maximum minimal degree for the diameter graph,
kissing graph, and unit-distance graph for a set of n points in Rd?

Finding the maximum number of edges in a planar unit distance graphs
is a famous problem by Erdős [37]. Another famous problem by Hadwiger
and Nelson is about the chromatic number of the planar unit distance
graph and yet another famous question is if the minimal kissing number
of a set of n points in Rd is exponential in d, see [22, 4].

We can define also the unit-distance complex to be the simplicial com-
plex of cliques in the unit-distance graphs or, alternatively, the simplicial
complex whose faces are sets of points in A that form regular simplices of
diameter 1. And again when the diameter of A is 1 we call it the diam-
eter complex and when the minimum distance is 1 we call it the kissing
complex.

Problem 5.2 What is the maximum number of r-faces for the diameter
complex, kissing complex, and the unit-distance complex for a set of n
points in Rd?

For the chromatic number of the unit-distance graph it makes a dif-
ference if we demand further that each color class be measurable. (This
is referred to as the measurable chromatic number.) For progress on the
chromatic number of unit-distance graphs, see [44, 72, 73, 74, 75]. For
progress on the measurable chromatic number and related questions, see
[8, 9, 10, 27].

Rosenfeld asked (see [115]):

Problem 5.3 Does the graph whose vertex set is the set of points in the
plane and whose edges represent points whose distance is an odd integer
have a bounded chromatic number?

For measurable chromatic numbers the answer is negative as follows
from a theorem of Furstenberg, Katznelson and Weiss that asserts that
every planar set of positive measure realizes all sufficiently large distances.
See also [121] for a simple direct proof.
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5.1 Schur’s conjecture

A conjecture by Schur deals with an interesting special case:

Conjecture 5.4 (Schur) The number of (d− 1)-faces of every diameter
complex for a set of n points in Rd is at most n.

The planar case is an old result and it implies a positive answer to Bor-
suk’s problem for finite planar sets. The proof is based on an observation
that sets the metric aside: the edges of the diameter graph are pairwise
intersecting and therefore we need to show that every geometric graph
with n vertices and n+ 1 edges must have two disjoint edges. This result
by Hopf and Pannwitz [59] from 1934 can be seen as the starting point of
“geometric graph theory” [98]. Zvi Schur was a high school teacher who
did research in his spare time. He managed to prove his conjecture in
dimension 3 (see [118]) but in his writing he mentioned that “the power
of my methods diminishes as the dimension goes up.” The paper [118]
includes also a proof that in any dimension the number of d-faces of the
diameter complex is at most one. Schur’s conjecture has recently been
proven by Kupavskii and Polyanski [77]! (For d = 4 it was proved by
Bulankina, Kupavskii, and Polyanskii [19].) A key step in Kupavskii and
Polyanskii’s work is proving the k = m = d − 1 case of the following
additional conjecture by Schur, still open in the general case.

Conjecture 5.5 (Schur) Let S1 and S2 be two regular simplices of di-
mensions k and m in Rd such that their union has diameter 1. Then S1

and S2 share at least min(0, k + 2m− 2d+ 1) vertices for k ≥ m.

Heppes and Révész proved that the number of edges in the diameter
graph of n points in space is 2n− 2. This gives an easy proof of Borsuk’s
conjecture for finite sets of points in R3.

A natural weakening of Borsuk’s conjecture is:

Problem 5.6 What is the smallest r = r(d) such that every set of di-
ameter 1 in Rd can be covered by d + 1 sets, none of which contains an
r-dimensional simplex of diameter 1?

Unit-distance graphs and especially diameter graphs and complexes
are closely related to the study of ball polytopes. Those are convex bodies
that can be described as the intersection of unit balls. A systematic study
of ball polytopes was initiated by Cároly Bezdek around 2004 and they
were also studied by Kupitz, Martini, and Perles, see [11, 12, 79]. Ball
polytopes are also related to sets of constant width.
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5.2 Tangent graphs and complexes for collections of balls (of
different radii)

We can try further to adjust the problems discussed in this section to
the case where we have a collection A of points in Rd and a close ball
centered around each point. Two balls can be in three mutual positions
(that we care about): They can be disjoint, they can have intersecting
interiors, or they can be tangential.

The tangent graph is a graph whose set of vertices is A and a pair of
vertices are adjacent if the corresponding balls are tangential. Note that
if all balls have the same radius 1/2, then the tangent graph is the unit-
distance graph. As before we can consider also the tangent complex - the
simplicial complex described by cliques in the tangent graph.

Problem 5.7 (i) What is the maximum number of edges in a tangent
graph (especially in the plane)? What is its maximum chromatic number
(especially in the plane)?

(ii) If every two balls intersect, then the tangent graph is a generaliza-
tion of the diameter graph. Again we can ask for the maximum number of
edges, cliques of size r, and the chromatic number. Again we can ask if
when the graph is stress-free the chromatic number is at most d+ 1.

