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EXACT SIMULATION OF MULTIDIMENSIONAL

REFLECTED BROWNIAN MOTION

Jose Blanchet Karthyek Murthy

Stanford Univesity Columbia University

Abstract. We present the first exact simulation method for multidimensional reflected Brownian
motion (RBM). Exact simulation in this setting is challenging because of the presence of correlated
local-time-like terms in the definition of RBM. We apply recently developed so-called ε-strong
simulation techniques (also known as Tolerance-Enforced Simulation) which allow us to provide
a piece-wise linear approximation to RBM with ε (deterministic) error in uniform norm. A novel
conditional acceptance / rejection step is then used to eliminate the error. In particular, we condition
on a suitably designed information structure so that a feasible proposal distribution can be applied.

1. Introduction

This paper is a contribution to the theory of exact simulation for stochastic differential equations
(SDEs). In particular, we present the first exact simulation algorithm for multidimensional reflected
Brownian motion (RBM).

Multidimensional RBM was introduced by Harrison and Reiman in [10] and it figures promi-
nently in stochastic Operations Research. It turns out that RBM approximates the workload at
each station in so-called generalized Jackson networks, which are comprised of single-server queues
connected via Markovian routing. The approximation holds in heavy traffic (that is, as the system
approaches 100% utilization) and it is applicable in great generality (assuming only a functional
central limit theorem for the arrival process and the service requirements at each station, see for
example [14] and [6]). Following [10], we refer a d-dimensional stochastic process (Y(t) : t ≥ 0)
that satisfies the following properties as a reflected Brownian motion (RBM):

1) Y(·) is a Markov process with stationary transition probabilities, continuous sample paths
taking values in the non-negative orthant of Rd,

2) Y(·) behaves in the interior of positive orthant like a d-dimensional Brownian motion (either
standard or with a constant drift and diffusion matrix),

3) Y(·) reflects instantaneously at the boundary of the positive orthant, and
4) the direction of reflection anywhere on the boundary surface where the i-th component

Yi = 0 is the i-th column of the d × d reflection matrix R. It is required that R is of the
form R = I −QT , where Q is a non-negative d × d matrix with zeros on the diagonal and
spectral radius strictly smaller than unity.

RBM as a solution of Skorokhod problem. Let (X(t) : t ≥ 0) denote a d-dimensional Brownian
motion that behaves similar to RBM Y(·) in the interior of the positive orthant. Then it is well
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2 BLANCHET AND MURTHY

known that the RBM Y(·), defined above, can be represented as

Y(t) = X(t) +RL(t),(1)

with Y(t) = (Y1(t), . . . , Yd(t))
T and L(t) = (L1(t), . . . , Ld(t))

T satisfying,

1) Yi(t) ≥ 0 for all t ≥ 0,
2) Li(t) is non-decreasing in t, and Li(0) = 0

3)
∫ t
0 Yi(s)dLi(s) = 0,

for each t ≥ 0 and i = 1, . . . , d (see, for example, [10, 6]). We call X(·) the driving (or free) process,
and Y(·) the reflected process. The map S that takes X(·) to Y(·) in (1) is referred to as the
Skorokhod map. Item 3) above simply states that the process Li(t) increases only at those times t
where Yi(t) = 0. Because of this property, the process Li(·) behaves like the local time of Brownian
motion at the origin. Consequently, the term RL(t) appearing in (1) is not a standard “drift” term,
and cannot be dealt with using change of measure techniques as in [4], [2] or [12].

All the generic exact simulation techniques for diffusions are based on the acceptance / rejection,
after applying Girsanov’s transformation. The difficulty in applying acceptance / rejection in the
multidimensional RBM setting is that there is no natural proposal distribution that can be used to
“dominate” the target process directly. In particular, multidimensional RBM is not absolutely con-
tinuous with respect to any natural process that is easily simulatable. Note that in one dimension
one can simulate RBM directly by keeping track of the running maximum of the driving Brownian
motion, and so these challenging issues arise only in dimensions greater than one. Simulation tech-
niques for one dimensional reflected processes have been studied in [9].

Our contributions. This paper is dedicated to the proof of the following result. Let Y(·) denote
the multi-dimensional RBM in (1).

Theorem 1. Given a deterministic time T ∈ (0, 1), it is possible to simulate Y (T ) without any
bias.

An obstacle to naively using the traditional acceptance / rejection algorithm (see, for example,
[1]) in the simulation of diffusions is that the probability density from which we want to sample is
typically unknown. In our setting, while the probability density of Y(T ) itself may be unknown, we
propose to simulate enough information about the RBM Y(·), and perform acceptance / rejection
sampling for the probability density of Y(T ) conditional on the simulated filtration. Ideally, the
simulated information set should be a collection of random variables such that the probability
density of Y(T ) conditional on the simulated information, denoted here by f, is computable. If
obtaining such a computable conditional density f is feasible, then one can easily perform an
acceptance / rejection step of form,

V <
f(Z)

Cg(Z)
=: L(Z),(2)

where g is a suitable proposal density from which proposal samples Z are drawn, V is an inde-
pendently generated random variable distributed uniformly in [0, 1], and C is a suitable scaling
constant. While this line of thought is interesting, a key difficulty arises from the fact that there
is no easily simulatable information structure such that the density of Y(T ) conditional on the
simulated information is exactly computable.

To overcome this difficulty, we introduce a novel sampling scheme that we call as Refine until
Accept / Reject, which relaxes the requirement that the conditional density f is known exactly. The
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key observation behind this algorithm is that in order to accept the proposal Z, we simply need
to decide if inequality (2) holds; we do not need to know the right-hand side of (2) exactly. So,
instead of having direct access to the probability density of Y conditional on I, if we can simply
obtain an approximation to the right-hand side of (2) that ensures inequality (2) holds, we can
accept the proposed sample without incurring any sampling error. We present this idea clearly in a
stylized setting in Section 2.1 along with an outline of its applicability to the simulation of RBM in
Section 2.2. We use Section 3 to fully present our algorithm for exactly simulating multidimensional
RBM. Our algorithm relies on the recently developed ε-strong simulation (also known as Tolerance-
Enforced simulation) techniques in [3] to first derive an approximation of the RBM, which then is
used to make one of the following decisions: Accept, reject, (or) refine the approximation of the
right-hand side in (2) until either the proposal can be conclusively accepted or rejected.

We wish to finish this introduction with a critical discussion of our main result. We do believe that
the conditional acceptance / rejection strategy introduced here is of significant value as it addresses
an important open problem (exact sampling of multidimensional RBM). Nevertheless, we must
recognize that the algorithm, in its current form, is mostly of theoretical interest. Unfortunately,
in Section 4, we identify that the expected running time of the algorithm is infinite. While we
are investigating strategies to mitigate this problem, we feel that the nucleus of our sampling
algorithm, namely refine until accept / reject, might propel further research in exact sampling of
various stochastic processes in addition to the search for efficient sampling algorithms for simulating
multidimensional RBM.

2. Overview of the sampling scheme

We first introduce some notational conventions. Throughout the paper we consider the driving
(free) stochastic process X(·) to be a standard Brownian motion in d-dimensions, which write as
X(·) = B(·). The reflected process Y(·) in (1) is referred to as the Reflected Brownian motion
(RBM). The extension of our development to the case in which X(·) is a Brownian motion with
constant drift and diffusion coefficients is straightforward. As mentioned in the Introduction, the
map S that takes X(·) to Y(·) in (1) is referred to as the Skorokhod reflection map.

