
ar
X

iv
:1

51
0.

02
65

7v
2

 [
m

at
h.

PR
]

 3
 M

ar
 2

01
6

Universality of Load Balancing Schemes on Diffusion Scale

D. Mukherjee∗1, S.C. Borst1,2, J.S.H. van Leeuwaarden1 and P.A. Whiting3

1Department of Mathematics and Computer Science, Eindhoven University of

Technology, The Netherlands
2Alcatel-Lucent Bell Labs, Murray Hill, NJ, USA

3Department of Engineering, Macquarie University, North Ryde, NSW, Australia

May 24, 2022

Abstract

We consider a system of N parallel queues with identical exponential service rates
and a single dispatcher where tasks arrive as a Poisson process. When a task arrives,
the dispatcher always assigns it to an idle server, if there is any, and to a server with
the shortest queue among d randomly selected servers otherwise (1 ≤ d ≤ N). This
load balancing scheme subsumes the so-called Join-the-Idle Queue (JIQ) policy (d = 1)
and the celebrated Join-the-Shortest Queue (JSQ) policy (d = N) as two crucial special
cases. We develop a stochastic coupling construction to obtain the diffusion limit of the
queue process in the Halfin-Whitt heavy-traffic regime, and establish that it does not
depend on the value of d, implying that assigning tasks to idle servers is sufficient for
diffusion level optimality.

1 Introduction

In the present paper we establish a universality property for a broad class of load balancing
schemes in a many-server heavy-traffic regime. While the specific features of load balancing
policies may considerably differ, the principal purpose is to distribute service requests or
tasks among servers or geographically distributed nodes in parallel-processing systems. Well-
designed load balancing schemes provide an effective mechanism for improving relevant
performance metrics experienced by users while achieving high resource utilization levels.
The analysis and design of load balancing policies has attracted strong renewed interest in
the last several years, mainly motivated by significant challenges involved in assigning tasks
(e.g. file transfers, compute jobs, data base look-ups) to servers in large-scale data centers.

∗Corresponding author: d.mukherjee@tue.nl

1

http://arxiv.org/abs/1510.02657v2

Load balancing schemes can be broadly categorized as static (open-loop), dynamic
(closed-loop), or some intermediate blend, depending on the amount of real-time feedback or
state information (e.g. queue lengths or load measurements) that is used in assigning tasks.
Within the category of dynamic policies, one can further distinguish between push-based
and pull-based approaches, depending on whether the initiative resides with a dispatcher
actively collecting feedback from the servers, or with the servers advertizing their availability
or load status. The use of state information naturally allows dynamic policies to achieve
better performance and greater resource pooling gains, but also involves higher implemen-
tation complexity and potentially substantial communication overhead. The latter issue is
particularly pertinent in large-scale data centers, which deploy thousands of servers and
handle massive demands, with service requests coming in at huge rates.

In the present paper we focus on a basic scenario of N parallel queues with identi-
cal servers, exponentially distributed service requirements, and a service discipline at each
individual server that is oblivious to the actual service requirements (e.g. FCFS). In this
canonical case, the so-called Join-the-Shortest-Queue (JSQ) policy has several strong opti-
mality properties, and in particular minimizes the overall mean delay among the class of
non-anticipating load balancing policies that do not have any advance knowledge of the
service requirements [3, 16, 18]. (Relaxing any of the three above-mentioned assumptions
tends to break the optimality properties of the JSQ policy, and renders the delay-minimizing
policy quite complex or even counter-intuitive, see for instance [5, 7, 17].)

In order to implement the JSQ policy, a dispatcher requires instantaneous knowledge of
the queue lengths at all the servers, which may give rise to a substantial communication
burden, and may not be scalable in scenarios with large numbers of servers. The latter issue
has motivated consideration of so-called JSQ(d) policies, where the dispatcher assigns an
incoming task to a server with the shortest queue among d servers selected uniformly at
random. Mean-field limit theorems in Mitzenmacher [9] and Vvedenskaya et al. [15] indicate
that even a value as small as d = 2 yields significant performance improvements in a many-
server regime, in the sense that the tail of the queue length distribution at each indvidual
server falls off much more rapidly compared to a strictly random assignment policy (d = 1).
This is commonly referred to as the “power-of-two” effect. While these results were originally
proved for exponential service requirement distributions, they have recently been extended
to general service requirement distributions in Bramson et al. [2].

In the present paper we consider a related but different family of load balancing schemes
termed JIQ(d), where the dispatcher always assigns an incoming task to an idle server,
if there is any, and to a server with the shortest queue among d uniformly at random
selected servers otherwise. Observe that the JIQ(N) scheme coincides with the ordinary
JSQ policy, while the JIQ(1) scheme corresponds to the so-called Join-the-Idle-Queue (JIQ)
policy considered in [1, 8, 12]. The latter policy offers particularly attractive properties, both
from a scalability perspective and from a performance viewpoint. Since only knowledge of
the empty queues is required, it suffices for servers to send an ‘invite’ notice to the dispatcher
whenever they become idle. This generates at most one message per task and ensures low
communication overhead even in large-scale systems with many servers. At the same time,

2

fluid-limit theorems in Stolyar [12] indicate that, for any fixed subcritical load per server,
the equilibrium probability of a task experiencing a wait because no idle server is available,
asymptotically vanishes in a regime where the number of servers grows large.

