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Abstract

We consider random variables observed at arrival times of a renewal process,

which possibly depends on those observations and has regularly varying steps

with infinite mean. Due to the dependence and heavy tailed steps, the limiting

behavior of extreme observations until a given time t tends to be rather

involved. We describe this asymptotics and generalize several partial results

which appeared in this setting. In contrast to the earlier studies, our analysis

is based in the point processes theory. The theory is applied to determine the

asymptotic distribution of maximal excursions and sojourn times for continuous

time random walks.
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1. Introduction

A sequence of observations collected at arrival times of a renewal process represents

a popular modeling framework in applied probability. It underlies many standard

stochastic models, ranging from risk theory and engineering to theoretical physics.

The asymptotic distribution of the maximum of such observations until a given time t
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is well understood in the case of the renewal process with finite mean interarrival times,

see Basrak and Špoljarić [3] and references therein. Shanthikumar and Sumita in [26]

and Anderson in [1] considered the problem in the infinite mean case, allowing certain

degree of dependence between the observations and the interarrival times. In such a

setting, the asymptotic theory for partial maxima tends to be more complicated.

It is often essential to understand the distribution of all extreme observations and

not merely the partial maximum until a given time. Therefore, we aim to characterize

the limiting behavior of all upper order statistics in a sequence (Xn) up to a time τ(t),

where (τ(t)) represents the renewal process generated by a sequence of nonnegative

(and nontrivial) random variables (Yn), i.e.

τ(t) = inf{k : Y1 + · · ·+ Yk > t} , for t ≥ 0 . (1.1)

Throughout we shall assume that (Xn, Yn), n ≥ 1, form iid pairs and that the distribu-

tion of X1 belongs to the maximum domain of attraction (MDA for short) of one of the

three extreme value distributions, denoted by G. Moreover, the interarrival times are

assumed to be regularly varying with index α ∈ (0, 1) (as in [1, 16, 19]). In particular,

Yi’s have infinite mean and belong to the MDA of a Fréchet distribution themselves.

To explain the limiting behavior of all large values in the sequence (Xn), which

arrive before time t, we rely on the theory of point processes. Such an approach seems

to be new in this context. It does not only yield more general results, but we believe,

it provides a very good insight into why all the previously established results actually

hold. Moreover, we relax restrictions used in the literature concerning dependence

between the observations and interarrival times.

We apply our results to study the continuous time random walk (CTRW), introduced

by Montroll and Weiss [18]. It is essentially a random walk subordinated to a renewal

process. It has numerous applications in physics and has been used to model various

phenomena in finance, hydrology, quantum transport theory and seismology. For an

overview of the literature on the theory and various applications of CTRW we refer
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to [24]. Under mild assumptions, excursions of such a walk are regularly varying with

index 1/2. Hence, our theory applies, and one can determine the limiting distribution

of extremely long excursions and sojourn times at level zero of a CTRW.

The paper is organized as follows: notation and auxiliary results are introduced in

section 2. In section 3, we present the limiting distribution of all extreme observations

until a given time, discussing asymptotic tail independence and asymptotic full tail

dependence between the observations and interarrival times in detail. Our main result

extends previously mentioned results in this context, as well as some more recent results

in Meerschaert and Stoev [17] and Pancheva et al. [19] for instance. In the asymptotic

full tail dependence case. our result could be applied to study the longest intervals of

the renewal process τ itself, which is the subject of recent papers by Goldrèche et al. [12]

and Basrak [2]. In section 4 we apply the main result to study the longest sojourn

times and the longest excursions of a continuous time random walk. In particular,

this section extends the analysis of asymptotic distribution for the ranked lengths of

excursions in the simple symmetric random walk given by Csáki and Hu [5].

2. Preliminaries

As already mentioned in the introduction, we assume that the observations Xi

belong to MDA of some extreme value distributions, denoted by G. Because of the

correspondence between MDA’s of Fréchet and Weibull distributions, we discuss only

observations in the Gumbel (which is denoted by G = Λ) and Fréchet (G = Φβ , for

β > 0) MDA’s in detail (see subsection 3.3.2 in Embrechts et al. [9]). In particular,

there exist functions a(t) and b(t) such that

tP (X1 > a(t)x+ b(t)) → − logG(x) , (2.1)

as t → ∞ (cf. Resnick [22]).

Recall next that we assumed that the renewal steps Y have regularly varying
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distribution of infinite mean with index α ∈ (0, 1) (we denote this by Y ∼ RegVar(α)).

