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The distribution of refracted Lévy processes with jumps

having rational Laplace transforms

Jiang Zhou∗, Lan Wu

School of Mathematical Sciences, Peking University, Beijing 100871, P.R.China

Abstract

We consider a refracted jump diffusion process having two-sided jumps with
rational Laplace transforms. For such a process, by applying a straightforward
but interesting approach, we derive formulas for the Laplace transform of its
distribution. Our formulas are presented in an attractive form and the approach
is novel. In particular, the idea in the application of an approximating procedure
is remarkable. Besides, the results are used to price Variable Annuities with
state-dependent fees.

Keywords: Refracted Lévy process; Rational Laplace transform; Wiener-Hopf
factorization; Continuity theorem; Variable Annuities; State-dependent fees;

1. Introduction

A refracted Lévy process U = (Ut)t≥0 is derived from a Lévy process X =
(Xt)t≥0 and is described by the following equation (see [13]):

Ut = Xt − δ

∫ t

0

1{Us>b}ds, (1.1)

where δ, b ∈ R, and 1A is the indicator function of a set A. There are several
papers investigating refracted Lévy processes, where the three papers [13,14,20]
are based on the assumption that X in (1.1) has negative jumps only; and in
[23], the processX is assumed to be a double-exponential jump diffusion process.
Many results, including formulas for occupation times of U , have been obtained,
and the interested reader is referred to the above papers for the details. Besides,
in [22,24,25], under several different assumptions on X , we have considered the
following similar process Us = (Ust )t≥0:

dUst = dXt − δ1{Us
t <b}

dt. (1.2)
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For the process U in (1.1) with X given by (2.1) (see below), we will show that
P (Ut = b) = 0 for Lebesgue almost every t > 0 (see Remark 4.1), which means

that Ut = Xt− δt− (−δ)
∫ t

0 1{Us<b}ds and thus the two processes Us and U are
equal essentially.

In this paper, we are interested in the distribution of U . When the process
Xt in (1.1) is a Lévy process without positive jumps, the corresponding results
can be found in [13]; see Theorem 6 (iv) in that paper. Thus here we focus
on the situation that X has both positive and negative jumps. In specific, we
assume that X in (1.1) is a jump diffusion process and its jumps have probability
density functions whose Laplace transforms are rational functions. Such a Lévy
process is very popular and quite general, and two particular examples of it are
a hyper-exponential jump diffusion process (see [5,6]) and a Lévy process with
phase-type jumps (see [2,19]). Under the above assumption on X , the purpose
of this paper is to derive expressions for

∫∞

0 e−qtP (Ut < y) dt or in differential
form

∫ ∞

0

e−qtP (Ut ∈ dy) dt, y ∈ R, (1.3)

where q > 0. One reason why we are interested in the above quantity is that it
is closely related to occupation times of U since

q

∫ ∞

0

e−qtE

[∫ t

0

1{Us<y}ds

]

dt =

∫ ∞

0

e−qtP (Ut < y)dt, y ∈ R,

which can be derived by applying integration by parts. This means that the
occupation times of U , i.e.,

∫ t

0
1{Us<y}ds, can be derived from (1.3).

In [22], under the same assumption on X as in this paper, we have derived
formulas for

∫∞

0 e−qtP (Ust < b) dt, where Us and b are given by (1.2). In this
article, for given b in (1.1), we combine the ideas in [22] with a novel and helpful
approximating discussion to calculate

∫∞

0 e−qtP (Ut < y) dt, where y ∈ R. Par-
ticularly, we obtain some attractive and uncommon formulas, which are written
in terms of positive and negative Wiener-Hopf factors. These extraordinary ex-
pressions are important and are conjectured to hold for a general Lévy process
X and the corresponding solution U to (1.1), providing that such a solution U
exists.

Results in this paper have some applications. One application is to price
equity-linked investment products or Variable Annuities with state-dependent
fees as in [24]. Such a state-dependent fee charging method is proposed re-
cently and has several advantages (see [4,7]), e.g., it can reduce the incentive
for a policyholder to surrender the policy. Equity-linked products are popular
life insurance contracts and one reason for their popularity is that they typi-
cally provide a guaranteed minimum return. There are many papers studying
Equity-linked products and their pricing, see, e.g., [10,15,18]. Investigations
on evaluating Equity-linked products under a state-dependent fee structure are
relatively new and the reader is referred to [17] for a recent work.

The remainder of this paper is organized as follows. In Section 2, some
notations and some preliminary results are introduced. Next, we present an im-

2



portant proposition in Section 3 and give the main results in Section 4. Finally,
the application of our main results is discussed in Section 5.

2. Notations and preliminary results

In this paper, the process X = (Xt)t≥0 in (1.1) is a jump diffusion process,
where its jumps have rational Laplace transforms. Specifically,

Xt = X0 + µt+ σWt +

N
+
t
∑

k=1

Z+
k −

N
−

t
∑

k=1

Z−
k , (2.1)

where X0, µ and σ > 0 are constants; (Wt)t≥0 is a standard Brownian motion;
∑N

+
t

k=1 Z
+
k and

∑N
−

t

k=1 Z
−
k are compound Poisson processes with intensity λ+ and

λ−, respectively; and the density functions of Z+
1 and Z−

1 are given respectively
by

p+(z) =

m+
∑

k=1

mk
∑

j=1

ckj
(ηk)jzj−1

(j − 1)!
e−ηkz , z > 0, (2.2)

and

p−(z) =
n−

∑

k=1

nk
∑

j=1

dkj
(ϑk)jzj−1

(j − 1)!
e−ϑkz , z > 0, (2.3)

with ηi 6= ηj and ϑi 6= ϑj for i 6= j; moreover, (Wt)t≥0,
∑N

+
t

k=1 Z
+
k and

∑N
−

t

k=1 Z
−
k

are independent mutually.

Remark 2.1. Parameters ηk and ckj in (2.2) can take complex values as long
as p+(z) satisfies p+(z) ≥ 0 and

∫∞

0 p+(z)dz = 1. In addition, if η1 has the
smallest real part among η1, . . ., ηm+ , then 0 < η1 < Re(η2) ≤ · · · ≤ Re(ηm+).

Remark 2.2. Formula (2.2) is quite general and particularly it contains phase-
type distributions. Thus from Proposition 1 in [2], we know that for any given
Lévy process X, there is a sequence of Xn with the form of (2.1) such that

lim
n↑∞

sup
s∈[0,t]

|Xn
s −Xs| = 0, almost surely.

In what follows, the law of X starting from x is denoted by Px with Ex

denoting the corresponding expectation; when x = 0, we write P and E for
convenience. And as usual, for T ≥ 0, define

XT := inf
0≤t≤T

Xt and XT := sup
0≤t≤T

Xt. (2.4)

Throughout this article, for given q > 0, e(q) is an exponential random variable,
whose expectation is equal to 1

q
. Besides, e(q) is assumed to be independent of

all stochastic processes appeared in the paper. In addition, for a complex value
x, let Re(x) and Im(x) represent its real part and imaginary part, respectively.
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For the Lévy process X given by (2.1), it has been shown that equation (1.1)
has a unique strong solution U = (Ut)t≥0 (see, e.g., Theorem 305 of [21]), which
is a strong Markov process (see Remark 3 in [13]). For this unique solution U ,
our objective is deriving the expression of (1.3), i.e.,

∫ ∞

0

e−qtPx (Ut ∈ dy) dt, y ∈ R,

and more importantly, we try to derive some novel expression.
Similar to previous investigations on refracted Lévy processes (see, e.g., [13]),

for given δ ∈ R, we introduce a process Y , which is defined as Y = {Yt =
Xt − δt; t ≥ 0}. For the process Y , the two quantities Y T and Y T are defined

similarly to (2.4). What is more, we denote by P̂y the law of Y such that Y0 = y

and by Êy the corresponding expectation, and write shortly P̂ and Ê if y = 0.

The following Lemma 2.1 gives the roots of ψ(z) = q and ψ̂(z) = q, where

ψ(z) := −
σ2

2
z2 + izµ+ λ+





m+
∑

k=1

mk
∑

j=1

ckj

(

ηk
ηk − iz

)j

− 1





+ λ−





n−

∑

k=1

nk
∑

j=1

dkj

(

ϑk
ϑk + iz

)j

− 1



 ,

(2.5)

and ψ̂(z) := ψ(z) − iδz. Note that if z ∈ R, then ψ(z) := ln
(

E
[

eizX1
])

and

ψ̂(z) := ln
(

Ê
[

eizY1
]

)

. Lemma 2.1 has been developed in [16]; see Lemma 1.1

and Theorem 2.1 in that paper (note that σ > 0 here).