We consider a regime where the number of servers N grows large, but additionally
assume that the capacity slack per server diminishes as β/

√
N , i.e., the load per server

approaches unity as 1 − β/
√
N , with β > 0 some positive coefficient. In terms of the

aggregate traffic load and total service capacity, this scaling corresponds to the so-called
Halfin-Whitt heavy-traffic regime which was introduced in the seminal paper [6] and has
been extensively studied since. The set-up in [6], as well as the numerous model extensions
in the literature, predominantly concerned a setting with a single centralized queue and
server pool, rather than a scenario with parallel queues. To the best of our knowledge, the
only exception is a recent study of Eschenfeldt & Gamarnik [4], which considered a parallel-
server system with the ordinary JSQ policy, and showed that in the Halfin-Whitt regime
the diffusion-scaled system occupancy state weakly converges to a two-dimensional reflected
Ornstein-Uhlenbeck process.

In the present paper we exploit a stochastic coupling construction to extend the latter
result to the entire class of JIQ(d) policies. We specifically establish that the diffusion
limit, rather surprisingly, does not depend on the value of d at all, so that in particular the
JIQ and JSQ policies yield the same diffusion limit. The latter property implies that in a
many-server heavy-traffic regime, ensuring that tasks are assigned to idle servers whenever
possible, e.g. using a low-overhead invite mechanism, suffices to achieve optimality at the
diffusion level, and not just at the fluid level as proved in Stolyar [12] for the under-loaded
scenario. It further suggests that using any additional queue length information beyond the
knowledge of empty queues yields only limited performance gains in large-scale systems in
the Halfin-Whitt heavy-traffic regime.

The remainder of the paper is organized as follows. In Section 2 we present a detailed
model description and formulate the main result. In Section 3 we develop a stochastic
coupling construction to compare the system occupancy state under various task assignment
policies. We then combine in Section 4 the stochastic comparison results with some of the
derivations in [4] to obtain the common diffusion limit and finally make a few concluding
remarks in Section 5.

2 Model description

Consider a system with N parallel queues with independent and identical servers having
unit-exponential service rates and a single dispatcher. Tasks arrive at the dispatcher as a
Poisson process of rate λN , and are instantaneously forwarded to one of the servers. Tasks
can be queued at the various servers, possibly subject to a buffer capacity limit as further
described below, but cannot be queued at the dispatcher. The dispatcher always assigns
an incoming task to an idle server, if there is any, and to a server with the shortest queue
among d uniformly at random selected servers otherwise (1 ≤ d ≤ N), ties being broken

3

arbitrarily. The buffer capacity at each of the servers is b ≥ 2 (possibly infinite), and when
a task is assigned to a server with b pending tasks, it is instantly discarded.

As mentioned earlier, the above-described scheme coincides with the ordinary Join-the-
Shortest-Queue (JSQ) policy when d = N , and corresponds to the so-called Join-the-Idle-
Queue (JIQ) policy considered in [1, 8, 12] when d = 1.

Under the JSQ policy, the dispatcher always assigns an incoming task to the server with
the minimum queue length. As stated in the introduction, the JSQ policy has several strong
optimality properties in the symmetric Markovian scenario under consideration. In order
to implement the JSQ policy however, a dispatcher requires instantaneous knowledge of
the queue lengths at all the servers, which may give rise to a substantial communication
burden, and may not be scalable in scenarios with large numbers of servers. In a recent
study Eschenfeldt & Gamarnik [4] characterized the diffusion limit of the system occupancy
state in the Halfin-Whitt heavy-traffic regime.

Under the JIQ policy, the dispatcher assigns an incoming task to an idle server, if there
is any, or to a uniformly at random selected server otherwise. This scheme is of particular
interest because of its low communication overhead, and can be implemented as follows.
When a server becomes idle, it sends an invite message to the dispatcher declaring that it
is vacant. Whenever a task arrives, the dispatcher looks at its list of invite messages. If
there are any messages in the list, then it selects one arbitrarily, assigns the task to the
corresponding server, and discards the selected invite message. Otherwise the dispatcher
assigns the task uniformly at random to one of the servers. In this way the number of
messages exchanged per task is at most 1, reducing communication overhead and ensuring
scalability. Stolyar [12] recently proved that the probability that there are invite messages
approaches one, and hence the fraction of tasks that incur a non-zero wait tends to zero, in
a fluid regime where the number of servers and total arrival rate grow large in proportion
with λN/N → λ < 1 as N → ∞.

In the present paper we consider the Halfin-Whitt heavy-traffic regime where the arrival
rate increases with the number of servers as λN = N − β

√
N for some β > 0. We denote

the class of above-described policies by Π(N)(d), where the superscript N indicates that
the diversity parameter d is allowed to depend on the number of servers. For any policy
Π ∈ Π(N)(d) and buffer size b, let QΠ = (QΠ

1 , Q
Π
2 , . . . , Q

Π
b), where QΠ

i is the number of
servers with a queue length greater than or equal to i = 1, . . . , b, including the possible task
in service. Also, let XΠ = (XΠ

1 ,X
Π
2 , . . . ,X

Π
b) be a properly centered and scaled version of

the vector QΠ, with XΠ
1 = (QΠ

1 −N)/
√
N and XΠ

i = QΠ
i /

√
N for i = 2, . . . , b. The reason

why QΠ
1 is centered around N while QΠ

i , i = 2, . . . , b, are not, is because the fraction of
servers with exactly one task tends to one as N grows large as we will see. In case of a finite
buffer size b < ∞, when a task is discarded, we call it an overflow event, and we denote by
LΠ(t) the total number of overflow events under policy Π up to time t.

The next theorem states our main result. In the rest of the paper let D be the set of all

right continuous functions from [0,∞) to R having left limits and let ‘
L−→’ denote convergence

4

in distribution.