While all the variables and stochastic processes taking values in R
d for d > 1 are typeset in

boldface, their 1-dimensional counterparts are not. For example, if B(·) denotes the Brownian
motion in multiple dimensions, then B(·) is to be understood as 1-dimensional Brownian motion.

2.1. Refine until accept / reject sampling scheme: An introduction. In this section, let us
restrict our attention to the following sampling problem to which our RBM simulation problem is
later shown to be reduced: Let ∆ and Y be two independent random variables, and W = Y +∆. For
simplicity, let us assume that the probability density of ∆, denoted by f∆ (·), is continuous on its
support which is given by the interval [−a, a] for some a > 0. Consecutively, supx∈[−a,a] f∆ (x) ≤ C

for some C ∈ (0,∞). Let us assume that Y is also supported on [−a, a] with an arbitrary distribution
from which we do not know how to sample exactly. Our objective in this section is to obtain samples
from the distribution of W = Y +∆.

Given Y = y, the density of W evaluated at w is simply f∆ (w − y). Moreover, the support of
such density is contained in the interval [−2a, 2a]. So, in order to simulate W conditional on y, we
could propose W uniformly distributed in [−2a, 2a], and accept if

(3) V < C−1f∆ (W − y) ,

where V ∼ Unif (0, 1) (uniform in (0, 1)), and independent of W and Y = y.
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The key observation is that in order to accept W we simply need to decide if inequality (3) holds;
we do not actually need to know the value of y. So, instead of having direct access to Y , there are
settings, as we demonstrate in our RBM simulation, where we might know {Y εn}n≥1, independent

of ∆, which converges to Y ; say ‖Y εn − Y ‖ ≤ εn for some εn → 0 as n→∞. Then under modest
continuity properties of f∆ (·), for instance say |f∆ (x)− f∆ (x′)| ≤ K ‖x− x′‖, we can accept W if

(4) V ≤ C−1f∆ (W − Y εn)−KC−1εn,

or reject W if

(5) V ≥ C−1f∆ (W − Y εn) +KC−1εn.

Since εn → 0 and V = C−1f∆ (W − Y ) has zero probability of occurring, one must be able to
eventually decide whether to accept or reject. As the outlined sampling procedure does one of the
following – accept / reject the proposed sample of W, or seek for a refinement of Y εn until the
proposal can be accepted or rejected – we call the sampling procedure as refine until accept / reject.

It is useful to remember the following requirements which are necessary for the procedure under-
lying (3), (4) and (5) to yield exact samples of W = Y +∆ :

R1) The probability density of ∆, denoted by f∆(·), has bounded support, and is Lipschitz
continuous; that is, there exists K > 0 such that |f∆(x)− f∆(x

′)| ≤ K‖x− x′‖ for all x, x′.
R2) Conditional on Y = y and all the information simulated to obtain Y εn , the probability

density of W evaluated at w is simply f∆(w − y).

2.2. An outline of the application of refine until accept / reject for multi-dimensional
RBM. Revisiting our objective of exact sampling of RBM, our plan is to apply the sampling
strategy in Section 2.1 by introducing a suitable conditioning. For this purpose, we use the following
key facts about multidimensional RBM. First, the fact that if the driving process is Brownian motion
then, for fixed T , P(Yi (T ) = 0) = 0 for any i ∈ {1, ..., d}. In addition, since Y (·) is continuous,
there exists a δ > 0 and an interval (Tleft, Tright] which contains T , satisfying Yi (s) > δ for all
i ∈ {1, ..., d}, and therefore,

Y(s) = Y(Tleft) +X(s)−X(Tleft),

for all s ∈ (Tleft, Tright]. In other words, the interval (Tleft, Tright) is such that the RBM Y(t)
does not hit the reflecting boundary anywhere during t ∈ (Tleft, Tright] and consecutively, L(s) −
L(Tleft) = 0 for all s ∈ (Tleft, Tright).

So, our plan is to first simulate enough information about X (·) (that is, the driving Brownian
motion) so that conditional on such information we have the representation

Y(T ) = Y(Tleft) +
(

X(T )−X(Tleft)
)

=: Y(Tleft) +∆,(6)

for a suitable Tleft identified from the simulated information. Naturally, we identify Y(T ) and
Y(Tleft), respectively, with the variables W and Y introduced in the abstract setting discussed
previously in Section 2.1. Therefore, our objective is to simulate just enough information so that
conditioned on the simulated information,

R1’) the probability density of the Brownian increment ∆ := X(T )−X(Tleft), denoted by f∆(·),
has bounded support, and is lipschitz continuous, and

R2’) the probability density of Y(T ), evaluated at w, is simply f∆(w −Y(Tleft)).
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The requirements R1’) and R2’) mirror the earlier requirements R1) and R2) in the abstract setting
in Section 2.2. Once these requirements are met, we can follow the logic in Section 2.1 to develop
a refine until accept / reject sampler for obtaining samples from the distribution of Y(T ). Thus,
the proposed algorithm for exact sampling of Y(T ) can be roughly divided into two steps:

1) a preconditioning step where we simulate enough information to arrive at the representation
(6), and

2) exploiting the representation (6) arrived in the preconditioning step, we perform ‘refine until
accept / reject’ to obtain samples of Y(T ).

2.2.1. Overview of the preconditioning step. In order to sample enough information which will en-
able us to obtain the representation (6) along with satisfying the above two requirements, we use
another important property of the Skorokhod map, S, namely, S is Lipschitz continuous as a func-
tion of the driving process in the uniform norm over the time interval [0, 1]. Consequently, to
identify Tleft we use so-called ε−strong simulation techniques, also known as Tolerance-Enforced
Simulation (TES), which allows us to simulate Xε(·) piecewise linear and guaranteed to be within
ε-close in uniform norm to X(·). This construction is, conceptually at least, not complicated. There
are several methods that can be applied for the same: based on wavelets as in [5], localization us-
ing stopping times as in [7], or tracking jointly the maxima and minima on dyadic intervals as in
[3]. We have chosen to use the latter construction, thereby ultimately obtaining (Tleft, Tright] as

a dyadic interval (i.e. Tleft = i2−N and Tright = j2−N for some 0 ≤ i < j ≤ 2N and N > 0).
The reason for choosing the construction in [3] is because it allows us to recursively develop more

refined approximations Xε′ for desired ε′ < ε while preserving the conditional independence of ∆
and Y(Tleft) given all the information required to conclude that L(Tright) − L(Tleft) = 0. Refer
Section 3.1.1 for an overview of the algorithm in [3] that allows us to obtain the desired piecewise
linear approximation Xε(·) for the driving Brownian motion.

The Skorokhod problem is easy to solve for piecewise linear input Xε, because in such case the
solution to Skorokhod problem, denoted by (Yε,Lε) is piecewise linear as well, and the gradients
can be obtained by solving linear systems based on (1) (see Section 3.1.2 for an explicit algorithm).
Since the piecewise linear approximation Yεn(·) to RBM Y(·) can be identified explicitly for a
computable {εn}n≥1 such that εn → 0 as n → ∞, the Lipschitz continuity of Y = S(X) as a
function of X, combined with the approximation Xεn , and the fact that Y (T ) must be strictly
positive coordinate-wise, eventually can be used to identify Tleft used in the additive representation
(6). See Section 3.1 for details.

