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Abstract

The Cross Entropy method is a well-known adaptive impogasampling method
for rare-event probability estimation, which requiresrasting an optimal importance
sampling density within a parametric class. In this article estimate an optimal
importance sampling density within a wider semiparametiass of distributions. We
show that this semiparametric version of the Cross Entropthod frequently yields
efficient estimators. We illustrate the excellent practicafgrenance of the method
with numerical experiments and show that for the problemscamsider it typically

outperforms alternative schemes by orders of magnitude.
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1. Introduction

In this article we consider the problem of estimating rarerd probabilities of the form
(=P(S(X)>7y), X=(X,...,Xa),

whereS(X) = X3 + - -+ + Xq andXy, . . ., Xq are (possibly dependent) random variables. We call
these the jump variables. Such estimation problems arigarious contexts, see, for example,

[1,[3,[8]. We describe an adaptive importance sampling #tgar which can be viewed as
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the semiparametric version of the well-known Cross Entr@p) method for estimation of
rare-event probabilitie$ [15]. The main ingredients of sieeniparametric CE method are as

follows.

First, similar to [5/ 6] we use a Markov Chain Monte Carlo (MCMalgorithm to obtain
random variables distributed according to the minimumaraze importance sampling density.
In our context the minimum variance importance samplingsdgns simply the density of
the vectorX conditioned on the rare eve(X) > y. Second, with the MCMC sample
at hand, we construct a conditional (or a Rao-Blackwellinestor of each of the marginal
densities of the minimum variance importance sampling itlensSinally, we use the product
of these (estimated) marginal densities as our importaano@kng density in order to estimate
¢. Under idealized conditions that ignore the error arisiogfthe MCMC sampling, we show
that the resulting estimator achieves either logarithmibaunded relative errorficiencies.
The strength of the method is not only that it outperformsdheently recommended esti-
mation procedures for heavy-tailed probabilities, but tha exact same procedure ifigent
in problems with light-tailed probabilities. For examplge show that unlike any existing
procedures, the method iffieient in the Weibull case for all values of the tail indexeven in

the light-tailed case withy > 1.

Numerical experiments show that, despite the heuristioreadf the MCMC step, the
estimator can in practice be frequently more reliable dfidient than tailor-made importance
sampling schemes. In other words, an advantage of the n@tigpdadvocated here is that a
single broadly-applicable heuristic algorithm providassfactory practical performance on a
range of dfferent estimation problems (both in light- and heavy-tadedes) and frequently
this performance is superior to estimation schemes thaefically designed to a particular

rare-event estimation problem.

The rest of the paper is organized as follows. In Sedtion 2 wiekty review the para-
metric CE method and introduce its semiparametric versibmis is followed by a number
of examples with details about the practical implementatibthe estimator. The examples
aims to demonstrate the superior performance of the propagerithm compared to existing
estimation algorithms on a number of prototypical examgleSectiod # we provide theoret-
ical analysis of the fiiciency of a simple version of the estimator for light- andhedailed

random variables. Finally, Sectibh 5 gives some concluckngarks.
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2. Cross Entropy method

2.1. Parametric Cross Entropy method

In order to introduce the semiparametric version of the CEhogk we briefly review the
CE method itself. Lef(x) be the joint density of the vectdt = (X, ..., Xq) and suppose that

it is part of the parametric family
ﬁ‘:{f(-;v):RdeRw:ff(x;v)dx:l;ve"//}, (1)

where?” c RP is the feasible parameter set. The assumption isfthgt= f(x;u) € .# for
someu € ¥. Then, the objective is to find a parametes 7 that yields a good importance
sampling estimator of the form:

f(Yi;u)
f(Yi;v)’

Yoo Ym 2 f(y;v). )

D US(Y) > )

i=1

Sl

?CE =

In the CE method the best parametére 7 is the one which minimizes the cross entropy

distance betweef(-; v) € .# and the zero-variance importance sampling density

_ IS > y1(x)

"= 560> 9
In other words,
. - 7(x) _ :
V' = a(/%fynlnfn(x) In (f x;v))dx = ar\gryr)axfn(x) In f(x;v)dx. 3)

(
In practice the integrafn(x) In ( f’z)((’.‘\),)) dx is estimated from a preliminary simulation so that

we obtain the estimator of:

V= ar\gggaxiznll In f(X;, V), 4)
whereXy, ..., X, is an approximate sample fromobtained via Markov chain Monte Carlo
(MCMC) sampling over the restricted s&,, see[[7] and RemafR 1 below. In this way we use
MCMC to learn about the optimal (in cross entropy sense)rpatarv*. In many applications
the parametric densitf/(-; v) is of product form:f(x;v) = H{’zl fi(xi; vi). For the special case
where eacH(x;; v;) belongs to a one-parameter exponential family paranestii® the mean
[18, Pages 69-70], the solution df] (4) is given by the maxirikelihood estimator of the

mean vector:
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whereX;; is thei-th coordinate of thg-th sampleX;. We thus use the importance sampling

estimator[(R) withv = V*.

Remark 1. (GeneratingXy, ..., X, via Gibbs sampling. In our discussion we assume that
the conditional densities(x; | x_;) are available in closed form. We can thus use the following

approx
~ T

Gibbs sampling procedure to obtain, . .., X,

Algorithm 2.1. (Gibbs Sampler.)
Require: An initial stateXy ~ f(x) and sample sizs.
fort=0,...,n-1do
SetY = X;.
fori=1,....,ddo
Draw i ~ 7(yi| Y1, ..., Yie1, Xtist, - - - » Xed)-
SetXy1 =Y.