Theorem 1. For any policy Π ∈ Π(N)(d), if for i = 1, 2, . . ., XΠ
i (0)

L−→ Xi(0) in R as

N → ∞ with Xi(0) = 0 for i ≥ 3, then the processes {XΠ
i (t)}t≥0

L−→ {Xi(t)}t≥0 in D,
where Xi(t) ≡ 0 for i ≥ 3 and (X1(t),X2(t)) are unique solutions in D×D of the stochastic
integral equations

X1(t) = X1(0) +
√
2W (t)− βt+

∫ t

0
(−X1(s) +X2(s))ds− U1(t),

X2(t) = X2(0) + U1(t) +

∫ t

0
(−X2(s))ds,

(1)

where W is a standard Brownian motion and U1 is the unique non-decreasing non-negative
process in D satisfying

∫∞
0 1[X1(t)<0]dU1(t) = 0.

The above result is proved in [4] for the ordinary JSQ policy. Our contribution is to
develop a stochastic ordering construction and establish that, somewhat remarkably, the
diffusion limit is the same for any policy in Π(N)(d). In particular, the JIQ and JSQ policies
yield the same diffusion limit. The latter property implies that in the Halfin-Whitt heavy-
traffic regime, assigning tasks to idle servers, e.g. through a light-weight invite mechanism,
suffices to achieve optimality at the diffusion level. It further suggests that using any addi-
tional queue length information beyond the knowledge of empty queues yields only limited
performance gains in large-scale systems in the Halfin-Whitt heavy-traffic regime.

Remark 2. We note that as in [4] we assume the convergence of the initial state, which
implies that the process has to start from a state in which the number of vacant servers as
well as the number of servers with two tasks scale with

√
N , and the number of servers with

three or more tasks is o(
√
N).

3 Coupling and stochastic ordering

In this section we prove several stochastic comparison results for the system occupancy
state under various load balancing schemes for a fixed number of queues N (and hence we
shall often omit the superscript N in this section). These stochastic ordering results will be
leveraged in the next section to prove the main result stated in Theorem 1.

In order to bring out the full strength of the stochastic comparison results, we will in fact
consider a broader class of load balancing schemes Π(N) := {Π(d0, d1, . . . , db−1) : d0 = N, 1 ≤
di ≤ N, 1 ≤ i ≤ b− 1, b ≥ 2}, and show that Theorem 1 actually holds for this entire class.
In the scheme Π(d0, d1, . . . , db−1), the dispatcher assigns an incoming task to the server with
the minimum queue length among dk (possibly function of N) servers selected uniformly
at random when the minimum queue length across the system is k, k = 0, 1, . . . , b − 1. As
before, b represents the buffer size, and when a task is assigned to a server with b outstanding
tasks, it is instantly discarded.

5

3.1 Stack formation and deterministic ordering

Let us consider the servers arranged in non-decreasing order of their queue lengths. Each
server along with its queue can be thought of as a stack of items. The ensemble of stacks
then represent the empirical CDF of the queue length distribution, and the ith horizontal
bar corresponds to QΠ

i (for the concerned policy Π). The items are added to and removed
from the various stacks according to some rule. Before proceeding to the coupling argument,
we first state and prove a deterministic comparison result under the above setting.

Consider two ensembles A and B with the same total number of stacks. The stacks
in ensemble A have a maximum capacity of b items and those in ensemble B have a max-
imum capacity of b′ items with b ≤ b′. For two such ensembles a step is said to follow
Rule(k, l, lA, lB) if either addition or removal of an item in both ensembles is done in that
step as follows:

(i) Removal: An item is removed (if any) from the kth stack from both ensembles or an
item is removed from some stack in ensemble A but no removal is done in ensemble B.

(ii) Addition:

(ii.a) System A: If the minimum stack height is less than b− 1, then the item is added
to the lth stack. Else, the item is added to the lthA stack. If the item lands on a
stack with height b, then it is dropped.

(ii.b) System B: If the minimum stack height is less than b− 1, then the item is added
to the lth stack. Otherwise if the minimum stack height is precisely equal to b−1,
the item is added to the lthB stack. When the minimum stack height in the system
is at least b, the item can be sent to any stack. If the item lands on a stack with
height b′, then it is dropped.

Then we have the following result.

Proposition 3. Consider two ensembles A and B as described above with the total number
of stacks being N , stack capacities being b and b′ respectively, b ≤ b′ and with QA ≤ QB

component-wise i.e, QA
i ≤ QB

i for all i ≥ 1. The component-wise ordering is preserved if at
any step Rule(k, l, lA, lB) is followed with lA ≥ lB and either l = 1 or l ≥ lB.

Before diving deeper into the proof of this proposition, let us discuss the high-level
intuition behind it. First observe that, if QA ≤ QB , and an item is added (removed) to
(from) the stack with the same index in both ensembles, then the component-wise ordering
will be preserved. Hence, the preservation of ordering at the time of removal, and at the
time of addition when, in both ensembles, the minimum stack height is less than b − 1, is
fairly straightforward.

Now, in other cases of addition, since in ensemble A the stack capacity is b (≤ b′), if the
minimum stack height in ensemble B is at least b, the ordering is preserved trivially. This
leaves us with only the case when the minimum stack height in ensemble B is precisely equal

6

10987654321

Q1

Q2

Q3

Q4

Q5

10987654321

Q1

Q2

Q3

Q4

Q5

Figure 1: Removal of an item from the ensemble

to b− 1. In this case, when the minimum stack height in ensemble A is also precisely equal
to b − 1, the preservation of the ordering follows from the assumption that lA ≥ lB , which
ensures that if in ensemble A, the item is added to some stack with b− 1 items (and hence
increases QA

b), then the same will be done in ensemble B whenever QA
b = QB

b . Otherwise if
the minimum stack height in ensemble A is less than b, then assuming either l = 1 (i.e. the
item will be sent to the minimum queue) or l ≥ lB (i.e. an increase in QA

b implies an increase
in QB

b) ensures the preservation of ordering.