2.2.2. Requirements for refine until accept / reject step. Once we arrive at representation (6), we
can use the refine until accept / reject algorithm introduced in Section 2.1 to obtain samples of
Y(T ). In order to be able to do this, we need to guarantee that the requirements R1’) and R2’)
mentioned earlier are met. Our construction of Xε (·), as indicated earlier, based on [3] will give
rise to a conditional density for ∆, denoted by f∆(·), which is expressed as an infinite series. So,
the Lipschitz continuity of f∆(·) used in (4) and (5) is obtained by means of some careful estimates.
Consequently, as we shall see in Section 3.2, we will be able to implement the basic refine until
accept / reject strategy underlying (3), (4), and (5).

In Section 3 below, we provide more specific details behind our sampling methodology and point
to future relevant sections where details are fully fleshed out.
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3. The exact sampling scheme

We first describe essential components of the pre-conditioning step (such as ε−strong approxi-
mation techniques) before presenting the refine until accept / reject sampler for Y(T ).

3.1. The preconditioning step. As mentioned in Section 2.2, the objective of the preconditioning
step is to simulate just enough information in order to obtain the representation (6) while satisfying
requirements R1’) and R2’).

3.1.1. Generating ε-strong approximation for the driving Brownian motion. Here, we first provide
a brief description of the ε-strong algorithm of [3] that simulates a piecewise linear approximation
to 1-dimensional standard Brownian motion B(·). The algorithm iteratively generates a sequence

of pairs of piecewise constant dominating processes, {B↑
n(t) : t ∈ [0, 1]} and {B↓

n(t) : t ∈ [0, 1]}, that
satisfy the following properties: For all t ∈ [0, 1],

B↓
n(t) ≤ B↓

n+1(t) ≤ B(u) ≤ B↑
n+1(t) ≤ B↑

n(t), and

sup
t∈[0,1]

|B↑
n(t)−B↓

n(t)| ց 0, a.s. as nր∞.

At every step n ≥ 1, the algorithm generates information about the Brownian motion B(·) in
dyadic intervals {((j − 1)2−n, j2−n] : j = 1, . . . , 2n} conditional on the information available on
dyadic intervals from the (n− 1)th step. Let mj,n and Mj,n denote the extrema of B(·) :

mj,n := inf{B(t) : t ∈ ((j − 1)2−n, j2−n]} and Mj,n = sup{B(t) : t ∈ ((j − 1)2−n, j2−n]}.

During nth iteration, the ε-strong algorithm simulates the following random quantities for each
dyadic interval (indexed by j = 1, . . . , 2n):

1) an interval that contains the minimum: L↓
j,n and L↑

j,n such that mj,n ∈ [L↓
j,n, L

↑
j,n] and

L↑
j,n − L↓

j,n < 2−(n+1)/2,

2) an interval that contains the maximum: U↓
j,n and U↑

j,n such that Mj,n ∈ [U↓
j,n, U

↑
j,n] and

U↑
j,n − U↓

j,n < 2−(n+1)/2, and

3) the end-points of Brownian motion: B((j − 1)2−n) and B(j2−n).

Let Ij,n denote the collective information,

Ij,n := {L↓
j,n, L

↑
j,n, U

↓
j,n, U

↑
j,n, B((j − 1)2−n), B(j2−n)},

which is referred to as intersection layer in [3]. Let I denote the collection of all the intersection
layers; at the end of nth iteration, the collection I is updated as below:

I := {Ij,n : j = 1, . . . , 2n}.

The (n+ 1)th step makes use of I generated in the nth step to arrive at {Ij,n+1 : j = 1, . . . , 2n+1}.
Specific details of how these random quantities are simulated can be found in [3]. From the in-
tersection layers Ij,n generated by the algorithm at nth step, the dominating piecewise constant
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processes can be formed as below:

B↑
n(t) =

2n
∑

j=1

U↑
j,n1(t ∈ ((j − 1)2−n, j2−n]), and

B↓
n(t) =

2n
∑

j=1

L↓
j,n1(t ∈ ((j − 1)2−n, j2−n]).

Further define the following piecewise linear process which shall serve as our approximation for
B(·) :

(7) Bn(t) =

2n
∑

j=1

[

B((j − 1)2−n) + 2n(B(j2−n)−B((j − 1)2−n))(t− (j − 1)2−n)
]

,

which is just a linear interpolation of the points {B((j − 1)2−n) : j = 1, . . . , 2n} over the dyadic in-

tervals in [0, 1]. Note that all the random variables used in the construction of B↑
n(·), B↓

n(·) and Bn(·)
are available in I, and can be simulated on a personal computer without any discretisation error.

It is proved in [3] that the dominating processes B↑
n(·) and B↓

n(·) have the following convergence
behavior:

εn := sup
t∈[0,1]

|B↑
n(t)−B↓

n(t)| = max
1≤j≤2n

|U↑
j,n − L↓

j,n| ց 0, and(8)

E

[∫ 1

0
|B↑

n(t)−B↓
n(t)|dt

]

= O(2−n/2), as n→∞.

To generate a piecewise linear approximation of the d-dimensional Brownian motion B(·) =

(B1(·), . . . , Bd(·)), we generate approximating processes Bn,i(·), B↑
n,i(·), and B↓

n,i(·) independently

for each 1-dimensional Brownian motion Bi(·) as explained above, and use

Bn(t) = (Bn,1(t), . . . , Bn,d(t)), t ∈ [0, 1]

as piecewise linear approximation for B(·). Similar to the 1-dimensional case, the simulated infor-
mation is stored in the intersection layers I = {I ij,n : j = 1, . . . , 2n, i = 1, . . . , d}; here, I ij,n simply

denotes the intersection layer simulated to generate the approximation to ith component Bi(t) of
the driving Brownian motion B(·). As in the 1-dimensional case, we use εn to denote the error in
approximation at the nth step:

εn := sup
{∣

∣

∣B
↑
n,i(t)−B↓

n,i(t)
∣

∣

∣ : t ∈ [0, 1], i = 1, . . . , d
}

.(9)

3.1.2. Generating ε−strong approximation of RBM.. Given a linear path (x(t) : t ∈ [t0, t1)) specified
by initial condition x(t0) ∈ R

d and ẋ(t) = m ∈ R
d for t ∈ (t0, t1), we explain in this section

how to identify the reflected path y(·) = S(x(·)) that solves the Skorokhod problem in (1) with
(x(t) : t ∈ [t0, t1)) as the path of the driving (free) process. Once we know how to solve (1) for a
linear path in the interval (t0, t1), it is straightforward to iteratively solve for any piecewise linear
path of the driving (free) process.

As the slope of each component of the driving path x(·) is fixed in the interval [t0, t1), the slope
of y at time t ∈ (t0, t1), denoted by ẏ(t), is obtained by,

ẏ(t) = m+Rz,
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where, as per conditions 1)−3) in Skorokhod problem (1), y(t) and z ∈ Rd should satisfy,

y(t) ≥ 0, z ≥ 0, and y(t)z = 0.

As a component zi of z = (z1, . . . , zd) is nonzero only when the respective component yi(t) of y(t)
is zero, it is useful to dynamically keep track of which of the components of y(t) = (y1(t), . . . , yd(t))
are zero. We accomplish this algorithmically by letting C := {i : yi(t) = 0}. In addition, we use RC

to denote the submatrix of R formed by letting RC = [Ri,j ]i,j∈C ; similarly, let z
C
= [zi]i∈C , ẏC

(t) =
[ẏi(t)]i∈C denote the vectors formed by entries restricted to indices from the set C. As z

C
is the

minimal non-negative vector that maintains y
C
(t) = 0 (see [11]), it is obtained by solving a linear

program as in Algorithm 1 when any of the components of y hit zero.