Lemma 2.1. (i) For q > 0, the equation ψ(z) = q (ψ̂(z) = q) has, in the set

Im(z) < 0, a total of M+(M̂+) distinct solutions −iβ1 (−iβ̂1), −iβ2 (−iβ̂2),

. . ., −iβM+ (−iβ̂
M̂+), with respective multiplicities M1 = 1(M̂1 = 1), M2(M̂2),

. . ., MM+(M̂
M̂+). Moreover,

0 < β1 < Re(β2) ≤ · · · ≤ Re(βM+), 0 < β̂1 < Re(β̂2) ≤ · · · ≤ Re(β̂
M̂+), (2.6)

and
M+
∑

k=1

Mk =

M̂+
∑

k=1

M̂k = 1 +

m+
∑

k=1

mk. (2.7)

(ii) For q > 0 and s ≥ 0,

Ê

[

e−sY e(q)

]

=
m+
∏

k=1

(

s+ ηk
ηk

)mk M̂
+
∏

k=1

(

β̂k

s+ β̂k

)M̂k

, (2.8)

and

E

[

e−sXe(q)

]

=

m+
∏

k=1

(

s+ ηk
ηk

)mk M
+
∏

k=1

(

βk
s+ βk

)Mk

. (2.9)
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Next, consider a function F1(x) on (0,∞) with the Laplace transform

∫ ∞

0

e−sxF1(x)dx =
1

s





Ê

[

e−sY e(q)

]

E

[

e−sXe(q)

] − 1



 , s > 0. (2.10)

It follows from (2.8) and (2.9) that the Laplace transform of F1(x) is a rational
function, which means that F1(x) is continuously differentiable on (0,∞). Since
M̂1 = 1 and (2.6) holds, it can be shown that

lim
x↑∞

F1(x)

e−β̂1x
= −

M̂+
∏

k=2

(

β̂k

β̂k − β̂1

)M̂k M+
∏

k=1

(

βk − β̂1
βk

)Mk

. (2.11)

In addition, it holds that

F1(0) := lim
x↓0

F1(x) = lim
s↑∞

∫ ∞

0

se−sxF1(x)dx =

∏M̂+

k=1

(

β̂k

)M̂k

∏M+

k=1 (βk)Mk
− 1. (2.12)

Remark 2.3. The expression of F1(x) can be obtained easily from (2.8)–(2.10)
by using rational expansion, but it is not important in this paper and thus is
omitted for brevity.

Remark 2.4. Due to (2.11), F1(x) is absolutely integrable and the Laplace
transform of F1(x) in (2.10) can be extended analytically to the half-plane Re(s) ≥
0. When s = 0, the right-hand side of (2.10) is understood as

lim
s↓0

1

s





Ê

[

e−sY e(q)

]

E

[

e−sXe(q)

] − 1



 =
∂

∂s





M̂+
∏

k=1

(

β̂k

s+ β̂k

)M̂k M+
∏

k=1

(

s+ βk
βk

)Mk





s=0

.

Besides, F1(x) is bounded on [0,∞] with F1(∞) := limx↑∞ F1(x) = 0.

Lemma 2.2. For the continuous function F1(x) given by (2.10), it holds that

F1(x) + 1 ≥ 0, for x > 0. (2.13)

Proof. For q, s > 0, we know (see, e.g., formula (4) in [1])

E

[

e−s(Xe(q)−h)1{Xe(q)>h}

]

= E

[

e
−qτ+

h
−s(X

τ
+
h

−h)
]

E
[

e−sXe(q)
]

, h > 0, (2.14)

where τ+h := inf{t ≥ 0 : Xt > h}. Exchanging the order of integration yields

∫ ∞

0

E

[

e−s(Xe(q)−h)1{Xe(q)>h}

]

dh =

∫ ∞

0

∫ x

0

e−s(x−h)dhP
(

Xe(q) ∈ dx
)

=
1

s

(

1 − E

[

e−sXe(q)

])

.
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Then, on both sides of (2.14), integrating with respect to h from 0 to ∞ gives

∫ ∞

0

E

[

e
−qτ+

h
−s(X

τ
+
h

−h)
]

dh =
1

s





1

E

[

e−sXe(q)

] − 1



 . (2.15)

Formulas (2.10) and (2.15) mean that
∫∞

0
e−sx(F1(x) + 1)dx is a completely

monotone function of s on (0,∞), then (2.13) follows from Theorem 1a on page
439 in [8].

The following Lemma 2.3 is taken from Proposition 1 (v) in [11], which states

that for almost all q > 0, ψ(z) = q and ψ̂(z) = q only have simple solutions.
Based on this lemma, we apply an approximating argument (which reduces the
calculation in a large extent) to derive the final results.

Lemma 2.3. There exists only finite numbers of q > 0 such that ψ(z) = q or

ψ̂(z) = q has solutions of multiplicity greater than one.

In the following, let S be the set of q > 0 such that all the roots of ψ(z) = q

and ψ̂(z) = q are simple.

Remark 2.5. For q ∈ S, Lemma 2.1 gives M+ = M̂+ = 1 +
∑m+

k=1mk.

We can obtain Lemma 2.4 by applying Lemma 2.1 to the dual processes −Xt

and −Yt.

Lemma 2.4. (i) For q ∈ S, the equation ψ(z) = q (ψ̂(z) = q) has, in the set

Im(z) > 0, a total of N− (N̂−) =
∑n−

k=1 nk + 1 distinct simple roots iγ1 (iγ̂1),
iγ2 (iγ̂2), . . ., iγN− (iγ̂

N̂−), ordered such that

0 < γ1 < Re(γ2) ≤ · · · ≤ Re(γN−), 0 < γ̂1 < Re(γ̂2) ≤ · · · ≤ Re(γ̂
N̂−

). (2.16)

(ii) For q ∈ S and Re(s) ≥ 0, we have

E

[

esXe(q)

]

=

n−

∏

k=1

(

s+ ϑk
ϑk

)nk N
−

∏

k=1

(

γk
s+ γk

)

,

Ê

[

esY e(q)

]

=
n−

∏

k=1

(

s+ ϑk
ϑk

)nk N̂−

∏

k=1

(

γ̂k
s+ γ̂k

)

.

(2.17)

Remark 2.6. For q > 0 and q ∈ Sc, a similar result to (2.17) holds, e.g.,

Ê

[

esY e(q)

]

=

n−

∏

k=1

(

s+ ϑk
ϑk

)nk Ñ
∏

k=1

(

γ̂k
s+ γ̂k

)N̂
−

k

, (2.18)

where N̂−
k is the multiplicity of γ̂k; and

∑Ñ
k=1 N̂

−
k =

∑n−

k=1 nk + 1.
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Remark 2.7. For any q > 0, from (2.9), (2.17) and (2.18), it can be concluded
that both Xe(q) and Y e(q) have probability density functions.

The following Lemma 2.5 is important. We remark that the result in Lemma
2.5 is not surprising as σ > 0 in (2.1), and its proof is omitted since it can be
established by using almost the same discussion as in Theorem 2.1 in [24].

Lemma 2.5. For q > 0, the function Vq(x), defined as Vq(x) := Px

(

Ue(q) > y
)

for given y > b, is continuously differentiable on R. Particularly, it holds that

Vq(b−) = Vq(b+) and V ′
q (b−) = V ′

q (b+). (2.19)

The following Lemma 2.6 is known as the Wiener-Hopf factorization, we
refer the reader to Theorem 6.16 in [12] for its derivation.

Lemma 2.6. For a Lévy process Xt, which is not a compound Poisson process,
it holds that Xe(q) −Xe(q) is independent of Xe(q) and equal in distribution to

Xe(q). This means that

E
[

eiθXe(q)
]

= E

[

eiθXe(q)

]

E

[

eiθXe(q)

]

,

where Re(θ) = 0.

To close this section, we present the following proposition, which gives the
expression of

Px

(

Ue(q) > y
)

= q

∫ ∞

0

e−qtPx (Ut > y) dt,

where y > b and q ∈ S. The proof of Proposition 2.1 is long, thus it is left to
the Appendix.

Proposition 2.1. For q ∈ S and y > b, we have

Px

(

Ue(q) > y
)

=











∑M+

k=1 Jke
βk(x−b), x ≤ b,

∑M̂+

k=1 Ĥke
β̂k(x−y) +

∑N̂−

k=1 P̂ke
γ̂k(b−x), b ≤ x ≤ y,

1 +
∑N̂−

k=1 Q̂ke
γ̂k(y−x) +

∑N̂−

k=1 P̂ke
γ̂k(b−x), x ≥ y,

(2.20)

where Ĥk and Q̂k are given by (A.17) and (A.18), respectively; Jk and P̂k are
given by rational expansion:

M+
∑

i=1

Ji
x− βi

−

N̂−

∑

i=1

P̂i
x+ γ̂i

−

M̂+
∑

i=1

Ĥi

x− β̂i
eβ̂i(b−y)

=

∏m+

k=1(x− ηk)mk
∏n−

k=1(x+ ϑk)nk

∏M+

i=1 (x− βi)
∏N̂−

i=1(x + γ̂i)
×

M̂+
∑

k=1

∏M+

i=1 (β̂k − βi)
∏N̂−

i=1(β̂k + γ̂i)
∏m+

i=1(β̂k − ηi)mi
∏n−

i=1(β̂k + ϑi)ni

−Ĥk

x− β̂k
eβ̂k(b−y).

(2.21)

7



Remark 2.8. Formula (2.20) contains the roots of ψ(z) = q and ψ̂(z) = q, i.e.,

βk, β̂k and γ̂k. This poses a limitation to extend the result in Proposition 2.1
to a refracted Lévy process U driven by other Lévy process, because we cannot
characterize the roots of ψ(z) = q for a general Lévy process X (note that
ψ(z) = ln

(

E
[

eizX1
])

if z ∈ R). In Theorem 4.1, we derive another expression

for Px

(

Ue(q) > y
)

, which is free of βk, β̂k and γ̂k.