Proof of Proposition 3. Suppose after following Rule(k, l, lA, lB) the updated stack heights
of ensemble Π are denoted by (Q̃Π

1 , Q̃
Π
2 , . . .), Π = A,B. We need to show Q̃A

i ≤ Q̃B
i for all

i ≥ 1.
For ensemble Π let us define IΠ(c) := max{i : QΠ

i ≥ N − c+1}, c = 1, . . . , N , Π = A,B.
Define IΠ(c) to be 0 if QΠ

1 is (and hence all the QΠ
i values are) less than N − c + 1. Note

that IA(c) ≤ IB(c) for all c = 1, 2, . . . N because of the initial ordering.
Now if the rule produces a removal of an item, then the updated ensemble will have the

values

Q̃Π
i =

{

QΠ
i − 1, for i = IΠ(k),

QΠ
i , otherwise,

(2)

if IΠ(k) ≥ 1; otherwise all the QΠ
i values remain unchanged. For example, in Figure 1,

b = 5, N = 10, and at the time of removal k = 7. For this configuration IΠ(7) = 4 since
QΠ

4 = 5 ≥ 10 − 7 + 1 = 4 but QΠ
5 = 2 < 4. Hence, QΠ

4 is reduced and all the other values
remain unchanged. Note that the specific label of the servers does not matter here. So after
the removal/addition of an item we consider the configuration as a whole by rearranging it
again in non-decreasing order of the queue lengths.

Since in both A and B the values of Qi remain unchanged except for i = IA(k) and
IB(k), it suffices to prove the preservation of the ordering for these two specific values of i.
Now for i = IA(k),

Q̃A
i = QA

i − 1 ≤ QB
i − 1 ≤ Q̃B

i .

If IB(k) = IA(k), then we are done by the previous step. If IB(k) > IA(k), then from the
definition of IA(k) observe that IB(k) /∈ {i : QA

i ≥ N − k + 1} and hence QA
i < N − k + 1,

7

10987654321

Q1

Q2

Q3

Q4

Q5

10987654321

Q1

Q2

Q3

Q4

Q5

Figure 2: Addition of an item to the ensemble

for i = IB(k). Therefore, for i = IB(k),

Q̃A
i ≤ N − k ≤ QB

i − 1 = Q̃B
i .

On the other hand, if the rule produces the addition of an item to stack l, then the values
will be updated as

Q̃Π
i =

{

QΠ
i + 1, for i = IΠ(l) + 1,

QΠ
i , otherwise,

(3)

if IΠ(l) < bΠ, with bΠ the stack-capacity of the corresponding system; otherwise the values
remain unchanged. In Figure 2, we have l = 2 and for that particular configuration IΠ(2) =
2. Hence, QΠ

3 is incremented by one and the other variables remain fixed.
Therefore, it is enough to consider the ith horizontal bars for i = (IA(l)+1), (IB(l)+1) when
IA(l) < b. According to the addition rule there are several cases which we now consider one
by one:

1. First we consider the case when in both ensembles the minimum stack height is less
than b − 1. Then by part (ii) of the rule both incoming items are added to the lth

stack. When considering ensemble B we may neglect the case IB(l) ≥ b since then the
value at IB(l) + 1 does not matter. Thus assume IB(l) ≤ b− 1 and set i = IB(l) + 1
so that

Q̃B
i = QB

i + 1 ≥ QA
i + 1 ≥ Q̃A

i .

If IA(l) = IB(l), then we are done by the previous case. If IA(l) + 1 ≤ IB(l), then it
follows from the definition that QA

i < N − l+1 and QB
i ≥ N − l+1, for i = IA(l)+1.

Hence,
Q̃A

i = QA
i + 1 ≤ N − l + 1 ≤ QB

i ≤ Q̃B
i .

2. If the minimum stack height in A is less than b − 1 and that in B is precisely b − 1,
then according to the rule the incoming item is added to the lth stack in A and the
lthB stack in B. We here show that the component-wise ordering will be preserved
if either l = 1 or l ≥ lB . Observe that if l = 1, then IA(l) < b − 1 which implies

8

IA(l) + 1 ≤ b− 1. But since the minimum stack height in B is b− 1, for all i ≤ b− 1
and in particular for i = IA(l) + 1, Q̃B

i = N ≥ Q̃A
i . Now we consider the case when

l ≥ lB. Also observe that the fact that the minimum stack height in B is b−1, implies
IB(lB) ≥ b − 1 ≥ IA(lA) (since if IA(l) = b, then nothing will be changed and so
we do not need to consider this case). Then again if IA(l) = IB(lB), we are done.
Therefore, suppose IA(l) < IB(lB), which implies IA(l) + 1 ≤ IB(lB). By definition,
for i = IA(l)+1, we have QA

i < N− l+1 and QB
i ≥ N− lB+1 ≥ N− l+1. Combining

these two inequalities yields

Q̃A
i = QA

i + 1 ≤ N − l + 1 ≤ QB
i = Q̃B

i .

3. If the minimum stack height in both ensembles is b− 1, then recall that the incoming
item is added to the lthA stack in A and to the lthB stack in B with lA ≥ lB. Arguing
similarly as in the previous case we can conclude that the inequality is preserved.

4. Finally, if the minimum stack height in B is larger than or equal to b, then the
preservation of the inequality is trivial.

Hence, the proof of the proposition is complete.

3.2 The coupling construction

We now construct a coupling between two systems A and B following any two schemes, say,
ΠA = Π(l0, l1, . . . , lb−1) and ΠB = Π(d0, d1, . . . , db′−1) in Π(N) respectively and combine it
with Proposition 3 to get the desired stochastic ordering results.