Algorithm 1 Algorithm to solve Skorokhod problem (1) for a linear path (x(t) : t ∈ [t0, t1)) with
component wise constant slopes m in the interval [t0, t1) for given initial condition y(t0)

procedure ApproxRBM(t0, t1,y(t0),m)
Initialize the time data structure ~t = [t0] and path space data structure ~y = [y(t0)]
Initialize y = y(t0), C = {i : yi = 0}, t′ = t0, z = 0.
while t′ < t1 do

Solve the linear program minz
C
,ẏ

C
1T z,

subject to z
C
≥ 0, ẏ

C
= m

C
+RCzC

, ẏC ≥ 0.
Update ẏ = m+Rz,

t′ = min

{

t1, min
i:ẏi<0

(

t0 −
yi
ẏi

)}

,

y = y + ẏ(t′ − t0) and

C = {i : yi = 0}.
Append the time and path space data structures with the latest entries as in

~t← [~t t′] and ~y← [~y y].end while
Return ~t, ~y.

Given component-wise constant slopes m of the driving process x(·) in the interval (t0, t1) and the
initial condition y(t0) = y, Algorithm 1 returns a vector ~t and a matrix ~y of dimension d× size(~t),
where size(~t) is the dimension of ~t. The data structures ~t and ~y returned by Algorithm 1 can be
used to construct the piecewise linear path (y(t) : t ∈ [t0, t1)) as follows: if the ith entry of ~t is ti
and the ith column of the matrix ~y is yi, then linear interpolation of the points (ti,yi) yields us the
reflected path (y(t) : t ∈ [t0, t1)).

3.1.3. Detecting the interval (Tleft, Tright].. Recall that the objective of the preconditioning step is
to simulate just enough information about the RBM so that we arrive at the representation (6). As
explained in Section 2.2, we propose to achieve this by detecting an interval (Tleft, Tright] containing
T such that the RBM stays in the interior of positive orthant without hitting the reflecting boundary
anywhere in that interval. In order to accomplish this, we first make the following observations:

A) It is well-known that the Skorokhod map S is lipschitz continuous (with respect to the
uniform metric on the path space C([0, 1];Rd)) with Lipschitz constant K1 := (1 − α)−1;
here α ∈ (0, 1) denotes the spectral radius of the matrix Q = I − R. (see [10]). Therefore,
if we solve (1) with X(·) = Bn(·) as the driving (free) process, the corresponding reflected
process Yn(·) := S(Bn)(·) satisfies,

(10) ‖Yn −Y‖ := sup
t∈[0,1], i=1,...,d

|Yn,i(t)− Yi(t)| < K1εn,
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where εn := sup{B↑
n,i(t) − B↓

n,i(t) : t ∈ [0, 1], i = 1, . . . , d}, and B↑
n,i(·), B

↓
n,i(·) are, respec-

tively, the simulated upper and lower bounding processes of the ith component of the driving
Brownian motion B(·). Since

‖Bn(t)−B(t)‖ = sup{|Bn,i(t)−Bi(t)| : t ∈ [0, 1], i = 1, . . . , d} ≤ εn,

(10) follows as a simple consequence of Lipschitz continuity of Skorokhod map.
B) Let us say a := mini=1,...,d Yi(T ) > 0; that is, the RBM Y(·) lies in the interior of positive

orthant at time T. Then, due to continuity of Brownian motion paths, there exists a random
interval (T − t′, T + t′) where |Bi(t)−Bi(T )| < a for all t ∈ (T − t′, T + t′), and consequently,

Y(t)−Y(T ) = B(t)−B(T ) and

Y(t) = Y(T ) + (B(t)−B(T )) > a1− a1 = 0,

for all t ∈ (T − t′, T + t′). In other words, the RBM Y(t) lies in the interior of positive
orthant for every t ∈ (T − t′, T + t′) where |Bi(t) − Bi(T )| < a. In order to make use of
this observation, recall that our constructed piecewise constant upper and lower bounding

processes B↑
n,i and B↓

n,i satisfy B↑
n,i(·)−B↓

n,i(·) < εn for each component i, and consequently,

|Bi(t)−Bi(s)| < εn, t, s ∈
[

(j − 1)2−n, j2−n,
]

,

for all i = 1, . . . , d, and j = 1, . . . , 2n. As a result, if mini=1,...,d Yi(T ) > εn, then as |Bi(t)−
Bi(T )| < εn for every t in the dyadic interval containing T, the RBM Y(·) does not hit the
reflecting boundary anywhere in the specific dyadic interval [(j − 1)2−n, j2−n] containing
T.

If we know that εn is small enough such that every component of the RBM satisfies Yi(T ) ≥ εn,
then from Observation B) noted above, the RBM Y(t) stays in the interior of positive orthant for
every t in the dyadic interval ((j − 1)2−n, j2−n] containing T ; consecutively, we can declare the
corresponding interval ((j − 1)2−n, j2−n] as (Tleft, Tright]. However, since we do not know Y(T ),
the immediate objective is to figure out how to guarantee that Yi(T ) is indeed larger than εn, for
every i = 1, . . . , d. From the Lipschitz continuity in observation A), if εn is small enough so that
Yn,i(T ) = S(Bn)(T ) > (K1 + 1)εn for some n, then Yi(T ) > εn. Since Y(t) lies in the interior of
the positive orthant almost everywhere, we will indeed have that Yn,i(T ) > (K1 + 1)εn for suitably
small approximation error εn. Now define,

N := inf{n ≥ 1 : Yn,i(T ) > (K1 + 1)εn, i = 1, . . . , d}, and δ := ε
N
.

Recall that εn := sup{|B↑
n,i(t)−B↓

n,i(t)| : t ∈ [0, 1], i = 1, . . . , d}. The preconditioning procedure for

detecting the interval (Tleft, Tright] that simulates approximations to Brownian motion and RBM
until the stopping time N is summarized in Algorithm 2.

With this construction, since the RBM Y(·) does not hit the reflecting boundary anywhere in
the interval (Tleft, Tright], the dynamics of B(·) and Y(·) match in (Tleft, Tright]; in particular,

(11) Y(t)−Y(Tleft) = B(t)−B(Tleft), for all t ∈ (Tleft, Tright],

thus resulting in the desired additive representation Y(T ) = Y(Tleft) + ∆, in (6), where the
increment ∆ := B(T )−B(Tleft) is simply the Brownian increment.