2.2. Semiparametric Importance sampling

Recall that the original CE method aims to find the best ingar¢ sampling density
f(-;v*) € Z within the parametric family({1); namely by solving the patric optimization
program[(B). In contrast, in the semiparametric CE methedfijective is to find the optimal
importance sampling density amongst a family of densitiesrgby some common property.
Again, the optimality criterion is to minimize the crosst@py distance from the the zero-
variance density. Denote I the set of all single-variate probability density funcsothat
is,9(X) : R — Ry is absolute continuous Witﬁ g(x) dx = 1. Let¥ be the family of product-
form densities oiR®:

d
9 ={90): R > Roo: 90 = [ [a(6)ig e ,i=1,....d].
i=1
In this paper we considef as the target set of importance sampling densities. Hehee, t
objective is to solve the functional optimization prograrmgay [ #(x) In(523) dx. This is

equivalent to
7(X) d
g(x) = argmin fn(x) In(di)dx = argmaxf;r(x) In[n gi(xi)] dx. (5)
O1,---0d€%1 Hi:1 Gi (Xl) O1.--0d€%1 i=1
Lemma 1. Letri(X) be the i-th marginal of the zero-variance densify). Then the solution

to the semiparametric CE progra) is g = = for alli = 1,...,d. In other words, the
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optimal importance sampling density within the space opaiduct-form densities is the one

given by the product of the marginals().

The proof is given in the Appendix. In practice the marginahsities ofr are not available
(just like the exact* in (@) is not available) and need to be estimated from siraratHere

we use the estimators

_ 1 .
T = - kz:;ﬂ()ﬂxk,—i), i=1....d, (6)
where

e Xi,...,Xpnis an approximate sample fromobtained via Gibbs sampling as [d (4) (see

also Remarkll);
e the vectorXy _ is the same aXy except that thé-th component is removed,

e 71(X | Xk-i) is the conditional density of, given all the other components 4.

The estimatoi({6) is motivated by the simple identity:
1 n
EAT()] = = ) Belm(y1 Xi-)] = Eela(y | X)]
k=1

= Eﬂ[ﬂ(y| Xl&' . "Xi*l9 xi+l5' . 5xd)]
=f7r(y|xl,...,><a_1,x.-+1,...,xd)n(X)dx

X1,y Xiz i+1s - - -
— f ﬂ-( 1, ) Xl 1, y’ XH~19 ) Xd) 7T(X) dX
ﬂ(xlv-'-v)(i—lv)(i+17-'-,>(d)

T(XLse e Xi— 15 Xi 10000 X))

_fﬂ(xl,...,xi_l,y,xiﬂ,...,xd) b X fﬂ'(xl xa)
= | 9y

ﬂ'(Xl,. e Xi—lv )(i+17- e Xd)

- fﬂ(Xj_, ces Xic, y, Xitls oo Xd) dx—i =T (y) N

We define the approximation to the optimal semiparametrics@Glgtion by the product of

marginal density estimators|(6), that is,

d
o def T~
gy = [ [7m)- (7)
i=1
Then we estimaté by the importance sampling estimator
- 1y f(Yi) iid
{=— HS(Y;) > —_, Y,...,Y ~ s 8
m 2. {S(Yi) > ¥} S5 1 m ~ 9(y) (8)
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Note that, conditional 0iX4, ..., Xy, eachr; is an equally weighted mixture ofdensities
(with k-th component(y; | Xk —i)) and hence sampling ~ 7;(y;) can be performed using the
composition method [16][Page 53]. In other words, chooseraponent of the mixture at
random by generating uniformly from the set of integerfl, ...,n}. Then, givenK = k,
sampleY; from thek-th mixture component ~ z(y; | Xk -i). Finally, deliverY; as a realization

from7(y;) and (Y1, ..., Yq) as a realization frong(y).

Remark 2. (Using exact conditional densijyNote that once we have sampl¥d . .., Yy 1
from7y,..., g1, respectively, we have the option of sampling the fiiaifrom the exact
conditionalr(yy| Y1, ..., Yg-1), instead of from thal-th marginalry. This reduces the cross
entropy distance t@ even further and yields the alternative and typically mdfeient esti-

mator [8) withg(y) redefined as

a(y) « malyr) X - - - X7g-1(Ya-1) X 7(Ya | Y1, - - -, Ya-1) -

3. Examplesand Practical | mplementation

In this section we consider the prototypical problem ofreatingP(Xy + --- + Xg > v),
where the jumpy, X, ... may or may not be dependent. In the case of independent jumps,
the proposed importance sampling can yield practical perdoce surpassing that of well
established alternative estimation procedures such asstneissen-Kroese (AK) estimator [2,

[4]. This is in part due to the fact that our estimator incogtes the ingenious exchangeability
and conditioning proposed in][2]. First, recall that the Agtimator in [2] based on one
replication is given by

d-1
?AszF 'y ZX, vmaxX, Xt Xa1 © F
j=1

The motivation for the estimator is the identity= dP(Xl o+ Xg >y Xg = Md) =
d]EE((y - 2?;11 X,—) V. MaXjd X,—) , wherex vy = maxx,y} and Mg & MmaXj<g Xj. This
conditional estimator enjoys excellent practical perfante for the problems we consider
below. For further details we refer tol[4.]13], where the auttprove that the estimator is a

vanishing relative error one.