For the arrival process we couple the two systems as follows. First we synchronize the
arrival epochs of the two systems. Now assume that in the systems A and B, the minimum
queue lengths are k and m, respectively, k ≤ b−1, m ≤ b′−1. Therefore, when a task arrives,
the dispatchers in A and B have to select lk and dm servers, respectively, and then have to
send the task to the one having the minimum queue length among the respectively selected
servers. Since the servers are being selected uniformly at random we can assume without loss
of generality, as in the stack construction, that the servers are arranged in non-decreasing
order of their queue lengths and are indexed in increasing order. Hence, observe that when
a few server indices are selected, the server having the minimum of those indices will be the
server with the minimum queue length among these. Hence, in this case the dispatchers
in A and B select lk and dm random numbers (without replacement) from {1, 2, . . . , N}
and then send the incoming task to the servers having indices to be the minimum of those
selected numbers. To couple the decisions of the two systems, at each arrival epoch a single
random permutation of {1, 2, . . . , N} is drawn, denoted by Σ(N) := (σ1, σ2, . . . , σN). Define
σ(i) := minj≤i σj . Then observe that system A sends the task to the server with the index
σ(lk) and system B sends the task to the server with the index σ(dm). Since at each arrival
epoch both systems use a common random permutation, they take decisions in a coupled
manner.

9

For the potential departure process, couple the service completion times of the kth queue
in both scenarios, k = 1, 2, . . . , N . More precisely, for the potential departure process assume
that we have a single synchronized exp(N) clock independent of arrival epochs for both
systems. Now when this clock rings, a number k is uniformly selected from {1, 2, . . . , N}
and a potential departure occurs from the kth queue in both systems. If at a potential
departure epoch an empty queue is selected, then we do nothing. In this way the two
schemes, considered independently, still evolve according to their appropriate statistical
laws.

Loosely speaking, our next result is based upon the following intuition: Suppose we have
two systems A and B with two different schemes ΠA and ΠB having buffer sizes b and b′

(b ≤ b′) respectively. Also, for these two systems, initially, QA
i ≤ QB

i for all i = 1, . . . , b.
Below we develop some intuition as to under what conditions the initial ordering of the
Qi-values will be preserved after one arrival or departure.

For the departure process if we ensure that departures will occur from the kth largest
queue in both systems for some k ∈ {1, 2, . . . , N} (ties are broken in any way), then observe
that the ordering will be preserved after one departure.

In case of the arrival process, assume that when the minimum queue length in both
systems is less than b − 1, the incoming task is sent to the server with the same index. In
that case it can be seen that the Qi-values in A and B will preserve their ordering after the
arrival as well. Next consider the case when the minimum queue length in both systems is
precisely b − 1. Now, in A, an incoming task can either be rejected (and will not change
the Q-values at all) or be accepted (and QΠA

b will increase by 1). Here we ensure that if

the incoming task is accepted in A, then it is accepted in B as well unless QΠA

b < QΠB

b , in
which case it is clear that the initial ordering will be preserved after the arrival. Finally, if
the minimum queue length in A is less than b− 1 and that in B is precisely b− 1, then the
way to ensure the inequality is either by making the scheme ΠA send the incoming task to
the server with minimum queue length (and hence, it will only increase the value of QΠA

i

for some i < b, leaving other values unchanged) or by letting the selected server in ΠA

have a smaller queue length than the selected server in ΠB. The former case corresponds to
the condition d = N and the latter corresponds to the condition d ≤ db−1, either of which
has to be satisfied, in order to ensure the preservation of the ordering. This whole idea is
formalized below.

Proposition 4. For two schemes ΠA = Π(l0, l1, . . . , lb−1) and ΠB = Π(d0, d1, . . . , db′−1)
with b ≤ b′ assume l0 = . . . = lb−2 = d0 = . . . = db−2 = d, lb−1 ≤ db−1 and either d = N or
d ≤ db−1. Then the following holds:

(i) {QΠA

i (t)}t≥0 ≤st {QΠB

i (t)}t≥0 for i = 1, 2, . . . , b

(ii) {∑b
i=1 Q

ΠA

i (t) + LΠA(t)}t≥0 ≥st {
∑b′

i=1 Q
ΠB

i (t) + LΠB (t)}t≥0

(iii) {∆(t)}t≥0 ≥ {∑b′

i=b+1Q
ΠB

i (t)}t≥0 almost surely under the coupling defined above,

10

for any fixed N ∈ N where ∆(t) := LΠA(t) − LΠB(t), provided that at time t = 0 the above
ordering holds.

Proof. To prove the stochastic ordering we use the coupling of the schemes as described
above and show that the ordering holds for the entire sample path. That is, the two processes
arising from the above pair of schemes will be defined on a common probability space and
it will then be shown that the ordering is maintained almost surely over all time.

Note that we shall consider only the event times 0 = t0 < t1 < . . ., i.e. the time epochs
when arrivals or potential service completions occur and apply forward induction to show
that the ordering is preserved. By assumption the orderings hold at time t0 = 0.

(i) The main idea of the proof is to use the coupling and show that at each event time the
joint process of the two schemes follows a rule Rule(k, l, lA, lB) described in Subsection 3.1,
with some random k, l, lA and lB such that lA ≥ lB and either l = 1 or l ≥ lB , and apply
Proposition 3. We now identify the rule at event time t1 and verify that the conditions of
Proposition 3 hold. If the event time t1 is a potential departure epoch, then according to
the coupling similarly as in the stack formation a random k ∈ {1, 2, . . . , N} will be chosen
in both systems for a potential departure. Now assume that t1 is an arrival epoch. In that
case if the minimum queue length in both systems is less than b − 1, then both schemes
ΠA and ΠB will send the arriving task to the σth

(d) queue. If the minimum queue length in

scheme ΠA is b− 1, then the incoming task is sent to the σth
(lb−1)

queue and if in scheme ΠB

the minimum queue length is b − 1, then the incoming task is sent to σth
(db−1)

queue where

we recall that (σ1, σ2, . . . , σN) is a random permutation of {1, 2, . . . , N}. Therefore, observe
that at each step Rule(σ(d), k, σ(lb−1), σ(db−1)) is followed.