3. An important result

In this section, the following result is derived, and we have to say that the
ideas in the derivation are interesting.

Proposition 3.1. For given y > b, q > 0 and Re(φ) = 0, we have

∫ ∞

−∞

e−φ(x−b)
(

Px

(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

)

dx

= Ê

[

eφY e(q)

]

E

[

eφXe(q)

]

∫ ∞

0

F1(x+ y − b)eφxdx.

(3.1)

In the following, we first show that Proposition 3.1 holds for q ∈ S and then
prove that it is also valid for q ∈ Sc.

3.1. Proof of Proposition 3.1 with q ∈ S

For Re(φ) = 0, it follows from (2.20) and (A.25) that

∫ ∞

−∞

e−φ(x−b)dPx
(

Ue(q) > y
)

=

M+
∑

i=1

Jiφ

βi − φ
+

N̂−

∑

i=1

P̂iφ

φ+ γ̂i

−
M̂+
∑

i=1

Ĥiφ

β̂i − φ
eβ̂i(b−y) + eφ(b−y)





M̂+
∑

i=1

Ĥiβ̂i

β̂i − φ
−

N̂−

∑

i=1

Q̂iγ̂i
γ̂i + φ



 .

(3.2)

It can be proved that

M̂+
∑

i=1

Ĥiβ̂i

β̂i − φ
−

N̂−

∑

i=1

Q̂iγ̂i
γ̂i + φ

= 1 +

M̂+
∑

i=1

Ĥiφ

β̂i − φ
+

N̂−

∑

i=1

Q̂iφ

γ̂i + φ

= ψ̂+(−φ)ψ̂−(φ) = Ê

[

eφY e(q)

]

Ê

[

eφY e(q)

]

= Ê
[

eφYe(q)
]

,

(3.3)

where ψ̂+(·) and ψ̂−(·) are given by (A.5) and (A.6); the first equality is due to

the fact that
∑M̂+

i=1 Ĥi −
∑N̂−

i=1 Q̂i − 1 = 0 (let θ ↑ ∞ in (A.29)); the second and
the third equality follows respectively from (A.29) and (A.7), and the final one
is a result of Lemma 2.6.
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In addition, for Re(φ) = 0, applying integration by parts will give us
∫ ∞

−∞

e−φ(x−b)dPx
(

Ue(q) > y
)

− eφ(b−y)Ê
[

eφYe(q)
]

=

∫ ∞

−∞

e−φ(x−b)dPx
(

Ue(q) > y
)

−

∫ ∞

−∞

e−φ(x−b)dP̂
(

Ye(q) > y − x
)

= φ

∫ ∞

−∞

e−φ(x−b)
(

Px

(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

)

dx.

(3.4)

Note that (see (3.10) in the following Lemma 3.1)
∫ ∞

−∞

|Px
(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

|dx ≤
|δ|

q
.

Besides, from (2.21), (A.2), (A.4), (A.6), (A.7) and (A.17), after some
straightforward calculations, we can derive (note that M+ = M̂+ if q ∈ S)

M+
∑

i=1

Jiφ

βi − φ
+

N̂−

∑

i=1

P̂iφ

φ+ γ̂i
−

M̂+
∑

i=1

Ĥiφ

β̂i − φ
eβ̂i(b−y)

= φÊ
[

eφY e(q)

]

E

[

eφXe(q)

]

∫ ∞

0

F0(x+ y − b)eφxdx,

(3.5)

where

F0(x) =
M̂+
∑

i=1

e−β̂ix

M+
∏

k=1

β̂i − βk
βk

M̂+
∏

k=1,k 6=i

β̂k

β̂i − β̂k
, x > 0. (3.6)

Finally, for s > 0, it holds that

∫ ∞

0

e−sxF0(x)dx =
M̂+
∑

i=1

M+
∏

k=1

β̂i − βk
βk

M̂+
∏

k=1,k 6=i

β̂k

β̂i − β̂k

1

β̂i + s

=
1

s





M+
∏

k=1

s+ βk
βk

M̂+
∏

k=1

β̂k

s+ β̂k
− 1



 =
1

s





Ê

[

e−sY e(q)

]

E

[

e−sXe(q)

] − 1



 ,

(3.7)

where the second equality follows from the rational expansion and the third one
is due to (A.4), (A.5) and (A.7).

Formulas (2.10) and (3.7) conform that F1(x) = F0(x) for x > 0. Therefore,
(3.1) for q ∈ S is derived from (3.2)–(3.5).

3.2. Proof of Proposition 3.1 for q > 0 and q ∈ Sc

First, for such a q > 0 and q ∈ Sc, Lemma 2.3 implies that there exists a
sequences of qn ∈ S such that limn↑∞ qn ↓ q. In Subsection 3.1, we have shown
that (3.1) holds for qn, this gives

∫ ∞

−∞

e−φ(x−b)
(

Px

(

Ue(qn) > y
)

− P̂x

(

Ye(qn) > y
)

)

dx

= Ê

[

eφY e(qn)

]

E

[

eφXe(qn)

]

∫ ∞

0

Fn1 (x+ y − b)eφxdx,

(3.8)
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where Re(φ) = 0 and

∫ ∞

0

e−sxFn1 (x)dx =
1

s





Ê

[

e−sY e(qn)

]

E

[

e−sXe(qn)

] − 1



 , s > 0. (3.9)

Lemma 3.1. For given δ, y ∈ R, we have
∫ ∞

−∞

|Px (Ut > y) − P̂x (Yt > y) |dx ≤ |δ|t, (3.10)

and
∫ ∞

−∞

|Px
(

Xt > y
)

− P̂x

(

Y t > y
)

|dx ≤ |δ|t. (3.11)

Proof. Recall (1.1) and Yt = Xt − δt. For δ > 0, it holds that

Px (Xt > y) ≥ Px (Ut > y) ≥ P̂x (Yt > y) ,

thus
∫ ∞

−∞

|Px (Ut > y) − P̂x (Yt > y) |dx =

∫ ∞

−∞

Px (Ut > y) − P̂x (Yt > y) dx

≤

∫ ∞

−∞

Px (Xt > y) − P̂x (Yt > y) dx =

∫ ∞

−∞

E
[

1{y−x<Xt≤y−x+δt}

]

dx

= E

[∫ ∞

−∞

1{y−x<Xt≤y−x+δt}dx

]

= δt,

where the penultimate equality is due to the Fubini theorem. For δ < 0, it is
obvious that

Px (Xt > y) ≤ Px (Ut > y) ≤ P̂x (Yt > y) ,

which gives
∫ ∞

−∞

|Px (Ut > y) − P̂x (Yt > y) |dx ≤

∫ ∞

−∞

P̂x (Yt > y) − Px (Xt > y) dx

= E

[∫ ∞

−∞

1{y−x+δt<Xt≤y−x}dx

]

= −δt,

so (3.10) is derived.
Note that

sup
0≤s≤t

(Xs − δs) − |δ|t ≤ Xt ≤ sup
0≤s≤t

(Xs − δs) + |δ|t,

which means that

Px

(

Xt − |δ|t > y
)

≤ P̂x

(

Y t > y
)

≤ Px

(

Xt + |δ|t > y
)

.

Hence (3.11) can be proved similarly.
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Lemma 3.2. For Re(φ) = 0,

lim
n↑∞

∫ ∞

−∞

e−φ(x−b)
(

Px

(

Ue(qn) > y
)

− P̂x

(

Ye(qn) > y
)

)

dx

=

∫ ∞

−∞

e−φ(x−b)
(

Px

(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

)

dx,

(3.12)

and for Re(s) ≥ 0,

lim
n↑∞

Ê

[

esY e(qn)

]

= Ê

[

esY e(q)

]

and lim
n↑∞

E

[

e−sXe(qn)

]

= E

[

e−sXe(q)

]

. (3.13)

Proof. Since qn > q and Px

(

Ue(qn) > y
)

=
∫∞

0
qne

−qntPx (Ut > y) dt, we derive
via the dominated convergence theorem that

lim
n↑∞

Px

(

Ue(qn) > y
)

= Px

(

Ue(q) > y
)

. (3.14)

Similarly, we can prove (3.13) and the following result:

lim
n↑∞

P̂x

(

Ye(qn) > y
)

= P̂x

(

Ye(q) > y
)

. (3.15)

In addition, it holds that
∫ ∞

−∞

e−φ(x−b)
(

Px

(

Ue(qn) > y
)

− P̂x

(

Ye(qn) > y
)

)

dx

=

∫ ∞

0

qne
−qnt

∫ ∞

−∞

e−φ(x−b)
(

Px (Ut > y) − P̂x (Yt > y)
)

dxdt.

(3.16)

From (3.10) and (3.14)–(3.16), the dominated convergence theorem produces
(3.12).