In such a case, it is well known (see Feller [11]) that there exists a strictly positive

sequence (dn) such that

d−1n (Y1 + · · ·+ Yn)
d

−→ Sα ,

where random variable Sα has the stable law with the index α, scale parameter σ = 1,

skewness parameter β = 1 and shift parameter µ = 0. In particular, Sα is strictly

positive a.s. The sequence (dn) can be chosen such that

n(1− FY (dn)) → 1 , (2.2)

as n → ∞, where FY denotes cdf of Y1. Denote d(t) = d⌊t⌋, for t ≥ 0, with d0 = 0 and

observe that the function d is regularly varying with index 1/α. Consider the partial

sum process

T (t) =

⌊t⌋∑

i=1

Yi , (2.3)

with T (t) = 0 for 0 ≤ t < 1. It is well known that

(
T (tc)

d(t)

)

c≥0

d
−→ (Sα(c))c≥0 , (2.4)

as t → ∞, in a space of càdlàg functions D[0,∞) endowed with Skorohod J1 topology

(see Skorohod [28] or Resnick [23]). The limiting process (Sα(c))c≥0 is an α–stable

process with strictly increasing sample paths.

Recall that for a function z ∈ D([0,∞), [0,∞)), the right–continuous generalized

inverse is defined by the relation

z←(u) = inf{s ∈ [0,∞) : z(s) > u} , u ≥ 0 .

The following lemma shows that under certain conditions, the convergence of func-

tions zt to z in J1 topology implies the convergence of corresponding generalized
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inverses in the same topology. The content of the lemma seems to be known (cf.

Resnick [23, p. 266] and Theorem 7.2 in Whitt [29]), for convenience we add a short

proof.

Lemma 1. Suppose that zt ∈ D([0,∞), [0,∞)) are non-decreasing functions for all

t ≥ 0. Further, let z ∈ D([0,∞), [0,∞)) be strictly increasing to infinity. If zt
J1−→ z,

as t → ∞, then z←t
J1−→ z←, as t → ∞, in D([0,∞), [0,∞)) as well.

Proof. Since z is strictly increasing, z← is continuous. According to Theorem 2.15

in Jacod and Shiryaev [13, Chapter VI], it sufficies to show z←t (u) → z←(u), for

all u ≥ 0. One can prove this by showing that, for an arbitrary fixed u ≥ 0, the

function y 7→ y←(u) is continuous at z. However, this follows at once from Proposition

2.11 in [13, Chapter VI]. Note that this proposition is actually proved using the left–

continuous generalized inverse, but under our assumptions, the proof can be easily

adapted to the right–continuous case.

According to Seneta [25] (see also [16, 23]), there exists a function d̃ which is an

asymptotic inverse of d, that is

d(d̃(t)) ∼ d̃(d(t)) ∼ t , (2.5)

as t → ∞. Moreover, d̃ is known to be a regularly varying function with index α.

Denote by

Wα(c) = inf{x : Sα(x) > c} = S←α (c) , c ≥ 0 , (2.6)

the first hitting-time process of the α-stable subordinator (Sα(t))t≥0. As we shall see

in the sequel (see (3.7)), Lemma 1 together with (2.4) and (2.5) implies

(
τ(tc)

d̃(t)

)

c≥0

d
−→ (Wα(c))c≥0 , (2.7)

in D([0,∞), [0,∞)) endowed with J1 topology. For an α–stable process Sα and fixed

c ≥ 0, the hitting-time Wα(c) has the Mittag-Leffler distribution.
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3. Extremes of randomly spaced observations

With observations (Xn) and interarrival times (Yn) dependent, it can be difficult to

describe explicitly limiting behavior of observations Xi with index i ≤ τ(t). Here, we

show that this can be done using the convergence of suitably chosen point processes

based on iid random vectors (Xn, Yn). Convergence of this type is well understood in

the extreme value theory, see for instance Resnick [22].

Again, we assume that X1 ∈ MDA(G) and Y1 ∼ RegVar(α), 0 < α < 1. For t ≥ 0

we define point process Nt as

Nt =
∑

i≥1

δ( i

d̃(t)
,X̃t,i,Ỹt,i

) , (3.1)

with N0 = 0, where

Ỹt,i =
Yi

t
, (3.2)

and X̃t,i is defined by

X̃t,i =
Xi − b̃(t)

ã(t)
, (3.3)

with ã(t) := a(d̃(t)), b̃(t) := b(d̃(t)) where a(t) and b(t) satisfy (2.1) and d̃(t) is defined

in (2.5).

The state space of Nt depends on the MDA of the observations (see (2.1)), it can

be written as [0,∞)× E where

E =






[−∞,∞]× [0,∞] \ {(−∞, 0)}, X1 ∈ MDA(Λ)

[0,∞]× [0,∞] \ {(0, 0)}, X1 ∈ MDA(Φβ)

.