3.2. The conditional probability density of ∆ for the refine until accept / reject sampler.
The requirements R1’) and R2’), listed in Section 2.2 for the implementation of the refine until
accept / reject exact sampler, necessitate us to know the law of ∆ conditional on all the simulated
collection of random variables I. For ease of exposition, we consider the 1-dimensional case; the
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Algorithm 2 Preconditioning step to arrive at the representation (6).
(achieved mainly via ε−strong approximation of the underlying stochastic processes)

procedure Preconditioning(T )
Initialize I = ∅, n = 0, δ = 1,Y0(t) = 0, t ∈ [0, 1]
while n = 0 OR Yn,i(T ) < (K1 + 1)δ for some i ∈ {1, . . . , d} do

Increment n←− n+ 1
Simulate the intersection layers Iij,n for j = 1, . . . , 2n, i = 1, . . . , d and the piecewise constant upper

and lower bounding processes B↑
n,i(·), B↓

n,i(·), conditional on I
Form Bn(·) = (Bn,1, . . . , Bn,d) as in (7), which serves as a piecewise linear approximation to B(·)
Update δ = sup{|B↑

n,i(t)−B↓
n,i(t)| : t ∈ [0, 1], i = 1, . . . , d}

I = {Ij,n : j = 1, . . . , 2n}
Letting X(·) = Bn(·) in (1), solve for the reflected process Y(·) using Algorithm 1; call the solution

as Yn(·)
end while
Find J = {1 ≤ j ≤ 2n : (j − 1)2−n < T ≤ j2−n}
Set N = n, Tleft = (J − 1)2−n and Tright = J2−n

Return I, N, Tleft, Tright, δ and Yδ(·) := Yn(·)

conditional probability density of the Brownian increment ∆ in d-dimensions, denoted by f∆(·), is
given simply by the product form of 1-dimensional densities.

At any stage of algorithm, all the information simulated about the driving Brownian motion are
available in the intersection layers I = {Ij,n : j = 1, . . . , 2n}. From Algorithm 2, recall that J is

the index corresponding to the dyadic interval (Tleft, Tright] that contains T ; that is (J − 1)2−N =

Tleft < T ≤ Tright = J2−N . For ease of notation, let

L↓ := L↓
J,N −B(Tleft), L

↑ := L↑
J,N −B(Tleft),

U↓ := U↓
J,N −B(Tleft), U

↑ := U↑
J,N −B(Tleft),

l := Tright − Tleft, s := T − Tleft and v := B(Tright)−B(Tleft).

Further let W (·) denote an independent standard Brownian motion on C[0, 1] under measure P (·) .
Then due to Markov property of B(·), the increment ∆ conditional on I has the following density:

(12) f∆(x)dx = P

{

W (s) ∈ dx
∣

∣

∣W (l) = v, inf
0≤t≤l

W (t) ∈ (L↓, L↑), sup
0≤t≤l

W (t) ∈ (U↓, U↑)

}

.

Note that the support of f∆(·) is (L↓, U↑). A closed form expression for f∆(·) follows from Propo-
sition 5.1 of [3], and is given here:

f∆(x) ∝ ρ(x)× π(x),

where for any fixed L↓, L↑, U↓, U↑, v, s and l,

π(x) := exp

(

−1

2

(

x− s

l
v
)2 /

(

s(l − s)

l

))

, and(13)

ρ(x) := P

{

inf
0≤t≤l

W (t) ∈ (L↓, L↑), sup
0≤t≤l

W (t) ∈ (U↓, U↑)
∣

∣

∣
W (s) = x,W (l) = v

}

= γ1(x)γ2(x)− γ3(x)γ4(x)− γ5(x)γ6(x) + γ7(x)γ8(x).(14)
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To define γ1, . . . , γ8, first consider the probability that the Brownian bridge from a to b in the time
interval [0, r] stays within (L,U) :

γ(L,U ; r, a, b) := P

{

L < inf
0≤t≤l

W (t) ≤ sup
0≤t≤l

W (t) < U
∣

∣

∣W (0) = a,W (r) = b

}

=



1−
∞
∑

j=1

(σj − τj)



1(a, b ∈ (L,U)),(15)

where, σj := exp

(

−2

r
((U − L)j + L− a)((U − L)j + L− b)

)

+ exp

(

−2

r
((U − L)j − U + a)((U − L)j − U + b)

)

, and

τj := exp

(

−2(U − L)j

r
((U − L)j + a− b)

)

+ exp

(

−2(U − L)j

r
((U − L)j + b− a)

)

.

The expression (15) for γ(L,U ; l, a, b) is originally from [13]. Now we are ready to define γ1, . . . , γ8
mentioned in (14):

γ1(x) = γ(L↓, U↑; s, 0, x), γ2(x) = γ(L↓, U↑; l − s, x, v), γ3(x) = γ(L↑, U↑; s, 0, x),

γ4(x) = γ(L↑, U↑; l − s, x, v), γ5(x) = γ(L↓, U↓; s, 0, x), γ6(x) = γ(L↓, U↓; l − s, x, v),

γ7(x) = γ(L↑, U↓; s, 0, x), γ8(x) = γ(L↑, U↓; l − s, x, v).

To perform acceptance / rejection type-sampling, we need that the conditional density f∆ (of the
Brownian increment) is Lipschitz continuous (see Requirement R1’) in Section 2.2. Lemma 1 is a
step towards establishing this fact.

Lemma 1. There exists positive constants cπ,Kπ, cρ and Kρ such that for any fixed L↓, L↑, U↓, U↑,
v, s and l,

π(x) < cπ, |π(x)− π(y)| < Kπ|x− y| and
ρ(x) < cρ, |ρ(x)− ρ(y)| < Kρ|x− y|,

for all x, y ∈ (L↓, U↑).

Explicit closed-form expressions for the constants Kπ,Kρ, cπ and cρ are presented in the Appen-
dix.

Following the representation that Y (T ) = Y (Tleft) + ∆, the conditional density of Y (T ) given

Y (Tleft) is given by f∆(w − Y (Tleft)), which is supported on (Y (Tleft) + L↓, Y (Tleft) + U↑) ⊂
(Y (Tleft) − δ, Y (Tleft) + δ). As the unknown Y (Tleft) differs from Y δ(Tleft) only by ±K1δ, the
support of Y (T ) conditional on the simulated information is, in turn, a subset of

(

Y δ(Tleft)− (K1 + 1)δ, Y δ(Tleft) + (K1 + 1)δ
)

.

Here, recall that K1 := (1 − α)−1 is the Lipschitz constant of the Skorokhod reflection map S.
Consecutively, if we propose a sample Z from the uniform distribution in the interval (Y δ(Tleft)−
(K1 + 1)δ, Y δ(Tleft) + (K1 + 1)δ), then the likelihood ratio (or the Radon-Nikodym derivative)
between the true conditional density and proposal density is proportional to f∆(w − Y (Tleft));
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consecutively, a traditional accept / reject algorithm would accept the proposed sample Z if

V < L
(

Z;Y (Tleft)
)

:=
π
(

Z − Y (Tleft)
)

ρ
(

Z − Y (Tleft)
)

cπcρ
,

for an independent V ∼ Unif(0, 1); hereafter, we use L(z; y) to denote

L(z; y) :=
π(z − y)ρ(z − y)

cρcφ
.

However, as we do not know Y (Tleft) exactly, if L(Z; ·) is Lipschitz continuous, the fact that

Y (Tleft) differs from Y δ(Tleft) by ±K1δ, can be used to implement a refine until accept / reject
sampler discussed in Section 2.1.

The Lipschitz continuity of L(z; y) as a function of y, follows as a simple consequence of Lemma
1 established earlier. If f and g are Lipschitz continuous with Lipschitz constants Kf and Kg, and
respective absolute bounds cf and cg, then fg is a Lipschitz continuous function with Lipschitz
constant at most cfKg + cgKf . As a result, the product π(·) × ρ(·) is Lipschitz continuous as well
with Lipschitz constant cπKρ + cρKπ. Consequently, the function L(z, y) is Lipschitz continous, as
a function of y, with Lipschitz constant

K2 :=
Kπ

cπ
+

Kρ

cρ
.