Lemma 3.3. For Fn1 (x) in (3.9) and F1(x) in (2.10), it holds that

lim
n↑∞

∫ ∞

0

e−sxFn1 (x)dx =

∫ ∞

0

e−sxF1(x)dx, Re(s) ≥ 0. (3.17)

Proof. Due to Remark 2.4, for each n, we have

∫ ∞

0

e−sxFn1 (x)dx =
1

s





Ê

[

e−sY e(qn)

]

E

[

e−sXe(qn)

] − 1



 , for Re(s) ≥ 0. (3.18)

Similar to the derivation of (3.13), it can be shown that

lim
n↑∞

Ê

[

e−sY e(qn)

]

= Ê

[

e−sY e(q)

]

, Re(s) ≥ 0. (3.19)

Formulas (3.13) and (3.19) lead to

lim
n↑∞

∫ ∞

0

e−sxFn1 (x)dx =

∫ ∞

0

e−sxF1(x)dx =
1

s





Ê

[

e−sY e(q)

]

E

[

e−sXe(q)

] − 1



 , (3.20)
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which holds for Re(s) ≥ 0 and s 6= 0.
Next, we consider the case of s = 0. It follows from (3.9) that

∫ ∞

0

Fn1 (x)dx = lim
s↓0

1

s





Ê

[

e−sY e(qn)

]

E

[

e−sXe(qn)

] − 1





= lim
s↓0

Ê

[

e−sY e(qn)

]

− E

[

e−sXe(qn)

]

s

= lim
s↓0

∫ ∞

0

e−sx
(

P̂
(

Y e(qn) ≤ x
)

− P
(

Xe(qn) ≤ x
)

)

dx

=

∫ ∞

0

(

P̂
(

Y e(qn) ≤ x
)

− P
(

Xe(qn) ≤ x
)

)

dx,

(3.21)

where the third equality is due to the integration by part and the final one
follows from the dominated convergence theorem since (see (3.11))

∫ ∞

0

|P̂
(

Y e(qn) ≤ x
)

− P
(

Xe(qn) ≤ x
)

|dx ≤

∫ ∞

0

qe−qt|δ|tdt =
|δ|

q
.

As qn > q and (3.11) holds, formula (3.21) yields

lim
n↑∞

∫ ∞

0

Fn1 (x)dx = lim
n↑∞

∫ ∞

0

qne
−qnt

∫ ∞

0

(

P̂
(

Y t ≤ x
)

− P
(

Xt ≤ x
)

)

dxdt

= lim
n↑∞

∫ ∞

0

qe−qt
∫ ∞

0

(

P̂
(

Y t ≤ x
)

− P
(

Xt ≤ x
)

)

dxdt =

∫ ∞

0

F1(x)dx,

which combined with (3.20), leads to (3.17).

Proof of Proposition 3.1 for q ∈ Sc. Since F1(x), Fn1 (x) ≥ −1 for x > 0 (see
Lemma 2.2), we can define the following measures

Mn
1 (x) =

∫ x

0

(

Fn1 (z) + 1
)

dz and M1(x) =

∫ x

0

(

F1(z) + 1
)

dz. (3.22)

Formula (3.17) implies that

lim
n↑∞

∫ ∞

0

e−sxdMn
1 (x) =

∫ ∞

0

e−sxdM1(x), s > 0, (3.23)

which combined with the continuity theorem for Laplace transform (see Theo-
rem 2a on page 433 of [8]), gives

lim
n↑∞

∫ x

0

(

Fn1 (z) + 1
)

dz =

∫ x

0

(

F1(z) + 1
)

dz, for all x > 0. (3.24)

Next, for fixed z > 0, introduce the following probability distribution func-
tions

Pn1 (x) =

∫ x

0

(

Fn1 (t) + 1
)

dt
∫ z

0

(

Fn1 (t) + 1
)

dt
and P1(x) =

∫ x

0

(

F1(t) + 1
)

dt
∫ z

0

(

F1(t) + 1
)

dt
, 0 < x < z. (3.25)
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Then, formula (3.24) means that Pn1 (x) converges to P1(x) in distribution. As
a result, limn↑∞

∫ z

0 e
φtdPn1 (t) =

∫ z

0 e
φtdP1(t) for Re(φ) = 0, so

lim
n↑∞

∫ z

0
eφt
(

Fn1 (t) + 1
)

dt
∫ z

0

(

Fn1 (t) + 1
)

dt
=

∫ z

0
eφt
(

F1(t) + 1
)

dt
∫ z

0

(

F1(t) + 1
)

dt
. (3.26)

It follows from (3.24) and (3.26) that

lim
n↑∞

∫ x

0

eφtFn1 (t)dt =

∫ x

0

eφtF1(t)dt, for any x > 0, (3.27)

which combined with (3.17), yields

lim
n↑∞

∫ ∞

0

eφxFn1 (x+ y − b)dx =

∫ ∞

0

eφxF1(x+ y − b)dx. (3.28)

Therefore, the desired result that (3.1) holds also for q ∈ Sc follows from (3.8)
by letting n ↑ ∞ and using (3.12), (3.13) and (3.28).

4. Main results

For the unique strong solution U to (1.1) with X given by (2.1), its proba-
bility distribution function is given by Theorems 4.1 and 4.2.

Theorem 4.1. For q > 0 and y ≥ b,

Px

(

Ue(q) > y
)

= 1 −Kq(y − x) −

∫ y−x

b−x

F1(y − x− z)Kq(dz), (4.1)

where Kq(x) is the convolution of Y e(q) under P̂ and Xe(q) under P, i.e.,

Kq(x) =

∫ min{0,x}

−∞

P
(

Xe(q) ≤ x− z
)

P̂

(

Y e(q) ∈ dz
)

, x ∈ R, (4.2)

and F1(x) is continuous and differentiable on (0,∞) with rational Laplace trans-
form given by (2.10).

Proof. First, the right-hand side of (3.1) can be rewritten as

∫ ∞

−∞

eφx
∫ x

−∞

F1(x− z + y − b)dKq(z)dx, (4.3)

where Kq(x) is given by (4.2). Since Xe(q) and Y e(q) have density functions
(see Remark 2.7) and F1(x) is continuous on (0,∞), it is concluded that the
integrand in (4.3), i.e.,

∫ x

−∞
F1(x− z+ y− b)dKq(z), is continuous with respect

to x.
As Ye(q) is the convolution of Y e(q) and Y e(q) (see Lemma 2.6), P̂x

(

Ye(q) > y
)

is continuous with respect to x. This result and Lemma 2.5 lead to that
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Px

(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

is also continuous. Therefore, for y > b, it
follows from (3.1) and (4.3) that

Px

(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

=

∫ b−x

−∞

F1(y − x− z)dKq(z), x ∈ R. (4.4)

In addition, for Re(φ) = 0, we have (recall (4.2) and Remark 2.4)

∫ ∞

−∞

eφxdKq(x)

∫ ∞

0

eφxF1(x)dx =
1

φ



1 −
Ê

[

eφY e(q)

]

E

[

eφXe(q)

]





∫ ∞

−∞

eφxdKq(x)

=
1

φ

(∫ ∞

−∞

eφxdKq(x) − Ê
[

eφYe(q)
]

)

=

∫ ∞

−∞

eφx
(

P̂
(

Ye(q) ≤ x
)

−Kq(x)
)

dx,

(4.5)

where the second equality is due to Lemma 2.6 and the third one follows from
the application of integration by parts. Note that

∫ ∞

−∞

|P̂
(

Ye(q) ≤ x
)

−Kq(x)|dx

≤

∫ ∞

−∞

∫ min{0,x}

−∞

|P̂
(

Y e(q) ≤ x− z
)

− P
(

Xe(q) ≤ x− z
)

|P̂
(

Y e(q) ∈ dz
)

dx

≤

∫ ∞

−∞

∫ 0

−∞

|P̂
(

Y e(q) ≤ x− z
)

− P
(

Xe(q) ≤ x− z
)

|P̂
(

Y e(q) ∈ dz
)

dx ≤
|δ|

q
,

where in the first inequality, we have used Lemma 2.6 and (4.2); the final in-
equality follows from (3.11).

For x ∈ R, formula (4.5) gives

∫ y−x

−∞

F1(y − x− z)dKq(z) = P̂
(

Ye(q) ≤ y − x
)

−Kq(y − x), (4.6)

which combined with (4.4), leads to

Px

(

Ue(q) > y
)

− P̂x

(

Ye(q) > y
)

= P̂
(

Ye(q) ≤ y − x
)

−Kq(y − x) −

∫ y−x

b−x

F1(y − x− z)dKq(z).
(4.7)

This proves that (4.1) holds for y > b. Letting y ↓ b in (4.7) and using that

limy↓b

∫ y−x

b−x F1(y − x − z)Kq(dz) = 0 (since F1(x) is bounded on (0,∞); see
Remark 2.4) deduce that (4.1) holds also for y = b.

Similar derivations will lead to the following Theorem 4.2, and for the sake
of brevity, the details are omitted.
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Theorem 4.2. For q > 0 and y ≤ b,

Px

(

Ue(q) < y
)

= Kq(y − x) −

∫ b−x

y−x

F2(y − x− z)Kq(dz), (4.8)

where F2(x) is continuous and differentiable on (−∞, 0) and its Laplace trans-
form is given by

∫ 0

−∞

eszF2(z)dz =
1

s





E

[

esXe(q)

]

Ê

[

esY e(q)

] − 1



 , s > 0. (4.9)

Remark 4.1. It follows from (4.1) and (4.8) that

Px

(

Ue(q) > b
)

+ Px

(

Ue(q) < b
)

= 1,

which implies that Px
(

Ue(q) = b
)

= 0 for all q > 0.

Remark 4.2. For fixed b ∈ R, letting y = b in (4.1), we arrive at Px
(

Ue(q) > b
)

=
1 −Kq(b− x), which means that

∫ ∞

−∞

e−φ(x−b)d
(

Px

(

Ue(q) > b
))

= Ê

[

eφY e(q)

]

E

[

eφXe(q)

]

.

