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Abstract: In this paper, by using the tail asymptotics derived by Debicki, Hashorva and Ji (Ann. Probab. 2016),
we prove the Gumbel limit laws for the maximum of a class of non-homogeneous Gaussian random fields. As an
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1 Introduction

The studies on the Gumbel limit law for Gaussian processes have a long history and can date back to Pickands (1969).
Suppose that {X(¢) : t € [0,00)} is a stationary Gaussian process with the covariance function r(t) satisfying the

following condition:
r(t) =1—[t“+o(Jt|]¥), t—=0, and r(t) <1, t>0 (1)

with o € (0,2]. It is well-known (see e.g. Pickands (1969), Leadbetter et al. (1983)) that if further the so-called

Berman’s condition holds as follows
r(t)lnt — 0, as t— o0

then the Gumbel limit law

P (aT < sup X (t) — bT) < x> — exp(—e~?) 2)

0<t<T

holds for any x € R, as T'— oo, where

In[(27m) Y2 H o (2In T)~1/2H1/a]
ar =V2InT, bp=vV2InT + .
g ’ V2InT

Here H,, denotes the Pickands constant given by
Ho = lim Hy[0,A]/A € (0,00)
A—00
with

Hal0,\] = Eexp (max V2B, (t) — ta)

te[0,A]
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and B, a fractional Brownian motion (fBm) with Hurst parameter a/2 € (0, 1], that is, a zero mean Gaussian process
with stationary increments such that EB2(t) = [t|*. To derive the Gumbel limit law (@), the following well-known
Pickands asymptotics (see e.g. Pickands (1969), Berman (1974), Leadbetter et al. (1983)) plays a crucial role, i.e.,

P ( sup X(t) > u) = THou? W (u)(1+ o(1)), (3)
t€[0,T]
as u — oo for some fixed T' € (0, 00), where ¥(-) denotes the tail distribution of a standard normal random variable.
For some recent work on the tail asymptotics for extremes, we refer to Chan and Lai (2006), Debicki, Hashorva, Ji
and Tabi$ (2015), Cheng and Xiao (2016,2017) and the references therein.
The investigation of [2)) for Gaussian processes and general stochastic processes has received a lot of attention.
Mittal and Ylvisaker (1975) extended (@) to the strongly dependent Gaussian case; Hiilser (1990) investigated (2))
for locally stationary Gaussian case, which is recently further extended to Gaussian random fields on manifolds by
Qiao and Polonic (2017). We refer to McCormick (1980), Konstant and Piterbarg (1993) and Piterbarg (1996) for
further extensions to Gaussian processes and fields; Leadbetter and Rootzén (1982) and Albin (1990) for stationary
non-Gaussian processes. For more related extensions, we refer to Debicki, Hashorva, Ji and Ling (2015) and the
reference therein.
In many applied fields, the Gumbel limit laws for extremes of Gaussian processes play a very important role. In
approximation theory, Seleznjev (1991, 1996), Hiilser (1999) and Hiilser et al. (2003) applied the Gumbel limit
law for Gaussian processes to investigate the deviation processes of some piecewise linear interpolation problems;
In nonparametric statistics, the absolute deviations of many types of density estimators obey the Gumbel limit
law, see e.g. Bickel and Rosenblatt (1973) and Giné et al. (2003). In applied statistics, there are also many
confidence intervals and bands, which are constructed based on the Gumbel limit law of the estimators, since
extremes themselves are also type of very important estimators, see e.g. Giné and Nickl (2010). For some recent
studies on applications of Gumbel limit laws, we refer to Sharpnack and Arias-Castro (2016) and Qiao and Polonik
(2016).
Define

X(s,t) =Y(s+1) = Y(s), (4)

where {Y'(t),t > 0} is a Gaussian process. The process {5(t) = supg<,<g X(s,1) is referred to as the Shepp statistics
in many recent works. Zholud (2008) studied the maximum of the process £s(¢) and established the Gumbel limit
law when Y (¢) is a Brownian motion. Hashorva and Tan (2013) and Tan and Yang (2014) extended the result to
fractional Brownian motion. We refer to Piterbarg (2001), Hiilser and Piterbarg (2004a) and Hashorva et al. (2013)
for related work on the fractional Brownian motion.

In this paper, we generalize model (@) and impose directly some restrictions on the Gaussian random fields. We
first consider the Gumbel limit law for the process ¢r(s) = supg<;<r X(s,t) for some fixed 7" > 0, where X(s,?) is
a type of non-homogeneous Gaussian random field. Then we use the obtained results to derive the Gumbel limit
law for Shepp statistics. Noting that ¢p(¢) is no longer Gaussian process, we can not derive the Gumbel limit laws
from the Gaussian case directly. However, ¢p(t) also doesn’t satisfy the conditions imposed on general stochastic
processes, such as those given by Leadbetter and Rootzén (1982) and Albin (1990). We will follow the method used
in Chapter 12 in Leadbetter et al. (1983). The tail asymptotic result of extremes of the field X (s,t) is a key tool,
which has been derived by Debicki et al. (2016).

The rest of the paper is organized as follows. In Section 2, we give some tail asymptotic results from Debicki et al.
(2016). In Section 3, we state the main results of the paper, and in Section 4, we present two applications. The

technical proofs are gathered in Section 5, while in Section 6 we give two auxiliary results.



2 Preliminaries

In this section, we present the tail asymptotic result provided by Debicki et al. (2016). Suppose that {X (s, ), (s,t) €
[0,00) x [0,T]} with fixed T is a centered Gaussian random field with variance function and correlation function
02%(s,t) and r(s,t,s',t'), respectively. Suppose the following assumptions hold.

