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Abstract

This paper considers a variation of the full-information secretary problem
where the random variables to be observed are independent but not necessary
identically distributed. The main result is a sharp lower bound for the optimal
win probability. Precisely, if X1, . . . ,Xn are independent random variables
with known continuous distributions and Vn(X1, . . . ,Xn) := supτ P(Xτ =
Mn), where Mn := max{X1, . . . ,Xn} and the supremum is over all stopping
times adapted to X1, . . . ,Xn, then

Vn(X1, . . . ,Xn) ≥

(

1−
1

n

)n−1

,

and this bound is attained. The method of proof consists in reducing the
problem to that of a sequence of random variables taking at most two possible
values, and then applying Bruss’ sum-the-odds theorem (2000). In order to
obtain a sharp bound for each n, we improve Bruss’ lower bound (2003) for
the sum-the-odds problem.
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1 Introduction

In the classical secretary problem or best-choice problem, a known number n of
applicants for a single position are interviewed one by one in a random order, and
after each interview a manager must decide whether or not to hire the applicant just
interviewed, based solely on his or her relative rank among the applicants interviewed
thus far. The objective is to hire the best applicant. It is well known that under the
optimal strategy, the probability of success decreases monotonically to 1/e ≈ .3679
as n → ∞. An entertaining account of the history of the secretary problem and
some of its many variations can be found in Ferguson [3]; see also Samuels [5].

One natural extension is the full-information best-choice problem, in which each
applicant, independent of the others, can be assigned a numerical score whose dis-
tribution is known in advance, and the objective is to hire the applicant with the
highest score. The mathematical framework for this problem is as follows. Here and
throughout this paper, let X1, . . . , Xn be independent random variables with known
continuous distributions, let Mn := max{X1, . . . , Xn}, and define

Vn(X1, . . . , Xn) := sup
τ

P(Xτ = Mn), (1)

where the supremum is over all stopping times adapted to the natural filtration
of X1, . . . , Xn. Gilbert and Mosteller [4] solved this optimal stopping problem in
the case when X1, . . . , Xn are independent and identically distributed (i.i.d.). They
showed that the optimal win probability is independent of the distribution of the
Xi’s, and decreases monotonically to .5802.

It is natural to ask how much lower the optimal win probability can be if we drop
the assumption that the random variables are identically distributed. In this case, it
should be fairly clear that the optimal win probability depends on the distributions
of X1, . . . , Xn, and we aim to find a sharp lower bound. Our main result is

Theorem 1.1. For each n ∈ N, we have

Vn(X1, . . . , Xn) ≥

(

1−
1

n

)n−1

, (2)

and this bound is attained.

Remark 1.2. The bound in the theorem decreases to 1/e ≈ .3679 as n → ∞.
This is quite a bit smaller than the limiting win probability .5802 in the i.i.d. case,
which should not come as a surprise. (Intuitively, when the distributions become
progressively more spread out – as they do in the extremal case; see Lemma 3.2
below – there is more uncertainty about the future than when all distributions are
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identical, resulting in a lower optimal win probability.) Comparing our bound with
the classical secretary problem, we see moreover that, in the worst case and for large
n, a gambler who has full information can do no better than a gambler who observes
only relative ranks.

Remark 1.3. One might ask whether the continuity assumption about the Xi’s is
needed in Theorem 1.1. The way our objective function is defined in (1) implies that
we win if we stop with a value that is at least tied for the overall maximum. Thus, it
seems that the possibility of ties should only make it easier to win and consequently,
the lower bound (2) should continue to hold when the random variables X1, . . . , Xn

are permitted to have atoms. However, it is not clear to us how to prove this formally.

Our method of proof consists of two steps. First, we construct a sequence
Y1, . . . , Yn of simple random variables (each of which, in fact, takes on at most two
possible values) such that Vn(X1, . . . , Xn) ≥ Vn(Y1, . . . , Yn). Next, we use Bruss’
“sum-the-odds” theorem [1] to obtain an explicit expression for Vn(Y1, . . . , Yn), which
we then minimize by establishing a lower bound for the “sum-the-odds” problem
which improves on that given by Bruss [2]. This lower bound, though not difficult
to obtain, is interesting in its own right.

We have not found a more direct way to prove the main result, though we do
not rule out the possibility that one exists. However, we believe that the technique
of proof used here is of independent interest and may be applicable to other optimal
stopping problems of a similar nature.

