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Abstract

The Cross Entropy method is a well-known adaptive importance sampling method

for rare-event probability estimation, which requires estimating an optimal importance

sampling density within a parametric class. In this articlewe estimate an optimal

importance sampling density within a wider semiparametricclass of distributions. We

show that this semiparametric version of the Cross Entropy method frequently yields

efficient estimators. We illustrate the excellent practical performance of the method

with numerical experiments and show that for the problems weconsider it typically

outperforms alternative schemes by orders of magnitude.
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1. Introduction

In this article we consider the problem of estimating rare-event probabilities of the form

ℓ = P(S(X) > γ), X = (X1, . . . ,Xd),

whereS(x) = x1 + · · ·+ xd andX1, . . . ,Xd are (possibly dependent) random variables. We call

these the jump variables. Such estimation problems arise invarious contexts, see, for example,

[1, 3, 9]. We describe an adaptive importance sampling algorithm, which can be viewed as
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the semiparametric version of the well-known Cross Entropy(CE) method for estimation of

rare-event probabilities [15]. The main ingredients of thesemiparametric CE method are as

follows.

First, similar to [5, 6] we use a Markov Chain Monte Carlo (MCMC) algorithm to obtain

random variables distributed according to the minimum variance importance sampling density.

In our context the minimum variance importance sampling density is simply the density of

the vectorX conditioned on the rare eventS(X) > γ. Second, with the MCMC sample

at hand, we construct a conditional (or a Rao-Blackwell) estimator of each of the marginal

densities of the minimum variance importance sampling density. Finally, we use the product

of these (estimated) marginal densities as our importance sampling density in order to estimate

ℓ. Under idealized conditions that ignore the error arising from the MCMC sampling, we show

that the resulting estimator achieves either logarithmic or bounded relative error efficiencies.

The strength of the method is not only that it outperforms thecurrently recommended esti-

mation procedures for heavy-tailed probabilities, but that the exact same procedure is efficient

in problems with light-tailed probabilities. For example,we show that unlike any existing

procedures, the method is efficient in the Weibull case for all values of the tail indexα, even in

the light-tailed case withα > 1.

Numerical experiments show that, despite the heuristic nature of the MCMC step, the

estimator can in practice be frequently more reliable and efficient than tailor-made importance

sampling schemes. In other words, an advantage of the methodology advocated here is that a

single broadly-applicable heuristic algorithm provides satisfactory practical performance on a

range of different estimation problems (both in light- and heavy-tailedcases) and frequently

this performance is superior to estimation schemes that arespecifically designed to a particular

rare-event estimation problem.

The rest of the paper is organized as follows. In Section 2 we quickly review the para-

metric CE method and introduce its semiparametric version.This is followed by a number

of examples with details about the practical implementation of the estimator. The examples

aims to demonstrate the superior performance of the proposed algorithm compared to existing

estimation algorithms on a number of prototypical examples. In Section 4 we provide theoret-

ical analysis of the efficiency of a simple version of the estimator for light- and heavy- tailed

random variables. Finally, Section 5 gives some concludingremarks.
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2. Cross Entropy method

2.1. Parametric Cross Entropy method

In order to introduce the semiparametric version of the CE method, we briefly review the

CE method itself. Letf (x) be the joint density of the vectorX = (X1, . . . ,Xd) and suppose that

it is part of the parametric family

F =
{
f (·; v) : Rd → R>0 :

∫
f (x; v) dx = 1;v ∈ V

}
, (1)

whereV ⊂ Rp is the feasible parameter set. The assumption is thatf (x) ≡ f (x; u) ∈ F for

someu ∈ V . Then, the objective is to find a parameterv ∈ V that yields a good importance

sampling estimator of the form:

ℓ̂CE =
1
m

m∑

i=1

I{S(Yi) > γ}
f (Yi ; u)
f (Yi ; v)

, Y1, . . . ,Ym
iid∼ f (y; v) . (2)

In the CE method the best parameterv∗ ∈ V is the one which minimizes the cross entropy

distance betweenf (·; v) ∈ F and the zero-variance importance sampling density

π(x) =
I{S(x) > γ} f (x)
P(S(X) > γ)

.

In other words,

v∗ = argmin
v∈V

∫
π(x) ln

(
π(x)

f (x; v)

)
dx = argmax

v∈V

∫
π(x) ln f (x; v) dx . (3)

In practice the integral
∫
π(x) ln

(
π(x)
f (x;v)

)
dx is estimated from a preliminary simulation so that

we obtain the estimator ofv∗:

v̂∗ = argmax
v∈V

n∑

i=1

ln f (Xi , v), (4)

whereX1, . . . ,Xn is an approximate sample fromπ obtained via Markov chain Monte Carlo

(MCMC) sampling over the restricted setSγ, see [7] and Remark 1 below. In this way we use

MCMC to learn about the optimal (in cross entropy sense) parameterv∗. In many applications

the parametric densityf (·; v) is of product form:f (x; v) =
∏d

i=1 fi(xi ; vi). For the special case

where eachfi(xi ; vi) belongs to a one-parameter exponential family parametrized by the mean

[18, Pages 69-70], the solution of (4) is given by the maximum-likelihood estimator of the

mean vector:

v̂∗i =
1
n

n∑

j=1

X j,i, i = 1, . . . , d ,
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whereX j,i is thei-th coordinate of thej-th sampleX j . We thus use the importance sampling

estimator (2) withv = v̂∗.

Remark 1. (GeneratingX1, . . . ,Xn via Gibbs sampling.) In our discussion we assume that

the conditional densitiesπ(xi | x−i) are available in closed form. We can thus use the following

Gibbs sampling procedure to obtainX1, . . . ,Xn
approx∼ π.

Algorithm 2.1. (Gibbs Sampler.)

Require: An initial stateX0 ∼ f (x) and sample sizen.

for t = 0, . . . , n− 1 do

SetY = Xt.

for i = 1, . . . , d do

DrawYi ∼ π(yi |Y1, . . . ,Yi−1,Xt,i+1, . . . ,Xt,d).

SetXt+1 = Y.

2.2. Semiparametric Importance sampling

Recall that the original CE method aims to find the best importance sampling density

f (·; v∗) ∈ F within the parametric family (1); namely by solving the parametric optimization

program (3). In contrast, in the semiparametric CE method the objective is to find the optimal

importance sampling density amongst a family of densities given by some common property.

Again, the optimality criterion is to minimize the cross-entropy distance from the the zero-

variance density. Denote byG1 the set of all single-variate probability density functions; that

is, g(x) : R → R>0 is absolute continuous with
∫

g(x) dx = 1. LetG be the family of product-

form densities onRd:

G =
{
g(·) : Rd → R>0 : g(x) =

d∏

i=1

gi(xi); gi ∈ G1, i = 1, . . . , d
}
.