Assumption A1l: there exists some positive function o(t) which attains its unique maximum on [0, 7] at fixed T,

and further
o(s,t) =o(t), Y(s,t)€[0,00) % [0,T], o(t)=1—-bT —t)’(1+0(1)), t1T

holds for some (3,b > 0.
Assumption A2: there exist constants a; > 0,a2 > 0,a3 # 0 and a1, as € (0,2] such that

r(s,t,s",t') =1~ (lai(s — &)|* + |az(t —t') + az(s — 8')|**)(1 + o(1))

holds uniformly with respect to s,s” € [0, L] with some constant L > 0 as |s — s'| — 0, min(¢,¢') T T and further,

there exists some constant dp € (0,7") such that
r(s,t,s',t') <1

for any s, s’ € [0, L] satisfying s # s" and ¢,¢' € [do,T].
Assumption A3: There exist positive constants 1,2,y and C such that

E(X(s,t) = X (s, t")* <C(|t =] + s — &)

holds for all ¢,t' € [y1,T], s,s" € [0, L] satisfying |s — s'| < 72.

To state the tail asymptotics for the maximum of the field X (s, t) under assumptions A1-A3, we need the so-called
Piterbarg constants and Pickands-Piterbarg constants, respectively. The Piterbarg constant P2 with constant b > 0
is defined as

Pl = Alim Eexp (max V2B, (t) — (1 + b)|t|0‘) € (0,00).
—00

te[0,A]

For some constants a3 > 0,a2 > 0,a3 # 0,b > 0, let
Y (s,t) = Ba(a1s) + Ba(ast — ass), o3(s,t) = Var(Y(s,t))

and

HY [\, o] = Eexp ( max V2V (s,1) — 0§ (s,1) — blﬂ“) ,

(s5,t)€[0,A1]x[0,A2]
where B, and B, are two independent fractional Brownian motions (fBms). The Pickands-Piterbarg constant is
defined as
M}, = lim lim )\—HY[/\l,)\z]

)\1‘)00 )\2‘)00

Under the above assumptions, Debicki et al. (2016) derived the following result.

Theorem 2.1. Let {X(s,t),(s,t) € [0,00) x [0,T]|} with fized T be a centered Gaussian random field with a.s.
continuous sample paths. Suppose that assumptions A1-A3 are satisfied with the parameters mentioned therein, we

have as u — 00,

P ( sup X(s,t) > U) = Lp(u)(1 +o(1)),

(s,t)€[0,L]x[0,T]

where for > max{aq, as}

2
p(u) =T(1/8+ 1) [ (arHa )b~ Fut T2 50 (u);
k=1



for B=as=a

() = MYy g 0™t U (u);

for B=as >

—a

p(u) = arazP Ho,um U (u);
for B <as =
() = (a5 + g ™) 25 Mo, w1 W ()
for B < as and o < s
wlu) = aleu"%\If(u);
for B=a1 > as

(sl lagl Yo

1(u) = a1Pas ™™ Hoyusz U(u);

for B < ay and as <
2
p(u) = |ag|Ha,uoz U (u).

This result is very powerful since it can be used to derive the exact tail asymptotics for many type of statistics,
such as Shepp statistics for Gaussian processes, Brownian bridge and fBm, maximum loss and span of Gaussian

processes, see Debicki et al. (2016) for details.

3 Main Result

Note that the assumptions A1 and A2 are local conditions. To derive the Gumbel limit law, we need to impose the
following Berman-type weak dependence condition, which is a global condition.

Assumption A4: Assume that for ¢ = 1+ eI(8 > max{a1, as}) with some constant € > 0 the function
§(v) :=sup{|r(s,t,s',t")|,|s — §'| > v,s,5" €[0,00),t,t' € [0,T]}
is such that

lim §(v)(lnv)¢ =0, (5)

V—00

where I(-) denotes the indicator function.

We state now the main result.

Theorem 3.1. Let {X(s,t),(s,t) € [0,00) x [0, T} with fized T be a centered Gaussian random field with a.s.
continuous sample paths. Suppose that assumptions A1-A4 are satisfied with the parameters mentioned therein. In
addition, assume that {X (s,t),(s,t) € [0,00) x [0,T]} is homogeneous with respect to the first factor s. Then

Plas sup X(s,t) —bs | <z | —exp(—e™®)
(s,t)€[0,5]x[0,T]

lim sup
S—00 2R

207

where ag = vV2In S

—1
bs = as +ag ws

with, for f > max{ay,as}
2 2,2 2 4
ws =In | @m)720(1/8+ 1) [[(aHa b 7ad > 7 );
k=1

for B=as=a

|
WS:hl ((2 ) 1/2MY0(1 ; );



for B=as > m

_ —1/2 ba, 2 a1
wg =1In{ (27) a1a2Pa,’  Hayag ;
for B<as=m
_ ~1/2¢, a1 ary -1\
wg =1In( (27) (af" + |as|*" )1 Ha,ag :
for B < as and o < s

2
wg =1In ((277)1/2a17-[ma§1 > ;

for B=a1 > as

b lag| aq i71
wg =In ((27T)_1/2a1’Pa(1a1a2) Has,ag” ) :
for B < ay and as < aq

2
wg =In ((27r)_1/2|a3|7-[a2a§2 1) .

Remark 3.1: Assumption A4 is a weakly dependent condition. If lim, ~ d(v)(Inv)¢ = d > 0, then the field X (s, t)
will possess some strongly dependent property with respect to the first parameter. In this case, the limit distribution
will be no longer Gumbel distribution, see Mittal and Ylvisaker (1975) and Tan et al. (2012) for some related results

about strongly dependent Gaussian processes.

4 Applications

In this section, we give two applications of our main results. We derive the exact tail asymptotics and Gumbel limit
laws for Shepp statistics. The obtained results are of independent interest.