2 Bruss’ “sum-the-odds” theorem

Bruss [1] considered the problem of stopping at the last success in a sequence of
independent Bernoulli trials. Specifically, let A1, . . . , An be independent events with
P(Ai) = pi, i = 1, . . . , n, and let Ii := IAi

, the indicator random variable correspond-
ing to Ai, for i = 1, . . . , n. If we think of the value 1 as representing a success and 0
as representing a failure, the problem of stopping at the last success comes down to
finding a stopping time τ that maximizes P(Iτ = 1, Iτ+1 = · · · = In = 0).

Theorem 2.1 (Sum-the-odds theorem, [1]). Let I1, I2, . . . , In be a sequence of inde-
pendent indicator random variables with pj = E(Ij). Let qj = 1− pj and rj = pj/qj.
Consider the problem of stopping at the last success; that is, the optimal stopping
problem

v := v(p1, . . . , pn) := sup
τ

P(Iτ = 1, Iτ+1 = · · · = In = 0).
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Then the optimal rule is to stop on the first index (if any) k with Ik = 1 and k ≥ s,
where

s := sup

{

1, sup

{

1 ≤ k ≤ n :

n
∑

j=k

rj ≥ 1

}}

,

with sup{∅} := −∞. Moreover, the optimal win probability is given by

v = v(p1, . . . , pn) =

(

n
∏

j=s

qj

)(

n
∑

k=s

rk

)

.

To see how this may be applied to the best-choice problem, let Ai be the event
that the ith applicant is best so far. In the classical secretary problem, where only
relative ranks are observed and all n! orderings of the applicants are equally likely,
the events A1, . . . , An are independent, so Bruss’ theorem applies to give the optimal
stopping rule. However, in the full-information case we are considering here, we have
Ai = {Xi ≥ max{X1, . . . , Xi−1}} for i = 1, . . . , n, and these events are generally not
independent when X1, . . . , Xn are not identically distributed. Consider, for instance,
the case when n = 3, X1 ≡ 1, X2 = 0 or 3 each with probability 1/2, and X3 = 0, 2
or 4 each with probability 1/3; one checks easily that A2 and A3 are not independent.

To overcome this issue, we will reduce the problem to that of a sequence of
random variables which is simple enough that the sum-the-odds theorem does apply
to it; see the next section. But first we need a sharp lower bound for the optimal
win probability v(p1, . . . , pn).

Bruss [2] showed that if
∑n

k=1 rk ≥ 1, then v(p1, . . . , pn) > e−1, and this is the
best uniform lower bound. However, for fixed n we can do somewhat better. Let bn
denote the lower bound in Theorem 1.1, that is,

bn :=

(

1−
1

n

)n−1

.

Theorem 2.2. If
∑n

k=1 rk ≥ 1, then

v = v(p1, . . . , pn) ≥ bn+1 =

(

1−
1

n + 1

)n

.

The bound is attained when p1 = p2 = · · · = pn = 1/(n+ 1).

Lemma 2.3. The sequence (bn) is strictly decreasing, and limn→∞ bn = e−1.

Proof. This follows since b−1
n+1 =

(

1 + 1
n

)n
, which increases in n and has limit e.
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Proof of Theorem 2.2. We initially follow Bruss’ proof [2] of the bound e−1. For
convenience, we reindex the pk’s, and hence the qk’s and rk’s, by redefining pi :=
pn−i+1, qi := qn−i+1 and ri := rn−i+1, for i = 1, 2, . . . , n. In this new notation, let
Rk := r1 + · · ·+ rk and let t := inf{k : Rk ≥ 1}. Then we can write v as

v = Rt

t
∏

k=1

qk. (3)

If t = 1, then r1 ≥ 1, and hence v = r1q1 = p1 ≥ 1/2. Thus, the statement is
true for t = 1. Assume therefore t ≥ 2. Use qj = (1 + rj)

−1 to rewrite v in the form

v =
Rt

(1 + rt)
∏t−1

j=1(1 + rj)
. (4)

Using the geometric mean-arithmetic mean inequality we have

(

t−1
∏

j=1

(1 + rj)

)
1

t−1

≤

∑t−1
j=1(1 + rj)

t− 1
= 1 +

Rt−1

t− 1
,

and substituting this into (4) gives

v ≥
Rt

(1 + rt)
(

1 + Rt−1

t−1

)t−1 .

We now refine the analysis from the second part of Bruss’ proof. It is simpler to
consider v−1:

v−1 ≤
(1 + rt)

(

1 + Rt−1

t−1

)t−1

Rt−1 + rt
= gt(Rt−1, rt),

where

gt(x, y) :=
1 + y

x+ y

(

1 +
x

t− 1

)t−1

.