In this paper we considerG as the target set of importance sampling densities. Hence, the

objective is to solve the functional optimization program ming∈G
∫
π(x) ln

(
π(x)
g(x)

)
dx. This is

equivalent to

g(x) = argmin
g1,...,gd∈G1

∫
π(x) ln


π(x)

∏d
i=1 gi(xi)

 dx = argmax
g1,...,gd∈G1

∫
π(x) ln


d∏

i=1

gi(xi)

dx. (5)

Lemma 1. Letπi(xi) be the i-th marginal of the zero-variance densityπ(x). Then the solution

to the semiparametric CE program(5) is gi = πi for all i = 1, . . . , d. In other words, the
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optimal importance sampling density within the space of allproduct-form densities is the one

given by the product of the marginals ofπ(x).

The proof is given in the Appendix. In practice the marginal densities ofπ are not available

(just like the exactv∗ in (3) is not available) and need to be estimated from simulation. Here

we use the estimators

π̂i(yi) =
1
n

n∑

k=1

π(yi |Xk,−i), i = 1, . . . , d , (6)

where

• X1, . . . ,Xn is an approximate sample fromπ obtained via Gibbs sampling as in (4) (see

also Remark 1);

• the vectorXk,−i is the same asXk except that thei-th component is removed;

• π(xi |Xk,−i) is the conditional density ofxi given all the other components ofXk.

The estimator (6) is motivated by the simple identity:

Eπ[π̂i(y)] =
1
n

n∑

k=1

Eπ[π(y |Xk,−i)] = Eπ[π(y |X−i)]

= Eπ[π(y |X1, . . . ,Xi−1,Xi+1, . . . ,Xd)]

=

∫
π(y | x1, . . . , xi−1, xi+1, . . . , xd) π(x) dx

=

∫
π(x1, . . . , xi−1, y, xi+1, . . . , xd)
π(x1, . . . , xi−1, xi+1, . . . , xd)

π(x) dx

=

∫
π(x1, . . . , xi−1, y, xi+1, . . . , xd)
π(x1, . . . , xi−1, xi+1, . . . , xd)

dx−i ×

π(x1,...,xi−1,xi+1,...,xd)︷                  ︸︸                  ︷∫
π(x1, . . . , xd) dxi

=

∫
π(x1, . . . , xi−1, y, xi+1, . . . , xd) dx−i = πi(y) .

We define the approximation to the optimal semiparametric CEsolution by the product of

marginal density estimators (6), that is,

ĝ(y)
def
=

d∏

i=1

π̂i(yi). (7)

Then we estimateℓ by the importance sampling estimator

ℓ̂ =
1
m

m∑

i=1

I{S(Yi) > γ}
f (Yi)
ĝ(Yi)

, Y1, . . . ,Ym
iid∼ ĝ(y) , (8)
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Note that, conditional onX1, . . . ,Xn, eacĥπi is an equally weighted mixture ofn densities

(with k-th componentπ(yi |Xk,−i)) and hence samplingYi ∼ π̂i(yi) can be performed using the

composition method [16][Page 53]. In other words, choose a component of the mixture at

random by generatingK uniformly from the set of integers{1, . . . , n}. Then, givenK = k,

sampleYi from thek-th mixture componentY ∼ π(yi |Xk,−i). Finally, deliverYi as a realization

from π̂(yi) and (Y1, . . . ,Yd) as a realization from̂g(y).

Remark 2. (Using exact conditional density.) Note that once we have sampledY1, . . . ,Yd−1

from π̂1, . . . , π̂d−1, respectively, we have the option of sampling the finalYd from the exact

conditionalπ(yd |Y1, . . . ,Yd−1), instead of from thed-th marginal̂πd. This reduces the cross

entropy distance toπ even further and yields the alternative and typically more efficient esti-

mator (8) witĥg(y) redefined as

ĝ(y)← π̂1(y1) × · · · × π̂d−1(yd−1) × π(yd | y1, . . . , yd−1) .

3. Examples and Practical Implementation

In this section we consider the prototypical problem of estimatingP(X1 + · · · + Xd > γ),

where the jumpsX1,X2, . . . may or may not be dependent. In the case of independent jumps,

the proposed importance sampling can yield practical performance surpassing that of well

established alternative estimation procedures such as theAsmussen-Kroese (AK) estimator [2,

4]. This is in part due to the fact that our estimator incorporates the ingenious exchangeability

and conditioning proposed in [2]. First, recall that the AK estimator in [2] based on one

replication is given by

ℓ̂AK = dF
((
γ −

d−1∑

j=1

X j

)
∨max

j<d
X j

)
, X1, . . . ,Xd−1

iid∼ F .

The motivation for the estimator is the identityℓ = dP
(
X1 + · · · + Xd > γ,Xd = Md

)
=

dEF
((
γ − ∑d−1

j=1 X j

)
∨ maxj<d X j

)
, wherex ∨ y = max{x, y} and Md

def
= maxj6d X j . This

conditional estimator enjoys excellent practical performance for the problems we consider

below. For further details we refer to [4, 13], where the authors prove that the estimator is a

vanishing relative error one.

We obtain an estimator that outperformsℓ̂AK in terms of (estimated) relative time variance
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by exploiting the decomposition proposed in [14] and the ex

ℓ = P(Md > γ) + P(S(X) > γ,Md < γ)

= P(Md > γ) + dP(S(X) > γ,Xd = Md < γ), by exchangeability of jumps

= 1− P(Md < γ) + d P(Xd = Md < γ) P(S(X) > γ |Xd = Md < γ)

=

dominant term︷       ︸︸       ︷
1− [F(γ)]d+P(Md < γ)

residual probability︷         ︸︸         ︷
P̃

(
S(X) > γ

)
,

where the new probability measureP̃(·) = P(· |Xd = Md < γ) with corresponding density

f̃ (x) = f (x |Xd = Md < γ) =
d f(x)
[F(γ)]d

I {Md < γ,Xd = Md} .

Estimating the residual probability, we obtain the one replication estimator forℓ as

ℓ̂ =1− [F(γ)]d +
f̃ (Y)
ĝ(Y)

I

{
S(Y) > γ

}
, Y ∼ ĝ(y) , (9)

wherêg(y)
def
= π̂1(y1) · · · π̂d−1(yd−1) π(yd | y1, . . . , yd−1) is the estimated importance sampling

pdf described in Remark 2.

In the following examples we used the relative time varianceproduct (RTVP) and the ratio

of relative errors as a measure of efficiency:

Ratio
def
=
σ̂AK /̂ℓAK

σ̂/̂ℓ
, RTVP

def
= Ratio2 × τAK

τ
,

wherêσAK andσ̂ are the sample standard deviations ofℓ̂AK andℓ̂ (all based onm replications),

respectively , andτAK andτ are the CPU times taken to compute the respective estimators. The

quantityτ includes the CPU time needed for the preliminary MCMC simulations.