A similar result has already been derived in [22]; see (4.9) in that paper.

Remark 4.3. Compared with (2.20), in (4.1), (4.2), (4.8) and (4.9), the roots

of ψ(z) = q and ψ̂(z) = q disappear. The forms of these results and Remark
2.2 give us the following conjecture: formulas (4.1) and (4.8) hold for a general
Lévy process X and the corresponding solution U (if exists) to (1.1). Proving
this conjecture is a potential research direction.

Since both F1(x) and F2(x) are differentiable, from (4.1) and (4.8), the
expression of Px

(

Ue(q) ∈ dy
)

can be derived.

Corollary 4.1.

Px

(

Ue(q) ∈ dy
)

= q

∫ ∞

0

e−qtPx (Ut ∈ dy) dt =

{

(F1(0) + 1)Kq(dy − x) +
∫ y−x

b−x
F ′
1(y − x− z)Kq(dz)dy, y > b,

(F2(0) + 1)Kq(dy − x) −
∫ b−x

y−x
F ′
2(y − x− z)Kq(dz)dy, y < b,

(4.10)

where F1(0) is given by (2.12), F2(0) := limx↑0 F2(x) and moreover F2(0) =
F1(0).

Proof. In (4.1) and (4.8), differentiating with respect to y yields (4.10). Noting
that P

(

Ue(q) = b
)

= 0 (see Remark 4.1), we can write y > b or y < b in (4.11)
as y ≥ b or y ≤ b. An interesting conclusion is that F2(0) = F1(0), which will
be proved in the following.
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For simplicity, we only consider q ∈ S since the case of q ∈ Sc can be shown
similarly.

It follows from (2.17) and (4.9) that

F2(0) =

∏N−

k=1 γk
∏N̂−

k=1 γ̂k
− 1. (4.11)

For q ∈ S, Lemma 2.1 (i) and Lemma 2.4 (i) give

ψ̂(z) − q = ψ(z) − iδz − q = −
σ2

2

∏M̂+

k=1(β̂k − iz)
∏N̂−

k=1(γ̂k + iz)
∏n−

k=1(ϑk + iz)nk

∏m+

k=1(ηk − iz)mk

,

which combined with the fact that ψ(0) = 0, produces

q =
σ2

2

∏M̂+

k=1 β̂k
∏N̂−

k=1 γ̂k
∏n−

k=1(ϑk)nk

∏m+

k=1(ηk)mk

.

Similarly, we can prove

q =
σ2

2

∏M+

k=1 βk
∏N−

k=1 γk
∏n−

k=1(ϑk)nk

∏m+

k=1(ηk)mk

.

Therefore,
∏M̂+

k=1 β̂k
∏M+

k=1 βk
=

∏N−

k=1 γk
∏N̂−

k=1 γ̂k
, (4.12)

and the desired result follows from (2.12), (4.11) and (4.12).

Remark 4.4. For a more general Lévy process X, the two functions F1(x) and
F2(x) given respectively by (2.10) and (4.9) may not be differentiable. Thus, it
is better to understand (4.10) as

Px

(

Ue(q) ∈ dy
)

=
{

(

F1(0) + 1
)

Kq(dy − x) +
∫ y−x

b−x
F1(dy − x− z)Kq(dz), y > b,

(

F2(0) + 1
)

Kq(dy − x) −
∫ b−x

y−x
F2(dy − x− z)Kq(dz), y < b.

5. Applications in pricing Variable Annuities

As stated in the introduction, our results can be used to price Variable An-
nuities (VAs) with state-dependent fees. First of all, we give some backgrounds.

VAs are life insurance products whose benefits are linked to the performance
of a reference portfolio with guaranteed minimum returns. There are many
kinds of guarantees such as Guaranteed Minimum Death Benefits (GMDBs)
and Guaranteed Minimum Maturity Benefits (GMMBs), and the reader is re-
ferred to [3] for more details. Of course, the guaranteed benefits are not free.
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Traditionally, the corresponding fees are deducted at a fixed rate from the poli-
cyholder’s account. This classical fee charging method has some disadvantages,
which have been noted by [4]. Thus in [4], the authors proposed a new fee
deducting approach under which only when the policyholder’s account value is
lower than a pre-specified level can the insurer charge fees. For more details
and researches on this new method, we refer to [4,7,17,24,25].

Let St and Ft represent respectively the time-t value of the reference portfolio
and the policyholder’s account. Under the state-dependent fee structure, we
have (see (1) in [4] or (2.3) in [24])

dFt = Ft−
dSt
St−

− (−δ)Ft−1{Ft−<B}dt, t > 0, (5.1)

where −δ > 0 is the fee rate and B is a pre-specified level. Note that the case of
B = ∞ corresponds to the classical fee charging method. Furthermore, assume
that

St = S0e
Xt−δt,

with Xt given by (2.1).
For a VA with GMMBs, its payoff can be written as G(FT ), where T is the

maturity and G(·) is a payoff function. For a VA with GMDBs, its payment
when the policyholder dies is given by G(FTx

), where Tx is the time of the death
of the insured. A simple example of G(·) is G(x) = max{x,K}, where K is a
constant. In order to price VAs with GMMBs or GMDBs, we need to compute
the following expectations under an equivalent martingale measure:

E
[

e−rTG(FT )
]

or E
[

e−rTxG(FTx
)
]

, (5.2)

where r > 0 denotes the continuously compounded constant risk-free rate.
As the market is incomplete, an equivalent martingale measure should be

chosen to calculate (5.2). Similar to [24], we use the Cramér-Esscher transform
(see [9]) to obtain the wanted martingale measure. In specific, define first

dPc

P
=

ecXt

E [ecXt ]
,

where c ∈ R such that E
[

ecXt
]

<∞. And for convenience, in (2.2) and (2.3), we
assume that η1 (ϑ1) has the smallest real part among η1, . . ., ηm+ (ϑ1, . . ., ϑn−).
As St = S0e

Xt−δt, it is reasonable to require that E
[

eXt
]

<∞, this means that

η1 > 1 in (2.2). Note that limc↑η1 E
[

ecXt
]

= ∞ and limc↓−ϑ1 E
[

ecXt
]

= ∞. We

can choose c∗ such that e−rtSt is a martingale under Pc
∗

. It is obvious that Xt

is still a Lévy process under Pc
∗

, and in particular, the process X has the same
form as (2.1) under Pc

∗

. So we drop the superscript c∗ from Pc
∗

and assume that
the expectations appeared in the following are calculated under the equivalent
martingale measure Pc

∗

.
For a VA with GMDBs, its price is E

[

e−rTxG(FTx
)
]

. Applying similar dis-
cussions presented in [24] (see the derivation of (2.9) in that paper), we obtain
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that the computation of E
[

e−rTxG(FTx
)
]

reduces to calculate E
[

e−re(q)G(Fe(q))
]

=
q
r+qE

[

G(Fe(r+q))
]

for given q > 0. For a VA with GMDBs, we note that

∫ ∞

0

e−sTE
[

e−rTG(FT )
]

dT =
1

s+ r
E
[

G(Fe(s+r))
]

,

from which E
[

e−rTG(FT )
]

can be obtained by using a numerical Laplace in-
version technique.

In summary, the key step to price a VA with GMDBs or GMMBs is deriving
the expression of E

[

G(Fe(q))
]

for q > 0.
From (5.1), applying Itô’s formula gives Ft = F0e

Ut with

dUt = d(Xt − δt) − (−δ)1{Ut<b}dt = dXt − δ1{Ut>b}dt, (5.3)

where b = ln
(

B
F0

)

. So we arrive at

E
[

G(Fe(q))
]

= E
[

G(F0e
Ue(q))

]

=

∫ ∞

−∞

G(F0e
y)P

(

Ue(q) ∈ dy
)

. (5.4)

It follows from (1.1), (4.10) and (5.3) that

P
(

Ue(q) ∈ dy
)

=

{

(F1(0) + 1)Kq(dy) +
∫ y

b
F ′
1(y − z)Kq(dz)dy, y > b,

(F2(0) + 1)Kq(dy) −
∫ b

y
F ′
2(y − z)Kq(dz)dy, y < b,

(5.5)

where F1(x), F2(x) and Kq(x) are given respectively by (2.10), (4.9) and (4.2).
By applying rational expansion, we can obtain semi-explicit expressions for

F1(x), F2(x) and Kq(x) and thus for P
(

Ue(q) ∈ dy
)

. However, for q ∈ Sc, for-

mulas for P
(

Ue(q) ∈ dy
)

are very long and complicated, and more importantly,
they are difficult to be used in numerical computations since we need to handle
multiple roots. Fortunately, due to Lemma 2.3, it is safe and convenient to
consider only the case of q ∈ S. The corresponding results will be given in the
following corollary, from which we can obtain first the expression of E

[

G(Fe(q))
]

and then the price of a VA with GMDBs or GMMBs.

Corollary 5.1. For q ∈ S, defining fq(x) := P
(

Ue(q) ∈ dy
)

/dy, we have the
following results.