Given this Lipschitz continuity of L, one can unambiguously accept the proposal Z if,

V < L
(

Z;Y δ(Tleft)
)

−K1K2δ,

or reject the proposal Z conclusively if

V > L
(

Z;Y δ(Tleft)
)

+K1K2δ.

However, if V is within L
(

Z;Y δ(Tleft)
)

± K1K2δ, then we obtain a more refined approximation
Y εn(Tleft), for a suitable εn < δ, that is good enough to decide whether to accept / reject. In
particular, if εn is smaller than (K1K2)

−1 |V − L (Z;Y εn(Tleft))| , then
V < L

(

Z;Y (Tleft)
)

if and only if V < L(Z;Y εn(Tleft))−K1K2εn.(16)

This equivalent comparison is at the heart of the refine until accept / reject sampler in Algorithm
3 below. It takes the intersection layers I returned by Algorithm 2 as input, and generates further
refined approximations (Y εn(t) : t ∈ [0, Tleft]) of the RBM, if necessary, in order to perform the
equivalent comparisons in (16).

For d-dimensional processes, the probability density of the increment ∆ and proposal density
g(·) are both given by product of 1-dimensional densities. This results in a likelihood ratio which is
also of product form, leading to a straightforward generalization of the refine until accept / reject
procedure given in Algorithm 3.

4. A note on computational complexity

Our objective in this section is to understand the computational effort required to execute the
refine until accept / reject exact sampler described in Section 3. For ease of exposition, we do not
keep track of multiplying constants, and instead adopt the following standard notation to describe
the asymptotic behaviour of functions: For given functions f : R+ → R

+ and g : R+ → R
+, we

say f(x) = O(g(x)) if there exists c1 > 0 and x1 large enough such that f(x) ≤ c1g(x) for all
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Algorithm 3 To accept/reject the proposal Z ∼ Unif(Y δ(Tleft)− (K1+1)δ, Y δ(Tleft)+(K1+1)δ).
If V < L

(

Z;Y (Tleft)
)

, the algorithm returns Z; otherwise it rejects Z and returns nothing. Recall

that L(z; y) := c−1
π c−1

ρ π(z − y)ρ(z − y), K1 := 1/(1 − α) and K2 := Kπ/cπ +Kρ/cρ.

procedure RAR-Sampler(I, Tleft, N, δ, Y δ(Tleft), Z)
Initialize n = N, εn = δ
Draw V uniformly from [0, 1]
while εn > (K1K2)

−1|V − L
(

Z;Y εn(Tleft)
)

| do
Increment n←− n+ 1
Simulate the intersection layers Ij,n for j = 1, . . . , 2n conditional on I
Form Bn(·) as in (7), which serves as piecewise linear approximation to B(·)
Set εn = max{U↑

j,n − L↓
j,n : j = 1, . . . , 2n} and I = {Ij,n : j = 1, . . . , 2n}

Letting X(t) = Bn(t) for t ∈ [0, Tleft] in (1), solve for the reflected process Y (·); call the solution
as Yn(·); set the required refined approximation Y εn(Tleft) = Yn(Tleft).

end while
if V < L

(

Z;Y εn(Tleft)
)

−K1K2εn then
Return Z

else
Return ∅

end if

x > x1; further, we say f(x) = Θ(g(x)) if there also exists c2 > 0 and x2 large enough such that
c2g(x) ≤ f(x) ≤ c1g(x) for all x > x2.

Recall the definition of error in approximation εn in (9), and to achieve this accuracy we needed
to simulate relevant information (such as maxima, minima and endpoints for d independent 1-
dimensional Brownian motions Bi(·)) in 2n dyadic intervals as described in Section 3.1.1. As
this entails constant amount of expected computation for each dimension in each of the 2n dyadic
intervals, the computational cost at the end of n steps of the iterative procedure described in Section
3.1.1 is Θ(d2n).

Next, observe that the preconditioning step requires us to iterate until the stopping time N =
inf{n ≥ 1 : Yn,i(t) > (K1 + 1)εn, i = 1, . . . , d}. As the computational cost of solving the Skorokhod

problem (as in Algorithm 1) with a piecewise linear input Bk(·) is Θ(d32k) uniformly in d, the total

cost of executing the entire preconditioning step is Θ(d3
∑N

k=1 2
k) = Θ(d32N ). Here, we have used

that O(d3) computations are needed to solve the linear program in Algorithm 1 when the set C
contains O(d) elements. Following the same line of reasoning, if we let

N ′ = inf{n ≥ N : εn < (K1K2)
−1|V − L(Z;Yεn(Tleft))|},

as required in the refine until accept / reject step in Algorithm 3, the corresponding computational

cost is Θ(d32N
′

). As N ′ ≥ N , the total computational cost of the sampling procedure is Θ(d32N +

d32N
′

) = Θ(d32N
′

). In other words, there exists positive constants c1 and c2 such that

c1d
32N

′ ≤ computational cost ≤ c2d
32N

′

.

Therefore, the expected computational cost of the entire sampling procedure is Θ(d3E[2N
′

]).

Next, to compute E[2N
′

], we first use the definition of εn in (9) to observe that

P
(

N ′ > n
)

= P

(

εn >
D

K1K2

)

= P

(

max
i=1,...,d

sup
t∈[0,1]

|B↑
n,i(t)−B↓

n,i(t)| >
D

K1K2

)

,
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where we have let D = |V −L(Z;Yεn(Tleft))| for notational convenience. For each fixed i, it follows

from the construction of 1-dimensional piecewise constant bounding processes B↑
n,i(·) and B↓

n,i in
Section 3.1.1 that

sup
t∈[0,1]

|B↑
n,i(t)−B↓

n,i(t)| = max
j=1,...,2n

|U↑
j,n − L↓

j,n|

≤ max
j=1,...,2n

{

|U↑
j,n −Mj,n|+ |Mj,n −mj,n|+ |mj,n − L↓

j,n|
}

≤ max
j=1,...,2n

{

2−(n+1)/2 + |Mj,n −mj,n|+ 2−(n+1)/2
}

D
= 2−n/2 + max

j=1,...,2n

(

sup
t∈[0,2n]

Wj(t)− inf
t∈[0,2n]

Wj(t)

)

where (Wj(t) : j = 1, . . . , 2n) are 2n independent copies of standard Brownian motion. Here, the

notation
D
= is used to denote equality in distribution. If we let

Z̄j := 1 + sup
t∈[0,1]

Wj(t)− inf
t∈[0,1]

Wj(t),

then due to self-similarity of Brownian motion,

sup
t∈[0,1]

|B↑
n,i(t)−B↓

n,i(t)|
D
= 2−n/2 + 2−n/2

(

sup
t∈[0,1]

Wj(t)− inf
t∈[0,1]

Wj(t)

)

= 2−n/2 max
j=1,...,2n

Z̄j .

Since the approximations Bn,i are independently obtained for each i = 1, . . . , d, we have

sup
t∈[0,1]

|B↑
n,i(t)−B↓

n,i(t)| = max
k=1,...,d2n

Z̄k,

where (Z̄k : k = 1, . . . , d2n) are d2n independent copies of Z̄ := 1 + supt∈[0,1]W (t)− inft∈[0,1]W (t).