Throughout we use the standard vague topology on the space of point measures

Mp([0,∞)× E), see Resnick [22].

Recall that

d̃(t)P
(
(X̃t,i, Ỹt,i) ∈ ·

)
v
→ µ0(·) , as t → ∞ , (3.4)
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is necessary and sufficient for

Nt
d

−→ N ,

as t → ∞, where N is Poisson random measure with mean measure λ×µ0, denoted by

PRM(λ × µ0) (see Proposition 3.21 in Resnick [22] or Theorem 1.1.6 in de Haan and

Ferreira [6]). It turns out that (3.4) is immediate when one considers the observations

independent of interarrival times. The same holds in the important special case when

they are exactly equal. In that case, one can prove an interesting invariance principle

concerning extremely long steps of a renewal process, see Basrak [2] and references

therein.

Theorem 3.1. Assume that (3.4) holds, then

(
Nt,

T (d̃(t)·)

t
,
τ(t)

d̃(t)

)
d

−→ (N,Sα(·),Wα) , (3.5)

as t → ∞, in the product space Mp × D[0,∞) × R and the corresponding product

topology (of vague, J1 and Euclidean topologies), where N is a PRM(λ × µ0), while

Sα and Wα = Wα(1) denote the α–stable subordinator and the first passage time from

(2.4) and (2.7) respectively.

Remark 1. If one denotes the limiting point process above as N =
∑

i δ(Ti,Pi,Qi),

then Sα has representation

Sα(t) =
∑

Ti≤t

Qi ,

while Wα(c) is the inverse of the increasing process Sα as in (2.6). Actually, due to

lemma 1, we prove a stronger result than the theorem above claims. Namely, under

the same assumption, (3.5) holds jointly with (2.7).

Proof. The first part of the proof is standard, and essentially follows the lines of the
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proof of Theorem 7.1 in Resnick [23]. Observe that for s, t ≥ 0 and T (·) in (2.3)

T (d̃(t)s)

t
=

⌊d̃(t)s⌋∑

i=1

Ỹt,i .

From (2.4) we know

T (d̃(t)·)

t

d
−→ Sα(·) , as t → ∞ , (3.6)

in D([0,∞), [0,∞)) with J1 topology. The limiting process Sα(·) has the same distri-

bution as in (2.4). Notice that the generalized inverse of T (d̃(t)·)/t equals

(
T (d̃(t)·)

t

)←
(u) = inf



s :

⌊d̃(t)s⌋∑

i=1

Yi > tu



 = substituting k = ⌊d̃(t)s⌋

=
inf
{
k ∈ N :

∑k
i=1 Yi > tu

}

d̃(t)
=

τ(tu)

d̃(t)
,

for every u ≥ 0, where τ(·) is defined in (1.1). Using (3.6) and Lemma 1, we apply

continuous mapping theorem to obtain

τ(t·)

d̃(t)

d
−→ Wα(·) , (3.7)

in D([0,∞), [0,∞)) with J1 topology, where Wα
d
= S←α . Finally, the continuous

mapping argument yields the joint convergence in (3.5).

Abusing the notation somewhat, for any time period A ⊆ [0,∞) and an arbitrary

point measure n ∈ Mp([0,∞)× E), we introduce restricted point measure

n
∣∣∣
A

as n
∣∣∣
A×E

. (3.8)

Since the distribution of point processes Nt contains the information about all upper

order statistics in the sequence (Xn), it is useful to study the limit of point processes

Nt restricted to time intervals determined by the renewal process (τ(t)). For an
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illustration, denote by M τ (t), t ≥ 0, the maximum of observations {X1, . . . , Xτ(t)}.

Note that

M τ (t)− b̃(t)

ã(t)
≤ x if and only if Nt

∣∣∣[
0, τ(t)

d̃(t)

]
×(x,∞]×[0,∞]

= 0 ,

for all suitably chosen x. Using similar arguments, the following theorem yields the

limiting distribution of all extremes until a given time t.

Theorem 3.2. Assume that (3.4) holds, then

Nt

∣∣∣[
0, τ(t)

d̃(t)

] d
−→ N

∣∣∣
[0,Wα]

and Nt

∣∣∣[
0, τ(t)

d̃(t)

) d
−→ N

∣∣∣
[0,Wα)

, (3.9)

as t → ∞, where N is a PRM(λ×µ0), and Wα = Wα(1) denotes the fist passage time

from (2.7).

Proof. Observe that, the limiting point process N in general has a point exactly

at the right end point of the interval [0,Wα]. This forbids direct application of the

continuous mapping argument. Fortunately, one can adapt the argument from the

proof of Theorem 4.1 in [2].