(i) If b ≥ 0, then

fq(y) =































∏M̂+

k=1 β̂k
∏M+

k=1 βk
Kq(dy) +

M+
∑

i=1

N̂−

∑

j=1

M̂+
∑

m=1

Ki,jF1,m

β̂m − βi

(

e−βiy − e−βibeβ̂m(b−y)
)

, y > b,

∏N−

k=1 γk
∏N̂−

k=1 γ̂k
Kq(dy) −

M+
∑

i=1

N̂−

∑

j=1

N−

∑

n=1

Ki,jF2,n

γn + βi

(

e−βiy − e−βibeγn(y−b)
)

, 0 < y < b,
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and for y ≤ 0,

fq(y) =

∏N−

k=1 γk
∏N̂−

k=1 γ̂k
Kq(dy)−

M+
∑

i=1

N̂−

∑

j=1

N−

∑

n=1

Ki,jF2,n

γ̂j − γn

(

e
γny

(

γ̂j + βi

γn + βi

−

γ̂j − γn

γn + βi

e
−(βi+γn)b

)

− e
γ̂jy

)

.

(ii) If b < 0, then

fq(y) =































∏N−

k=1 γk
∏N̂−

k=1 γ̂k
Kq(dy) −

M+
∑

i=1

N̂−

∑

j=1

Ki,j

N−

∑

n=1

F2,n
eγn(y−b)+γ̂jb − eγ̂jy

γ̂j − γn
, y < b,

∏M̂+

k=1 β̂k
∏M+

k=1 βk
Kq(dy) +

M+
∑

i=1

N̂−

∑

j=1

Ki,j

M̂+
∑

m=1

F1,m
eγ̂jy − eβ̂m(b−y)+γ̂jb

γ̂j + β̂m
, b < y < 0,

and for y ≥ 0,

fq(y) =

∏M̂+

k=1 β̂k

∏M+

k=1 βk

Kq(dy)+

M+
∑

i=1

N̂−

∑

j=1

M̂+
∑

m=1

Ki,jF1,m

βi − β̂m

{

e
−βmy

(

βi + γ̂j

γ̂j + β̂m

+
β̂m − βi

β̂m + γ̂j
e
(β̂m+γ̂j)b

)

− e
−βiy

}

.

In the above formulas,

F1,i = −β̂i

M+
∏

k=1

β̂i − βk
βk

M̂+
∏

k=1,k 6=i

β̂k

β̂i − β̂k
, for 1 ≤ i ≤ M̂+, (5.6)

F2,i = −γi

N̂−

∏

k=1

γ̂k − γi
γ̂k

N−

∏

k=1,k 6=i

γk
γk − γi

, for 1 ≤ i ≤ N−, (5.7)

and

Kq(dx) =

M+
∑

i=1

N̂−

∑

j=1

Ki,je
−βixe(βi+γ̂j)(x∧0), (5.8)

where

Ki,j =
βiγ̂j
βi + γ̂j

m+
∏

k=1

(ηk − βi)
mk

(ηk)mk

M+
∏

k=1,k 6=i

βk
βk − βi

n−

∏

k=1

(ϑk − γ̂j)
nk

(ϑk)nk

N̂−

∏

k=1,k 6=j

(

γ̂k
γ̂k − γ̂j

)

.

Proof. Since q ∈ S, we have F1(x) = F0(x) (see (3.6) and (3.7)). So for x > 0,

F ′
1(x) =

M̂+
∑

i=1

F1,ie
−β̂ix

with F1,i given by (5.6). Besides, formula (2.12) gives

F1(0) =

∏M̂+

k=1 β̂k
∏M+

k=1 βk
− 1.

19



From (2.17) and (4.9), applying partial fraction expansion gives

F ′
2(x) =

N−

∑

i=1

F2,ie
γix, x < 0,

where F2,i is given by (5.7). In addition, we know (see (4.11))

F2(0) =

∏N−

k=1 γk
∏N̂−

k=1 γ̂k
− 1.

From Lemma A.1 (i), Lemma A.1 (iii) and (4.2), some straightforward cal-
culations leads to (5.8).

Therefore, the desired results follow from (5.5) after some simple computa-
tions.

Appendix

The proof of Proposition 2.1 is given in this section, where some ideas used
can also be found in [22]. For completeness and for the convenience of the
reader, we present all the details rather than omit some of them even though
we will repeat some preliminary results and calculation procedures appeared in
[22].

Recall S is the set of q > 0 such that all the roots of ψ(z) = q and ψ̂(z) = q
are simple.

The following Lemma A.1 follows directly from Lemmas 2.1 and 2.4.

Lemma A.1. For q ∈ S, the following results hold.

(i) For y ≥ 0, P
(

Xe(q) ∈ dy
)

=
∑M+

k=1 Cke
−βkydy, where

Ci
βi

=
m+
∏

k=1

(

ηk − βi
ηk

)mk M+
∏

k=1,k 6=i

βk
βk − βi

, 1 ≤ i ≤M+. (A.1)

(ii) For y ≥ 0, P̂
(

Y e(q) ∈ dy
)

=
∑M̂+

k=1 Ĉke
−β̂kydy, where

Ĉi

β̂i
=

m+
∏

k=1

(

ηk − β̂i
ηk

)mk M̂+
∏

k=1,k 6=i

β̂k

β̂k − β̂i
, 1 ≤ i ≤ M̂+. (A.2)

(iii) For y ≤ 0, P̂
(

Y e(q) ∈ dy
)

=
∑N̂−

k=1 D̂ke
γ̂kydy, where

D̂j

γ̂j
=

n−

∏

k=1

(

ϑk − γ̂j
ϑk

)nk N̂−

∏

k=1,k 6=j

(

γ̂k
γ̂k − γ̂j

)

, 1 ≤ j ≤ N̂−. (A.3)
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Next, introduce the following three rational functions:

ψ+(s) :=

m+
∏

k=1

(

s+ ηk
ηk

)mk M
+
∏

k=1

(

βk
s+ βk

)

=

M+
∑

k=1

Ck
s+ βk

, (A.4)

ψ̂+(s) :=
m+
∏

k=1

(

s+ ηk
ηk

)mk M̂
+
∏

k=1

(

β̂k

s+ β̂k

)

=
M̂+
∑

k=1

Ĉk

s+ β̂k
, (A.5)

and

ψ̂−(s) :=

n−

∏

k=1

(

s+ ϑk
ϑk

)nk N̂−

∏

k=1

(

γ̂k
s+ γ̂k

)

=

N̂−

∑

k=1

D̂k

s+ γ̂k
. (A.6)

For q ∈ S and Re(s) ≥ 0, note that (see (2.8), (2.9) and (2.17))

E

[

e−sXe(q)

]

= ψ+(s), Ê

[

e−sY e(q)

]

= ψ̂+(s) and Ê

[

esY e(q)

]

= ψ̂−(s).(A.7)

In addition, for a ∈ R, define

τ+a := inf{t ≥ 0 : Xt > a} and τ̂−a := inf{t ≥ 0 : Yt < a}. (A.8)

Results on the one-sided exit problems of X and Y are presented in the
following lemma. Lemma A.2 (i) can be established by applying Lemma A.1
(i), (2.14) and (A.4); and Lemma A.2 (ii) follows from Lemma A.1 (iii), (A.6)
and the following result (see Corollary 2 in [1])

Ê

[

e
−qτ̂−

x +s(Y
τ̂
−

x
−x)
]

=
Ê

[

es(Y e(q)−x)1{Y e(q)<x}

]

Ê

[

esY e(q)

] , x, s ≥ 0.

Lemma A.2. (i) For q ∈ S and x, y ≥ 0,

E

[

e−qτ
+
x 1{X

τ
+
x
−x∈dy}

]

= C0(x)δ0(dy) +
m+
∑

k=1

mk
∑

j=1

Ckj(x)
(ηk)jyj−1

(j − 1)!
e−ηkydy,

where δ0(dy) is the Dirac delta at y = 0, C0(x) and Ckj(x) are given by rational
expansion:

C0(x) +

m+
∑

k=1

mk
∑

j=1

Ckj(x)

(

ηk
ηk + s

)j

=
1

ψ+(s)

M+
∑

k=1

Ck
e−βkx

s+ βk
, x ≥ 0. (A.9)

(ii) For q ∈ S and x, y ≤ 0,

Ê

[

e−qτ̂
−

x 1{Y
τ̂
−

x
−x∈dy}

]

= D̂0(x)δ0(dy) +

n−

∑

k=1

nk
∑

j=1

D̂kj(x)
(ϑk)j(−y)j−1

(j − 1)!
eϑkydy,
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where D̂0(x) and D̂kj(x) are given by rational expansion:

D̂0(x) +

n−

∑

k=1

nk
∑

j=1

D̂kj(x)

(

ϑk
ϑk + s

)j

=
1

ψ̂−(s)

N̂−

∑

k=1

D̂k

eγ̂kx

s+ γ̂k
, x ≤ 0. (A.10)

Remark A.1. A useful observation is that C0(x) and Ckj(x) in (A.9) are

linear combinations of eβix for 1 ≤ i ≤ M+, and D̂0(x) and D̂kj(x) in (A.10)

are linear combinations of eγ̂ix for 1 ≤ i ≤ N̂−.

Lemma A.3 is a straightforward result of (A.9) and (A.10), here the reader

is reminded that 1
(θ+βk)(s+βk)

can be written as 1
s−θ

(

1
θ+βk

− 1
s+βk

)

.