Now to check the conditions, first observe that

σ(lb−1) = min
i≤lb−1

σi ≥ min
i≤db−1

σi = σ(db−1),

where the second inequality is due to the assumption lb−1 ≤ db−1. In addition, we have
assumed either d = N or d ≤ db−1. If d = N , then the dispatcher sends the incoming task
to the server with the minimum queue length which is the same as sending to stack 1 as in
Proposition 3. On the other hand, d ≤ db−1 implies

σ(d) = min
i≤d

σi ≥ min
i≤db−1

σi = σ(db−1).

Therefore, assertion (i) follows from Proposition 3.

(ii) We again apply forward induction. Assume that the ordering holds at time t0. If
the next event time is an arrival epoch, then observe that both sides of the inequality in (ii)
will increase, since if the incoming task is accepted, then the Q-values will increase and if it
is rejected, then the L-value will increase.
On the other hand, if the next event time is a potential departure epoch, then it suffices

11

to show that, if the left-hand-side decreases, then the right-hand-side decreases as well. In-
deed, from assertion (i) we know that QΠA

1 ≤ QΠB

1 and hence we can see that if there is a
departure from ΠA (i.e. the kth queue of ΠA is non-empty), then there will be a departure
from ΠB (i.e. the kth queue of ΠB will be non-empty) as well.

(iii) Assertion (iii) follows directly from (i) and (ii).

3.3 Discussion

It is worth emphasizing that Proposition 4(i) is fundamentally different from the stochastic
majorization results for the ordinary JSQ policy, and below we contrast our methodology
with some existing literature. As noted earlier, the ensemble of stacks, arranged in non-
decreasing order, represents the empirical CDF of the queue length distribution at the
various servers. Specifically, if we randomly select one of the servers, then the probability
that the queue length at that server is greater than or equal to i at time t under policy Π
equals 1

N
EQΠ

i (t). Thus assertion (i) of Proposition 4 implies that if we select one of the
servers at random, then its queue length is stochastically larger under policy ΠB than under
policy ΠA.

The latter property does generally not hold when we compare the ordinary JSQ policy
with an alternative load balancing policy. Indeed, the class of load balancing schemes Π̃(N)

(for the N th system say) considered in [14] consists of all the schemes that have instantaneous
queue length information of all the servers and that have to send an incoming task to some
server if there is at least some place available anywhere in the whole system. This means
that a scheme can only discard an incoming task if the system is completely full. Observe
that only the JSQ policy lies both in the class Π(N) (defined in Section 3) and the class
Π̃(N), because any scheme in Π(N) other than JSQ may reject an incoming task in some
situations, where there might be some place available in the system. In this setup [14] shows
that for any scheme Π ∈ Π̃(N), and for all t ≥ 0,

k
∑

i=1

Y JSQ

(i) (t) ≤st

k
∑

i=1

Y Π
(i)(t), for k = 1, 2, . . . , N, (4)

{LJSQ(t)}t≥0 ≤st {LΠ(t)}t≥0, (5)

where Y Π
(i)(t) is the ith largest queue length at time t in the system following scheme Π

and LΠ(t) is the total number of overflow events under policy Π up to time t, as defined
in Section 2. Observe that Y Π

(i) can be visualized as the ith largest vertical bar (or stack)

as described in Subsection 3.1. Thus (4) says that the sum of the lengths of the k largest
vertical stacks in a system following any scheme Π ∈ Π̃(N) is stochastically larger than
or equal to that following the scheme JSQ for any k = 1, 2, . . . , N . Mathematically, this

12

ordering can be written as

b
∑

i=1

min{k,QJSQ
i (t)} ≤st

b
∑

i=1

min{k,QΠ
i (t)},

for all k = 1, . . . , N . In contrast, Proposition 4 shows that the length of the ith largest
horizontal bar in the system following some scheme ΠA is stochastically smaller than that
following some other scheme ΠB if some conditions are satisfied. Also observe that the
ordering between each of the horizontal bars (i.e. Qi’s) implies the ordering between the
sums of the k largest vertical stacks, but not the other way around. Further it should be
stressed that, in crude terms, JSQ in our class Π(N), plays the role of upper bound, whereas
what Equation (4) implies is almost the opposite in nature to the conditions we require.

While in [14] no policies with admission control (where the dispatcher can discard an
incoming task even if the system is not full) were considered, in a later paper [11] and also in
[13] the class was extended to a class Π̂(N) consisting of all the policies that have information
about instantaneous queue lengths available and that can either send an incoming task to
some server with available space or can reject an incoming task even if the system is not
full. One can see that Π̂(N) contains both Π̃(N) and Π(N) as subclasses. But then for such
a class with admission control, [11] notes that a stochastic ordering result like (4) cannot
possibly hold. Instead, what was shown in [13] is that for all t ≥ 0,

k
∑

i=1

Y JSQ

(i) (t) + LJSQ(t) ≤st

k
∑

i=1

Y Π
(i)(t) + LΠ(t) for all k ∈ {1, 2, . . . , N} (6)

Note that the ordering in (6) is the same in spirit as the ordering in Proposition 4(ii) and the
inequalities in (6) are in the language of [13, Def. 14.4], weak sub-majorization by p, where p =
LΠ(t)− LJSQ(t). But in this case also our inequalities in Proposition 4(i) imply something
completely orthogonal to what is implied by (6). In other words, the stochastic ordering
results in Proposition 4 provide both upper and lower bounds for the occupancy state of
one scheme w.r.t another and are stronger than the stochastic majorization properties for
the JSQ policy existing in the literature. Hence we also needed to exploit a different proof
methodology than the majorization framework developed in [11, 13, 14].