(iii) If every two balls have disjoint interiors then the tangent graph is
a generalization of the kissing graph. Again we can ask for the maximum
number of edges, cliques of size r, the maximum minimal degree, and the
chromatic number.

In the plane we can find n points and n lines with nC4/3 incidences
and the famous Szemeredi–Trotter theorem (see, e.g., [124]) asserts that
this is best possible. Now, we can replace each point by a small circle,
arrange for the lines incident to the points to be tangential to them, and
regard the lines as circles as well. This shows that tangent graphs with n
vertices in the plane can have as much as nC4/3 edges. It is conjectured
by Pinchasi, Sharir, and others that

Conjecture 5.8 (i) Planar tangent graphs with n vertices can have at
most
n4/3polylog(n) edges.

(ii) More generally, m red discs and n blue discs (special case: n blue
points), can touch at most ((mn)2/3 +m+ n)polylog(m,n) times.

This conjecture proposes a profound extension of the Szemeredi–Trotter
theorem. The best known upper bound n3/2 log n is by Markus and Tardos
[88], following an earlier argument by Pinchási and Radoicić [104]. This
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particular approach based on a certain “forbidden configurations” – a self
crossing 4-cycle – cannot lead to better exponents. Sharir found a beau-
tiful connection with Erdos’s distinct distances problem [51] which also
shows that the polylog(n,m) term cannot be eliminated. Indeed, assume
you have n points with just x distances. Then draw around each point x
circles whose radii are the x possible distances and then you get a collection
of m = nx circles and n points with n2 incidences (because every point
lies on n circles exactly). Therefore: n2 ≤ polylog(xn)(n(xn))2/3+n+xn
which implies x ≥ npolylog(n).

For circles that pairwise intersect, Pinchasi [103] proved a Gallai–
Sylvester conjecture by Bezdek asserting that (for more than 5 circles)
there is always a circle tangential to at most two other circles. This was
the starting point of important studies [6, 1] concerning arrangement of
circles and pseudo-circles in the plane. Alon, Last, Pinchasi, and Sharir [6]
showed an upper bound of 2n− 2 for the number of edges in the tangent
graph for pairwise intersecting circles.

The problem considered in this section can be asked under greater
generality in at least two ways: one important generalization is to consider
two circles adjacent if their intersection is an empty lens, that is, not
intersected by the boundary of another disc. Another generalization is for
pseudocircles (where both notions of adjacency essentially coincide).

Let me end with the following problem:

Conjecture 5.9 (Ringle circle problem) Tangent graphs for finite col-
lections of circles in the plane such that no more than two circles pass
through a point have bounded chromatic numbers.

Recently, Pinchasi proved that without the assumption that no more
than two circles pass through a point, the chromatic number is O(log2 n),
where n is the number of vertices of the graphs. Pinchasi also gave an
example where (again, dropping the extra assumption) you need logn
colors.

6 Other metric spaces

6.1 Very symmetric spaces

We already discussed Borsuk’s problem for spherical sets. We can also
ask

Problem 6.1 Study the Borsuk problem, and other questions considered
above, for very symmetric spaces like the hyperbolic space, the Grassma-
nian, and GL(n).
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The Grassmanian, the space of k-dimensional linear spaces of Rn is of
special interest. The “distance” between two vector spaces can be seen as
a vector of k angles, and there may be several interesting ways to extend
the questions considered here. (The case k = 1 brings us back to the
Elliptic space).

6.2 Normed spaces

Given a metric space X and a real number t we can consider the Bor-
suk number b(X, t) defined as the smallest integer such that every subset
of diameter t in X can be covered by b(X, t) sets of smaller diameter.
There are interesting results and questions regarding Borsuk’s numbers of
various metric spaces. Let a(X, t) be the maximum cardinality of an equi-
lateral subset Y ⊂ X of diameter t (namely, a set so that every pairwise
distance between distinct points in Y is t). Of course, a(X, t) ≤ b(X, t).
Understanding a(X, t) for various metric spaces is of great interest. Kus-
ner conjectured that an equilateral set in ℓn1 has at most 2n elements and
an equilateral set in ℓnp has size at most n + 1 for p, 1 < p < ∞. Smyth
found the first polynomial upper bound for the size of an equilateral set
in ℓ1 which followed by an important result by Alon and Pudlak [7]:

Theorem 6.2 (Alon and Pudlak) For an odd integer p, an equilateral
set in ℓnp has at most cpn logn points.

When we move to general normed spaces there are very basic things
we do not know. It is widely conjectured that:

Conjecture 6.3 Every normed n-dimensional space has an equilateral set
of n+ 1 points.