Denote by n, nt, t > 0, arbitrary Radon point measures in Mp([0,∞)×E). One can

always write

nt =
∑

i

δ(vt
i ,x

t
i,y

t
i)
, n =

∑

i

δ(vi,xi,yi)

for some sequences (vti , x
t
i, y

t
i) and (vi, xi, yi) with values in [0,∞)×E. Denote further

their corresponding cumulative sum functions, by

st(u) =

∫

[0,u]×E

y nt(dv, dx, dy) , u ≥ 0 ,

and

s(u) =

∫

[0,u]×E

y n(dv, dx, dy) , u ≥ 0 ,

Suppose that they take finite value for each u > 0, but tend to infinity as u → ∞.
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This makes st and s well defined, unbounded, nondecreasing elements of the space of

càdlàg functions D[0,∞). Their right–continuous generalized inverses (or hitting time

functions) we denote by s← and s←t .

Assume that

(nt, st) → (n, s) , (3.10)

in the product topology (of vague and J1 topologies) as t → ∞. If

0 < s
(
s←(1)−

)
< 1 < s

(
s←(1)

)
and n({v} × (0,∞)× E) ≤ 1 (3.11)

for all v ≥ 0, by straightforward adaptation of Theorem 4.1 [2] to three–dimensional

case

nt

∣∣
[0,s←t (1)]

v
−→ n

∣∣
[0,s←(1)]

and nt

∣∣
[0,s←t (1))

v
−→ n

∣∣
[0,s←(1))

. (3.12)

We can apply continuous mapping theorem now. Observe now that by Theorem 3.1

(
Nt,

T (d̃(t)·)

t

)
d

−→ (N,Sα(·)) .

On the other hand, the limiting Poisson processN and α–stable subordinator Sα satisfy

regularity assumptions (3.11) with probability one, and therefore (3.9) holds.

The limiting distribution of all upper order statistics until a given time t, determined

by the theorem above, can be quite complicated depending on the joint distribution of

N and Wα in (3.5). Hence, we examine two particular types of dependence between

X ′ns and Y ′ns in detail. The first of them is called the asymptotic tail independence

(see e.g. de Haan and Ferreira [6] and Resnick [22]). Rougly speaking, it requires

that when Yn is large, there is negligible probability of Xn being large. The second

type of dependence we consider in detail is called the asymptotic full tail dependence.

Intuitively, it implies that the Xn and Yn are highly tail dependent in the sense that if

one of them is large, then the other one is also large, asymptotically with probability

1 (see Sibuya [27], de Haan and Resnick [7] or Resnick [22, pp.296–298]).
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3.1. Asymptotic tail independence

Recall that ((Xn, Yn)) is an iid sequence of random vectors such thatX1 ∈ MDA(G1)

where G1 = Λ or Φβ with β > 0 and Y1 ∼ RegVar(α) for α ∈ (0, 1). Hence, Y1 ∈

MDA(G2) where G2 = Φα. By FX,Y denote the joint cdf of (X1, Y1), and set UX =

1/(1− FX), UY = 1/(1− FY ). Note, UX(X) and UY (Y ) are RegVar(1) at infinity.

It is known, cf. de Haan and Resnick [7], that for the so-called tail independent

X1 and Y1, the measure µ0 in (3.4) is concentrated on the axes. In particular, for

X1 ∈ MDA(Λ) and (x, y) ∈ [−∞,∞]× [0,∞]\{(−∞, 0)}, we have

µ0

(
([−∞, x]× [0, y])c

)
= − logG1(x) − logG2(y) = e−x + y−α . (3.13)

If X1 ∈ MDA(Φβ) and (x, y) ∈ [0,∞]2\{(0, 0)}, then

µ0

(
([0, x]× [0, y])c

)
= − logG1(x) − logG2(y) = x−β + y−α . (3.14)

Let {Nt : t ≥ 0} be point processes from (3.1). It is known that Nt
d

−→ N , where N

is PRM(λ×µ0) is equivalent to FX,Y ∈ MDA(G) (we refer to Resnick [22, Section 5.4]

for a definition of multivariate MDA) with

G(x, y) =





exp
{
−µ0

(
([−∞, x]× [0, y])c

)}
, X1 ∈ MDA(Λ)

exp
{
−µ0

(
([0, x]× [0, y])c

)}
, X1 ∈ MDA(Φβ)

, (3.15)

and µ0 defined in (3.13) and (3.14). The measure µ0 is often called the exponent

measure.

Under our assumptions, necessary and sufficient condition for (3.4) can be inferred

from the literature (cf. Theorem 6.2.3 in de Haan and Ferreira [6]). Next theorem

summarizes this for completeness.