Throughout this section, let {X(¢),¢ > 0} be a centered Gaussian process and define
Z(s,t) = X(s+1) = X(s), (s,1) €[0,00) x[0,T],

for some fixed 7' > 0. The Shepp statistic supy<,<g Z(s,t) which was introduced by Shepp (see Shepp 1966,1971)
play a vary important role in statistics. Other important results for the Shepp statistics can be found in Cressie
(1980), Deheuvels and Devroye (1987), Siegmund and Venkatraman (1995), Dumbgen and Spokoiny (2001) and
Kabluchko (2011). The limit properties of extremes of Shepp statistics when X (¢) is a fBm have been studied by
Zholud (2008) and Hashorva and Tan (2013), Tan and Yang (2015) and Tan and Chen (2016). Applying Theorem
Bl we study the limit properties of extremes of Shepp statistics for a more general Gaussian process X (t), which

is a stationary Gaussian process or non-stationary Gaussian process with stationary increments.

4.1 Stationary case

Let {X(t),t > 0} be a centered stationary Gaussian process. Suppose the covariance function rx of {X(t),t > 0}

satisfies the following conditions:
Assumption B1: rx(¢) attains its minimum on [0, 7] at the unique point T;

Assumption B2: there exist positive constants ai, a1, a2 and as € (0,2) such that
rx(t) =rx(T)+ a1t —T|** (1 +o0(1)), t—=T, and rx(t)=1—axt**(1+o0(1)), t— 0;

Assumption B3: rx(s) < 1 for s > 0.
For simplicity, write pr = 1/2(1 — rx (7)) and b; = a;/p%, i = 1,2.



Proposition 4.1. Let Z(s,t) be defined as above. Suppose that rx(t) satisfies conditions B1 — B3. In addition,
suppose that rx (t) is twice continuously differentiable on [1,00) for some T > 0 and the limit of twice derivative
limy_,p |[Fx (t)] € (0,00). Furthermore, if ix(t)(Int)¢ = o(1) with ¢ = 1+ el(aq > a2) and some constant € > 0 as
t — 0o, then

lim sup =0, (6)

S—00 2R

Plas sup Z(s,t) —bs | <ax| —exp{—e™*}
(s,t)€[0,5]x[0,T]

where ag = prv2In S,

—1
bg = as +ag ws

with, for aq > as

! );

2 _ 1 4 2
ws =((—+ DH2 bs2b, *F (2m) " 2ag
1
for o = as
|
ws =In(MY, (2m)"%ag® )

- 1 a1
with Y =Y (s,t) = Ba, (052 8) + Ba, (b52 1 — b3 s); for ay < az
1 21
ws = In((2b2) 2 Ha, (2m) " H2ag? ).

Example 4.1: The Ornstein-Uhlenbeck process with covariance function rx (t) = e~ and the generalized Cauchy

model with covariance function rx (t) = (1 + [t|*)~# with a € (0,2) and 3 > 0 satisfy the conditions of Proposition
81}

4.2 Non-Stationary case

Let {X(t),t > 0} be a centered non-stationary Gaussian process with stationary increment and variance function
0% (t), a.s. continuous sample paths. Recall that X (¢) is said to have stationary increments if the law of the process
{X(t+to) — X(to),t € R} does not depend on the choice of ty. To study the maximum of Z(s,t), we only need to
impose some conditions on the variogram (t) = E(X(t) — X(0))? of X. Note that for this case the variogram is
vx(t) = 0% (t). Suppose that the variance function o% (t) of {X(¢),t > 0} satisfies the following conditions:

Assumption C1: ox(t) attains its maximum on [0, 7] at the unique point 7', and further
ox(t)=1-0(T—-t)’(1+0(1)), t1T

holds for some (3,b > 0.
Assumption C2: o%(t) is twice continuously differentiable on [r,00) for 7 > 0 with limit of twice derivative
lim; 7 [6% (t)] € (0,00) and further

0% (t) = (at)*(1 +o(1)), t—0

holds for some « € (0,2],a > 0.
Assumption C3: 6% (t)(Int)¢ — 0 with ¢ = 1+ ¢I(3 > «) and some constant € > 0 as t — oo.

Proposition 4.2. Let Z(s,t) be defined as above. Suppose that ox(t) satisfies conditions C1,C2. We have for

some constant L > 0

P < sup Z(s,t) > u) = Lu(u)(1+ o(1)),

(s,t)€[0,L]%[0,T)
where for a < f
pwlu) = 27%F(1/[3 + l)azﬂib_%u%_%\ll(u);



fora=p
plw) = M3 us ¥ (u)

with Y =Y (s,t) = Bo(27/%as) + By (27 at — 27 as); for a > f
p(u) = aHou=(u).

Furthermore, if condition C3 holds, then

Plas sup Z(s,t) —bs | <a | —exp{—e "} =0, (7)
(s,t)€[0,5]x[0,T7]

lim sup
S—00 2R

where ag = v/21n S, and

bs = ag + a;le
with for a < 3
a_2_
ws =2 3T(1/8 + 1)a®H2b™ 5 (21)"2a3 7 )

fora=p
wg = ln(./\/lg’/(27r)71/2a§71);
fora>p

wg = ln(a?—[a(27r)71/2a§_l).