For notational convenience, let us denote Mn = maxj=1,...,d2n Z̄j. Then

P
(

N ′ > n
)

= P

(

2−n/2Mn >
D

K1K2

)

= P

(

D < K1K2
Mn

2n/2

)

= P

(

L(Z;Yεn(Tleft))−K1K2
Mn

2n/2
< V < L(Z;Yεn(Tleft)) +K1K2

Mn

2n/2

)

,

because of our earlier definition that D = |V −L(Z;Yεn(Tleft))|. As V ∼ Unif[0, 1], it is immediate
that

P
(

N ′ > n
)

=
2K1K2

2n/2
E [Mn] = Θ

(
√

n

2n

)

,

where the second equality follows from the observation that E[Mn] = Θ(
√
n), which is proved in

Lemma 3 in appendix. Therefore, P (2N
′

> x) = Θ(x−0.5
√
log x). As the random variable 2N

′

has
regularly varying tails with index −0.5,

E
[

2N
′

]

=∞,

and consequently, expected total computational cost is infinite.

An alternative, intuitive explanation for why the expected termination time is infinite is as follows:
Note that conditional on Z and Yεn(Tleft), the distance D = |V − L(Z;Yεn(Tleft)| is less than δ

with probability O (δ) (because V is uniformly distributed). Thus, if the cost of generating YD
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(required to decide whether to accept or reject) is C (D), the running time of the algorithm would be

finite if
∫ 1
0 C (u) du <∞. Unfortunately, however, the cost of producing an ε-strong approximation

to Brownian motion (Xε) is roughly O
(

1/ε2
)

(see, for example, [3]) and therefore C (D) ≥ c/D2,
with positive probability, for some c > 0, which results in an infinite expected running time.

5. Conclusions

We provide the first exact sampling algorithm to obtain samples from a multi-dimensional re-
flected Brownian motion. The algorithm relies on a novel conditional acceptance / rejection step,
which is implemented by carefully refining ε−strong approximations of the reflected Brownian mo-
tion path Y(·) until we can conclusively accept or reject a proposal Z from a suitable uniform
distribution. Unfortunately, as shown in Section 4, the proposed algorithm has expected termi-
nation time because of the large amount of computational effort required to conclusively decide
whether V < L(Z;Y(Tleft)) when the proposal likelihood L(Z;Y(Tleft)) and the uniform random
variable V are close. It may be of interest to the readers to know whether the entire exact sampling
scheme can be executed with finite expected computational effort if we, somehow, are able to resolve
the difficulty in deciding whether V < L(Z;Y(Tleft)) with finite expected computational effort. We
believe this is indeed the case because of the following reasoning.

Apart from the refine until accept / reject step in Algorithm 3, the only other step where we
execute a ‘while’ loop performing a random comparison is in the pre-conditioning procedure in
Algorithm 2. Recall that the preconditioning step must develop a piecewise approximation to
Brownian motion that is accurate enough to satisfy εn := ‖Bn(·) −B(·)‖ < (K1 + 1)Yi(T ), for i =
1, . . . , d, in order to identify (Tleft, Tright). If the probability density of Yi(T ) evaluated at 0 is positive
(as in the 1-dimensional RBM case), then the probability that Yi(T ) is smaller than δ is at least
c1δ (for every δ < δ′ suitably small), and the computational effort required to generate a Brownian
approximation that satisfies εn < (K1 + 1)δ is larger than c2/δ

2 with positive probability; here,
c1 and c2 are suitable positive constants. As the required computational effort O(1/(mini Yi(T ))

2)
is high when Yi(T ) is close to 0 for some i, the expected computational effort required in the
preconditioning step is at least

∫ ∞

c2/δ′2
P (computational cost > u)du ≥

∫ ∞

c2/δ′2
c1
√

c2/u du =∞.

However, this difficulty can be easily resolved if we imagine, for a moment, that it is possible to
resolve the earlier difficulty explained in Section 4 (on deciding whether V < L(Z;Y (Tleft)) within
finite expected time), and it is possible to obtain exact samples of Y(T ) whenever Y(T ) is bounded
away from the reflecting barrier; specifically, let us assume we can obtain samples of Y(T ) with
finite expected computational effort Cγ when mini Yi(T ) > γ for some fixed constant γ ∈ (0, 1). In
that case, we first obtain an exact sample of Y(t′) for the latest t′ ≤ T during which miniYi(t

′) > γ.

To be specific, define t′ := sup{t ≤ T : mini Yi(t) > γ}, Ỹ := Yi(t
′) and Tγ := T − t′. Then due

to the Markov property and self-similarity of RBM, the original objective of obtaining a sample of
Y(T ) can be equivalently written as follows: Obtain a sample of Ynew(Tγ/γ

2), whereYnew(·) is also
an RBM obtained by shifting and scaling the RBM Y(·) as in Ynew(t) := Y(t′+ γ2t)/γ with initial

condition Ynew(0) := Ỹ/γ. Thus, even if the original problem of detecting (Tleft, Tright) is difficult
when Y(T ) < γ, by a suitable translation and scaling (magnification) of the underlying Brownian
and RBM paths, we have a new, but equivalent, objective of sampling fromYnew(Tγ/γ

2) = Y(T )/γ.
In case if Ynew(Tγ/γ

2) is smaller than γ as well, we perform a similar translation and scaling once
again recursively. Since E[Tγ/γ

2] is uniformly bounded as a function of γ, a simple recursive
algorithm complexity analysis (see, for example, Chapter 4 of [8]) yields us that the total expected
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computational effort of the described recursive procedure is O(Cγ/P (mini Yi(T ) > γ)), which is
finite, as per our assumption on Cγ .

As the described recursive construction for the preconditioning step is built on the assumption
that we can conclusively decide whether V < L(Z;Y(Tleft)) within finite expected computational
effort, we identify the difficulty explained carefully in Section 4 as the only fundamental bottleneck in
obtaining exact samples of multi-dimensional RBM. Future research that addresses this bottleneck
by means of new techniques will make the proposed algorithm, which is currently of theoretical
importance, to be more suitable for practice as well.

Appendix

Here we provide the proof of Lemma 1, and present explicit expressions for the constants
Kπ,Kρ, cπ and cρ. For proving Lemma 1, we need the following result.

Lemma 2. For any given U > L, r > 0, the function γ(L,U ; r, a, b) defined in (15) is Lipschitz
continuous with respect to the variables a and b; that is,

|γ(L,U ; r, a1, ·)− γ(L,U ; r, a2, ·)| < K(L,U, r)|a1 − a2|
|γ(L,U ; r, ·, b1)− γ(L,U ; r, ·, b2)| < K(L,U, r)|b1 − b2|,

for all a1, a2, b1, b2 ∈ (L,U). The Lipschitz constant K(L,U, r) is given by

K(L,U, r) :=
∑

j≥1

Kj =
8(U − L)

r

∑

j≥1

j exp

(

−2

r
(U − L)2(j − 1)2

)

.

Proof. Let γn(a, b) = 1 −∑n
j=1(σj − τj). Since a, b take values in (L,U), it is easily checked that

for all j ≥ 1 both
∣

∣

∣

∣

d

da
(σj − τj)

∣

∣

∣

∣

< Kj , and

∣

∣

∣

∣

d

db
(σj − τj)

∣

∣

∣

∣

< Kj ,

where

Kj :=
8(U − L)j

r
exp

(

−2

r
(U − L)2(j − 1)2

)

.

Then it is immediate that for all n,

∣

∣

∣

∣

dγn(a, b)

da

∣

∣

∣

∣

<
∞
∑

j=1

Kj and

∣

∣

∣

∣

dγn(a, b)

db

∣

∣

∣

∣

<
∞
∑

j=1

Kj .