12 BASRAK AND ŠPOLJARIĆ

Theorem 3.3. For measure µ0 described in (3.13) and (3.14), (3.4) is equivalent to

lim
x→∞

P (X1 > U←X (x)|Y1 > U←Y (x)) = 0 . (3.16)

Remark 2. If (3.16) holds, X1 and Y1 are called asymptotically tail independent.

Under this condition, the limiting Poisson process N in (3.5) can be decomposed into

two independent parts, e.g. for X1 ∈ MDA(Λ)

N =
∑

i

δ(Ti,Pi,0) +
∑

i

δ(T ′i ,0,Qi) .

This makes the restriction of N to the first two coordinates

N (2) =
∑

i≥1

δ(Ti,Pi).

independent of Sα =
∑

T ′i≤t
Qi, and Wα for the same reason.

Proof. Under our assumptions, (3.4) is known to be equivalent to FX,Y ∈ MDA(G)

for G given by (3.15). Since UX(X) and UY (Y ) are RegVar(1) at infinity, by Sibuya’s

theorem (see Theorem 5 in de Haan and Resnick [7]), FX,Y ∈ MDA(G) is further

equivalent to

lim
x→∞

P (UX(X1) > x|UY (Y1) > x) = 0 . (3.17)

It remains to prove the equivalence between (3.16) and (3.17). From Theorem 1.7.13

in Leadbetter et al. [15] we conclude that

P (X = U←X (x))

P (X ≥ U←X (x))
→ 0 ,

as x → ∞. By the proof of Proposition 5.15 in Resnick [22], on the other hand,

xP (X > U←X (x)) → 1 , as x → ∞. Now, observing that

{UX(X) > x} ⊆ {X ≥ U←X (x)} and {X > U←X (x)} ⊆ {UX(X) > x} .
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one can show that (3.17) is equivalent to (3.16).

Condition (3.16) does not seem easy to verify directly in general. In some examples

one can verify a simpler sufficient condition introduced in the following lemma (cf.

condition A introduced in Anderson [1]).

Lemma 2. If

lim
x→∞

lim sup
y→∞

P (X1 > x|Y1 > y) = 0 , (3.18)

then

lim
x→∞

P (X1 > U←X (x)|Y1 > U←Y (x)) = 0 .

Proof. Assuming (3.18), for every ε > 0 there exists x1 ∈ R such that for all x ≥ x1

we have

lim sup
y→∞

P (X1 > x|Y1 > y) < ε .

In particular,

lim sup
y→∞

P (X1 > x1|Y1 > y) < ε .

Moreover, there exists y0 > 0 such that for all y > y0 we have

P (X1 > x1|Y1 > y0) < ε .

If we denote x0 = inf{x > 0 : U←X (x) > x1, U
←
Y (x) > y0}, then for all x > x0

P (X1 > U←X (x)|Y1 > U←Y (x)) ≤ P (X > x1|Y1 > U←Y (x)) < ε .

An application of Theorem 3.3, yields the asymptotic behavior of the k-th upper

order statistics in a sample indexed by the renewal process (τ(t)).

Example 1. Let M τ
k (t), t ≥ 0 represent the k-th upper order statistics in the sample

{X1 . . . , Xτ(t)}. Under the assumptions of Theorem 3.3 we can find the limiting

distribution for suitable normalized random variables M τ
k (t). Clearly, from (3.9) we
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obtain

P
(
M τ

k (t) ≤ ã(t)x + b̃(t)
)
= P

(
Nt

(
[0, τ(t)/d̃(t)]× (x,∞] × R+

)
≤ k − 1

)

→ P
(
N
(
[0,Wα]× (x,∞]× R+

)
≤ k − 1

)
= E

(
Γk (Wα µG((x,∞] × R+))

Γ(k)

)
,

as t → ∞, where Hα(x) = P (Wα ≤ x) represents the cdf of the random variable Wα

and Γk(x) is an incomplete gamma function. For k = 1, i.e. for the partial maxima of

the first τ(t) observations, the result first appears in Berman [4]. For linearly growing

τ(t) independent of the observations, a similar result can be found in Theorem 4.3.2

of Embrechts et al. [9].

3.2. Asymptotic full tail dependence

In the case when observations and interarrival times are exactly equal, the limiting

behavior of the maximum has been found already by Lamperti [14]. We will show

here that one can extend his results to study all the upper order statistics in a more

general setting. We keep the assumptions and notation from subsection 3.1. The main

difference is that the limiting measure µ0 in (3.4) will be concentrated on a line, i.e.

on the set

C =






{(u, v) ∈ (−∞,∞)× (0,∞) : e−u = v−α}, if G1 = Λ

{(u, v) ∈ (0,∞)× (0,∞) : u−β = v−α}, if G1 = Φβ .