We illustrate Proposition [£2] by the following two examples on the fBm and Gaussian integrated process.
Example 4.2: Let By, (t), i = 1,2,...,n be a sequence of independent fBms with Hurst index H; € (0,1) and

\; be a positive sequence satisfying >.;" ; A? = 1. Since given H = H; = Hs we have \; By, (t) + Ao By, (t) =¢
VA2 + \3Bg(t), we suppose that
H=H <Hy<---<H,.
Let X (t) = >." , NT~Y/2Bpy,(t) and Z(s,t) be defined as above. We have for some constant L > 0
P sup Z(s,t) >u | = Lu(u)(1 + o(1)),
(s,t)€[0,L]x[0,T]
as u — oo, where for H € (0,1/2)
plw) = 27 H MG A (30 AT H) 2w (w):
i=1
for H=1/2
1
plu) = M3 u” P (u)
with Y = Y (s,t) = By(27's) + B1 (27" (t — s)); for H € (1/2,1)
1
() = AT Homu™ U (u)
and
lim sup|P | as sup Z(s,t) —bs | <a | —exp{—e~*} =0, (8)
S—=00 geR (s,t)€[0,5]x[0,T]

where ag = v2In S, and

bs = ag + a;lws



with for H € (0,1/2)

ws =In((2m) 22 H U3 AT (S N H) el )
i=1
for any H = 1/2
—1/2\ A 43
wg = 1n(27r )./\/l{"/)las)
and for H € (1/2,1)
1/ & |

len(@ﬂ') / ))\1HH2HG§I )
Next, we consider the Gaussian integrated process. For related studies, we refer to Debicki (2002) and Hiisler and
Piterbarg (2004b).
Example 4.3: Let {((¢),t > 0} be a centered stationary Gaussian process with variance one and suppose the
covariance function r¢(t) of {¢(¢ ) t > 0} satisfying the following conditions:
Assumption D1: r¢(t) € ([ ) and fo re(s)ds > 0 for t € (0,77;
Assumption D2: r.(t) =1 — t‘g(l +0(1)) as t — 0 with 6 € (0, 2];
Assumption D3: r(t )lnt =o(1l) as t — o0.
Define Gaussian integrated processes as X fo s)ds and let Z(s,t) be defined as above.

If conditions D1,D2 are satisfied, we have for some constant L > 0

P sup Z(s,t) >u | = LL’UJ\IJ(U)(l +o(1)),
(s,t)€[0,L]%[0,T] ﬁ

as u — oo. If further condition D3 holds, we have

Plas sup Z(s,t) —bs | <a | —exp{—e "} =0, 9)
(s,t)€[0,5]x[0,T]

lim sup
S—00 2R

where ag = V2In S, and
bs =as +ag" ln((2)_1/27r_1).

5 Proofs
We need the following lemmas to prove Theorem Bl For simplicity, write u = ug(r) = ag'z + bs in the following
part.

Lemma 5.1. Let §, = u~=2/P(Inw)?/8. Under the conditions of Theorem 8.1, we have for some constant Sy > 0

’P sup X(s,t)<u|—P sup X(s,t) <w ‘/P sup X(s,t)>u| —=0
(5,t)€[0,S0]x[0,T7] (5,t)€[0,S0] X [T =64, T] (s,t)€[0,S0] x[0,T]

as u — Q.

Proof: It can be found in the proof of Theorem 2.2 of Dgbicki et al. (2016). O

For given e > 0, we divide interval [0, S] into intervals of length 1, and split each of them onto subintervals I 5 L of
length e, 1 —¢, j = 1,2,--- | S], respectively, where |z] denotes the integral part of x. It can be easily seen that
a possible remaining interval with length smaller than 1 plays no role in our consideration. We denote this interval
by J.

Lemma 5.2. Under the conditions of Theorem [, we have

‘P sup X(s,t)<u|—P sup X(s,t) <u ‘—)O,
(5,)€[0,8] X [T—5u,T] (8,8)€UI; X [T—64,T]

as u — 0o and € — 0.



Proof: By applying Theorem 2.I] and Lemma [5.I], we have

}P sup X(s,t)<u|—P sup X(s,t) <u ‘
(s,t)€[0,S]X [T —64,T] (s,t)eUl; X[T—6,,T
<P sup X(s,t) >u
(s,6)€(UISUT) X [T =6y, T]

LS]
SZP( sup X(s,t)>u>+P<( sup X(s,t)>u>

o1 \(selx[T=5,,T] 5,6)€TX[T—64,T]

LS]

~ZP sup X(s,t)>u |+ P sup  X(s,t) >u
o \Gerxo] (s,)€J%[0,T]

< (IS]e+ Dp(w).

Noting that by the definitions of ag and bg, we have Su(u) = O(1) as u — oo, thus the result follows by letting
e— 0. O

Let in the following ¢; = du~2/*

for some d > 0.

Lemma 5.3. Under the conditions of Theorem[3 1], we have for any j =1,2,---,|5]

‘P sp X(st)<u|-P s X(kqilgp) <u ' < Kp(d)u(u)
(s,)€L; x[T—84,T) (k1 ,lg2) €1, X [T—5,,T)

as u — 0o, where p(d) — 0 as d — 0.

Proof: Without loss of generality, we only show the case j = 1.
Case 8 > max(aq, a): For simplicity, we only consider the case that oy = a2 =: a. Choose first a constant

ap € (o, B) and denote that

Aij =D x Ay, AL = Ay x (T = Ay), with A; = [iu" =0, (i + 1)u" =0].

Set further
2 _

Ni(u) = [(1—e)uso | +1, Na(u)= |(Inu)Fudo

e

I+ 1

For any ¢ € (0,1), let {n+-(s,t), (s,t) € [0,00)?} be centered homogeneous Gaussian random fields with covariance
functions

ric(s,t) = exp (—(1 £e)*(lars| + |azt + azs|*)), (s,t) € [0,00)

From the proof of case i) of Debicki et al. (2016), it is easy to show that (letting ¢ = du~=)

i=0 j=0 ’
Ni(u) Na(u)

> P ( sup  X(s,t) > u)
i=0  j—0 (s,t)GAz;

sup X(s,t) > u)

((s,t)eh X [T—64,T]

sup X(kq,lq) > u
(kq,lq)€T1 X [T—6,,,T]