Example 1. (Weibull case.) Here we wish to estimateP(X1 + · · · + Xd > γ) and assume that

each of the jumpsXi has densityαxα−1e−xα for x > 0 and 0< α < 1. Hence,F(x) = e−xα . In

comprehensive simulations studies the proposed estimatoroutperformed the Asmussen-Kroese

(AK) estimator in terms of relative time variance for all values of the parametersα andγ. The

improvement, however, was not uniform, see Table 1, where, for example forα = 0.1, we can

see savings from as little as 71 times to as large as approximately 6000. The general trend is

for large gains for smallerγ andα > 0.6 or α < 0.3. The AK estimator was strongest in the

rangeα ∈ [0.3, 0.6] with values forα < [0.3, 0.6] rendering it less efficient compared to (9).
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Note that the AK estimator is much faster to evaluate than (9), but this speed is insufficient

to offset the substantial gains in squared relative error (given by Ratio column).

Table 1: Comparison of importance sampling method with the AK estimator. Algorithmic parameters

were chosen to ben = 103,m= 106,d = 10. The AK estimator is based onm= 106 replications.

α = 0.1

γ ℓ̂ Rel. Err. Ratio RTVP

1010 4.54/104 1.7/106 132 71

1011 3.40/105 4.1/107 222 197

1012 1.30/106 6.4/108 722 2071

1013 2.16/108 8/109 592 1429

1015 1.84/1013 1.3/1010 1252 5944

α = 0.2

γ ℓ̂ Rel. Err. Ratio RTVP

104 1.97/102 6.5/105 32 3.7

105 4.64/104 1.8/105 5.62 12

106 1.31/106 3/106 9.22 33

107 1.23/1010 4.3/107 102 42

108 5.13/1017 6.5/108 72 20

α = 0.6

γ ℓ̂ Rel. Err. Ratio RTVP

102 9.47/106 2.6/104 192 130

150 7.83/108 1.5/104 412 550

200 1.34/109 1.5/104 632 1376

500 1.83/1017 1.7/104 5.52 11

103 7.00/1027 9.5/105 62 13

α = 0.9

γ ℓ̂ Rel. Err. Ratio RTVP

30 1.33/104 9/104 132 50

40 6.27/107 9/104 782 1758.7

50 2.25/109 1/103 2542 17746

60 7.01/1012 1/103 5562 87103

100 4.34/1022 1/103 3002 23768

Remark 3. (Efficient evaluation of̂g.) If we define,ck
def
=

(
γ −∑

j,i Xk, j

)+
, then (6) simplifies

to

π̂i(yi) =
1
n

n∑

k=1

π(yi |Xk,−i) =
1
n
αyα−1

i e−yαi

n∑

k=1

I{yi > ck}/e−ck = f (xi)
1
n

n∑

k=1

I{yi > c(k)} × ec(k) ,

where the term
∑n

k=1 I{yi > c(k)} × ec(k) can be evaluated for an arbitraryyi quickly by first

computing and storing in memory the cumulative sums
∑i

k=1 ec(k) , i = 1, . . . , n and then using

table look-up methods withO(n) time complexity.

Example 2. (Pareto case.) Assume that the jumpsXi have Pareto density and distribution

functions given byf (x) = α/xα+1, F(x) = 1 − 1/xα, x ≥ 1. The following table shows the

results of a comparison with the AK estimator for different values ofα andγ. Again, the

efficiency gains with the proposed method can be of the order of 104.
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Table 2: Comparison of importance sampling with the AK estimator for Pareto case. Heren = 103,m=

106,d = 10.

α = 0.5

γ − d ℓ̂ Rel. Err. Ratio RTVP

108 1.00/103 5.6/107 332 209

1010 1.00/104 5.8/108 1072 3007

1011 3.16/105 1.8/108 1762 6270

1012 9.99/106 5.92/109 3642 34271

1015 3.16/107 1.9/1010 5842 82494

α = 1

γ − d ℓ̂ Rel. Err. Ratio RTVP

104 1.00/103 5.1/106 72 11

106 1.00/105 1.0/107 382 330

108 1.00/107 1.4/109 912 1711

1010 1.00/109 2.61/1011 422 322

1013 1.00/1012 3/1014 242 123

α = 5

γ − d ℓ̂ Rel. Err. Ratio RTVP

101 2.58/104 1.5/104 102 66

102 1.06/109 1.2/105 42 11

103 1.00/1014 1.13/106 42 11

104 1.00/1019 1/107 4.42 11

105 1.00/1024 1.2/108 42 11

α = 10

γ − d ℓ̂ Rel. Err. Ratio RTVP

5 1.75/106 2.4/104 302 609

10 1.09/109 9.93/105 62 22

102 1.00/1019 8.8/106 42 13

500 1.02/1026 1.6/106 52 11

1500 1.73/1031 5.5/107 4.42 13

Example 3. (Compound Sum.) We are interested in estimating the tail probability of a com-

pound sum of the formP(X1+· · ·+XR > γ), where the jumpsXi are iid with Weibull distribution

with parameter 0< α < 1, and (without loss of generality)R ∼ Geom(̺) is a geometric

random variable with pdf̺(1−̺)r−1, r = 1, 2, . . .. We haveP(SR > γ) = P(X1+· · ·+XR > γ) =

̺

∞∑

r=1

(1− ̺)r−1
P(Sr > γ) = ̺

∞∑

r=1

(1− ̺)r−1
P(Mr > γ) + ̺

∞∑

r=2

(1− ̺)r−1
P(Mr < γ,Sr > γ)

=
F(γ)

F(γ) + ̺F(γ)︸           ︷︷           ︸
dominant term

+
̺(1− ̺)(F(γ))2

F(γ) + ̺F(γ)
P̃

(
SR > γ

)
︸      ︷︷      ︸

residual probability

,

where under the new probability measureP̃ we have (R− 1) ∼ Geom(F(γ) + ̺F(γ)) with pdf

P̃(R = r) = fR(r), r = 2, 3, . . . andX1,X2, . . .
iid∼ f (x) with pdf given by the truncated Weibull

density f (x) = αxα−1e−xα/(1− e−γ
α

), 0 < x < γ. Hence, we can again apply our importance

sampling estimator to estimate the residual probabilityP̃(SR > γ). The minimum variance pdf

for the estimation of the residual is

π(y, r) ∝ fR(r)
r∏

j=1

f (y j) I{Sr > γ},
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which can be easily sampled from using the Gibbs sampler in Algorithm 2.1 by noting that

π(r |Y) ∝ fR(r) I{r > r∗(Y)}, r∗(Y)
def
= min{r : Y1 + · · · + Yr > γ} .