As a consequence, we use the following elementary properties of Lipschitz continuity to establish
the Lipschitz continuity of γ(L,U ; r, a, b) with respect to variables a and b:

1) If a differentiable function f(·) on a convex domain is such that its first derivative |f ′(x)| < K
for some constant K, then the function f (·) is Lipschitz continuous with Lipschitz constant
at most K.

2) If a sequence of Lipschitz functions fn(·) all having Lipschitz constant bounded by K con-
verge uniformly to f(·), then f(·) is also Lipschitz continuous with Lipschitz constant at
most K.
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Since γn(a, b) converge uniformly to γ(a, b) for a, b ∈ (L,U), it follows immediately from the
above two facts that γ(L,U ; r, a, b) is Lipschitz continuous with Lipschitz constant at most

K(L,U, r) :=
∑

j≥1

Kj =
8(U − L)

r

∑

j≥1

j exp

(

−2

r
(U − L)2(j − 1)2

)

.

�

Proof of Lemma 1. For all x ∈ (L↓, U↑),

(17) π(x) = exp

(

−1

2

(

x− s

l
v
)2 /

(

s(l − s)

l

))

≤ 1 =: cπ.

The Lipschitz continuity of π(·) follows from the boundedness of its first derivative π′(·) on the
convex domain (L,U) : for all x ∈ (L,U),

(18)

∣

∣

∣

∣

dπ(x)

dx

∣

∣

∣

∣

≤ |xl − sv|
s(l − s)

<
max{|Ul − sv|, |Ll − sv|}

s(l − s)
=: Kπ.

To prove the Lipschitz continuity of ρ(·), we first note the boundedness of γ(L,U ; r, ·, ·) : Simple
substitution will yield that γ(L,U ; r, a, b) = 0 whenever either a or b equals one of L,U. Then due
to the Lipschitz continuity of γ(L,U ; r, ·, ·) from Lemma 2, we have that

(19) |γ(L,U ; r, a, b)| ≤ K(L,U, r)(U − L).

Now consider the first term γ1(x)γ2(x) in (14):

1) Because of (19), |γ1(·)| and |γ2(·)| are bounded by K(L↓, U↑, s)(U↑−L↓) and K(L↓, U↑, l−
s)(U↑ − L↓), respectively, in the interval x ∈ (L↓, U↑).

2) From Lemma 2, we have that γ1(·) and γ2(·) are Lipschitz continuous (with respect to the
variable x) with Lipschitz constants at most K(L↓, U↑, s) and K(L↓, U↑, l− s) respectively.

From the above two observations, we conclude that γ1(·)γ2(·) is Lipschitz continuous with respect
to x with Lipschitz constant at most

K1,2 := 2K(L↓, U↑, s)K(L↓, U↑, l − s)(U↑ − L↓).

This is because if f, g are Lipschitz continuous with respective Lipschitz constants Kf and Kg

and absolute bounds Cf and Cg, then fg is Lipschitz continuous with Lipschitz constant at most
CfKg + CgKf . Using the same reasoning, the Lipschitz constants of other terms in (14), namely
γ3(·)γ4(·), γ5(·)γ6(·) and γ7(·)γ8(·) are at most

K3,4 := 2K(L↑, U↑, s)K(L↑, U↑, l − s)(U↑ − L↑),

K5,6 := 2K(L↓, U↓, s)K(L↓, U↓, l − s)(U↓ − L↓), and

< K7,8 := 2K(L↑, U↓, s)K(L↑, U↓, l − s)(U↓ − L↑)

respectively. Therefore, ρ(x) is Lipschitz continuous with Lipschitz constant Kρ given by,

Kρ := K1,2 +K3,4 +K5,6 +K7,8.

Since ρ(x) = 0 whenever x takes either L↓ or U↑, using Lipschitz continuity of ρ we reason that,

|ρ(x)| ≤ Kρ(U
↑ − L↓) =: cρ.

This along with (17) and (18) proves the claim. �
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Lemma 3. Recall the definition Z̄ := 1 + supt∈[0,1]W (t)− inft∈[0,1]W (t), where (W (t) : t ∈ [0, 1])

is a standard Brownian motion. If (Z̄i : i = 1, . . . , k) are k independent copies of Z̄, then

E

[

max
i=1,...,k

Z̄i

]

= Θ
(

√

log k
)

, as k →∞.

Proof. We first observe that

max
i=1,...,k

Z̄i = max
i=1,...,k

(

1 + sup
t∈[0,1]

W (t)− inf
t∈[0,1]

W (t)

)

≤ 1 + max
i=1,...,k

sup
t∈[0,1]

W (t) + max
i=1,...,k

(

− inf
t∈[0,1]

W (t)

)

As supt∈[0,1]W (t)
D
= − inft∈[0,1]W (t), we have,

1 + max
i=1,...,k

sup
t∈[0,1]

W (t)
D
≤ max

i=1,...,k
Z̄i

D
≤ 1 + 2 max

i=1,...,k
sup
t∈[0,1]

W (t),

where the notation X
D
≤ Y denotes that X is stochastically upper bounded by Y. Further, as

supt∈[0,1]W (t)
D
= |Z| when Z follows standard normal distribution, we have

E

[

max
i=1,...,k

Z̄i

]

= Θ

(

E

[

max
i=1,...,k

sup
t∈[0,1]

W (t)

])

= Θ

(

E

[

max
i=1,...,k

|Zi|
])

,(20)

as k →∞. Here, (Zi : i = 1, . . . , k) are simply k independent copies of a standard normal variable.
Next, if we denote the positive and negative parts of Zi as Z

+
i = max{Zi, 0} and Z−

i = −min{Zi, 0},
then |Zi| = Z+

i + Z−
i . Further, as

max
i=1,...,k

Z+
i ≤ max

i=1,...,k
|Zi| ≤ max

i=1,...,k
Z+
i + max

i=1,...,k
Z−
i ,

it follows from (20) that

E

[

max
i=1,...,k

Z̄i

]

= Θ

(

E

[

max
i=1,...,k

Z+
i

])

= Θ
(

E
[

M+
])

,

where M+ is the positive part of M := maxi=1,...,k Zi. Since E[M ] = Θ(
√
log k) and E[M−] =

∫∞

0 (P (Z < −u))kdu → 0 as k → ∞, we obtain E[M+] = E[M ] + E[M−] = Θ(
√
log k), thus

proving the claim.

�
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[13] K. Pötzelberger and L. Wang. Boundary crossing probability for Brownian motion. J. Appl. Probab., 38(1):152–

164, 2001.
[14] M. I. Reiman. Open queueing networks in heavy traffic. Mathematics of Operations Research, 9(3):441–458, 1984.

Stanford University, Management Science & Engineering Department, 475 Via Ortega, Stanford,

CA 94305-4121, United States.

E-mail address: jblanche@stanford.edu

Columbia University, Department of Industrial Engineering & Operations Research, 340 S. W.

Mudd Building, 500 W. 120 Street, New York, NY 10027, United States.

E-mail address: karthyek.murthy@columbia.edu


	1. Introduction
	2. Overview of the sampling scheme
	2.1. Refine until accept / reject sampling scheme: An introduction
	2.2. An outline of the application of refine until accept / reject for multi-dimensional RBM

	3. The exact sampling scheme
	3.1. The preconditioning step
	3.2. The conditional probability density of  for the refine until accept / reject sampler

	4. A note on computational complexity
	5. Conclusions
	Appendix
	References