Nl(u)—l Ng(u)—l
> P ( sup  X(kq,lq) > u) — X5 (u)

i=0 j=0 (ka,lq)eAT;
Nl(u)fl Nz(u)fl
X(kq, T —1q)
2 P sup s ) = 5y (u)
; ]:ZO ((k%lQ)GA”‘ U(kqv ZQ) 7
Ni(u)—1 Na(u)—1
> P sup  n-e(kq, T —1q) > ujt | — X1(u), (10)
i=0 =0 (kq,lg)eAij
where
wj = u(l+ b1 = 2)(Gu”%0)%), wjp = u(l+b(1+)((j +1u”)?),
and
Y1(u) = Z Z P sup X(s,t) >wu, sup X(s,t)>u
0<i,i’ <Ny (u)—1, 0<4,j/ <Na(u)—1 (s,;t)eAT; (sit)ead,,

We also can get the following results from the above mentioned paper

¥ (u) = o(p(w)) (11)

as u — oo and

Ni(u) N2 (u)
S5 ( o w02 )

i=0 =0 (s,t)eN;;

AP IEDY

as u — 0o and ¢ — 0. For the homogeneous Gaussian random fields 74.(s,t), by Lemma in the Appendix, we

Nl(u) 1N2 u) 1
((s,t)EAij

sm>ns@T—w>uﬂ>~uwx (12)

use the following estimate

‘P< sup nis(s,T—t)>U> —P< sup Wis(kq,T_ZQ)>u>}
(

(s,t)eA;; kq,lg)€N;;

S p(d)alaguéf‘]iﬂ‘l/(u)(l + g(u))v

where p(d) — 0 as d — 0 and g(u) — 0 as u — oo. Denote by G(u) = 1+ sup,>, [g(u)| = 1 as u — co. Then

u/ujr — 1 as u — oo uniformly in j and also

5,1) €N kq,lq) €A

}P <( sup nic(s, T —t) > uji> - P <( sup  n1e(kq, T —lg) > uji> ‘

4_ 4

< p(d)alagu;ii O (ujr)G(u).
Thus, there exists K > 0 such that
Nl('u. —1 N2 u) 1 (

Ni(u)—1 Na(u)—1
Z Z P< sup  n_:(s,T — >uj+> Z Z P

(s,t)EAG;

sup  n-c(kq, T —lq) > Uj+> ’
(kq,lg)eA;;
< Kp(d)ua—ﬁq:(u). (13)

Now it follows from (IOHI3)) that

’P sup X(s,t)>u| —P sup X (kq,lq) > u ’
(s,t)el1 x[T—6,,T] (kq,lq)el1 X [T'—6.,T)

Nl(u) N2 u) N1 u) 1N2(u) 1
< Z < sup  Nie(s, T —t) > uj> Z Z < sup  n-c(kq, T —lq) > uj+> + 31 (u)

i—0  j=0 (s,t)eA;; (kq,lg)eA;;



DI

7=0

N1 u) 1N2(u) 1 <

N1 u) 1N2(u
sup (s, T — >uJ+> - Z Z <( sup ns(kq,T—lq)>Uj+>

(S,t)EAij kq,lq)EAu

Q\ﬁ-

Wl

< Kp(dyu="7¥(u).

Case = a1 = ag: For simplicity, set « = a1 = ag. Let Sy, Ty be two positive constants and define

2 ~ ~ 2 2 ~

A; =[iSou~=, (i + 1)Sou~=], i=0,1,--- ,Ni(u), A;=[iTouv =, +1)Tpu"=], j=0,1,---, Nao(u),

where ,
~ 1—¢ ~ (Inu)? 2

From the proof of case ii) of Debicki et al. (2016) again, it is easy to show that (letting ¢ = du~#)

1(u)
Yo(u) + P < sup  X(s,t) > u)

i=0 (s,t)EZz;)

P sup X(s,t) > u
(s,t)ely X[T—6,,T]

>P ( sup X (kq,lq) > u)
(

kq,lq) €l X [T—8,,T]

Y

Ni(u)—1

= Z < X (kq,lq) > U> — B3(u), (14)
(kq, lq)GA%U

where R B
Nl ('u.) N2 ('u.)

Yo(u) = Z Z P sup X(s,t) >u | = o(u(u)),
=0 j=1 (s,)ERL,

Y3(u) = Z P < sup  X(s,t) >wu, sup X(s,t)> u) = o(u(u)),
) (

~ —~T —T
0<i<i’ < Ny(u)— s,t)EA;, (s;t) €A

as u — 0o. We can also get the following results by Lemma 2.1 of Debicki et al. (2016)

P < sup  X(s,t) > u) ~ P ( sup (s, 1) > u) ~ HY, [So, To) ¥ (u)
( (

s,t)ERL s,t)EAo 1+ btf

and

l(u) Nl(’u.)
P ( sup X (s, t) > u) ~ Z P ( sup  X(s,t) > u) ~ (- E)ué}[?,l [So, To) ¥ (u)
(

i=0 s,t)EAL i=0 (s.t)EDT, So
as u — oo, where {7(s,t),(s,t) € [0,00)%} is a centered homogeneous Gaussian random fields with covariance

functions
T'(S,t) = exp (_(|a18|a + |a2t - a38|a)) ) (87 t) € [07 00)2'

Since X (s,t) is homogeneous with respect to s, we have

0 < P sup X(s,t)>u|—-P sup X(kq,lq) > u
(s,t)el1 x[T—6,,T] (kq,lq)el1 X [T'—6.,T]
Ni(u) Ni(u)—1
< Z P < sup X (s, t) > u) - Z P < sup  X(kq,lq) > u) + X3 (u)
( (

s,t) €D, i=0 kq,lq) €D



= Yu(u) +N1(U)P< sup X (s,t) > u> —(Ny(u) = 1)P ( sup X (kq,lg) > u) + B3 (u)
(s,t) €800 (kq,lg) €A,

IN

(s, t) Su sup n(kg,lq) <u>+H§1[507T0]\1;(u)+0(u(u)). (15)

(Nl(u) - 1P ( sup <
1+ bth (kaula)eBoo L T b(lq)P

(s,t)EA00

For the constants a; > 0,a2 > 0,a3 # 0,b > 0, let (as in Section 2)

Y (s,t) = Ba(a15) + Ba(ast — azs), oy (s,t) = Var(Y(s,t))

and

HY (A1, Xo](d) = Eexp ( V2Y (kd, 1d) — 02 (kd, 1d) — b|ld|ﬂ> € (0,00),

max
(kd,ld)€[0,dX1] X [0,dA2]
where Ea and B, are two independent fBms. By the same arguments as in the proof of Lemma 6.1 of Debicki et

al. (2016), we can show
1
My o(d) = lim  Tim —=Hy [\, A](d) € (0, 00).