Table 3 gives the results of a number of numerical experiments. The results of our proposed

method are significantly better in all cases, exceptα = 0.2 with 1/̺ ∈ {50, 100}. In the

latter case, the variance reduction achieved by the proposed method is not sufficient to offset

the computational cost of simulating compound sums of expected length of 1/̺. Note that

for α > 0.5, the proposed method can be thousands of times more efficient. Our proposed

method is also more efficient than the recently proposed improved Asmussen-Kroeseestimator

[12][Table 2]. For example, based on the reported variancesand computing time in [12], in

terms of RTVP our estimator is from 8.5 to 45 times more efficient. We must note, however,

that the results given in Table 2 of [12] appear to be incorrect. For example, for̺ = 0.15, α =

0.75, γ = 63.361 Table 2 reports the estimate 5.23× 10−4 with relative error of 0.4%. In

contrast, we obtained the estimate 5.38× 10−4 with relative error 0.03%, which we verified

with a Crude Monte Carlo simulation using 109 repetitions.

Table 3: Compound Weibull sum with expected number of jumps 1/̺. Heren = 104,m= 106.

α = 0.2 with γ = 106 fixed

1/̺ ℓ̂ Rel. Err. Ratio RTVP

5 6.56/107 1.4/105 3.62 9.6

10 1.31/106 3.1/105 2.82 3.5

20 2.65/106 5.1/105 2.22 1.2

50 6.81/106 1.7/104 1.42 0.03

100 1.42/105 1.7/104 22 0.04

α = 0.5 with γ = 500 fixed

1/̺ ℓ̂ Rel. Err. Ratio RTVP

3 7.34/1010 7.3/104 42 16

5 1.60/109 1/103 4.12 12

10 1.17/108 1.7/103 472 445

20 1.24/105 7.2/104 2462 7300

50 7.9/103 2.1/104 582 110

α = 0.8 with γ = 30/̺ depending on̺

1/̺ ℓ̂ Rel. Err. Ratio RTVP

3 6.29/1011 1.2/103 3302 46000

5 1.65/1011 6.4/104 9302 200000

10 6.94/1012 3.8/104 25612 780000

20 4.64/1012 2.7/104 36362 34000

50 3.68/1012 2.1/104 14852 27000

α = 0.95 withγ = 30/̺ depending on̺

1/̺ ℓ̂ Rel. Err. Ratio RTVP

5 2.61/1013 4.8/104 106 > 105

10 2.18/1013 3/104 > 106 > 105

20 2.00/1013 2.2/104 > 106 40000

50 1.91/1013 1.9/104 > 106 > 105

100 1.88/1013 1.7/104 > 106 > 105
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4. Robustness Properties of Semiparametric Cross Entropy Estimator

In this section we study the robustness properties of the estimator (8) whenγ→ ∞ in some

simplified prototypical settings. Clearly, thenℓ = ℓ(γ) = P(S(X) > γ) → 0. We are interested

in the behavior of the standard error of the estimator in thisregime, specifically, relative to its

meanℓ. Since we take a finite constant sample size, it suffices to analyze the robustness of the

single-run estimator ofℓ:

Z = Z(γ) = I{S(X) > γ} f (X)
g(X)

, (10)

whereX ∼ g(x) =
∏d

i=1 gi(xi) =
∏d

i=1 πi(xi). For our analysis we assume that the importance

sampling densityg is available. In practice we estimateg via ĝ from MCMC simulation as we

discussed in Section 2.2. In this respect, our analysis is similar in spirit to the one conducted

for the parametric Cross Entropy method [8]. The estimator has bounded relative error if

lim supγ→∞
√

Var(Z)/ℓ < ∞, which is equivalent to having bounded relative second moment

[17]:

lim sup
γ→∞

EZ2

ℓ2
< ∞.

Assumption 1. In this section we assume that the jump variables X1, . . . ,Xd are positive

continuous, and that they are independent and identically distributed random variables with

right-unbounded support.

We denote byF(x) the cdf of a jumpXi with associated pdff1(x). Let F(x) = 1− F(x) be

the tail cdf,F∗d be thed-fold convolution ofF, with F∗d = 1− F∗d. Note that the rare-event

probability of interest isℓ = P(X1 + · · · + Xd > γ) = F∗d(γ). Furthermore, thei-th marginalπi

of the zero-variance pdf can be rewritten as

πi(xi) =
∫

R
d−1
>0

π(x) dx1 · · ·dxi−1dxi+1 · · ·dxd

=

∫

R
d−1
>0

I{S(x) > γ} f (x)
ℓ

dx1 · · ·dxi−1dxi+1 · · ·dxd

=

∫

R
d−1
>0

I{S(x) > γ} ∏d
j=1 f1(x j)

ℓ
dx1 · · ·dxi−1dxi+1 · · ·dxd

=
f1(xi)
ℓ

∫

R
d−1
>0

I{x1 + · · · + xd > γ}
∏

j,i

f1(x j) dx1 · · ·dxi−1dxi+1 · · ·dxd

=
f1(xi)
ℓ
P(X1 + · · · + Xi−1 + Xi+1 + · · · + Xd > γ − xi) =

f1(xi) F∗(d−1)(γ − xi)

F∗d(γ)
.
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Note that forxi > γ we clearly haveF∗(d−1)(γ − xi) = 1, and thusπi(xi) = f1(xi)/ℓ. Hence, the

single-run estimatorZ can be written as

Z = I{S(X) > γ} f (X)
g(X)

= I{S(X) > γ}
d∏

i=1

f1(Xi)
πi(Xi)

= I{S(X) > γ}
d∏

i=1

F∗d(γ)

F∗(d−1)(γ − Xi)
(11)

Finally, usingEZ2 = EgZ2 = EgZ f(X)/g(X) = E f Z,we get for the second moment of estimator

Z:

EZ2 = E f I{S(X) > γ}
d∏

i=1

F∗d(γ)

F∗(d−1)(γ − Xi)
. (12)

Proposition 1. Suppose that the jumps X1, . . . ,Xd are i.i.d. with a light-tailed or a subex-

ponential Weibull or Pareto distribution. Then, the semiparametric importance sampling

estimator(10) is at least logarithmically efficient asγ→ ∞.

In the subsequent sections we prove this result by considering the heavy- and light-tailed cases

separately.

4.1. Heavy-tailed case

In this section we assume that all jumpsXi are drawn from a subexponential distributionF

satisfying (for all integerd)

lim
γ↑∞

F∗d(γ)

F(γ)
= d. (13)

In the sequel we shall frequently use the trivial property

F∗d(x) > F(x), x ≥ 0. (14)

Furthermore, we shall need Kesten’s bound Lemma 1.3.5(c) in[9], which states that for every

ε > 0 there exists a constantc1 such that for alld > 2

F∗d(x) 6 c1(1+ ε)dF(x), x ≥ 0. (15)

Denoting the maximumMd = maxi6d Xi , we can decompose the relative second moment as

follows:
EZ2

ℓ2
=
EI{Md > γ}Z2

ℓ2
+
EI{Md 6 γ}Z2

ℓ2
. (16)

In Lemma 2 we shall prove that the first term is bounded asγ → ∞. Concerning the second

term, we examine its behavior for various common probability models in the next two sections.
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Lemma 2.

lim sup
γ→∞

EI{Md > γ}Z2

ℓ2
< ∞.