In view of

Rt−1 =
t−1
∑

k=1

rk < 1 ≤ Rt = Rt−1 + rt,

we need to maximize gt(x, y) over 0 ≤ x < 1, 1 − x ≤ y. For fixed x in this range,
gt(x, y) is clearly decreasing in y, so that

gt(x, y) ≤ gt(x, 1− x) = (2− x)

(

1 +
x

t− 1

)t−1

.
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Elementary calculus shows that this function is maximized at x = x∗ := (t − 1)/t,
and so

v−1 ≤ gt(x
∗, 1− x∗) =

(

t+ 1

t

)t

.

Hence,

v ≥

(

t

t + 1

)t

= bt+1 ≥ bn+1,

where the last inequality follows from Lemma 2.3. When p1 = p2 = · · · = pn =
1/(n+1), we have qk = n/(n+1) and rk = 1/n for each k, so that t = n and Rt = 1,
and (3) yields v = bn+1.

3 Proof of the main theorem

We first introduce some notation and terminology. For j = 1, . . . , n, let Fj denote
the distribution function of Xj . By our assumption, each Fj is continuous. For
k = 1, . . . , n, we shall call Xk a candidate if Xk = max{X1, . . . , Xk}. If we observe a
candidate Xk = x and we stop, we win if and only if none of the future observations
Xk+1, . . . , Xn exceeds x. This happens with probability

Uk(x) := P(Xk+1 ≤ x, . . . , Xn ≤ x) =
n
∏

j=k+1

Fj(x). (5)

On the other hand, if we have observed X1 = x1, . . . , Xk = xk and we continue, we
win if and only if we stop at some time k < τ ≤ n and Xτ = max{m,Xk+1, . . . , Xn},
where m := max{x1, . . . , xk}. Thus, the optimal win probability if we continue is

Wk(m) : = sup
k<τ≤n

P(Xτ = Mn|max{X1, . . . , Xk} = m)

= sup
k<τ≤n

P (Xτ ≥ max{m,Xk+1, . . . , Xn}) .

It is straightforward to verify, by conditioning on the value of Xk+1, the recursion

Wk(m) = Fk+1(m)Wk+1(m) +

∫ ∞

m

max{Uk+1(x),Wk+1(x)}dFk+1(x), (6)

for k = 1, . . . , n− 1, since an observation smaller than m at time k + 1 would force
us to continue.

The following definition identifies a class of sequences of random variables which
will turn out to be extremal for our problem.
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Definition 3.1. A sequence Y1, . . . , Yn of independent random variables will be called
a V-sequence if there exist constants a1, a2, . . . , an and b2, . . . , bn with a1 < a2 < · · · <
an and a1 > b2 > b3 > · · · > bn, and

(i) P(Y1 = a1) = 1, and

(ii) P(Yi = ai or bi) = 1 for i = 2, . . . , n.

We will show first that, if Y1, . . . , Yn is any V -sequence, then the optimal win
probability Vn(Y1, . . . , Yn) for this sequence is greater than or equal to the bound in
Theorem 1.1. Then, for a given sequence X1, . . . , Xn of independent continuous ran-
dom variables, we will construct a specific V -sequence Y1, . . . , Yn (whose distributions
depend on those ofX1, . . . , Xn, of course) such that Vn(X1, . . . , Xn) ≥ Vn(Y1, . . . , Yn).
This will clearly establish the lower bound of Theorem 1.1.

Lemma 3.2. If Y1, . . . , Yn is a V-sequence, then

Vn(Y1, . . . , Yn) ≥

(

1−
1

n

)n−1

,

and this bound is attained.

Proof. For k = 1, . . . , n− 1, we define the indicator random variables

Ik :=

{

1 if Yk+1 > max{Y1, . . . , Yk},

0 otherwise.

Let pk := E(Ik) = P (Yk+1 = ak+1), qk := 1− pk and rk := pk/qk. We have that

Vn(Y1, . . . , Yn) = max{U1(a1),W1(a1)}. (7)

Notice that if we decide to continue after observing Y1, we win if and only if we choose
the last success in the sequence I1, . . . , In−1, which is an independent sequence since
for each k ≥ 1, Ik = 1 if and only if Yk+1 = ak+1. Thus, W1(a1) = v(p1, . . . , pn−1), so
if
∑n−1

k=1 rk ≥ 1, Theorem 2.2 gives

W1(a1) ≥

(

1−
1

n

)n−1

.