)\1‘)00 )\2‘)00 1

Following the arguments of Lemma 12.2.7 of Leadbetter et al. (1983), we can show that limgo M$. ,(d) = M}, .
Now, following the arguments of Lemma 6.1 of Debicki et al. (2016) (see also the proof of Lemma 6.1 of Piterbarg

(1996)), we have

(s, 1) (k. lq) )
P sup >u, sup ————=<u
((s,t)ero 1+ bt? (ka.lg)ehg, L T 0(0)°

+oo
= \Il(u)/ ewP< sup [V2Y (s,t) — 0% (s,t) — b|t|?] > w,
0 (s,)€[0,S0] x[0,T0]
sup [V2Y (kq,lq) — 0% (kd,1d) — b|lq|’] < w) dw(1 4 o(1))
(kq,lq)€[0,S0] x[0,T0]
= W(u) (Hy[So/d, To/d](d) — H}[So, To]) (1 + o(1)), (16)

as u — oo. Now, we can conclude that

0 < P( sup X(s,t)>u> —P< sup X(kq,lq)>u>
(s,t)el1 X[T—6,,T) (kq,lq)€l X[T—6,,T]
HY[So/d, To/d)(d)  HL[So, T
S (1 _ E)UQ/OL\I](U) ( Y[ O/S 0/ ]( ) _ Y[SO 0]) +%§fl [SO,TQ]\I](’U,) +O(M(U))
0 0

< K (Mo (d) — M3, plw)
= Kp(d)p(u), (17)

where p(d) — 0 as d — 0.
Case 8 = aa > aq: This case can be proved as case ii) by some obvious changes as follows. Let Sp, Ty be two positive

constants and define

~

A; = [iSou" 1, (i +1)Sou"%1], i=0,1,-- ,Ny(u), A, =[jTou"2,(j+ 1)Tou 2], j=0,1,-, No(u),

ZUZEZ'XEJ‘, _Z;ZﬁiX(T—ﬁj),
where )
~ 1—¢ =2 ~ 1 o2
o) = |41, Rof) = |00 4,
0 0

Let g1 = duiﬂ%,qz = duié, then repeating the proof of case ii) by replacing kg and lg by kg1 and lga, we get the

desired result.



Case 8 < as = aq: For simplicity let o := ag = a3 and ¢ = du~a. Let’s consider the Gaussian process X (s,T), s > 0.

It is easy to check that X (s,T),s > 0 is standard stationary Gaussian process, i.e., with mean 0, variance 1. For
the covariance function of X (s,T),s > 0, it holds that
r(s,T,s',T) =1~ (af + |az|*)|s — s'|*(1 + o(1))
uniformly with respect to s,s” € [0, So], as |s — §’| = 0. For some constant a > 0, let
HE0,A] = Eexp( km[ax V2B, (ak) — (ak)a)
ake[0,aX
and define
210, A
Hq(a) = lim Hal0,A]
a

A—00

€ (0, +00).
Note that lim,—0 Ha(a) = Ha, see e.g. Leadbetter et al. (1983). So by Lemmas and in the Appendix (for

the one dimensional case), we have

P (SSPX(&T) > u) = (1—6)(a$ + |as|®) > Haus ¥ (u)(1 + o(1)), (18)
P (ksqlé;]) X (kq,T) > u) = (1= &)(af + |ag|®) s Ha(d)us U(u)(1 + o(1)) (19)
and
‘P <sup X(s,T) > u> - P < sup X (kq,T) > u) ‘ < Kp(d)u=V(u), (20)
sely kqely

as u — 00, where p(d) = Hqo(d) — He. By repeating the proof of iv) of Debicki et al. (2016), it is easy to show that

P( sup X(kq,1q>>u>—(1—e><a?+|a3|a>%ﬂa<d>uiw< )(1+o0(1)). (21)
(kq,lq)Ele[Tféu,T]

Write

( sup X(s,t) > u) - P < sup X(kq,lq) > u) ‘
(s,t)el1 x[T'—6,,T] (kq,lq)el1 X [T —6.,T]

§‘ ( sup X(s,t)>u>—P(supX(s,T)>u>’
(s,t)el1 X[T'—68,,T) selr

+‘P (Sup X(s,T) > u> -P < sup X (kq,T) > u> ‘

sely kqel

—i—}P sup X (kq,T)>u | —P sup X(kq1,1lg2) > u ’
kqel (kq,lq)€ly X [T —6,,T]

=: My + M> + Ms,

where My = o(u(u)) by iv) of Theorem ] and [@8), My = K p(d)us ¥(u) by @) and Mz = o(u(u)) by (@) and
1) as u — oc.

Case < as and ag < asg: The proof is the same as that of Case f < as = ag.

Case 8 = a1 > ag and case 8 < a1 and as < aq: These two cases can be proved by the same arguments as for the

third and fifth cases after some time scaling as in Debicki et al. (2016), so we omit the details. [J

Lemma 5.4. Under the conditions of Theorem [31], we have

‘P ( sup ]X(S,t) < U> —-P ( sup X (kq1,lg2) < U> ‘ < Kp(d)Spu(u) (22)

(S,t)EUIjX[T—(;u,T (k}ql,lqz)EUIjX[T—lsu,T]

as u — Q.