Proof. SinceI{S(x) > γ} 6 1, we use (12) to find

EI{Md > γ}Z2
6 E f I{Md > γ}

d∏

i=1

F∗d(γ)

F∗(d−1)(γ − Xi)
(17)

Then observe that, ifMd > γ, there exists at least one jumpX j > γ, and, hence, that there is at

least onej for whichF∗(d−1)(γ−X j) = 1. For all other jumps it holds triviallyF∗(d−1)(γ−Xi) >

F∗(d−1)(γ), thus it follows that (17) is bounded from above by

E f I{Md > γ}
∏d

i=1 F∗d(γ)
∏d

i, j F∗(d−1)(γ − Xi)
6 E f I{Md > γ}

∏d
i=1 F∗d(γ)

∏d
i, j F∗(d−1)(γ)

= P f (Md > γ)

(
F∗d(γ)

)d
(
F∗(d−1)(γ)

)d−1

6

(
F∗d(γ)

)d+1

(
F∗(d−1)(γ)

)d−1
=

(
F∗d(γ)

)2 ( F∗d(γ)

F∗(d−1)(γ)

)d−1
,

where the last inequality follows fromP f (Md > γ) 6 P f (S(X) > γ) = F∗d(γ). Now we use the

bounds (14) and (15) for

( F∗d(γ)

F∗(d−1)(γ)

)d−1
6

(F∗d(γ)

F(γ)

)d−1
6 cd−1

1 (1+ ε)d(d−1).

Collecting all bounds we obtain

EI{Md > γ}Z2

ℓ2
=

1
(
F∗d(γ)

)2 E f I{Md > γ}
d∏

i=1

F∗d(γ)

F∗(d−1)(γ − Xi)

6 cd−1
1 (1+ ε)d(d−1) < ∞.

(18)

�

Since we have bounded relative error for the first term in (16), then we can at most have

bounded relative error for estimator (10). For example, if the second term in (16) vanishes or

is bounded, then (10) has bounded relative error.

4.1.1. Weibull distributionAs in Example 1, here we assume that each of the jumpsXi have

densityαxα−1e−xα for 0 < α < 1. The purpose is to analyze the second term in (16).
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Lemma 3.

lim sup
γ→∞

EI{Md < γ}Z2

ℓ2
= 0.

Proof. DenoteSd = S(X). Using (12) andℓ = F∗d(γ), we get

EI{Md < γ}Z2

ℓ2
= E f I{Md < γ,Sd > γ}

∏d−2
i=1 F∗d(γ)

∏d
i=1 F∗(d−1)(γ − Xi)

.

From the bounds (14) and (15), we obtain that this expressioncan be bounded above by

E f I{Md < γ,Sd > γ}
∏d−2

i=1 c1(1+ ε)d F(γ)
∏d

i=1 F(γ − Xi)

= c2E f I{Md < γ,Sd > γ} exp
(
− (d− 2)γα +

d∑

i=1

(γ − Xi)α
)
.

We now consider the following integral over the region{x : 0 < xi < γ,
∑

i xi > γ}:

E f I{Md < γ,Sd > γ} exp
(
− (d− 2)γα +

d∑

i=1

(γ − Xi)α
)

= αd
(


d∏

i=1

xα−1
i

 exp
(
− (d− 2)γα +

d∑

i=1

(
(γ − xi)α − xαi

))
dx

After the change of variableui = xi/γ for all i we obtain that this integral is a Laplace-type

integral:

αdγdα
(

D

h(u) e−γ
αφ(u) du

︸                         ︷︷                         ︸
Laplace-type

,

where:

D
def
=

u : 0 < ui < 1,
∑

i

ui > 1



h(u)
def
=

d∏

i=1

uα−1
i

φ(u)
def
= d− 2+

d∑

i=1

(
uαi − (1− ui)

α)

We now note the following properties of the Laplace integral. First, if D̄ denotes the closure

of the open setD , the functionφ(u) attains its unique global minimum within the bounded

domainD̄ ⊆ Rd on the boundary atu∗ = (1/d, . . . , 1/d). This can be seen either by applying

the Lagrange constraint optimization method or more simplyby noting thatuα − (1 − u)α is
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monotonically increasing andφ(u) is a invariant to permutations of the components ofu. The

minimum

φ(u∗) = d− 2+ d1−α − d1−α(d− 1)α,

as a function ofd is such that ford > 2 we have the strict inequalityφ(u) > φ(u∗) > 0 for all u ∈

D̄ , see Figure 1. The pointu∗ is not a critical point, because∂φ
∂ui

(u) = α
(
uα−1

i + (1− ui)α−1
)
> 0

for all i andu ∈ D .

1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

d

f
1
(u

∗
)

α = 0

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1

Figure 1: The behavior of the functiond− 2+ d1−α − d1−α(d− 1)α for different values of the parameterα.

Second, the functionh : Rd → R is continuous and the Hessian of the surfacep(u1, . . . , ud−1) =

φ(u1, u2, . . . , ud−1, 1− u1 − u2 − · · · − ud−1) is

∂2p
∂ui∂u j

= α(α − 1)×



(1−∑
k<d uk)α−2 − (

∑
k<d uk)α−2 i , j

uα−2
i − (1− ui)α−2 + (1−∑

k<d uk)α−2 − (
∑

k<d uk)α−2 i = j
,

which when evaluated atu∗ yields the nondegenerate Hessian matrix

α(α − 1)
(
d2−α − (1− 1/d)α−2

)
×



2 1 1 · · · 1

1 2 1 · · · 1

1 1 2 · · · 1
...
...
. . .

. . .
...

1 1 1 · · · 2



.

As a result of all these conditions we have the Laplace-type asymptotic expansion [20, Page
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500] at a boundary point, which is not a critical point:
(

D

h(u) e−γ
αφ(u)du = O(γ−α(d+1)/2 × e−γ

αφ(u∗)) ,

where the constantφ(u∗) > 0. It follows that

EI{Md < γ}Z2

ℓ2
6 c2α

dγdα
(

D

h(u) e−γ
αφ(u)du

= O
(
γα(d−1)/2 × e−γ

αφ(u∗)) = O
(
eα(d−1)/2 lnγ−γαφ(u∗))→ 0 (γ→ ∞).

Hence the second term in (16) vanishes asγ→ ∞. �

4.1.2. Sum of Pareto random variables.As in Example 2, we assume thatXi ’s are independent

and Pareto distributed random variables on [1,∞) with common parameterα > 0. The main

result is the logarithmic efficiency of the second term of (16).