Suppose now that
∑n−1

k=1 rk ≤ 1. Stopping at the first observation gives us win
probability

U1(a1) = q1 · · · qn−1 =

n−1
∏

i=1

(1 + ri)
−1.
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Using the arithmetic mean-geometric mean inequality we have

(

n−1
∏

i=1

(1 + ri)

)
1

n−1

≤

∑n−1
k=1(1 + rk)

n− 1
≤

n

n− 1
.

Thus,

U1(a1) ≥

(

n

n− 1

)−(n−1)

=

(

1−
1

n

)n−1

.

In both cases, (7) yields the desired lower bound.
To see that the bound is attained, let pi := P(Yi+1 = ai+1) = 1/n, qi := 1 − pi

and ri := pi/qi = 1/(n − 1), for i = 1, . . . , n − 1. If we skip the first observation
and play optimally from then on, we win if and only if we stop at the last success of
I1, . . . , In−1, that is, W1(a1) = v(p1, . . . , pn−1). Note that inf{s :

∑n

j=s rj ≥ 1} = 2.
Theorem 2.1 gives

v(p1, . . . , pn−1) =
n
∑

j=2

1

n

(

n− 1

n

)n−2

=

(

1−
1

n

)n−1

.

If, on the other hand, we choose to stop at the first observation, the win probability

is U1(a1) = q1 · · · qn−1 =
(

1− 1
n

)n−1
as well. Hence

Vn(Y1, . . . , Yn) =

(

1−
1

n

)n−1

,

as we wanted to show.

Lemma 3.3. For the optimal stopping problem (1), there exists a sequence of critical
values x∗

1, . . . , x
∗
n−1 such that at observation 1 ≤ k < n it is optimal to stop if and

only Xk ≥ x∗
k and Xk is a candidate. In other words, the optimal stopping rule is

τ ∗ := min
{

k ≤ n : Xk ≥ max{X1, . . . , Xk−1, x
∗
k}
}

,

or τ ∗ = n if no such k exists.

Proof. For each i = 1, . . . , n − 1, Ui(x) is continuous and increasing, since it is the
product of continuous and increasing functions. Moreover, limx→−∞ Ui(x) = 0 and
limx→∞ Ui(x) = 1. For each i = 1, . . . , n− 1, we have

Wi(x) = sup
i<τ≤n

P (Xτ ≥ max{x,Xi+1, . . . , Xn}) .
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This shows that Wi is continuous and decreasing. We claim that

lim
x→−∞

Wi(x) > 0 (8)

and
lim
x→∞

Wi(x) < 1. (9)

It then follows that the graphs of Ui and Wi intersect each other at some (not
necessarily unique) point x∗

i .
To see (8), choose k ∈ {i+1, . . . , n} such that P (Xk = max{Xi+1, . . . , Xn}) > 0.

Then

L : = lim
x→−∞

P (Xk ≥ x,Xk = max{Xi+1, . . . , Xn})

= P (Xk = max{Xi+1, . . . , Xn})

> 0,

so, by considering the stopping rule τ ≡ k,

Wi(x) ≥ P (Xk ≥ max{x,Xi+1, . . . , Xn})

= P (Xk ≥ x,Xk = max{Xi+1, . . . , Xn})

→ L > 0, as x → −∞.

This gives (8). Next, choose x such that P (max{Xi+1, . . . , Xn} ≥ x) < 1. Then

Wi(x) ≤ sup
i<τ≤n

P (Xτ ≥ x) ≤ P (max{Xi+1, . . . , Xn} ≥ x) < 1,

which implies (9).

When X1, . . . , Xn are i.i.d., the critical values x∗
1, . . . , x

∗
n−1 form a decreasing

sequence; see [4]. This remains the case if X1, . . . , Xn are merely assumed to be
independent.

Lemma 3.4. We have x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n−1.

Proof. It suffices to show that

Wk+1(x) ≥ Uk+1(x) =⇒ Wk(x) ≥ Uk(x), x ∈ R, k = 1, . . . , n− 2.