For more on this conjecture see Swanepoel [122].
Petty [101] proved the n = 3 case and his proof is based on the topo-

logical fact that a Jordan curve in the plane enclosing the origin cannot
be contracted without passing through the origin at some stage. Makeév
proved the four-dimensional case using more topology. Brass and Dekster
proved independently a (logn)1/3 lower bound and a major improvement
by Swanepoel and Villa [123] improved the lower bound to exp(c log n)1/2.
I would not be surprised if Conjecture 6.3 is false. It is known that 2n is an
upper bound for the size of an equilateral set for a normed n-dimensional
space.

Let me end this section with a beautiful result of Matoušek about unit
distances in normed space. One of the most famous problems in geometry
is Erdős’ unit distance problem of finding the maximum number of unit
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distances among n points in the plane. This question can be asked with
respect to every planar norm with unit ball K. It is known that for every
norm the number of edges can be as large as θ(n logn) and here we state
a breakthrough theorem by Matoušek [91]:

Theorem 6.4 There are norms (in fact, for most norms in a Baire cate-
gory sense) for which the maximum number of unit distances on n points
is O(n log n log logn).

7 Around Frankl–Wilson and Frankl–Rödl

7.1 The combinatorics of cocycles and Turán numbers

The original counterexamples to Larman’s conjecture (and Borsuk’s
conjecture) were based on cuts: we consider the family of edges of complete
bipartite graphs with 4n vertices. (In one variant we consider balanced
bipartite graphs, and in another, arbitrary bipartite graphs.) We now
consider high-dimensional generalization of cuts in graphs.

A ((k− 1)-dimensional) cocycle is a k-uniform hypergraph G such that
every k + 1 vertices contains an even number of edges. Equivalently, you
can start with an arbitrary (k−1) uniform hypergraph H and consider the
k-uniform hypergraph G of all k-sets that contain an odd number of edges
from H . Cocyles are familiar objects from simplicial cohomology and they
have also been studied by combinatorialists and mainly by Seidel [119].

For even k, let f(n, k) be the largest number of edges in a (k − 1)-
dimensional cocycle with n vertices. (Note that when k is odd, the com-
plete k-uniform hypergraph is a cocycle.) Let T (n, k, k + 1) be the maxi-
mum number of edges in a k-uniform hypergraph without having a com-
plete sub-hypergaph with (k + 1) vertices.

Conjecture 7.1 ([68]) When k is even, T (n, k, k + 1) = f(n, k).

The best constructions for Turán numbers T (n, 2k, 2k+1) are obtained
by cocycles. Let me just consider the case where k = 2. For a while the
best example was based on a planar drawing of Kn with the minimum
number of crossings. For every such drawing the set of 4-sets of points
without a crossing is an example for Turán’s (5,4) problem because K5

is non-planar. It is easy to see that this non-crossing hypergraph is also
a cocycle. In 1988 de Caen, Kreher, and Wiseman [25] found a better,
beautiful example: consider a n/2 by n/2 matrix M with ±1 entries.
Your hypergraph vertices will correspond to rows and columns of M . It
will include all 4-tuples with 3 rows or with 3 columns and also all sets
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with 2 rows and 2 columns such that the product of the four matrix entries
is -1. The expected number of edges in the hypergraph for a random ±1
matrix is (11/16 + o(1))

(

n
4

)

.
As for upper bounds, the best-known upper bounds are stronger for

cocycles. Peled [100] used a flag-algebras technique to show that f(n, 4) ≤
(

n
4

)

(0.6916 + o(1)).

7.2 High-dimensional versions of the cut cone and the cone of
rank-one PSD matrices

The counterexamples for Borsuk’s conjecture were very familiar geo-
metric objects [33]. The example based on bipartite graphs (where the
number of edges is arbitrary) is the cut-polytope. The image of the elliptic
space under the map x → x ⊗ x is simply the set of unit vectors in the
cone of rank-one positive semidefinite matrices. The unit vectors in the
cone of cocycles is an interesting generalization of the cut polytope since
for graphs (1-dimensional complexes) it gives us the cut-polytope.

Problem 7.2 Find and study a “high-dimensional” extension of the cone
of rank one PSD matrices (analogous to the cone of cocycles).

One possibility is the following: start with an arbitrary real-valued
function g on

(

[n]
k−1

)

and derive a real-valued function on
(

[n]
k

)

by:

f(T ) =
∏

{g(S) : S ⊂ T, |S| = k − 1}.

Let Uk,n be the cone of all such g’s.
Speculative application to Borsuk’s problem is given by:

Conjecture 7.3 (i) The set of unit vectors in the cone of 3-cocycles with
n vertices demonstrates a Euclidean set in Rd that cannot be covered by
less than exp(d4/5) sets of smaller diameter.

(ii) The set of norm-1 vectors in U4,n demonstrates a Euclidean set in
Rd that cannot be covered by less than exp(d4/5) sets of smaller diameter.