Lemma A.3. For any θ > 0 and s 6= −η1, . . . ,−ηm+ with θ 6= s,

∫ ∞

0

e−θxC0(x)dx +

m+
∑

k=1

mk
∑

j=1

∫ ∞

0

e−θxCkj(x)dx

(

ηk
ηk + s

)j

=
1

s− θ

(

ψ+(θ)

ψ+(s)
− 1

)

,

(A.11)

and for any θ > 0 and s 6= −ϑ1, . . . ,−ϑn− with θ 6= s

∫ 0

−∞

eθxD̂0(x)dx +

n−

∑

k=1

nk
∑

j=1

∫ 0

−∞

eθxD̂kj(x)dx

(

ϑk
ϑk + s

)j

=
1

s− θ

(

ψ̂−(θ)

ψ̂−(s)
− 1

)

.

(A.12)

Proof of Proposition 2.1. For given y > b, the function of x, Vq(x), is defined
as (see Lemma 2.5):

Vq(x) = Px

(

Ue(q) > y
)

. (A.13)

Recall (1.1) and note that {Xt, t < τ+b } and {Ut, t < κ+b } with κ+b := inf{t ≥
0 : Ut > b} under Px have the same law if x < b. Thus, for x < b, the strong
Markov property of U will lead to

Vq(x) = Ex

[

1{Ue(q)>y}1{e(q)>κ+
b
}

]

= Ex

[

e−qκ
+
b Vq(Uκ+

b
)
]

= Ex

[

e−qτ
+
b Vq(Xτ

+
b

)
]

= E

[

e−qτ
+
b−xVq(Xτ

+
b−x

+ x)
]

=

m+
∑

k=1

mk
∑

j=1

Ckj(b− x)

∫ ∞

0

(ηk)jzj−1

(j − 1)!
e−ηkzVq(b+ z)dz

+ C0(b− x)Vq(b) =

M+
∑

k=1

Jke
βk(x−b), x < b,

(A.14)

where J1, . . . , JM+ are constants which are not dependent on x; the fourth and
the fifth equality follows from Lemma A.2 (i) and Remark A.1, respectively.
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For x > b, the strong Markov property of U and the fact that {Yt, t < τ̂−b }

under P̂x and {Ut, t < κ−b } with κ−b := inf{t ≥ 0 : Ut < b} under Px have the
same law1 will give

Vq(x) = Ex

[

∫ κ
−

b

0

qe−qt1{Ut>y}dt +

∫ ∞

κ
−

b

qe−qt1{Ut>y}dt

]

= Êx

[
∫ ∞

0

qe−qt1{Yt>y,t<τ̂−

b }dt

]

+ Êx

[

e−qτ̂
−

b Vq(Yτ̂−

b
)
]

= P̂x(Ye(q) > y, Y e(q) ≥ b) + Êx

[

e−qτ̂
−

b Vq(Yτ̂−

b
)
]

.

(A.15)

Since Lemma 2.6 holds, the first item on the right-hand side of (A.15) can be
written as

∫ 0

b−x

P̂(Ye(q) − Y e(q) > y − x− z, Y e(q) ∈ dz)

=

∫ 0

b−x

P̂(Y e(q) > y − x− z)P̂(Y e(q) ∈ dz)

=

{

∑M̂+

k=1 Ĥke
β̂k(x−y) +

∑N̂−

k=1 P̂
∗
k e

γ̂k(b−x), b < x ≤ y,

1 +
∑N̂−

k=1 Q̂ke
γ̂k(y−x) +

∑N̂−

k=1 P̂
∗
k e

γ̂k(b−x), x ≥ y,

(A.16)

where the second equality is due to Lemma A.1 (ii) and (iii) (note that P̂
(

Y e(q) > z
)

=

1 if z ≤ 0); for k = 1, 2, . . . , M̂+,

Ĥk =
Ĉk

β̂k

N̂−

∑

j=1

D̂j

β̂k + γ̂j
, (A.17)

and for k = 1, 2, . . . , N̂−,

Q̂k = D̂k

M̂+
∑

i=1

Ĉi

β̂i(β̂i + γ̂k)
−
D̂k

γ̂k
and P̂ ∗

k = −

M̂+
∑

i=1

Ĉi

β̂i

D̂k

β̂i + γ̂k
eβ̂i(b−y). (A.18)

Therefore, from (A.15), (A.16), Lemma A.2 (ii) and Remark A.1, we con-
clude that there are some constants P̂1, . . . , P̂N̂−

(independent of x) such that

N̂−

∑

k=1

P̂ke
γ̂k(b−x) =

n−

∑

k=1

nk
∑

j=1

D̂kj(b− x)

∫ 0

−∞

Vq(b+ z)
(ϑk)j(−z)j−1

(j − 1)!
eϑkzdz

+ D̂0(b− x)Vq(b) +

N̂−

∑

j=1

P̂ ∗
j e

γ̂j(b−x), for all x > b,

(A.19)

1Strictly speaking, this statement should be written as follows: {Yt, t < τ̃
−

b
} with τ̃

−

b
:=

inf{t ≥ 0 : Yt ≤ b} under P̂x and {Ut, t < κ̃
−

b
} with κ̃

−

b
:= inf{t ≥ 0 : Ut ≤ b} under Px have

the same law. But, since σ > 0, we have Px

(

τ̂
−

b
= τ̃

−

b

)

= 1 and Px

(

κ
−

b
= κ̃

−

b

)

= 1.
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and

Vq(x) =

{

∑M̂+

k=1 Ĥke
β̂k(x−y) +

∑N̂−

k=1 P̂ke
γ̂k(b−x), b < x ≤ y,

1 +
∑N̂−

k=1 Q̂ke
γ̂k(y−x) +

∑N̂−

k=1 P̂ke
γ̂k(b−x), x ≥ y,

(A.20)

For the constants Jk in (A.14) and P̂k in (A.19), we will show in the following
Lemma A.4 that formulas (A.25)–(A.28) hold.

Next, consider a rational function of x as follows:

L(x) =

M+
∑

i=1

Ji
x− βi

−

N̂−

∑

i=1

P̂i
x+ γ̂i

−

M̂+
∑

i=1

Ĥi

x− β̂i
eβ̂i(b−y). (A.21)

For fixed 1 ≤ k ≤ m+ and 0 ≤ j ≤ mk − 1, (A.27) in Lemma A.4 gives

us ∂j

∂xj (L(x))x=ηk = 0. This implies that ηk is a root of L(x) = 0 and its

multiplicity is mk. Moreover, for 1 ≤ k ≤ n−, (A.28) means that −ϑk is a
nk-multiplicity root of L(x) = 0. From these results, L(x) can be rewritten as

∏m+

k=1(x− ηk)mk
∏n−

k (x + ϑk)nk(l0 + l1x+ · · · + lM+−1x
M+−1 + xM

+

(L0 + L1x)
∏M+

i=1 (x− βi)
∏N̂−

i=1(x+ γ̂i)
∏M̂+

i=1 (x− β̂i)
,

(A.22)
where l0, l1, . . . , lM+−1, L0 and L1 are constants, and we have used M+ =
∑m+

k=1mk + 1 = M̂+ and N̂− =
∑n−

k=1 nk + 1 (see Remark 2.5 and Lemma 2.4)
in the above derivation.

Then, by applying (A.25) and (A.26), we derive L0 = 0 and L1 = 0 from
(A.21) and (A.22). Finally, it can be seen from (A.21) that

lim
x→β̂i

L(x)(x − β̂i) = −Ĥie
β̂i(b−y), 1 ≤ i ≤ M̂+. (A.23)

Therefore, we arrive at the conclusion that

L(x) =

∏m+

k=1(x − ηk)mk
∏n−

k=1(x+ ϑk)nk

∏M+

i=1 (x− βi)
∏N̂−

i=1(x+ γ̂i)
×

M̂+
∑

k=1

∏M+

i=1 (β̂k − βi)
∏N̂−

i=1(β̂k + γ̂i)
∏m+

i=1(β̂k − ηi)mi
∏n−

i=1(β̂k + ϑi)ni

−Ĥk

x− β̂k
eβ̂k(b−y).

(A.24)

Formulas (2.20) and (2.21) are derived from (A.14), (A.20), (A.21) and (A.24).

Lemma A.4. (i) It holds that

M+
∑

i=1

Ji = Vq(b) =

M̂+
∑

i=1

Ĥie
β̂i(b−y) +

N̂−

∑

i=1

P̂i, (A.25)
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and
M+
∑

i=1

Jiβi = V ′
q (b) =

M̂+
∑

i=1

Ĥiβ̂ie
β̂i(b−y) −

N̂−

∑

i=1

P̂iγ̂i. (A.26)

(ii) For 1 ≤ k ≤ m+ and 0 ≤ j ≤ mk − 1,

M+
∑

i=1

Ji(−1)j

(βi − ηk)j+1
+

N̂−

∑

i=1

P̂i
(ηk + γ̂i)j+1

−
M̂+
∑

i=1

Ĥi(−1)j

(β̂i − ηk)j+1
eβ̂i(b−y) = 0. (A.27)

(iii) For any given 1 ≤ k ≤ n− and 0 ≤ j ≤ nk − 1,

M+
∑

i=1

Ji(−1)j

(βi + ϑk)j+1
+

N̂−

∑

i=1

P̂i
(γ̂i − ϑk)j+1

−
M̂+
∑

i=1

Ĥi(−1)j

(β̂i + ϑk)j+1
eβ̂i(b−y) = 0. (A.28)

Proof. (i) These results follow from (2.19), (A.14) and (A.20).