We obtain an estimator that outperfor?ﬁ& in terms of (estimated) relative time variance
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by exploiting the decomposition proposed[in|[14] and the ex

£=P(Mg >7) +B(S(X) > 7. Mg < 7)
=P(Mg > y) +dP(S(X) > y,Xqg = Mg <y), by exchangeability of jumps

=1-P(Mg <y)+dP(Xg= Mg <y) P(S(X) > y|Xg = Mg <7)

dominant term residual probability
e N

’_M —_—
=1-[F()]°+P(Ma < 7) B(S(X) > ») .

where the new probability measuré) = P(- | Xg = Mg < y) with corresponding density

_df)
~[Fo)e

Estimating the residual probability, we obtain the oneiogpion estimator for as

f(x) = f(x| Xa = Mg < %) {Mg <y, X4 = Mg}

= fey) _
C=1-[F(°+ WE{S(Y) >y Y ~T), 9)

whereg(y) dzef’r?l(yl) -+ 7g-1(Ya-1) 7(Ya| Y1, . . ., Yd-1) is the estimated importance sampling
pdf described in RemafX 2.
In the following examples we used the relative time varignmeluct (RTVP) and the ratio

of relative errors as a measure dfieiency:

Ratio % TAK/EAK oy pdel paticp o TAK.

o/t T

whereaak ando are the sample standard deviationgf and?(all based omreplications),
respectively , andak andr are the CPU times taken to compute the respective estimdtoes

guantityr includes the CPU time needed for the preliminary MCMC sirtiates.

Example 1. (Weibull casé. Here we wish to estimat®(X; + - -- + Xq > ) and assume that
each of the jump¥; has densityrx*~te™*’ for x > 0 and O< @ < 1. HenceF(x) = €. In
comprehensive simulations studies the proposed estimatperformed the Asmussen-Kroese
(AK) estimator in terms of relative time variance for all wab of the parameteasandy. The
improvement, however, was not uniform, see Table 1, wheresample forw = 0.1, we can
see savings from as little as 71 times to as large as apprteiyn@000. The general trend is
for large gains for smalley anda > 0.6 ora < 0.3. The AK estimator was strongest in the

rangea € [0.3, 0.6] with values fore ¢ [0.3,0.6] rendering it lessfcient compared td{9).
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Note that the AK estimator is much faster to evaluate thanb(@)this speed is ingficient

to offset the substantial gains in squared relative error (giyeRdiio column).

TasLe 1: Comparison of importance sampling method with the AKreator. Algorithmic parameters

were chosen to be= 10°, m= 1%, d = 10. The AK estimator is based om= 10° replications.

a=01 a=02
y 3 Rel. Err. | Ratio | RTVP y 7 Rel. Err. | Ratio | RTVP
10 | 45410 | 17/10° | 1% 71 100 | 1.97/1% | 65/10° K2 3.7
101 | 340/10° | 41/107 | 222 197 10° | 4.64/10" | 1.8/10° | 56 12
10%2 | 1.30/1¢° | 6.4/1C° 722 2071 100 | 1.31/10° 3/10° 9.22 33
108 | 2.16/10° 8/10° 59 1429 107 | 1.23/10° | 4.3/10 107 42
105 | 1.84/10'% | 1.3/10° | 12% | 5944 108 | 5.13/107 | 65/1C° 72 20
a=06 a=09
y 7 Rel. Err. | Ratio | RTVP y 7 Rel. Err. | Ratio | RTVP
107 | 947/10°F | 26/10" | 19 130 30 | 1.33/10% 9/10* 1% 50
150 | 7.83/1¢% | 15/10* | 412 550 40 | 6.27/10 9/10* 78 | 1758.7
200 | 1.34/1¢° | 15/10* | 63 1376 50 | 2.25/10° 1/10° 254 | 17746
500 | 1.83/10'7 | 1.7/10* | 557 11 60 | 7.01/10%? | 1/1C° 556 | 87103
10° | 7.00/10%7 | 9.5/10° 6° 13 100 | 4.34/10%% | 1/10° 300 | 23768

Remark 3. (Efficient evaluation o§.) If we define,ck & (y N Xk,j)+, then [6) simplifies

to

. 1 n 1 L n ~ 1 n
mi(yi) = . Z”(Yi | Xk-i) = ﬁayi" teW ZE{Yi > o)/ % = f(Xi)ﬁ ZH{M > Cgy} X €59,
k=1 k=1 k=1
where the termdp_; Ify; > c} x € can be evaluated for an arbitrayy quickly by first

computing and storing in memory the cumulative s@}@l €w, i =1,...,nand then using

table look-up methods witth(n) time complexity.

Example 2. (Pareto casg. Assume that the jumpX; have Pareto density and distribution
functions given byf(x) = a/x**%, F(x) = 1 - 1/x*, x > 1. The following table shows the
results of a comparison with the AK estimator foffdrent values ofr andy. Again, the

efficiency gains with the proposed method can be of the order®f 10
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TasLE 2: Comparison of importance sampling with the AK estimatorFareto case. Here= 10°, m =
10°,d = 10.

a=05 a=1
y—d T Rel. Err. | Ratio | RTVP y—d 3 Rel. Err. | Ratio | RTVP
108 | 1.00/1¢° | 5.6/10 3% 209 10* 1.00/10° 5.1/10° 7? 11
10 | 100/10* | 5.8/10® | 1072 | 3007 10° 1.00/10° 1.0/10 3& 330
101 | 316/10° | 1.8/1C°F | 176 | 6270 108 | 1.00/107 1.4/10° 912 1711
1012 | 9.99/10° | 592/10° | 364 | 34271 109 | 1.00/10° | 261/10' | 422 322
10'5 | 3.16/10" | 1.9/10'° | 584 | 82494 108 | 1.00/10% | 310" 242 123
a=5 a=10
y—d 7 Rel. Err. | Ratio | RTVP y—d 7 Rel. Err. | Ratio | RTVP
10t | 25810 | 1.5/10 10? 66 5 1.75/10° | 24/10% 30 609
107 1.06/10° | 1.2/10° 42 11 10 1.09/10° | 9.93/1C° 6° 22
10° | 1.00/10% | 1.13/1¢° 42 11 1% | 1.00/10%° | 8.8/1C° 42 13
10* | 1.00/10%° 1/10° 4.4 11 500 | 1.02/10%% | 1.6/10° 52 11
100 | 1.00/10%* | 1.2/10° 42 11 1500 | 1.73/10°! | 55/107 | 447 13