Proposition 2. For all ε > 0

lim sup
γ→∞

E[Z2; Md ≤ γ]
ℓ2−ε

= 0.

Proof. The proof will be the result of a number of lemmas. First, similarly as in Lemma

3 we utilize expression (12) for rewriting the second momentas a product, and then we apply

(14) and (15) to bound the factors. The result is that it is enough to prove that

lim sup
γ→∞

1
ℓ2−ε

E f I{Md ≤ γ,Sd > γ}
d∏

i=1

F(γ)

F(γ − Xi)
= 0. (19)

Our approach is to consider a larger set containing{Md ≤ γ,Sd > γ}. For that purpose we

define the we define the quantities

Hn(γ) := E f

[ n∏

k=1

F(γ)

F(γ − Xk)
; Bn

]
, n ≥ 2.

where

Bn = {Sn−1 ≤ γ,Sn > γ,Mn ≤ γ}, n = 2, 3, . . . .

Observe that{Md ≤ γ,Sd > γ} ⊂
⋃d

n=2 Bn. Further to this, observing thatF(γ)/F(γ − x) ≤ 1

for all x ≥ 1, we can set

d∏

k=1

F(γ)

F(γ − xk)
≤

n∏

k=1

F(γ)

F(γ − xk)
, n ≤ d.
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In this way we arrive at the following inequality

E f I{Md ≤ γ,Sd > γ}
d∏

i=1

F(γ)

F(γ − Xi)

≤
d∑

n=2

E f

[ d∏

i=1

F(γ)

F(γ − Xi)
; Bn

]

≤
d∑

n=2

E f

[ n∏

i=1

F(γ)

F(γ − Xi)
; Bn

]
=

d∑

n=2

Hn(γ).

(20)

Now, the quantitiesHn in the sum above can be written in integral form as

Hn(γ) =
∫

Bn

( n∏

k=1

F(γ)

F(γ − xk)

) ( n∏

k=1

f (xk)
)

dxn dxn−1 . . . dx2 dx1

=

γ−(n−2)∫

1

γ−x1−(n−3)∫

1

. . .

γ−x1−···−xn−2∫

1

γ∫

(γ−x1−···−xn−1)∨1

n∏

k=1

(
γ − xk

γ

)α α
xα+1

k

dxn dxn−1 . . . dx2 dx1.

Further, the change of variableyk = xk/γ yields

αn

γnα

1−(n−2)γ−1∫

γ−1

1−y1−(n−3)γ−1∫

γ−1

. . .

1−y1−···−yn−2∫

γ−1

1∫

(1−y1−···−yn−1)∨γ−1

n∏

k=1

L(yk) dyn dyn−1 . . .dy2 dy1,

where

L(y) := (1− y)α y−(α+1), y ∈ (0, 1]. (21)

In particular, it will be useful to write

Hn(γ) = αn γ−nα In(γ, 1), (22)

where the functionIn(γ, 1) is the multiple integral in the expression above. Moreover, In(γ, ζ)

can be defined recursively for via

In(γ, ζ) :=



∫ 1

ζ∨γ−1 L(y)dy, n = 1,
∫ ζ−(n−2)γ−1

γ−1 L(y) In−1(γ, ζ − y) dy, n ≥ 2.
(23)

Next we will prove that forn = 2, 3, . . ., it holds that

lim sup
γ→∞

In(γ, 1)
γα(n−2) ln γ

= 0. (24)

Since both numerator and denominator of (24) have limit+∞, we can apply L’Hopital. Lemma

5 in the appendix provides a recursive expression for the derivative of the functionsIn(γ, ζ):

∂

∂γ
In(γ, ζ) = nL

(
γ−1) In−1

(
γ, ζ − γ−1) γ−2, n = 2, 3, . . . . (25)
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Therefore, we obtain

lim sup
γ→∞

In(γ, 1)
γα(n−2) ln γ

= lim sup
γ→∞

d
dγ In(γ, 1)

d
dγγ
α(n−2) ln γ

= lim sup
γ→∞

n L
(
γ−1) In−1

(
γ, 1− γ−1) γ−2

(
1+ α(n− 2) lnγ

)
γα(n−2)−1

, n = 2, 3, . . . . (26)

• n = 2. The expression in (26) becomes

2 L
(
γ−1) I1

(
γ, 1− γ−1) γ−2

γ−1
=

2 L
(
γ−1) I1

(
γ, 1− γ−1)

γ
.

Observe that

L
(
γ−1) = (

1− γ−1)α γα+1 = O
(
γα+1), γ → ∞;

L
(
1− γ−1) = γ−α (1− γ−1)−(α+1)

= O
(
γ−α

)
, γ→ ∞;

I1
(
γ, 1− γ−1) =

∫ 1

1−γ−1
L(y) dy 6 γ−1L

(
1− γ−1) = O

(
γ−(α+1)), γ→ ∞,

where the inequality follows because the functionL(y) is decreasing on (0, 1]. Hence,

lim sup
γ→∞

2 L
(
γ−1) I1

(
γ, 1− γ−1)

γ
= lim sup

γ→∞

(a constant)× γα+1 γ−(α+1)

γ
= 0.

• n ≥ 2. Assume (24) holds forn. Then reasoning as above and using Lemma 6 for

equality (i), we get forn+ 1

lim sup
γ→∞

In+1(γ, 1)
γα(n−1) ln γ

= lim sup
γ→∞

d
dγ In+1(γ, 1)
d
dγγ
α(n−1) ln γ

= lim sup
γ→∞

(n+ 1)L
(
γ−1) In

(
γ, 1− γ−1) γ−2

(
1+ α(n− 1) lnγ

)
γα(n−1)−1

(i)
= lim sup

γ→∞

(n+ 1)L
(
γ−1) (In

(
γ, 1

)
+ o(1)

)
γ−2

(
1+ α(n− 1) lnγ

)
γα(n−1)−1

= lim sup
γ→∞

(a constant)× γα+1 In
(
γ, 1

)
γ−2 + o(1)

(a constant)× γα(n−1)−1 ln γ

= lim sup
γ→∞

(a constant)×
In
(
γ, 1

)
+ o(1)

γα(n−2) ln γ
= 0
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Putting together these arguments we can complete the proof of the Proposition:

lim sup
γ→∞

EI{Md ≤ γ}Z2

ℓ2−ε

(19)
≤ lim sup

γ→∞

1
ℓ2−ε

E f I{Md ≤ γ,Sd > γ}
d∏

i=1

F(γ)

F(γ − Xi)

(20)
≤ lim sup

γ→∞

∑d
n=2 Hn(γ)

ℓ2−ε

(22)
= lim sup

γ→∞

d∑

n=2

αnIn(γ)
γαn ℓ2−ε

Now notice that

ℓ = F∗d(γ) ≥ F(γ) = γ−α,

thus, forε < 1/α (that is,εα < 1)

ℓ2−ε ≥ γ−2α γαε ≥ γ−2α ln γ, γ→ ∞.