4 Convergence on diffusion scale

In this section we leverage the stochastic ordering established in Proposition 4 to prove
the main result stated in Theorem 1. All the inequalities below are stated as almost sure
statements with respect to the common probability space constructed under the associated
coupling. We shall use this joint probability space to make the probability statements about
the marginals.

13

Proof of Theorem 1. Let Π = Π(N, d1, . . . , db−1) be a load balancing scheme in the class
Π(N). Denote by Π1 the scheme Π(N, d1) with buffer size b = 2 and let Π2 denote the JIQ
policy Π(N, 1) with buffer size b = 2.

Observe that from Proposition 4 we have under the coupling defined in Subsection 3.2,

|QΠ
i (t)−QΠ2

i (t)| ≤ |QΠ
i (t)−QΠ1

i (t)|+ |QΠ1

i (t)−QΠ2

i (t)|
≤ |LΠ1(t)− LΠ(t)|+ |LΠ2(t)− LΠ1(t)|
≤ 2LΠ2(t),

(7)

for all i ≥ 1 and t ≥ 0 with the understanding that Qj(t) = 0 for all j > b, for a scheme
with buffer b. The third inequality above is due to Proposition 4(iii), which in particular
says that {LΠ2(t)}t≥0 ≥ {LΠ1(t)}t≥0 ≥ {LΠ(t)}t≥0 almost surely under the coupling. Now
we have the following lemma which we will prove below.

Lemma 5. For all t ≥ 0, under the assumption of Theorem 1, {LΠ2(t)}N≥1 forms a tight
sequence.

Since LΠ2(t) is non-decreasing in t, the above lemma in particular implies that

sup
t∈[0,T]

LΠ2(t)√
N

P−→ 0. (8)

For any scheme Π ∈ Π(N), from (7) we know that

{QΠ2

i (t)− 2LΠ2(t)}t≥0 ≤ {QΠ
i (t)}t≥0 ≤ {QΠ2

i (t) + 2LΠ2(t)}t≥0.

Combining (7) and (8) shows that if the weak limits under the
√
N scaling exist with respect

to the Skorohod J1-topology, they must be the same for all the schemes in the class Π(N).
Also from Theorem 2 in [4] we know that the weak limit for Π(N,N) exists and the common
weak limit for the first two components can be described by the unique solution in D×D of
the stochastic differential equations in (1). Hence the proof of Theorem 1 is complete.

Proof of Lemma 5. First we consider the evolution of LΠ2(t) as the following unit jump
counting process. A task arrival occurs at rate λN at the dispatcher, and if QΠ1

1 = N , then
it sends it to a server chosen uniformly at random. If the chosen server has queue length
2, then LΠ2 is increased by 1. It is easy to observe that this evolution can be equivalently
described as follows. If QΠ2

1 (t) = N , then each of the servers having queue length 2 starts
increasing LΠ2 by 1 at rate λN/N . From this description we have

LΠ2(t) = A

(
∫ t

0

λN

N
QΠ2

2 (s)1[QΠ2

1 (s) = N]ds

)

(9)

with A(·) being a unit rate Poisson process. Now using Proposition 4 it follows that
1[QΠ2

1 (s) = N] ≤ 1[QΠ3

1 (s) = N] and QΠ2

2 (s) ≤ QΠ3

2 (s) where Π3 = Π(N,N). There-
fore, it is enough to prove the stochastic boundedness [10, Def. 5.4] of the sequence

Γ(N)(t) := A

(
∫ t

0

λN

N
QΠ3

2 (s)1[QΠ3

1 (s) = N]ds

)

. (10)

14

To prove this we shall use the martingale techniques described for instance in [10]. Define
the filtration F ≡ {Ft : t ≥ 0}, where for t ≥ 0,

Ft := σ

(

QΠ3(0), A

(
∫ t

0

λN

N
QΠ3

2 (s)1[QΠ3

1 (s) = N]ds

)

, QΠ3

1 (s), QΠ3

2 (s) : 0 ≤ s ≤ t

)

.

Then using a random time change of unit rate Poisson process [10, Lemma 3.2] and similar
arguments to those in [10, Lemma 3.4], we have the next lemma.

Lemma 6. With respect to the filtration F,

M (N)(t) := A

(
∫ t

0

λN

N
QΠ3

2 (s)1[QΠ3

1 (s) = N]ds

)

−
∫ t

0

λN

N
QΠ3

2 (s)1[QΠ3

1 (s) = N]ds (11)

is a square-integrable martingale with F-compensator

I(t) =

∫ t

0

λN

N
QΠ3

2 (s)1[QΠ3

1 (s) = N]ds.

Moreover, the predictable quadratic variation process is given by 〈M (N)〉(t) = I(t).

Now we apply Lemma 5.8 in [10] which gives a stochastic boundedness criterion for
square-integrable martingales.

Lemma 7. [10, Lemma 5.8] Suppose that, for each N ≥ 1, M (N) ≡ {M (N)(t) : t ≥ 0} is a
square-integrable martingale (with respect to a specified filtration) with predictable quadratic
variation process 〈M (N)〉 ≡ {〈M (N)〉(t) : t ≥ 0}. If the sequence of random variables
{〈M (N)〉(T) : N ≥ 1} is stochastically bounded in R for each T > 0, then the sequence of
stochastic processes {M (N) : N ≥ 1} is stochastically bounded in D.

