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A quenched central limit theorem for biased random walks on

supercritical Galton-Watson trees

Adam Bowditch, University of Warwick

Abstract

In this note, we prove a quenched functional central limit theorem for a biased random walk on
a supercritical Galton-Watson tree with leaves. This extends a result of Peres and Zeitouni (2008)
where the case without leaves is considered. A conjecture of Ben Arous and Fribergh (2016) suggests
an upper bound on the bias which we observe to be sharp.

1 Introduction

We investigate biased random walks on supercritical Galton-Watson trees with leaves. A GW-tree
conditioned to survive consists of an infinite backbone structure with finite trees attached as branches.
The backbone structure is a GW-tree whose offspring law does not have deaths. The branches are formed
by attaching a random number of independent GW-trees (conditioned to die out) to each vertex of the
backbone. This forms dead-ends in the environment which makes it a natural setting for observing
trapping as the walk is slowed by taking excursions in the branches of the tree. The number of trees
attached to a given vertex on the backbone has a distribution depending on the backbone locally. This
means that the branches are not i.i.d. and therefore the trapping incurred by the addition of the leaves
demonstrates a significant complication to the model without leaves studied in [8].

The influence of the bias on the trapping is an important feature of the model. As the bias is increased,
the local drift away from the root will increase but this does not necessarily speed up the walk. This
is because it increases the time trapped in the finite leaves from which the walk cannot escape without
taking long sequences of movements against the bias. In [7] it is shown that, for a suitably large bias, the
trapping is sufficient to slow the walk to zero speed whereas, for small bias, the expected trapping time
is finite and the walk has a positive limiting speed. Under a further restriction on the bias the trapping
times have finite variance; we use this to prove a quenched invariance principle for the walk.

We next describe the supercritical GW-tree in greater detail. Let {pk} denote the offspring distribu-
tion of a GW-process Zn with a single progenitor, mean µ > 1 and probability generating function f .
The process Zn gives rise to a random tree T f where individuals are represented by vertices and edges
connect individuals with their offspring. We denote by ρ the root, which is the vertex representing the
unique progenitor. Let q denote the extinction probability of Zn which is non-zero only when p0 > 0. In
this case we then define

g(s) :=
f(s)− f(qs)

1− q
and h(s) :=

f(qs)

q

which are generating functions of GW-processes. In particular, g is the generating function of a GW-
process without deaths and h is the generating function of a subcritical GW-process. An f -GW-tree
conditioned on nonextinction T can be generated by first generating a g-GW-tree T g and then, to each
vertex x of T g, appending a random number Mx of independent h-GW-trees. We refer to T g as the
backbone of T and the finite trees appended to T g as the traps.

We now introduce the biased random walk on a fixed tree. For T fixed with x ∈ T let ←−x denote the
parent of x and c(x) the set of children of x. A β-biased random walk on T is a random walk (Xn)n≥0
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on the vertices of T which is β-times more likely to make a transition to a given child of the current
vertex than the parent (which are the only options). More specifically, the random walk started from
z ∈ T is the Markov chain defined by PT

z (X0 = z) = 1 and the transition probabilities

PT
z (Xn+1 = y|Xn = x) =























1
1+β|c(x)| , if y =←−x ,

β
1+β|c(x)| , if y ∈ c(x), x 6= ρ,
1
dρ
, if y ∈ c(x), x = ρ,

0, otherwise.

We use Pρ(·) :=
∫

PT
ρ (·)P(dT ) for the annealed law obtained by averaging the quenched law PT

ρ over
the law P on f -GW-trees conditioned to survive. Unless indicated otherwise, we start the walk at ρ.

For x ∈ T , let |x| := d(ρ, x) denote the distance between x and the root of the tree. It has been
shown in [7] that if β ∈ (µ−1, f ′(q)−1) then |Xn|n−1 converges P-a.s. to a deterministic constant ν > 0
called the speed of the walk. When β < µ−1 the walk is recurrent and |Xn|n−1 converges P-a.s. to 0.
When the bias is large the walk is transient but slowed by having to make long sequences of movements
against the bias in order to escape the traps; in particular, if β ≥ f ′(q)−1 then the slowing affect is
strong enough to cause |Xn|n−1 to converge P-a.s. to 0. This regime has been studied further by [2] and
[5] where polynomial scaling results are shown.

For σ, t > 0 and n = 1, 2, ... define

Bn
t :=

|X⌊nt⌋| − nνt

σ
√
n

.

Our main result, Theorem 1, is a quenched invariance principle for Bn
t .

Theorem 1. Suppose p0 > 0, µ > 1, β ∈ (µ−1, f ′(q)−1/2) and that there exists λ > 1 such that

∑

k≥0

λkpk <∞. (1.1)

There exists σ > 0 such that, for P-a.e. T , we have that the process (Bn
t )t≥0 converges in PT -distribution

on D([0,∞),R) endowed with the Skorohod J1 topology to a standard Brownian motion.