Combining this with above, we get

lim sup
γ→∞

d∑

n=2

αnIn(γ)
γαn ℓ2−ε

≤
d∑

n=2

αn lim sup
γ→∞

In(γ)
γα(n−2) ln γ

= 0

4.2. Light-tailed case

In this section we consider the case whereF belongs to a subfamily of light-tailed distri-

butions as defined by Embrechts and Goldie [10]. We say that a distributionF belongs to the

Embrechts-Goldiefamily of distributions indexed by the parameterθ ≥ 0 and denotedL(θ), if

lim
γ→∞

F(γ + x)

F(γ)
= e−θx. (27)

If θ is strictly larger than 0 thenL(θ) contains light-tailed distributions exclusively and is

often referred as theexponential class. This is a very rich class of distributions that includes

several well know light-tailed distributions such as the exponential, gamma and phase-type. In

contrast, ifθ = 0, thenL(0) corresponds to the class oflong-tailed distributionswhich is a

large subclass of heavy-tailed distributions. In this section we concentrate on the light-tailed

caseθ > 0, but in order to derive our efficiency statements we draw some results for the class of

the so calledlong-tailed functions(cf. [11, Definition 2.14]). More precisely,h is long-tailed

if it is ultimately positive and

lim
γ→∞

h(γ + x)
h(γ)

= 1, ∀x. (28)
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Obviously, if F ∈ L(0), then the tail probabilityF is long tailed. Important properties for the

exponential class (θ > 0) are

• L(θ) is closed under convolutions [10, Theorem 3]. That is, ifF ∈ L(θ), then thed-fold

convolutionF∗d ∈ L(θ).

• Define forα > 0 the distributionG(x) = 1 − (
F(x)

)α. One can easily check thatG ∈

L(αθ) wheneverF ∈ L(θ).

• The tail probability can be decomposed into the product of anexponential and a long

tailed function

F(γ) = e−θγh(γ). (29)

Decomposition (29) will be useful for proving efficiency of the proposed estimator, but it is

also interesting on its own. To verify it we defineh(γ) := F(γ) eθγ. SinceF ∈ L(θ) it follows

that

lim
γ→∞

h(γ + x)
h(γ)

= lim
γ→∞

h(γ + x) e−θ(γ+x)

h(γ) e−θ(γ+x)
= lim
γ→∞

F(γ + x)

F(γ) e−θx
= 1.

The next property states that the asymptotic decay of a long-tailed function is slower than the

exponential rate [11, Lemma 2.17]. More precisely, ifh is long tailed, then

lim
γ→∞

h(γ)
e−εγ

= ∞, ∀ε > 0. (30)

These properties will be employed to construct an asymptotic upper bound for the semi-

parametric estimator. In particular, the following Lemma shows that the ratio of two tail con-

volutions of the same distribution inL(θ) cannot increase/decrease faster than at exponential

rate.

Lemma 4. Let F ∈ L(θ), θ > 0, and d1, d2 ∈ N. ThenF∗d1(γ)
/

F∗d2(γ) = o(eεγ), ∀ε > 0.

Proof. SinceL(θ) is closed by convolution, thenF∗d1, F∗d2 ∈ L(θ) and their tail distribu-

tions have decompositions as in (29) for some long tailed functionsh1 andh2. Therefore

F∗d1(γ)

F∗d2(γ)
=

h1(γ)e−θγ

h2(γ)e−θγ
=

h1(γ)
h2(γ)

.

We first argue that bothh1(·)/h2(·) and its reciprocal function are long-tailed. This is so,

because they are ultimately positive, and

h1(γ + x)/h2(γ + x)
h1(γ)/h2(γ)

=
h1(γ + x)

h1(γ)
× h2(γ)

h2(γ + x)
→ 1.
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The reciprocal function goes similarly. Thus,h2(·)/h1(·) satisfies condition (30), which says

lim
γ→∞

h2(γ)/h1(γ)
e−εγ

= ∞.

Clearly, this is equivalent to

lim
γ→∞

h1(γ)/h2(γ)
eεγ

= 0.

�

We also have the following.

Assumption A: Let h be a long-tailed function such thath(x) > 0 for all x ≥ 0. ThenG(γ) :=

sup{h(γ)/h(x) : 0 ≤ x ≤ γ} = o(eεγ) for all ε > 0.

Proposition 3. (Logarithmic efficiency of̂ℓ.) If Assumption A holds, the estimator Z= I{S(X) >

γ} f (X)
g(X) satisfies

lim
γ↑∞

EZ2

ℓ2−ε(γ)
= 0, ∀ε > 0 .

Proof. Recall

EZ2 = E f I{S(X) > γ}
d∏

i=1

F∗d(γ)

F∗(d−1)(γ − Xi)
.

We write
d∏

i=1

F∗d(γ)

F∗(d−1)(γ − Xi)
= H(γ)

d∏

i=1

F∗(d−1)(γ)

F∗(d−1)(γ − Xi)
,

whereH(γ) :=
[
F∗d(γ)

/
F∗(d−1)(γ)

]d
. SinceF∗(d−1) ∈ L(θ) we can use the decomposition

(29) to writeF∗(d−1)(γ) = h(γ)e−θγ for someh(·) long tailed function. Hence, we obtain the

following bound

d∏

i=1

F∗(d−1)(γ)

F∗(d−1)(γ − Xi)
=

d∏

i=1

h(γ)
h(γ − Xi)

e−θγ

e−θ(γ−Xi )
≤

(
sup

0≤x≤γ

h(γ)
h(γ − x)

)d d∏

i=1

e−θXi =
(
G(γ)

)d e−θS(X)

whereG(γ) := sup0≤x≤γ
{
h(γ)

/
h(γ − x)

}
. Using these we obtain

EZ2

ℓ2−ε(γ)
≤ H(γ)Gd(γ)
ℓ2−ε(γ)

E f I{S(X) > γ}e−θS(X),

whereθ > 0. Hence,

E f I{S(X) > γ}e−θS(X)
6 e−θγP f (S(X) > γ) = e−θγ ℓ.

Thus we get
EZ2

ℓ2−ε(γ)
6

H(γ)Gd(γ)e−θγ

ℓ1−ε(γ)
.
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Applying the properties of the exponential class we can write

ℓ1−ε =
(
F∗d(γ)

)1−ε
= e−θ(1−ε)γhd(γ)

for some long tailed functionhd. In consequence,

lim sup
γ→∞

EZ2

ℓ2−ε(γ)
6 lim sup

γ→∞

H(γ)Gd(γ)e−θγ

ℓ1−ε(γ)

= lim sup
γ→∞

H(γ)Gd(γ)e−θγ

hd(γ)e−(1−ε)θγ = lim sup
γ→∞

H(γ)Gd(γ)
hd(γ)

e−εθγ.