More precisely, for y > 0 and C(y,∞) = {(u, v) ∈ C : v > y}, the measure µ0 is

determined by

µ0(C(y,∞)) = y−α .

Under these assumptions, necessary and sufficient condition for (3.4) is the full tail

dependence condition known from the literature (cf. de Haan and Resnick [7]). We

again summarize this for completeness.



On randomly spaced observations 15

Theorem 3.4. For measure µ0 given above, (3.4) is equivalent to

lim
x→∞

P (X > U←X (x)|Y > U←Y (x)) = 1 . (3.19)

Proof. The proof follows the lines of the proof of Theorem 3.3, except that, instead

of Theorem 5, we use Theorem 6 in de Haan and Resnick [7]).

For an application of Theorem 3.4 we refer to section 4.2, where the problem of the

longest excursion of the continuous time random walk is considered.

4. Excursions and sojourn times of continuous time random walk

In this section we use results from section 3 to obtain the limiting distribution of

extremely long sojourn times at level zero of a CTRW. We consider a CTRW which

is a simple symmetric random walk subordinated to a certain renewal process. Hence,

jumps are always of magnitude one, while waiting times between jumps correspond to

interarrival times of the subordinating renewal process.

Let (En)n≥1 be an iid sequence of non-negative random variables with finite expec-

tation. Suppose E1 ∈ MDA(G) where G = Λ or G = (Φβ), for β > 1. Denote the

partial sum of the sequence (En) by T (n) =
∑n

i=1 Ei and set T (0) = 0. Additionally,

let (N(t))t≥0 denote a renewal process generated by the sequence (En), that is

N(t) = max

{
k ≥ 0 : T (k) =

k∑

i=1

Ei ≤ t

}
.

The sequence (En) models the waiting times between jumps, whereas the renewal

process (N(t)) counts the number of jumps up to a time t. Furthermore, let (εn)n≥1

be the iid sequence of Rademacher random variables, that is P (ε1 = 1) = P (ε1 =

−1) = 1/2. Let Sn =
∑n

i=1 εi denote the partial sums of (εn). Set S0 = 0 and define
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continuous time random walk as the process

Z(t) = SN(t) =

N(t)∑

i=1

εi , t ≥ 0 .

Our goal is to determine the limiting distribution of the longest time interval during

which CTRW Z(·) remains at level zero before time t, including the last possibly

incomplete part. With that in mind, we define some auxiliary random variables.

4.1. The longest sojourn time at level zero

Let X1 denote the time spent during the first visit to the origin. Clearly, X1 = E1.

Since Z(t) = 0 for all t ∈ [0, E1), and Z(E1) 6= 0, the time of the first return to the

origin is defined as

A1 = inf{t ≥ X1 : Z(t) = 0} .

Further, if we set Y1 = A1, then Y1 represents the sum of the first sojourn time at the

origin and the time spent in the first excursion away from the origin. Clearly, duration

of the first excursion, denoted by R1, satisfies R1 = Y1 −X1. If we set A0 = 0, then

for i ≥ 1, the time spent during the i-th visit at the origin or the time spent on the

i-th excursion can be defined recursively as

Xi = inf{t ≥ Ai−1 : Z(t) 6= 0} −Ai−1 = EN(Ai−1)+1 ,

Ai = inf{t ≥ Ai−1 +Xi : Z(t) = 0} ,

Yi = Ai −Ai−1 ,

Ri = Yi −Xi .

An illustration of these random variables is given in Figure 4.1.

Clearly, the sequence (Xn)n≥1 defined above is iid. Moreover, X1 belongs to the

same MDA as E1. Since, (Yn)n≥1 is iid sequence of non-negative random variables,
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}} }} } }
Figure 1: A sketch of CTRW and associated random variables Xi, Ai, Yi, Ri.

the renewal process

τ(t) = inf

{
k ≥ 1 :

k∑

i=1

Yi > t

}
, t ≥ 0 , (4.1)

is well defined.

To apply Theorem 3.2 we need to determine the joint tail behavior of random

variables Yi and Ri. Note that (Rn)n≥1 is an iid sequence of non-negative random

variables, and for u > 0, it satisfies

P (R1 > u) = P

(
K∑

i=2

Ei > u

)
,

where K = inf{m ≥ 1 : Sm = 0}, and Sn =
∑n

i=1 εi. It is well known (see e.g.