7.3 The Frankl–Wilson and Frankl–Rödl theorems

We conclude this paper with the major technical tool needed for the dis-
proof of Borsuk’s conjecture, which is the Frankl–Wilson (or Frankl–Rödl)
forbidden intersection theorem. Most of the counterexamples to Borsuk’s
conjecture in low dimensions are based on algebraic techniques “the poly-
nomial method” (or some variant) which seem related to the technique
used for the proof of Frankl–Wilson’s theorem. (The only exception are
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the new examples based on strongly regular graphs.) The Frankl–Wilson
theorem [42] is wonderful and miraculous and the Frankl–Rödl theorem
[41] is great - it allows many extensions (but not with sharp constants).
The proof of Frankl–Wilson is a terrific demonstration of the linear-algebra
method. The proof of Frankl–Rödl is an ingenious application (bootstrap-
ping of a kind) of isoperimetric results. Recently Keevash and Long [67]
found a new proof of Frankl–Rödl’s theorem based on the Frankl–Wilson
theorem.

Problem 7.4 Is there a proof of Frankl–Rödl’s theorem based on Del-
sarte’s linear-programming method [31]?

The work of Evan and Pikhurko [26] mentioned above suggests that
applying the linear-programming method with input coming from other
combinatorial methods can lead to improved result.

It is time to state the Frankl–Rödl theorem.

Theorem 7.5 (Frankl–Rödl) For every α, β, γ, ǫ > 0, there is δ > 0
with the following property. Let U1 be the family of [αn]-subsets of [n], let
U2 be the family of [βn]-subsets of [n], and let X be the number of pairs of
sets A ∈ U1, B ∈ U2 whose intersection is of size [γn].

Let F ,G be two subfamilies of U1 and U2, respectively, with |F||G| ≥
(1 − δ)n|U1| · |U2|. Then the number of pairs (A,B), A ∈ F and B ∈ G
whose intersection has [γn] elements is at least (1− ǫ)nX.

An important special case is where α = β = 1/2 and γ = 1/4. The
Frankl–Rödl paper contains generalizations in various directions. We could
have assumed that, e.g., F and G are families of partitions of [n] into r
parts instead of families of sets. It also contains interesting geometric
applications. We will propose here two extensions of the Frankl–Rödl
theorem.

7.4 Frankl–Rödl/Frankl–Wilson with sum restrictions

For S ⊂ [n], we write ||S || =
∑{s : s ∈ S}. Let α1, α2, β1, β2 be

reals such that 0 < α1, α2 < 1, 0 < β1, β2 < 1. . Consider the family
G of subsets of [n] such that for every S ∈ G we have |S| = [α1n], and
||S || = [α2(

(

n
2

)

)].

Let X be the number of pairs A and B in G with the properties:

(*) The intersection C of A and B has precisely [β1n] elements.

(**) The sum of elements in C is precisely [β2(
(

n
2

)

)].
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Conjecture 7.6 (Frankl–Rödl/Frankl–Wilson with sum restrictions)
For every ǫ > 0, there is δ > 0 such that if you have a subfamily F of G
of size > (1− δ)n|G|, then the number of pairs of sets in F satisfying (*)
and (**) is at least (1 − ǫ)nX.

Remark (February 2015): Eoin Long has recently reduced many cases
of this conjecture to the original Frankl–Rödl theorem.

7.5 Frankl–Rödl/Frankl–Wilson for cocycles

Conjecture 7.7 (Frankl–Rödl/Frankl–Wilson theorem for cocycles)
For every ǫ, γ > 0, there is δ > 0 with the following property. Let F be
the family of 3-cocycles. Let X be the number of pairs of elements in F
whose symmetric difference has precisely m = [γ

(

n
4

)

] sets. Then for every

G ⊂ F if |G| ≥ (1− δ)(
n

4)|F|, the number of pairs of elements in G whose

symmetric difference has precisely m sets is at least (1− ǫ)(
n

4)X.

The case of 1-cocycles is precisely the conclusion of Frankl–Wilson/Frankl–
Rödl needed for Borsuk’s conjecture, and a Frankl–Rödl theorem for 4-
cycles may also be a way to push up the asymptotic lower bounds for
Borsuk’s problem via Conjecture 7.3.

8 Paul Erdős’ way with people and with mathematical
problems

There is a saying in the ancient Hebrew scriptures:

Do not scorn any person and do not dismiss any thing, for
there is no person who has not his hour, and there is no thing
that has not its place.

Paul Erdős had an amazing way of practicing this saying, when it came
to people, and likewise when it came to his beloved “things,” - mathemat-
ical problems. And his way accounts for some of our finest hours.
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[48] B. Grünbaum, Borsuk’s partition conjecture in Minkowski planes,
Bull. Res. Council Israel (1957/1958), pp. 25–30.
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