Example 3. (Compound Suj.We are interested in estimating the tail probability of aneo
pound sum of the forr(Xy+- - -+ Xgr > y), where the jumpX; are iid with Weibull distribution
with parameter O< a < 1, and (without loss of generalityg ~ Geom(p) is a geometric

random variable with pdf(1-0)", r = 1,2,.... We haveP(Sg > y) = P(X1+- - -+ Xg > y) =

0> A=) RS >y) =0 ) (1-0) (M > ) +0 ) (1-0) B(M; <7, S >7)
r=1 r=1 r=2

F(y) Lo1-a(Fm)’ F(S>7) .

F(y)+oF(y) F()+oF(y) — -
— residual probability
dominant term

where under the new probability meastirere have R— 1) ~ Geom(F(y) + oF (y)) with pdf
P(R=r1) = fa(r), r = 2,3,...andXy, X, . .. " f(x) with pdf given by the truncated Weibull
densityf(x) = ax* e /(1 - &), 0 < x < y. Hence, we can again apply our importance
sampling estimator to estimate the residual proba@l@R > v). The minimum variance pdf

for the estimation of the residual is

a(y, 1) o fo(r) [ | FO) TS: > v,
j=1
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which can be easily sampled from using the Gibbs samplergothm2.1 by noting that

A(r1Y) « i) I =), ) Eminr Yo+ + Y, > ).

Table3 gives the results of a number of numerical experimdrite results of our proposed
method are significantly better in all cases, except 0.2 with 1/p € {50,100). In the
latter case, the variance reduction achieved by the praposthod is not dficient to dfset
the computational cost of simulating compound sums of etggelength of Yo. Note that
for @« > 0.5, the proposed method can be thousands of times nfbogeat. Our proposed
method is also moreigcient than the recently proposed improved Asmussen-Kmesgaator
[12][Table 2]. For example, based on the reported varianoglscomputing time in[12], in
terms of RTVP our estimator is from3Bto 45 times morefécient. We must note, however,
that the results given in Table 2 6f]12] appear to be incdriéor example, fop = 0.15,a =
0.75,y = 63361 Table 2 reports the estimate23x 10 with relative error of ®%. In
contrast, we obtained the estimat8&x 10~* with relative error 003%, which we verified

with a Crude Monte Carlo simulation using®l@petitions.

TasLe 3: Compound Weibull sum with expected number of jumps Heren = 10*, m = 1(°.

« = 0.2 with y = 10° fixed « = 0.5 with y = 500 fixed
1/0 T Rel. Err. | Ratio | RTVP 1/0 T Rel. Err. | Ratio | RTVP
5 | 656/10" | 1.4/1¢° | 3.62 9.6 3 | 7.34/10% | 7.3/10* 42 16
10 | 1.31/1C° | 3.1/10° | 2.8 35 5 1.60/10° 1/10° 412 12
20 | 265/10° | 51/10° | 222 1.2 10 | 1.17/10° | 1.7/10° | 47 445
50 | 6.81/10° | 1.7/10* | 1.4° | 0.03 20 | 1.24/10° | 7.2/10" | 246 | 7300
100 | 1.42/1° | 1.7/10% 22 0.04 50 | 7.9/10° 2.1/10" | 58 110
a = 0.8 with y = 30/p depending o a = 0.95 withy = 30/0 depending o
1/0 T Rel. Err. | Ratio | RTVP 1/0 T Rel. Err. | Ratio | RTVP
3 | 6.29/10" | 1.2/10° | 33C° | 46000 5 | 261/10% | 48/10* 100 > 10°
5 | 1.65/10' | 6.4/10* | 93¢° | 200000 10 | 218102 | 3/10% >100 | > 10°
10 | 6.94/10'2 | 3.8/10* | 256 | 780000 20 | 2.00/10% | 2.2/10* | > 10° | 40000
20 | 4.64/10'2 | 2.7/10" | 3636 | 34000 50 | 191/10% | 1.9/10* | >10° | >10°
50 | 3.68/10'2 | 2.1/10* | 148% | 27000 100 | 1.88/10% | 1.7/10* | >10° | >10°
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4. Robustness Properties of Semiparametric Cross Entropy Estimator

In this section we study the robustness properties of thmatir [8) wheny — o in some
simplified prototypical settings. Clearly, thér= £(y) = P(S(X) > y) — 0. We are interested
in the behavior of the standard error of the estimator inrigme, specifically, relative to its
mean/. Since we take a finite constant sample size, fiices to analyze the robustness of the
single-run estimator of:

Z=2(7) = 1S(X) > N2, (10)
9(X)
whereX ~ g(x) = Hidzl gi(x) = ]’Iid:l 7i(x). For our analysis we assume that the importance
sampling densitg is available. In practice we estimajeviag from MCMC simulation as we
discussed in Sectidn 2.2. In this respect, our analysisvigasiin spirit to the one conducted
for the parametric Cross Entropy methad [8]. The estimaa® bounded relative error if

limsup,_,. VWar(2)/¢ < oo, which is equivalent to having bounded relative second nmime

[17]:
. EZ?
lim sup7 < 00,

y—0

Assumption 1. In this section we assume that the jump variablgs. X, Xyq are positive
continuous, and that they are independent and identicadifriduted random variables with

right-unbounded support.