(ii) First, as
∑M̂+

i=1
Ĉi

β̂i

= 1 =
∑N̂−

j=1
D̂j

γ̂j
(let s = 0 in (A.5) and (A.6)), for

some proper θ, we have (see (A.18))

1 +

N̂−

∑

k=1

θQ̂k
θ + γ̂k

=

M̂+
∑

i=1

N̂−

∑

j=1

ĈiD̂j

β̂iγ̂j
+

N̂−

∑

k=1

θ

θ + γ̂k





M̂+
∑

i=1

D̂kĈi

β̂i(β̂i + γ̂k)
−
D̂k

γ̂k

M̂+
∑

i=1

Ĉi

β̂i



 .

Thus, for all θ ∈ C except at β̂1, . . . , β̂M̂+ and −γ̂1, . . . ,−γ̂N̂−
, the last formula

and (A.17) will lead to

M̂+
∑

k=1

θĤk

β̂k − θ
+

N̂−

∑

k=1

θQ̂k
θ + γ̂k

+ 1

=

M̂+
∑

i=1

N̂−

∑

j=1

{

θĈiD̂j

β̂i(β̂i + γ̂j)(β̂i − θ)
−

θĈiD̂j

γ̂j(β̂i + γ̂j)(γ̂j + θ)
+
ĈiD̂j

β̂iγ̂j

}

=

M̂+
∑

i=1

N̂−

∑

j=1

ĈiD̂j

(β̂i − θ)(θ + γ̂j)
= ψ̂+(−θ)ψ̂−(θ),

(A.29)

where the last equality follows from (A.5) and (A.6).
Note that

∂j−1

∂ηj−1

(

ψ̂+(−η)
)

η=ηk
= 0, for 1 ≤ k ≤ m+ and 1 ≤ j ≤ mk. (A.30)

From (A.29) and (A.30), we obtain

(ηk)j(−1)j−1

(j − 1)!

∂j−1

∂ηj−1





1

η
eη(b−y)

(

M̂+
∑

i=1

Ĥiη

β̂i − η
+

N̂−

∑

i=1

ηQ̂i
η + γ̂i

+ 1
)





η=ηk

= 0.

(A.31)
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For 1 ≤ k ≤ m+ and 1 ≤ j ≤ mk, the integral (−1)j−1
∫ z2

z1
zj−1e−ηkzeξzdz

can be understood as ∂j−1

∂ηj−1

(

∫ z2

z1
e−ηzeξzdz

)

η=ηk
for some proper constants z1,

z2 and ξ, then it can be obtained from (A.20) and (A.31) that

∫ ∞

0

(ηk)jzj−1

(j − 1)!
e−ηkzVq(b+ z)dz =

N̂−

∑

i=1

P̂i(ηk)j

(ηk + γ̂i)j
+

M̂+
∑

i=1

Ĥi(ηk)j

(ηk − β̂i)j
eβ̂i(b−y),

which combined with (A.14) and the result of Vq(b) =
∑M̂+

i=1 Ĥie
β̂i(b−y)+

∑N̂−

i=1 P̂i
(see (A.25)), gives

M+
∑

k=1

Jke
βk(x−b) =

m+
∑

k=1

mk
∑

j=1

Ckj(b− x)





N̂−

∑

i=1

P̂i(ηk)j

(ηk + γ̂i)j
+

M̂+
∑

i=1

Ĥi(ηk)j

(ηk − β̂i)j
eβ̂i(b−y)





+ C0(b− x)





M̂+
∑

i=1

Ĥie
β̂i(b−y) +

N̂−

∑

i=1

P̂i



 , for all x < b.

(A.32)

It follows from (A.11) and (A.32) that

M+
∑

i=1

Ji
βi + θ

=

∫ b

−∞

eθ(x−b)
M+
∑

i=1

Jie
βi(x−b)dx

=

M̂+
∑

i=1

Ĥie
β̂i(b−y)

θ + β̂i

(

1 −
ψ+(θ)

ψ+(−β̂i)

)

+

N̂−

∑

i=1

P̂i
γ̂i − θ

(

ψ+(θ)

ψ+(γ̂i)
− 1

)

.

(A.33)

Since lim
θ→−β̂i

ψ+(−β̂i)−ψ
+(θ)

θ+β̂i

= −ψ+′(−β̂i) and limθ→γ̂i
ψ+(θ)−ψ+(γ̂i)

θ−γ̂i
= ψ+′(γ̂i).

In addition, noting that both sides of (A.33) are rational functions2 of θ, we can
extend identity (A.33) to the whole plane except at −β1, . . . ,−βM+ . Then, for
given 1 ≤ k ≤ m+ and 0 ≤ j ≤ mk − 1, (A.27) is derived by first taking a
derivative on both sides of (A.33) with respect to θ up to j order and then

letting θ equal to −ηk, where we have used the fact that ∂j

∂θj

(

ψ+(θ)
)

θ=−ηk
= 0.

(iii) Similarly, for 1 ≤ k ≤ n− and 1 ≤ j ≤ nk, it follows from (A.14) that

∫ 0

−∞

Vq(b + z)
(ϑk)j(−z)j−1

(j − 1)!
eϑkzdz =

M+
∑

i=1

Ji(ϑk)j

(ϑk + βi)j
. (A.34)

From (A.12), (A.18), (A.19) and (A.34) and the fact of Vq(b) =
∑M+

i=1 Ji (see

2Here, we omit the first equality in (A.33), i.e., the item
∫ b
−∞

eθ(x−b)
∑M+

i=1 Jie
βi(x−b)dx

is omitted.
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(A.25)), it can be proved that

N̂−

∑

i=1

P̂i
θ + γ̂i

=

N̂−

∑

i=1

P̂i

∫ ∞

b

eθ(b−x)eγ̂i(b−x)dx

= −
M̂+
∑

i=1

Ĉi

β̂i
eβ̂i(b−y)

N̂−

∑

j=1

D̂j

β̂i + γ̂j

1

θ + γ̂j
+
M+
∑

i=1

Ji
βi − θ

(

ψ̂−(θ)

ψ̂−(βi)
− 1

)

.

(A.35)

In addition, we note that

−

M̂+
∑

i=1

Ĉi

β̂i
eβ̂i(b−y)

N̂−

∑

j=1

D̂j

β̂i + γ̂j

1

θ + γ̂j

= −
M̂+
∑

i=1

Ĉi

β̂i
eβ̂i(b−y)

1

β̂i − θ

N̂−

∑

j=1

D̂j

(

1

θ + γ̂j
−

1

β̂i + γ̂j

)

=
M̂+
∑

i=1

Ĥi

β̂i − θ
eβ̂i(b−y) −

M̂+
∑

i=1

Ĉiψ̂
−(θ)

β̂i(β̂i − θ)
eβ̂i(b−y).

(A.36)

where the second equality follows from (A.6) and (A.17).
Hence, from the last two formulas, we arrive at

N̂−

∑

i=1

P̂i
θ + γ̂i

=
M+
∑

i=1

Ji
βi − θ

(

ψ̂−(θ)

ψ̂−(βi)
− 1

)

+

M̂+
∑

i=1

Ĥi

β̂i − θ
eβ̂i(b−y) −

M̂+
∑

i=1

Ĉiψ̂
−(θ)

β̂i(β̂i − θ)
eβ̂i(b−y),

(A.37)

which holds for θ ∈ C except at −γ̂1, . . . ,−γ̂N̂−
.

For given 1 ≤ k ≤ n−, on both sides of (A.37), we take a derivative with
respect to θ up to j order for 0 ≤ j ≤ nk − 1 and then let θ equal to −ϑk.

This calculation leads to (A.28) since ∂j

∂θj

(

ψ̂−(θ)
)

θ=−ϑk

= 0, and the proof is

completed.
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Appl. 109, 79–111.

27



[3] Bauer, D., Kling, A. and Russ, J. (2008). A universal pricing framework
for guaranteed minimum benefits in variable annuities. Astin Bull. 38,

621–651.

[4] Bernard, C., Hardy, M. and MacKay, A. (2014). State-dependent fees for
variable annuity guarantees. Astin Bull. 44, 559–585.

[5] Cai, N. (2009). On first passage times of a hyper-exponential jump dif-
fusion process. Oper. Res. Lett. 37, 127–134.

[6] Cai, N., Chen, N. and Wan, X. (2009). Pricing double-barrier options
under a flexible jump diffusion model. Oper. Res. Lett. 37, 163–167.

[7] Delong,  L. (2014). Pricing and hedging of variable annuities with state-
dependent fees. Insurance Math. Econom. 58, 24–33.

[8] Feller, W. (1996). An Introduction to Probability Theory and its Applica-
tions, Volume II, 2nd Edition, John Wiley, New York.

[9] Gerber, H.U. and Shiu, E.S.W. (1994). Option pricing by Esscher trans-
forms. Trans. Soc. Actuaries 46, 99–140.

[10] Ko, B., Shiu, E.S.W. and Wei, L. (2010). Pricing maturity guarantee with
dynamic withdrawal benefit. Insurance Math. Econom. 47, 216–223.

[11] Kuznetsov, A. (2012). On the distribution of exponential functionals for
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