Therefore, it only remains to show the stochastic boundedness of {〈M (N)〉(T) : N ≥ 1}
for each T > 0. Fix a T > 0 and observe that

〈M (N)〉(T) = λN

N

∫ T

0

QΠ3

2 (s)√
N

1[QΠ3

1 (s) = N]ds

≤
[

sup
t∈[0,T]

QΠ3

2 (s)√
N

]

×
[
∫ T

0

1√
N
1[QΠ3

1 (s) = N]λNds

]

.

(12)

From [4] we know that supt∈[0,T]Q
Π3

2 (t)/
√
N and

∫ T

0 1/
√
N1[QΠ3

1 (s) = N]dA(λNs) are

both tight. Moreover, since
∫ T

0 1/
√
N1[QΠ3

1 (s) = N]λNds is the intensity function of the

stochastic integral
∫ T

0 1/
√
N1[QΠ3

1 (s) = N]dA(λNs), which is a tight sequence, we have the
following lemma.

Lemma 8. For all fixed T ≥ 0,
∫ T

0
1√
N
1[QΠ3

1 (s) = N]λNds is tight as a sequence in N .

Hence, both terms on the right-hand side of (12) are stochastically bounded and the
resulting stochastic bound on 〈M (N)〉(T) completes the proof.

15

5 Conclusion

In the present paper we have considered a system with symmetric Markovian parallel queues
and a single dispatcher. We established the diffusion limit of the queue process in the
Halfin-Whitt regime for a wide class of load balancing schemes which always assign an
incoming task to an idle server, if there is any. The results imply that assigning tasks
to idle servers whenever possible is sufficient to achieve diffusion level optimality. Thus,
using more fine-grained queue state information will increase the communication burden and
potentially impact the scalability in large-scale deployments without significantly improving
the performance.

In ongoing work we are aiming to extend the analysis to the stationary distribution of
the queue process, and in particular to quantify the performance deviation from a system
with a single centralized queue. It would also be interesting to generalize the results to
scenarios where the individual nodes have general state-dependent service rates rather than
constant service rates.

Acknowledgments

This research was financially supported by an ERC Starting Grant and by The Nether-
lands Organization for Scientific Research (NWO) through TOP-GO grant 613.001.012 and
Gravitation Networks grant 024.002.003. Dr. Whiting was supported in part by an Aus-
tralian Research grant DP-1592400 and in part by a Macquarie University Vice-Chancellor
Innovation Fellowship.

References

[1] Badonnel, R. and Burgess, M. (2008). Dynamic pull-based load balancing for autonomic
servers. In NOMS 2008 - IEEE/IFIP Network Operations and Management Symposium:
Pervasive Management for Ubiquitous Networks and Services, pages 751–754.

[2] Bramson, M., Lu, Y., and Prabhakar, B. (2012). Asymptotic independence of queues
under randomized load balancing. Queueing Systems, 71(3):247–292.

[3] Ephremides, A., Varaiya, P., and Walrand, J. (1980). A simple dynamic routing problem.
IEEE Transactions on Automatic Control, 25(4):690–693.

[4] Eschenfeldt, P. and Gamarnik, D. (2015). Join the shortest queue with many servers.
The heavy traffic asymptotics. arXiv:1502.00999.

[5] Gupta, V., Harchol-Balter, M., Sigman, K., and Whitt, W. (2007). Analysis of join-the-
shortest-queue routing for web server farms. Performance Evaluation, 64(9):1062–1081.

16

[6] Halfin, S. and Whitt, W. (1981). Heavy-traffic limits for queues with many exponential
servers. Operations Research, 29(3):567–588.

[7] Jonckheere, M. (2006). Insensitive versus efficient dynamic load balancing in networks
without blocking. Queueing Systems, 54(3):193–202.

[8] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J. R., and Greenberg, A. (2011). Join-idle-
queue: A novel load balancing algorithm for dynamically scalable web services. Perfor-
mance Evaluation, 68(11):1056–1071.

[9] Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1094–1104.

[10] Pang, G., Talreja, R., and Whitt, W. (2007). Martingale proofs of many-server heavy-
traffic limits for Markovian queues. Probability Surveys, 4:193–267.

[11] Sparaggis, P. D., Towsley, D., and Cassandras, C. G. (1994). Sample path criteria for
weak majorization. Advances in Applied Probability, 26(1):155–171.

[12] Stolyar, A. L. (2015). Pull-based load distribution in large-scale heterogeneous service
systems. Queueing Systems, 80(4):341–361.

[13] Towsley, D. (1995). Application of majorization to control problems in queueing sys-
tems. In Chrétienne, P., Coffman, E. G., Lenstra, J. K., and Liu, Z., editors, Scheduling
Theory and its Applications. John Wiley & Sons, Chichester.

[14] Towsley, D., Sparaggis, P., and Cassandras, C. (1992). Optimal routing and buffer
allocation for a class of finite capacity queueing systems. IEEE Transactions on Automatic
Control, 37(9):1446–1451.

[15] Vvedenskaya, N. D., Dobrushin, R. L., and Karpelevich, F. I. (1996). Queueing system
with selection of the shortest of two queues: An asymptotic approach. Problemy Peredachi
Informatsii, 32(1):20–34.

[16] Weber, R. R. (1978). On the optimal assignment of customers to parallel servers.
Journal of Applied Probability, 15:406–413.

[17] Whitt, W. (1986). Deciding which queue to join: Some counterexamples. Operations
Research, 34(1):55–62.

[18] Winston, W. (1977). Optimality of the shortest line discipline. Journal of Applied
Probability, 14(1):181–189.

17

	1 Introduction
	2 Model description
	3 Coupling and stochastic ordering
	3.1 Stack formation and deterministic ordering
	3.2 The coupling construction
	3.3 Discussion

	4 Convergence on diffusion scale
	5 Conclusion