Proof: By Lemma [5.3] we have

‘P sup X(s,t) <u|—-P sup X(kq,lg2) <u ‘
(S,t)EUIjX[T—(;u,T] (kql,lqg)EUIjX[T—6u,T]

P sup X(s,t)<u|—-P sup X(kq1,lg2) <u ‘
(s,6)€1; X [T—64,T] (kq1,1a2) €1, X [T—5,,T)

< Kp(d)Sp(u),

< Smax
J

which completes the proof. [J

Lemma 5.5. Under the conditions of Theorem [31], we have

LS]
‘P sup X(kqu,lg) <u ) =[] P sup X(kqi,lg2) <u ‘ -0,
(kql,lq2)€UIj><[T75u,T] j=1 (kql,lq2)€Ij><[T76u.,T]
as u — Q.

Proof: Applying Berman’s inequality (see e.g. Piterbarg (1996)) we have

LS]
’P sup X(kq,lge) <u | — H P sup X(kqr,lg2) <u '
(kql,lqz)EUIjX[T—(;u,T] (kql,lqg)EIjX[T—6u,T]

=1
X (b, la2) _ e X(kqy,lgp) _  u
= ’P sup : H P Sup : = ‘
(kau,lg2)eUl, x[T—s,,1] O (lq2) l(J2 i1 \(hala2)€l; X [T—5,,T) o(lg2) o(lg2)
“2(lg2) + o 2(I'q2))u?
< k l kl l/ _ (0 (
> 2 i b K q”'exp( 20+ r(har, Iz, W1, Ug2))

j#j! (kai,lag)€I1; X[T—6y,T)
(k' a1,1 ag) €15 X [T —8u,T]

2
< kg1, 1o, K'qu, 1! - Y .
<2 2 Ir(kar, gz, K, q2)|eXp( 1+T(kQ1,lq2,k’q1,l’qQ)>

j#j! (kai,lag)€1; X[T—6y,T)
(ka1 ag) €14 X [T —8u,T]

Since |kq1 — k'q1| > € by definition, 7(kq1,lg2, k'q1,1'q2) < < 1. Set v < (1 —§)/(1 + ) and split the last sum into
two parts Wy and W with |kq; — k'q1| < S” and |kq — k'q1| > S7, respectively. For the first sum there are S'*7/¢3
combinations of two points kqi1,k'q1 € U;I;. Together with the lgo combinations there are (S'77/¢?)(8,/q3) terms
in the sum Wj. Note that

Sp(u) =0(1), u— oo,

which implies for case i)
2 2 2
2
u*=2InS+(—+———=—1)InlnS + O(1);
E+2-Z-y o
for case ii)-v)

u? =2InS + (l —1)Inln S+ O(1);
aq

for case vi)-vii)

u? =2InS + (l —1)Inln S+ O(1).
o

6S1+'y52(u) . < u2 >
S0 w)
s P\T1+0

Thus, W is bounded by

< Sexp ((1+7)1ns+(i+—)1 In S—Mms>

9 1—|—5
L1 LS
21+ 0(1) | (g +35)nln >—>0

146 InS

= dexp <(lnS) (1+7) -




as S — oo since 1 4+ v < 2/(1 4+ 0) by the choice of .
For the second sum Wy with |kq1 — k'q1| > S7, we use that

sup r(kqi, g2, k' q1,1'q2)(In S)¢ = o(1),
|kq1 —k'q1|>S7

as S — oco. In this case there (S/q;)? many combinations of two points kqi, k1 € U;1;. Hence Wy is bounded by

_o(1) 5%26%(u) u?
RS = e g P\ T TTomy/ms
2 2 2 4 u?
< 21 — + — ——=—1)Inl —InlnlnS—-(¢c—1)InlnS - ———~—— .
_C’exp( DS+(041+042 3 )nnS—l—ﬁnnnS (c—=1)Inln S 1+0(1)/ln5>

For case i), by assumption A4, ¢ > 1, we have

R(S) < Cexp <2ln5+ (3 + 22 Inln S + éhllnlnS— (c—1)Inln s
aq (65) ﬁ B
(1+0(1)) 2 2 2
__Groll)) o) LS 2 )l
1+0(1)/1n5’[ nS+(a1+ag B ) Inln 5]

< Cexp (—(c— )lnln S + %lnlnlnS—i—o(l)) — 0,

as S — oo, since ¢ > 1. For cases ii)-iii), noting that ¢ > 1, we have

R(S)gCexp<21nS+(i+3—z—1)1n1n5’+é1n1n1n5’—(c—l)lnlnS
aq a2 B B
(I1+0(1)) 2
-2 21 — —1)Inl
1+0(1)/1n5’[ nS—i_(al JIntn 5]
2 2 4
< Cexp ((— —=)InlnS—(c—1)Inln S + —1nln1nS+0(1)> — 0,
(%) B B
as S — 0o, since 5 = s and ¢ > 1. For cases iv)-v), noting that ¢ = 1, we have
R(S)<Ce (21 S+(2+2 2 1)IIS+41115’
> n —+————1)lnln —Inlnln
- P ar az B B
__(+o) 2 _
1+0(1)/1n5[21n5+(041 1)Inln 5]
<Ce ((2 2)lnlnS+4ln1nlnS+0(1)>—>0
X - T 5 - )
- P\la; 78 B

as S — oo, since § < ag. For cases vi), we have

R(S)SCeXp<2lnS+(3+l—2—l)lnlnS—i-élnlnlnS—(c—l)lnlnS
a (65) ﬁ B
(1+40(1)) 2
——— " [21 — —1)Inl
1+0(1)/1n5’[ nS+(ag JIntn 5]
2 2 4
< Cexp ((— —=)InlnS—(¢c—1)Inln S + —lnlnlnS—i—o(l)) — 0,
ar B p
as S — oo, since 8 = «; and ¢ > 1. For cases vii), noting that ¢ = 1, we have
R(S)<Ce (2ln5+(2 + 22 1)1n1n5+41n1n1n5’
< B N z
n P ar  az B B
(14 0(1)) 2
1—|—0(1)/1n5[21n5+(o¢2 1)Inln 5]
<Ce 02 %115+41115+(U>a0
xp ( (— — =>)Inln —Inlnln 0 ,
S T E

as S — oo, since § < ay. O



Proof of Theorem B} Recall that u = u(z) = ag'x + bs. By the stationarity of X (s, ) with respect to the first

component, Lemma [5.1] Theorem 2.1l and the choice of ag, bs, we have

LS)
H P ( max X(s,t) < u) ~  exp (— S|P ( max X(s,t) > u>)
(s,8)€1; X [T —38,,T] (s,8) €1 X[T—6.,T)