Now, property (29) and Lemma 4 and Lemma 4.2 imply that none ofthe functionsH, G,

h−1
d and their product cannot increase at exponential rate, namely H(γ)Gd(γ)/hd(γ) = o(eθεγ).

Hence, the last limit is 0. �

5. Conclusions

In this paper we have described a procedure for implementingan optimal cross-entropy

importance sampling density for the purpose of estimating arare-event probability, indexed by

the rarity parameterγ. The goal is to estimate the optimal importance sampling density for a

finiteγwithin the class of all densities in product form. This optimal importance sampling den-

sity is typically not available analytically and this is whyin practical simulations we estimate

it via MCMC simulation from the minimum variance pdf. The numerical examples suggest

that the resulting estimator can yield significantly betterefficiency compared to many currently

recommended estimators. The same procedure is efficient in both light- and heavy-tailed cases.

This is especially relevant for probabilities involving the Weibull distribution with tail index

α < 1, but close to unity. This setting yields behavior intermediate between the typical heavy-

and light-tailed behavior expected of rare-events. As a result, while existing procedures are

inefficient or fail completely, our method estimates reliably Weibull probabilities for any values

of α, includingα > 1.

The practical implementation of the proposed method depends on a preliminary MCMC

step, which is a powerful, but poorly understood heuristic that needs further investigation. In

this article we have established the efficiency of the method in the light- and heavy-tailed case,

but have done so by ignoring any errors arising from the preliminary MCMC step. Future work

will need to address the impact of the MCMC approximation on the quality of the estimator.
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A good starting point for such an analysis might be to consider the probabilistic relative error

efficiency concept introduced in [19].

6. Appendix

6.1. Proofs. Section 2.2

Proof of Lemma 1.First note that for any single-variate functionh:
∫

Rd
h(x1)π(x) dx =

∫

R

h(x1)
( ∫

Rd−1
π(x1, x2, . . . , xd) dx2 · · ·dxd

)
dx1

=

∫
h(x1)π1(x1) dx1.

Next, using the properties of the cross-entropy distance wehave that

π1 = argmin
g1∈G1

∫
π1(x1) ln

(
π1(x1)
g1(x1)

)
dx1 = argmax

g1∈G1

∫
π1(x1) ln g1(x1) dx1.

Applying these two observations for anyi = 1, . . . ,d gives

argmax
g1,...,gd∈G1

∫
π(x) ln


d∏

i=1

gi(xi)

dx

= argmax
g1,...,gd∈G1

d∑

i=1

∫
π(x) ln gi(xi) dx

= argmax
g1,...,gd∈G1

d∑

i=1

∫
πi(xi) ln gi(xi) dxi =

d∑

i=1

argmax
gi∈G1

∫
πi(xi) ln gi (xi) dxi ,

from where we obtain the solutiongi = πi for all i = 1, . . . ,d. �

6.2. Proofs. Section 4.1

Lemma 5. Assumeζ ≥ nγ−1. Then

∂

∂γ
In(γ, ζ) = n L

(
γ−1) In−1

(
γ, ζ − γ−1) γ−2, n = 2, 3, . . . . (31)

Proof. The proof is by induction. Recall the recursive introduction of theIn functions:

I1(γ, ζ) =
∫ 1

ζ ∨ γ−1
L(y) dy;

In(γ, ζ) =
∫ ζ−(n−2)γ−1

γ−1
L(y) In−1(γ, ζ − y) dy, n = 2, 3, . . .

First consider

∂

∂γ
I2(γ, ζ) =

∂

∂γ

∫ ζ−γ−1

γ−1
L(y) I1(γ, ζ − y) dy+

∂

∂γ

∫ ζ

ζ−γ−1
L(y) dy I1(γ, γ

−1)

=

[
L(ζ − γ−1)I1(γ, γ

−1) − L
(
γ−1) I1

(
γ, ζ − γ−1) − L(ζ − γ−1)I1(γ, γ

−1) − I1(γ, ζ − γ−1)L(γ−1)
] d

dγ
γ−1

= 2L
(
γ−1) I1

(
γ, ζ − γ−1) γ−2.
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Next, assume that (31) holds forn. Then

∂

∂γ
In+1(γ, ζ) =

∂

∂γ

∫ ζ−(n−1)γ−1

γ−1
L(y) In(γ, ζ − y) dy

= L(ζ − (n− 1)γ−1) In
(
γ, (n− 1)γ−1) d

dγ
(
ζ − (n− 1)γ−1) − L(γ−1) In

(
γ, ζ − γ−1) d

dγ
γ−1

+

∫ ζ−(n−1)γ−1

γ−1
L(y)

∂

∂γ
In(γ, ζ − y) dy

= 0+ L(γ−1) In
(
γ, ζ − γ−1) γ−2 +

∫ ζ−(n−1)γ−1

γ−1
L(y) n L

(
γ−1) In−1

(
γ, ζ − γ−1 − y

)
γ−2 dy

= L(γ−1) In
(
γ, ζ − γ−1) γ−2 + n L

(
γ−1)

∫ ζ−γ−1−(n−2)γ−1

γ−1
L(y) In−1

(
γ, ζ − γ−1 − y

)
dyγ−2

= L(γ−1) In
(
γ, ζ − γ−1) γ−2 + n L

(
γ−1)In

(
γ, ζ − γ−1) γ−2

= (n+ 1)L(γ−1) In
(
γ, ζ − γ−1) γ−2

�

Lemma 6. For n = 1, 2, . . .:

In
(
γ, ζ − γ−1) = In(γ, ζ) + o(1), γ→ ∞. (32)

Proof. Apply induction and the the recursive definition ofIn functions.

• n = 1.

I1
(
γ, ζ − γ−1) =

∫ 1

ζ−γ−1
L(y) dy

= I1(γ, ζ) +
∫ ζ

ζ−γ−1
L(y) dy

= I1(γ, ζ) + γ
−1L(η),

for someη ∈ (ζ − γ−1, ζ) (mean value theorem). Clearly, the second term iso(1) for γ → ∞.

• n ≥ 1. Assume (32) holds. Then

In+1
(
γ, ζ − γ−1) =

∫ ζ−nγ−1

γ−1
L(y)In

(
γ, ζ − γ−1 − y

)
dy

=

∫ ζ−(n−1)γ−1

γ−1
L(y)

(
In(γ, ζ − y) + o(1)

)
dy−

∫ ζ−(n−1)γ−1

ζ−nγ−1
L(y)In

(
γ, ζ − γ−1 − y

)
dy

= In+1(γ, ζ) + o(1)
∫ ζ−(n−1)γ−1

γ−1
L(y) dy− γ−1L(η)In

(
γ, ζ − γ−1 − η

)

= In+1(γ, ζ) + o(1), γ→ ∞.

�
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