But this is almost obvious, since assuming the inequality on the left, (6) gives

Wk(x) ≥ Fk+1(x)Wk+1(x) ≥ Fk+1(x)Uk+1(x) = Uk(x),

where the last equality is a consequence of (5).
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Lemma 3.5. For each i ∈ {2, 3, . . . , n−1}, there exists a constant ci > x∗
1 such that

∫ ∞

x∗

1

Ui(x)dFi(x) = Ui(ci)P (Xi > x∗
1). (10)

Proof. If P(Xi > x∗
1) = 0, we can choose ci > x∗

1 arbitrarily, and both sides of (10)
will be zero. So assume P(Xi > x∗

1) > 0. Since Ui is increasing and bounded by 1,
we have

Ui(x
∗
1)P (Xi > x∗

1) ≤

∫ ∞

x∗

1

Ui(x)dFi(x) ≤ P (Xi > x∗
1),

so

Ui(x
∗
1) ≤

1

P (Xi > x∗
1)

∫ ∞

x∗

1

Ui(x)dFi(x) ≤ 1.

If the inequality on the left is strict, then, since Ui(x) is continuous and tends to 1
as x → ∞, we can apply the intermediate value theorem to obtain ci > x∗

1 such that

Ui(ci) =
1

P (Xi > x∗
1)

∫ ∞

x∗

1

Ui(x)dFi(x).

Otherwise, it must be the case that Ui is constant (and hence equal to 1) on [x∗
1,∞),

and we can choose ci to be any number strictly greater than x∗
1. In either case, we

get (10).

Lemma 3.6 (Reduction lemma). There exists a V-sequence X
′

1, . . . , X
′

n such that
Vn(X1, . . . , Xn) ≥ Vn(X

′

1, . . . , X
′

n).

Proof. Let c2, . . . , cn−1 be the constants from Lemma 3.5. Choose numbers a2 . . . , an
and b2, . . . , bn such that x∗

1 < a2 < a3 < · · · < an and aj ≤ cj for j = 2, . . . , n − 1,
and x∗

1 > b2 > · · · > bn. Set X
′

1 :≡ x∗
1 and for 2 ≤ i ≤ n, define

X
′

i :=

{

ai, if Xi > x∗
1

bi, if Xi ≤ x∗
1.

Note that the random variables X ′
1, . . . , X

′
n are independent. The idea of the proof is

to replace the random variables X1, . . . , Xn by their counterparts X ′
1, . . . , X

′
n one at a

time, starting with X1, and to show that each such replacement does not increase the
optimal win probability. In order to do so, we need to introduce analogs of the func-
tions Uj and Wj for the sequence X

′

1, . . . , X
′

k, Xk+1, . . . , Xn, where k = 0, 1, . . . , n.
First, introduce random variables

Y
(k)
j :=

{

X ′
j if 1 ≤ j ≤ k,

Xj if k < j ≤ n,
k = 0, 1, . . . , n, j = 1, 2, . . . , n.

10



Now define

U
(k)
j (x) := P(Y

(k)
j+1 ≤ x, . . . , Y (k)

n ≤ x) = P(Y
(k)
j+1 ≤ x) · · ·P(Y (k)

n ≤ x),

W
(k)
j (x) := sup

j<τ≤n

P
(

Y (k)
τ = max{x, Y

(k)
j+1, . . . , Y

(k)
n }

)

,

for k = 0, 1, . . . , n and j = 1, 2, . . . , n. We also write

V (k)
n := Vn

(

Y
(k)
1 , . . . , Y (k)

n

)

, k = 0, 1, . . . , n,

so V
(0)
n = Vn(X1, . . . , Xn). Observe that

k ≤ j =⇒ W
(k)
j = Wj and U

(k)
j = Uj. (11)

And since

P(X ′
i ≤ x∗

1) = P(X ′
i = bi) = P(Xi ≤ x∗

1), i = 2, 3, . . . , n,

we also have

U
(k)
j (x∗

1) = Uj(x
∗
1), j = 1, . . . , n− 1, k = 0, 1, . . . , n. (12)

We will show that for all 0 ≤ k ≤ n− 1, V
(k)
n ≥ V

(k+1)
n . First,

V (0)
n = Vn(X1, X2, . . . , Xn) = E[max{U1(X1),W1(X1)}]

=

∫ ∞

−∞

max{U1(x),W1(x)}dF1(x)

=

∫ x∗

1

−∞

W1(x)dF1(x) +

∫ ∞

x∗

1

U1(x)dF1(x)

≥

∫ x∗

1

−∞

W1(x
∗
1)dF1(x) +

∫ ∞

x∗

1

U1(x
∗
1)dF1(x)

= U1(x
∗
1) = W1(x

∗
1)

= Vn(X
′

1, X2, . . . , Xn) = V (1)
n ,

where the inequality follows since W1 is decreasing and U1 is increasing.
Next, we show for every 1 ≤ k ≤ n− 1 that V

(k)
n ≥ V

(k+1)
n . In view of (12), this

will follow if we prove that

W
(k)
j (x∗

1) ≥ W
(k+1)
j (x∗

1), j ≤ k < n, (13)
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for j = 1, . . . , n− 1; we can then take j = 1. We prove (13) by backward induction
on j. First, (13) holds for j = n− 1 since

W
(n−1)
n−1 (x∗

1) = P(Xn > x∗
1) = P(X ′

n > x∗
1) = W

(n)
n−1(x

∗
1).