: ~ exp(—18)(1 - u(w))

— exp(—e™™), €l0, S— .

Further, by Lemmas B.IH5.5 it holds that as S — oo

P( max X(s,t)gu) ~ P( max X(s,t)Su)
(5,6)€[0,5]x[0,T] (s,)€U; I; X [T—6,,T]

~ P ( max X (kq,lg) < u)

(kq1,lq2)€U;1;
LS]
~ P ma, X(kqi,lga) <u ).
H ((kql,lqz)efj;(([T—lsu,T] ((J1 qz)_ )

j=1
Therefore, the claim follows. [J
Proof of Proposition [k In the paper of Debicki et al. (2016), it is shown that the standard deviation function
of Z satisfies assumption A1l and the correlation function of Z satisfies assumption A2. It is also shown that
assumption A3 holds for Z. So, in order to prove this proposition, it suffices to show assumption A4 holds. For the

correlation function rz(s,t,s’,t') of Z, we have

rz(s,t,s, ) =rx(|s+t—s —t|)—rx(s—s —t']) —rx(]s+t—5|) +rx(]s — §'|).
Since rx () is twice continuously differentiable in (0, 00), we have

Irx(ls+t—s —=t|)—rx(s—s —t|) —rx(|s+t—5|) +rx(|s —§)| < Cix(s—5)

for t,t’ € [0,T] as s — s’ — oo. Now using the condition that #x (¢)(Int)¢ — 0 as t — oo, we show that assumption
A4 holds. [J
Proof of Proposition We check that assumptions A1 — A4 hold. Using the stationarity of the increments
of X(t) and C1, it follows that the variance o%(s, ) of Z(s,) attains its maximum on [0, 7] at the unique point T’
and further

oz(s,t) =ox(t) =1—bT —1)’(1+0(1)), t1T

holds for some (3,b > 0.
Notice that for the process X (¢) with stationary increments
1
Cov(X(t),X(s)) = §[U§<(f) +ox(s) — ok (|t —s])].
Thus, using the stationarity of the increments of X (¢) again, we have for correlation function of Z(s,t)
1
2UX (t)UX (f')
It follows from C2 that

rz(s,t,s' 1) = [Fox(s+t—s" —t]) + 0% (s —s' = t']) + 0% (|s — 5" +']) — X (|s — s'|)].
T 1 / ARYe? ARYed
rz(s,t,8,¢) =1 - gllals +t —s" = ])* + (als — s")*](1 + (1)),

as t,t — T and |s — s'| — 0. A3 holds obviously. Thus, by Theorem 2] the first assertion of Proposition 2] holds.

By Taylor expansions, it is straightforward to verify that
Irz(s,t, s, 1) < Co%(|s — 5|

as |s — §'| = oo, which combined with C3 implies A4. Thus, by Theorem B.], the second assertion holds. [J



6 Appendix
Let {£(t) : t > 0} denote a two dimensional homogeneous Gaussian field with covariance function
re(t) = Cov(£(t),£(0)).

Assume that the covariance function satisfies the following conditions:

Assumption E1: There exists a non-degenerate matrix C such that
re(Ct) = 1 — [ta]™ — [£2™* + o([ta]™* + [£2]**)

as t — 0 with «; € (0,2];
Assumption E2: r¢(t) < 1 for t # 0.

To state two key lemmas, we recall the following type of Pickands constant. For constant a > 0, let

H2[0,\] = E exp ( max V2B, (ak) — (ak)o‘)

akel0,ax
and define
o A0, A
Hala) = Jlim ==

We need the following results for the proofs of our main results.

Lemma 6.1. Let ¢; = du~2/® for some d > 0 and assume that E1 and E2 hold. Then for any fized rectangle
I, = [0, h1] x [0, he], we have

" (in%xﬁ<t> > “) = hihoH o, Ha, [detC ™ u? 1427920 (u) (1 + o(1))
(S35

and

" (15“ £(kq) > “) = hihaHa, (d)Ha, (d)|detC u2/ 1 F2/%2 W (u)(1 + o(1))
qeln

—2/a’ —2/a’

as u — 0o. The results also hold for the case hy = u and hs = u ' for o > a1 and o’ > as.

Proof: The first and second assertions can be proved following the proof of Lemma 7.1 of Piterbarg (1996) with
some obvious changes, see also the proof of Lemma 1 of Debicki, Hashorva and Soja-Kukiela (2015). The third
assertion follows from the proofs of the former two by using the double sums method, see the proof of Theorem 7.2
of Piterbarg (1996). O

Lemma 6.2. Let q; = du 2/ for some d > 0 and choose two constants o' > a1 and o > as. Assume that E1
and E2 hold. Then for the rectangle T = [0,u~%/*] x [0,u~%*"], we have

P <max§(kq) < u) - P (max{(t) < u> < |detC Y p(d)u?/ a1 t2/e2=2/a'=2/a" g (y),
kqel tel

where p(d) = Ha, () Hay (d) = HayHa, — 0 as d — 0.

Proof: It is an immediate consequence of Lemma 6.1. [J
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