We denote byF (x) the cdf of a jumpX; with associated pdfy(x). Let F(x) = 1 — F(x) be
the tail cdf,F*¢ be thed-fold convolution ofF, with F*d = 1 — F*d. Note that the rare-event
probability of interest ig = P(Xy + - - - + Xq > 7) = F*d(y). Furthermore, théth marginatr;

of the zero-variance pdf can be rewritten as

(%) = f A a Oxaa Oy
"

>0
I{S(x) > v} f(X
:f del---dxi_ldml“'dxd
Ri-1 t

X1 -+ AXi—gdXitg - - - dXg

IS(X) > v} 114 fa(x)) g
jl;iol ¢

fl(£X|) fd ]I{Xl+--. +Xd >'y} ]_[ fl(xj)dxldx|—ldx|+1dxd
= j#i

o £ (x) FF@D(v — x
l(X')IP’(X1+---+Xi71+xi+1+"'+xd>)’—Xi)= P 02X
¢ Fd()
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Note that forx, > y we clearly haveF<@-1(y — x;) = 1, and thusri(x) = fi(x;)/¢. Hence, the
single-run estimataZ can be written as
& fa(X) T FIw)

) _ - __ W
50 = 1500 >7) ]_1[ Xy = S > 1_1[ =

Z =1(S(X) > ) D

Finally, usingEZ? = EqZ? = E4Z f(X)/g(X) = EZ, we get for the second moment of estimator

Z:
L Fay)
EZ2 = E¢I{S(X) > }||— 12
tH{S(X) >y L Ea50, - x) (12)

Proposition 1. Suppose that the jumps;X.., Xy are i.i.d. with a light-tailed or a subex-
ponential Weibull or Pareto distribution. Then, the semgraetric importance sampling

estimator(X0)is at least logarithmically gicient asy — co.

In the subsequent sections we prove this result by conaglére heavy- and light-tailed cases

separately.

4.1. Heavy-tailed case

In this section we assume that all jumi§sare drawn from a subexponential distributien
satisfying (for all integed)
4
im 2O _
7= F(y)
In the sequel we shall frequently use the trivial property

d. (13)

Fd(x) >F(x, x>0 (14)

Furthermore, we shall need Kesten’s bound Lemma 1.3.5(8],imvhich states that for every

& > 0 there exists a constant such that for ald > 2
Fdx) <ci(l+)F(X), x>0 (15)

Denoting the maximunvy = max<q X;, we can decompose the relative second moment as

follows:
EZ?  EI{Mg >y} Z? . EI{Mg < v} Z?

2 2 2 (16)

In Lemmal2 we shall prove that the first term is boundegt as «. Concerning the second

term, we examine its behavior for various common probafitibdels in the next two sections.
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Lemma 2.

, EI{M z?
lim sup—{ d > 7} < oo.
y—00 52

Proof. Sincel{S(x) > y} < 1, we use[(IR) to find

s S ¢)
EI{Mq > v} Z2 < E{I{Mq > y}l_[

Y 17
i-1 F@(y - X) 0

Then observe that, ¥4 > v, there exists at least one jurXp > v, and, hence, that there is at

least ong for which F*@-1(y — X;) = 1. For all other jumps it holds triviallfF*@-D(y — X;) >
F*d-1)(y), thus it follows that[(1]7) is bounded from above by

EfI{Mg > y} me> d F(y)
y Efl{Mg > 7} — e
e, WD@ X;) 1%, FE-D()
*d
pi(My s ) F ()"

(FrED)*
FIo)™ — 2/ Fi() a1
‘T )

where the last inequality follows frofs (Mg > ¥) < P¢(S(X) > y) = F*d(y). Now we use the
bounds[(I¥) and (15) for

Fi(y) \a-1 _ F9(y)\d d-1(1 4 g)d(@d-D)
o) <(rpy) <ciara®

Collecting all bounds we obtain

BiMy> 122 1 oo f] Fd(y)
e (F0)) -1 F@D(y - X) (18)

< Cclj_l(l +£)40D < oo,

Since we have bounded relative error for the first ternid ,(16@n we can at most have
bounded relative error for estimatdr{10). For examplehéf second term in{16) vanishes or

is bounded, ther (10) has bounded relative error.

4.1.1. Weibull distribution As in ExampldL, here we assume that each of the juasmve

densityax®te™™ for 0 < & < 1. The purpose is to analyze the second terriih (16).
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Lemma 3.
. EI{M Z?
lim Supﬁ =

0.
y—00 52

Proof. DenoteSy = S(X). Using [I2) and’ = F*d(y), we get

EI{Mg < v} Z2 182 F-d(y)
%%27=Efﬂ{Md<y,Sd>)/} 5 =l .
[Tii: F @Dy — X))

From the bound$ (14) and{|15), we obtain that this expressiarbe bounded above by

[T ci(1+ &) F(y)
e, Fly - Xi)