Suppose (13) holds with j replaced by j + 1; that is,

W
(k)
j+1(x

∗
1) ≥ W

(k+1)
j+1 (x∗

1), j < k < n. (14)

We first claim that

U
(k)
j+1(aj+1) ≥ W

(k)
j+1(aj+1), j < k < n. (15)

This follows since aj+1 > x∗
1 ≥ x∗

k+1, U
(k)
j+1 is increasing and W

(k)
j+1 is decreasing, and

so, for j < k < n,

U
(k)
j+1(aj+1) ≥ U

(k)
j+1(x

∗
1) = Uj+1(x

∗
1) ≥ Wj+1(x

∗
1)

= W
(j+1)
j+1 (x∗

1) ≥ W
(k)
j+1(x

∗
1) ≥ W

(k)
j+1(aj+1),

where we used (12) in the first equality, (11) in the second equality, and the induction
hypothesis (14) in the third inequality.

We will also need that

U
(k)
j+1(aj+1) ≥ U

(k+1)
j+1 (aj+1), j < k < n. (16)

To see this, note that

U
(k)
j+1(aj+1)

U
(k+1)
j+1 (aj+1)

=
P(Xk+1 ≤ aj+1)

P(X ′
k+1 ≤ aj+1)

,

and

P(X ′
k+1 ≤ aj+1) = P(X ′

k+1 = bk+1) = P(Xk+1 ≤ x∗
1) ≤ P(Xk+1 ≤ aj+1),

since k > j implies ak+1 > aj+1. Now using (15), the induction hypothesis (14), (16),
and finally (15) again, we obtain for k > j,

W
(k)
j (x∗

1) = P(X ′
j+1 = bj+1)W

(k)
j+1(x

∗
1) + P(X ′

j+1 = aj+1)U
(k)
j+1(aj+1)

≥ P(X ′
j+1 = bj+1)W

(k+1)
j+1 (x∗

1) + P(X ′
j+1 = aj+1)U

(k+1)
j+1 (aj+1)

= W
(k+1)
j (x∗

1).
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It remains to verify (13) for k = j. Here we use (10) and the fact (by our choice of
aj+1) that aj+1 ≤ cj+1 to obtain

W
(j)
j (x∗

1) = Wj(x
∗
1) = P(Xj+1 ≤ x∗

1)Wj+1(x
∗
1) +

∫ ∞

x∗

1

Uj+1(x)dFk+1(x)

≥ P(Xj+1 ≤ x∗
1)Wj+1(x

∗
1) + P(Xj+1 > x∗

1)Uj+1(aj+1)

= P(X ′
j+1 = bj+1)W

(j+1)
j+1 (x∗

1) + P(X ′
j+1 = aj+1)U

(j+1)
j+1 (aj+1)

= W
(j+1)
j (x∗

1),

where we used (11) in the third equality, and (15) in the last equality. This completes
the backward induction. Finally, setting j = 1 in (13) and using (12) and

V (k)
n = max{U

(k)
1 (x∗

1),W
(k)
1 (x∗

1)}, k = 1, 2, . . . , n,

it follows that V
(k)
n ≥ V

(k+1)
n for k = 1, . . . , n− 1. This proves the lemma.

Proof of Theorem 1.1. The inequality (2) is an immediate consequence of Lemma
3.6 and Lemma 3.2. The bound is attained by replacing the V-sequence that attains
the bound in Lemma 3.2 with a continuous sequence, as follows. Let X1, . . . , Xn be
independent random variables such that X1 has the uniform distribution on (0, 1),
and for i = 2, . . . , n, Xi has density function

fi(x) :=











1
n
, if i < x < i+ 1,

n−1
n
, if − i < x < −i+ 1,

0, otherwise.

Then, since the supports of X1, . . . , Xn do not overlap, the optimal win probability
Vn(X1, . . . , Xn) is the same as the optimal win probability for the V-sequence that

attains the bound in Lemma 3.2. That is, Vn(X1, . . . , Xn) = (1− 1
n
)
n−1

.
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