Durrett [8, Section 4.3]) thatK ∼ RegVar(1/2). Therefore, for instance, by Proposition

4.3. in Faÿ et al. [10]

P (R1 > u) ∼ E(
√

E1)P (K > u) ,

as u → ∞. In particular, R1 ∼ RegVar(1/2), and, consequently, Y1 ∼ RegVar(1/2).

To verify condition (3.18), observe that Y1 = R1+X1 with R1 and X1 independent.

Therefore

P (Y1 > y,X1 > x)

P (Y1 > y)
≤

P (R1 > y − y2/3)P (X1 > x)

P (Y1 > y)
+

P (X1 > y2/3)

P (Y1 > y)
.
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The second term on the right tends to 0 as y → ∞ because X1 has finite mean and

Y1 ∼ RegVar(1/2), while the first term is bounded by P (X1 > x), which clearly tends

to 0, if we let first y, then x → ∞.

If we construct point processes Nt, t ≥ 0 as in (3.1), observe that functions d, d̃

are regularly varying with indices 2 and 1/2, respectively. Now, using Theorems 3.1

and 3.3 together with Lemma 2, we obtain

(
Nt,

τ(t)

d̃(t)

)
d

−→
(
N,W1/2

)
, (4.2)

as t → ∞, where N ∼ PRM(λ × µ0) is such that N (2) (see Remark 2) is independent

of the random variable W1/2.

The following theorem describes the asymptotic distribution of the longest sojourn

time of CTRW at level zero. Denote the longest sojourn time at level 0 up to time t

by Q(t). First observe that, if

τ(t)−1∑

i=1

Yi +Xτ(t) < t ,

Q(t) simply equals M τ (t) = max{X1, . . . , Xτ(t)}. On the other hand, if

t ≤

τ(t)−1∑

i=1

Yi +Xτ(t) ,

Q(t) = max




M τ−1(t), t−

τ(t)−1∑

i=1

Yi




 .

In either case

M τ−1(t) ≤ Q(t) ≤ M τ (t) . (4.3)

Observe further that the random events

{
M τ (t)− b̃(t)

ã(t)
≤ x

}
and

{
M τ−1(t)− b̃(t)

ã(t)
≤ x

}
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correspond to

{
Nt

∣∣∣[
0,

τ(t)

d̃(t)

]
×(x,∞]×[0,∞]

= 0

}
and

{
Nt

∣∣∣[
0,

τ(t)

d̃(t)

)
×(x,∞]×[0,∞]

= 0

}
.

Theorem 4.1. Under the assumptions above

P

(
Q(t)− b̃(t)

ã(t)
≤ x

)
→ E

(
G(x)W1/2

)
,

as t → ∞.

Proof. Using (4.2) and Theorem 3.2, by the discussion before the theorem for an

arbitrary x ∈ R, we obtain

P

(
M τ (t)− b̃(t)

ã(t)
≤ x

)
→ P

(
N
∣∣∣
[0,W1/2]×(x,∞]×[0,∞]

= 0

)
,

as t → ∞, and similarly

P

(
M τ−1(t)− b̃(t)

ã(t)
≤ x

)
→ P

(
N
∣∣∣
[0,W1/2)×(x,∞]×[0,∞]

= 0

)
.

By the independence between N (2) and W1/2, see Remark 2, both limiting probabilities

above equal

P

(
N (2)

∣∣∣
[0,W1/2]×(x,∞]

= 0

)

=

∫ +∞

0

e
−sµ0

((
[−∞,x]×[0,∞]

)c)
dFW1/2

(s) =

∫ +∞

0

G(x)sdFW1/2
(s)

= E
(
G(x)W1/2

)
.

By (4.3)

P

(
Q(t)− b̃(t)

ã(t)
≤ x

)
→ E

(
G(x)W1/2

)
,

as t → ∞.
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Similarly, one can use (4.2) to obtain the joint distribution of the two longest sojourn

times of CTRW. Denote byQ(t) and byQ′(t) the longest and the second longest sojourn

times until time t. Fix levels u1 > u2 > 0. Observe that

P

(
Q(t)− b̃(t)

ã(t)
≤ u1,

Q′(t)− b̃(t)

ã(t)
≤ u2

)

= P

(
Nt

(
[0, τ(t)

d̃(t)
]× (u1,∞]× [0,∞]

)
= 0, Nt

(
[0, τ(t)

d̃(t)
]× (u2,∞]× [0,∞]

)
≤ 1

)
.

Now one can apply (4.2) and Theorem 3.2 to show that the last expression converges

to

E
(
G(u2)

W1/2
)
+ µG(u2, u1]E

(
W1/2G(u2)

W1/2
)
.