EfI{Mg <y, Sq > ¥}

d
= GoB(I(Mq < 7, Sq > 7} exp( - (d - 2" + ) (¥ = X)").
i=1

We now consider the following integral over the regian 0 < x; <y, > X > y}:

d
E(I{Ma <7, Sa > v} exp( - (d - 2" + > (y = X)°)

i=1
d d
= o ff{l_l[ >¢"1] 0~ (@2 + (=5 =X

After the change of variable, = x/y for all i we obtain that this integral is a Laplace-type

a/dfyda f. . .f h(u) e_'ya(»(u) dU,
2

Laplace-type

_@dzef{u:0<ui<1, Zui>1}
i

d
h(u) € [ T
i=1

integral:

where:

def

d
o) Ed-2+ > (U - (1-uw)")

i=1
We now note the following properties of the Laplace integFatst, if 2 denotes the closure
of the open set, the functiong(u) attains its unique global minimum within the bounded
domainZ c RY on the boundary ai* = (1/d,...,1/d). This can be seen either by applying

the Lagrange constraint optimization method or more sinbglyoting thatu® — (1 — u)® is
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monotonically increasing ang(u) is a invariant to permutations of the components.oThe
minimum

p(u) =d—-2+d" —do(d - 1),
as a function ofl is such that fod > 2 we have the strict inequali(u) > ¢(u*) > Oforallu €

2, see FigurEll. The point is not a critical point, becau%(u) =a (u;’*l +(1- ui)"*l) >0

foralli andi € 9.

fi(u)

Ficure 1: The behavior of the functioth— 2 + d*~* — d*~*(d — 1) for different values of the parameter

Second, the function : RY — R is continuous and the Hessian of the surfp@e, . . ., Ug_1) =

d(Ug,Up, ..., Ug1, 1 —Up —Up— -+ — Ug-1) iS
2 1= Yked U2 = (Zied U)* 2 i # ]
ai;;_za(a’_l)x ( ked Uk) (Zk<d Uk) J,
o W2 - (1-u) 2+ (1 - Tped U2 = (Tked U)* 2 i =]

which when evaluated af yields the nondegenerate Hessian matrix

2 1 1 1
12 1 -1
oo -1)(d* - (1-1/d)"?)x|1 1 2 1
11 1 - 2

As a result of all these conditions we have the Laplace-tgyenptotic expansion [20, Page
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500] at a boundary point, which is not a critical point:

f » f h(u) €7 O gy = O(y-"@D12 5 g7 ¢y
.@ 9
where the constamgt(u*) > 0. It follows that

2
El{Mqg <y}Z < Cza’d’ydw f f h(u) e "¢ dy
2 2

= O(y@-D12 @9y = (e d-D2IN=Y"eW)) 5 0 (y - o).

Hence the second term in {16) vanishey as . O

4.1.2. Sum of Pareto random variablegs in Examplé®, we assume théts are independent
and Pareto distributed random variables oyl with common parameter > 0. The main

result is the logarithmicféiciency of the second term df (116).

Proposition 2. Forall e >0

E[Z% Mg <y] _

o 0.

lim sup

Yoo

Proof. The proof will be the result of a number of lemmas. First, fanty as in Lemma
3 we utilize expressiof (12) for rewriting the second monana product, and then we apply
(I4) and[(I5b) to bound the factors. The result is that it isugicto prove that

limsup 1 EtI{Mgq <7, Sq > }1_[—_ 0 (29)
_*8 f d=7,2d Y = = U
yoeo (2 i-1 F(y —X)
Our approach is to consider a larger set containMg < y,Sq > y}. For that purpose we
define the we define the quantities
o=
F()
g Fly - X

where

Bn:{Sn_lsy,Sn>7,MnSy}, n=2,3,....

Observe thatMg < v, Sq > ¥} c UL, Bn. Further to this, observing th&(y)/F(y - x) < 1

for all x > 1, we can set
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In this way we arrive at the following inequality

g -
E+I{Mq <, Sq >7}1_[ %
i=1 N
d &R
2= -
d o Fo) .
S;Ef“:[ Fy-X) ] ;Hn(y)

Now, the quantitie$l, in the sum above can be written in integral form as

Ha(y) = fB (]_[ F (j(y)xk))(]_[ 104 o . o

k=1
y=(n-2) y=x-(n-3)  y=X1— X2

:f f f f ]_[(7 Xk)idxndxnl . dxp dxy.

1 1 1 x—xavi K1
Further, the change of variabjg = x/y yields

-2yt 103y Lyiyne N

1
n
v [ ] L) dyndyns...dyzdys.
Y k=1

y? y? Y1 @yieYee)vyt

Ly) :=(1-y)*y ™, ye(0,1]. (21)
In particular, it will be useful to write
Ha(y) = "y ™ In(y, 1), (22)

where the functiorin(y, 1) is the multiple integral in the expression above. Moreoéy, ¢)

can be defined recursively for via

1
~, L(y)dy, n=1,
(v 0) = ff}ﬁjzw (23)
S LO) In1(r.d =)y, n>2
Next we will prove that fon = 2, 3,.. ., it holds that
. In('y, 1) _
P21y )

Since both numerator and denominatofof (24) have linsit we can apply L'Hopital. Lemma

in the appendix provides a recursive expression for thieatere of the functions,(y, 0):

0
7y "0 = Ly lnaly.d -y Dy ™2 n=23... (25)
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Therefore, we obtain
_ (1) & 1n(,1)
lim sup——=—— = limsup————
Yoo ,y(l(n* ) |n 0% y—00 E),a(n—Z) |n y

Ly Dl 1(y, 1=y 1)y2
— lim Supn (y™) In-a(y, Y)Y ,
yoeo (L+a(n=2)Iny)ye-2-1

n=23,.... (26)

e n= 2. The expression if_(26) becomes

2L H 1=y Hy? 2L Y h(n -9
v Y '

Observe that
Ly ™=@y )"y =00, y— oo
LA-yH =y "(@-yH =067 y-o
h(y,1-y) = fl 1 LIy <yTLA-y ) =067), Yo e,
.
where the inequality follows because the functidy) is decreasing on (Q]. Hence,

2Ly Hha(y, 1=y
limsup Oy 4 )=I|msu

y—00 Y Y= Y

a constantjx y@+ty-(e+1)
IO( X ¥y _o.

e n > 2. Assume[(24) holds fon. Then reasoning as above and using Lerfiuna 6 for

equality (i), we getfon + 1

. [ 1
lim sup%
y—00 'ya( -1) In Y
d
& 1n(r. 1)
= lim sup;’ym—
y—0 E’ya’(n’l) In )’
. n+ DLy Hl(y, 1 -y Hy2
=||mSUp( L) Inly vy )y
y—00 (1 + a/(n - 1) |ny) fy(l(n—l)—l
0, (n+ LG (In(y, 1) + (1)) y2
= limsu
y—oo 1+ a(n-=1)Iny) ya(n—l)—l
(a constant)x y*** I(y, 1)y~ + o(1)

= limsu
Yoo P (a constant)x y*(1-1 |ny
. In(y,1) +o(1

= lim sup (a constant)x I, 1) + o) _ 0
y—0 ’ya(nfz) In 'y
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Putting together these arguments we can complete the pitied @roposition:
. EI{Mqg < y} Z2
lim supT
Yy—00
d —_—
@ . 1 F(y)
< limsup—— EiI{Ma <7.Sa > ¥} | | =—2—
o 2 5%
d
lim sup—anz H(»)

Yoo 52—8

d n
lim supz @ln(y)
n=2

(7o)
<

g

Yoo ,ywn {2«
Now notice that
(=F3) =F@) =r",
thus, fore < 1/« (thatis,ea < 1)

52—8 > ,y—2w ,yas > ,y—2w In Y, y — oo.

Combining this with above, we get

4.2. Light-tailed case

In this section we consider the case whErbelongs to a subfamily of light-tailed distri-
butions as defined by Embrechts and Goldie [10]. We say thatabdition F belongs to the
Embrechts-Goldiéamily of distributions indexed by the parameter 0 and denoted’(9), if

lim E(Z X _ e
72 F(y)
If 6 is strictly larger than 0 the(6) contains light-tailed distributions exclusively and is

(27)

often referred as thexponential classThis is a very rich class of distributions that includes
several well know light-tailed distributions such as thp@xential, gamma and phase-type. In
contrast, ifd = 0, then£(0) corresponds to the class lohg-tailed distributionswhich is a
large subclass of heavy-tailed distributions. In thisisectve concentrate on the light-tailed
case > 0, butin order to derive ourficiency statements we draw some results for the class of
the so calledong-tailed functiongcf. [11], Definition 2.14]). More precisely is long-tailed

if it is ultimately positive and

hiy+x)
7Imrgo o) 1, VX (28)
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Obviously, if F € £(0), then the tail probability is long tailed. Important properties for the

exponential clas9)(> 0) are

e L(0) is closed under convolutionis 10, Theorem 3]. That i§; ¥ £(6), then thed-fold

convolutionF*@ e £(#).

e Define fora > 0 the distributionG(x) = 1 — (F(x))". One can easily check thét e
L(ab) whenevelF € £(6).

e The tail probability can be decomposed into the product oéxgmonential and a long

tailed function
F(y) = e”h(y). (29)

Decomposition[{29) will be useful for provingfeiency of the proposed estimator, but it is
also interesting on its own. To verify it we defihgy) := F(y) €. SinceF e £(6) it follows

that
~0(y+X) =
im h(y+x):Iim h(y + X) e L F(y+X)=1

= 1Im =
y—00 h(’y) y—00 h('y) er9(7+x) y—00 F(,y) e X

The next property states that the asymptotic decay of a taihed function is slower than the

exponential raté [11, Lemma 2.17]. More precisely i§ long tailed, then

im ") o vesol (30)

y—oo @Y
These properties will be employed to construct an asynmptgtper bound for the semi-
parametric estimator. In particular, the following Lemnh@ws that the ratio of two tail con-

volutions of the same distribution ifi(d) cannot increagdecrease faster than at exponential

rate.

Lemmad. Let Fe £(6),0>0,and d, dp € N. ThenF*%i(y)/ F*(y) = o(€”), Ve > 0.

Proof. Since£(6) is closed by convolution, theR*%, F*® ¢ £(¢) and their tail distribu-

tions have decompositions as n}29) for some long tailedtfansh; andh,. Therefore

Fi() _m@me” )
Fi(y) e )

We first argue that bothy(-)/hz(-) and its reciprocal function are long-tailed. This is so,

because they are ultimately positive, and

ha(y +)/ha(y +3) _ ha(y +X) y ha(y) .
hi(y)/ha(y) ha(y) ha(y + X) .
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The reciprocal function goes similarly. Thus(-)/h(-) satisfies conditior {30), which says
m /MG _

y—oo ey

Clearly, this is equivalent to
lim @) _
ey

Y00

We also have the following.
Assumption A: Let h be a long-tailed function such thlagx) > 0 for all x > 0. ThenG(y) :=
suph(y)/h(x) : 0 < x <y} = o(e””) for all € > 0.

Proposition 3. (Logarithmic dficiency of?.) If Assumption A holds, the estimatoeZl{S(X) >

v} fgg satisfies

EZ?
lim—— =0, Ye>0.
yies (24(3) ¢
Proof. Recall
p _
F*d
= B(S(X) > ¥} [ | _»
i-1 F*O-D(y = X;)
We write

d

ﬁ Fi) o | 2 FE)
i=1

FaD(-Xx) - FED(y - X)

whereH(y) = [m(y)/F*(d—l)(y)] . SinceF*@-1 ¢ £(6) we can use the decomposition

(29) to write F*@-1)(y) = h(y)e"? for someh(-) long tailed function. Hence, we obtain the

following bound

: m(y) h(y) et h(y) q d o L
!:l[ 0y - X) 1_11 h(y - X) e = (0<X<F; h(y — X)) 1_[ X = (G(y) e

whereG(y) := SURx, {h(¥)/h(y — X)}. Using these we obtain

EZ? _HMGW)
= (y) © 7E(y)

HI{S(X) > y} e 5%,
whered > 0. Hence,
EfI{S(X) > 7} %) < eP(S(X) > y) = ¥ ¢.