4.2. The longest excursion

Our next goal is to determine the limiting distribution of the length of the longest

excursion completed until time t, i.e. the longest time interval during which CTRW

Z(t) is not equal to zero, completed until time t. In contrast to subsection 4.1, here

we only assume that Ei’s have finite expectation. As in subsection 4.1, we denote by

Ri the time spent on the i-th excursion, and by Yi the total time spent on the i-th

stay at zero and the i-th excursion. Now, we are interested in determining the limiting

distribution of

M τ−1(t) = sup{Ri : i ≤ τ(t) − 1} , (4.4)

with τ(t) given in (4.1), which corresponds to the length of the longest completed

excursion.

In the present model, the point processes Nt of Theorem 3.4 are constructed using

sequences (Rn) (instead of (Xn)) and (Yn). Recall that UR = 1/(1−FR), and observe

that U←R (x) ≤ U←Y (x) for all x, since Y1 = R1 +X1. To show (3.19), observe that

xP (Y1 > U←Y (x)) → 1 ,
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and, since Y1 is RegVar(1/2), it is well know that the same holds for R1 = Y1 − X1

because EX1 < ∞. Moreover, one can show that

xP (R1 > U←Y (x)) = xP (Y1 −X1 > U←Y (x)) → 1 .

Clearly,

P (R1 > U←R (x) |Y1 > U←Y (x))

=
P (R1 > U←R (x) , R1 +X1 > U←Y (x))

P (Y1 > U←Y (x))
≥

P (R1 > U←Y (x))

P (Y1 > U←Y (x))
.

Since the last ratio above tends to 1 as x → ∞, (3.19) is proved.

From Theorems 3.2 and 3.4, we obtain

Nt

∣∣∣[
0, τ(t)

d̃(t)

) d
−→ N

∣∣∣
[0,W1/2)

(4.5)

as t → ∞. In this case,

N =
∑

i≥1

δ(Ti,Pi,Pi) ,

while W1/2 = W1/2(1) = S←1/2(1) with S1/2 equal to the 1/2–stable subordinator

S1/2(t) =
∑

Ti≤t

Pi ,

which makes W1/2 completely dependent on N (2) =
∑

i≥1 δ(Ti,Pi) , cf. Remark 2.

Observe that (4.5) identifies the limiting distribution of all upper order statistics in

the sequence of excursions. It follows that rescaled excursions behave asymptotically

as completed jumps of the subordinator S1/2 until the passage of the level 1. Distri-

bution of those jumps is well understood, see Perman [20] or Pitman and Yor [21].

Alternatively, one could include the last, possibly incomplete excursion in the analysis.

It turns out that the convergence result still holds, but one needs to add the last a.s.

incomplete jump of the subordinator S1/2 to the limiting distribution. All those jumps
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have the distribution of the Pitman–Yor point processes, see [20, 21].

To illustrate our claims, the next theorem gives the limiting distribution ofM τ−1(t).

Theorem 4.2. Under the assumptions above, M τ−1(t) in (4.4) satisfies

M τ−1(t)

t

d
−→ V ,

as t → ∞, where V has the distribution of the largest jump of 1/2–stable suboordinator

completed before the passage of the level 1.

Proof. Observe that for arbitrary x > 0

P

(
M τ−1(t)

ã(t)
≤ x

)
= P

(
Nt

∣∣∣[
0, τ(t)

d̃(t)

)
×(x,∞]×[0,∞]

= 0

)

Theorem 3.2 yields (4.5), and therefore

P

(
Nt

∣∣∣[
0, τ(t)

d̃(t)

)
×(x,∞]×[0,∞]

= 0

)
→ P

(
N
∣∣∣
[0,W1/2)×(x,∞]×[0,∞]

= 0

)
.

According to the discussion following (4.5),

{
N
∣∣∣
[0,W1/2)×(x,∞]×[0,∞]

= 0

}
=

{
sup

Ti<W1/2

Pi ≤ x

}
,

which is exactly the probability that the largest jump of 1/2-stable subordinator, before

it hits [1,∞), is less than or equal to x.

The limiting random variable V in Theorem 4.2 has a continuous distribution with

support on (0, 1), see Perman [20]. This is also the distribution of the longest completed

excursion of the standard Brownian motion during time interval [0, 1]. Its density is

given in [20, Corollary 9]. Interestingly, the closed form expression for the density is

known only on the interval (1/3, 1).

In the special case when all waiting times of CTRW have unit length, the model

above boils down to the simple symmetric random walk on integers. In particular, from
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(4.5) one can deduce the asymptotic distribution of all upper order statistics for the

length of excursions of the simple symmetric random walk given in Csáki and Hu [5].
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