Thus we get

EZ? _ H»G(ne”
e(y) ey
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Applying the properties of the exponential class we canewrit
070 = (Fap) " = e hy(y)
for some long tailed functiohy. In consequence,
. EZ? . H(y)GA(y)e
limsup—— <limsup—————~——
Y00 52—8(/)/) Yoo fl—e(y)
. H)G (e H(y)GH
_limsupH® (“I)ee _ limsup HIE D) oy
oo ha(y)er=af T ha(y)
Now, property [[Z2B) and Lemnid 4 and Lemimal4.2 imply that nontheffunctionsH, G,

hal and their product cannot increase at exponential rate, lyar@)G%(y)/ha(y) = o(e”?).

Hence, the last limit is 0. O

5. Conclusions

In this paper we have described a procedure for implememmgptimal cross-entropy
importance sampling density for the purpose of estimatirege-event probability, indexed by
the rarity parametey. The goal is to estimate the optimal importance samplingitiefor a
finite y within the class of all densities in product form. This opdiimportance sampling den-
sity is typically not available analytically and this is whypractical simulations we estimate
it via MCMC simulation from the minimum variance pdf. The nerital examples suggest
that the resulting estimator can yield significantly be¢f&iciency compared to many currently
recommended estimators. The same proceduf@dsemt in both light- and heavy-tailed cases.
This is especially relevant for probabilities involvingethVeibull distribution with tail index
a < 1, but close to unity. This setting yields behavior interiagzlbetween the typical heavy-
and light-tailed behavior expected of rare-events. As altewhile existing procedures are
inefficient or fail completely, our method estimates reliably Bddiprobabilities for any values
of ¢, includinga > 1.

The practical implementation of the proposed method dependa preliminary MCMC
step, which is a powerful, but poorly understood heuridtat heeds further investigation. In
this article we have established th@@ency of the method in the light- and heavy-tailed case,
but have done so by ignoring any errors arising from the miakiry MCMC step. Future work

will need to address the impact of the MCMC approximationtma quality of the estimator.
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A good starting point for such an analysis might be to condiake probabilistic relative error

efficiency concept introduced in[119].

6. Appendix

6.1. Proofs. Section2.2

Proof of Lemmall First note that for any single-variate functibn
[ pocmoaac= [ o [} a6 e i) b
Rd R Rd-1
= [ homstx)

Next, using the properties of the cross-entropy distancbave that

T = argminfzrl(xl) In (ﬂl(xl)) dx; = argmaxfzrl(xl) IN go(Xe) dxq.

01691 01(%1) el
Applying these two observations for any 1,...,d gives

d
argmaxf;r(x) In (l—[ gi()q)) dx

g1.--0d€91 i=1
d

argmafon(x)ln gi(%) dx

O1.--0d€ 91 21

d d
argmaXme(m)lngi(m)dm = ZargmaXIm(m)lngi(m)dm,

01.--9d€91 21 =1 U€Y1

from where we obtain the solutiap = #; foralli = 1,...,d. ]

6.2. Proofs. Section[4.1]
Lemma5s. Assume > ny~t. Then
0
5%(% OD=nLoGNlhari-yHy?  n=23... (31)

Proof. The proof is by induction. Recall the recursive introduetad thel, functions:

1
W0:0= [ Loy

(~(n-2)y~t
Iy ) = f LO) la(r.c—yY)dy.  n=2.3...
Y

~1
First consider

0 o o (¢ .
9= f LO) (. —y)dy+ 2 f L) dy li(r.yY)
dy Ay Jy Oy Jey

= [L(é -y My ) - LY. -y D - L -y Yy ) - -y HLG T %7‘1

=2Ly Y h(. -y ™y
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Next, assume thdf(B1) holds for Then
o ] (-1t
=5 [ LOGc -y
Y dy Jyn

L - (- 1y Y Iy (= 1y D) %(4 -1y Y - LY e -y Y %rl

[-(n-1)y 7t 9
o RO AN EVLY
y1 Y

{~(n-1)y7t
=0+ LN (g -y ™y 2+ f . L NLOy D Ina(y. ¢ =y —y)y2dy
B

e

=L (= y Hy 2 +nliy™) f L) In-1(y. ¢ =yt = y)dyy?

=L Y=y Dy 2+ 0y .-y ™y ?

=+ LD Iy, -y Hy?

Lemma6. Forn=1,2,...:
=y =h(n)+ol),  y— e (32)
Proof. Apply induction and the the recursive definitionlgffunctions.
e N=1.

1
hinl -y = f[ L(y) dy

—y1

¢
L0+ [ Loy

i~y

= 11(y,0) + 7 'L().
for somen € (¢ —y71,¢) (mean value theorem). Clearly, the second tero{13 for y — co.

e n> 1. Assume[(3R) holds. Then
1 ,(*m/’l 1
nane =7 = [ LOWe-v -y dy
i
~(n-1)y 7

{~(n-1)y7t
[ s o)y [ v -y

{=ny”
Z-(n-1)y 7t
“laGr o) [ Ly g -y =)
:

= Inea(y,0) + o(1), Y — 0.
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