The condition p0 > 0 is so that the tree has leaves; the case without leaves, p0 = 0, is considered in
[8]. This no longer requires the condition β < f ′(q)−1/2 which is due to the trapping in the dead-ends
caused by the leaves. Indeed, when p0 = 0 we have that q = 0 and f ′(0) = 0 therefore the condition
becomes irrelevant. This regime is studied further in [8] to the case where β = µ−1 and p0 = 0; in this
setting ν = 0 and it is shown that Bn

t converges in distribution to the absolute value of a Brownian
motion. This result is extended in [6] to random walks on multi-type GW-trees with leaves. Although
the dead-ends in this model trap the walk, the bias is small and therefore the slowing is weak.

By choosing p0 > 0 we allow the tree to have leaves; this creates traps in the environment which slow
the walk. A key input for this work is the second moment estimate for trapping times in trees determined
in [4]. From this we infer that β < f ′(q)−1/2 is the correct upper bound on the bias so that the trapping
times in our model have finite variance. We conclude, in Remark 2.4, that this upper bound is necessary
which confirms [1, Conjecture 3.1].

We assume that the exponential moments condition (1.1) holds throughout. This is a purely technical
assumption which we expect could be relaxed to a sufficiently large moment condition however the main
focus of this note has been to obtain the optimal upper bound on the bias.

In [4], the second moment condition for trapping times in finite trees is used to prove an annealed
invariance principle and quenched central limit theorem for a biased random walk on a subcritical GW-
tree conditioned to survive. In that model the backbone is one-dimensional and the fluctuations are
significantly influenced by the specific instance of the environment. This results in an environment
dependent centring for the walk in the quenched central limit theorem. In the supercritical case the
walk will randomly choose one of infinitely many escape routes; this creates a mixing of the environment
which yields a deterministic centring in the quenched result Theorem 1.

We begin, in Section 2, by proving an annealed functional central limit theorem for the walk by
adapting the renewal argument used in [9, Theorem 4.1]. This is then extended to the quenched result

2



Theorem 1 in Section 3 by applying the argument used in [3] which largely involves showing that multiple
copies of the walk see sufficiently different areas of the tree.

2 An annealed invariance principle

We begin this section by showing that the time spent in a branch has finite variance. Let T h
be the tree

formed by attaching an additional vertex ρ (as the parent of the root ρ) to an h-GW-tree T h. For a fixed
tree T and vertex x ∈ T let τ+x := inf{k > 0 : Xk = x} denote the first return time to x. Let ξf , ξg, ξh

be random variables with probability generating functions f, g and h respectively then let ξ be equal in
distribution to the number of vertices in the first generation of T . Since the generation sizes of T g are
dominated by those of T we have that ξg is stochastically dominated by ξ. Using Bayes’ law we have
that P(ξ = k) = pk(1 − qk)(1 − q)−1 ≤ cpk therefore both ξ and ξg inherit the exponential moments of
ξf . Furthermore P(ξh = k) = pkq

k therefore ξh automatically has exponential moments.

Lemma 2.1. Suppose that p0 > 0, µ > 1 and β ∈ (µ−1, f ′(q)−1/2), then we have that

E

[

ET h

ρ

[

(

τ+ρ

)2
]]

<∞.

Proof. We can write

τ+ρ =
∑

x∈T h

vx where vx =

τ+
ρ
∑

k=1

1{Xk=x}

is the number of visits to x before returning to ρ. Recall that c(x) denotes the set of children of x. It
then follows that

E

[

ET h

ρ

[

(

τ+ρ

)2
]]

= E





∑

x,y∈T h

ET h

ρ [vxvy]





≤ CβE





∑

x,y∈T h

(|c(x)|β + 1)(|c(y)|β + 1)β|x|+|y|





= CβE





∑

x∈T h

(|c(x)|β + 1)β|x|
∑

y∈T h

(|c(y)|β + 1)β|y|



 (2.1)

where the inequality follows from [4, Lemma 4.8]. Letting Zh
k denote the size of the kth generation of

T h
and collecting terms in each generation we have that

∑

x∈T h

(|c(x)|β + 1)β|x| = 1 +
∑

k≥1

Zh
k (β

k + βk−1) ≤ (1 + β−1)
∑

k≥0

Zh
kβ

k.

By [4, Lemma 4.1], since ξh has exponential moments, we have that E[Zh
kZ

h
j ] ≤ Cf ′(q)j whenever j ≥ k.

Substituting this and the above inequality into (2.1) we have that

E

[

ET h

ρ

[

(

τ+ρ

)2
]]

≤ Cβ

∑

k≥0

βk
∑

j≥k

E[Zh
kZ

h
j ]β

j

≤ Cβ

∑

k≥0

βk
∑

j≥k

(f ′(q)β)j

≤ Cβ,f ′(q)

∑

k≥0

(f ′(q)β2)k

which is finite by the assumption that β < f ′(q)−1/2.
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Let r(0) := 0, r(n) := inf{k > r(n − 1) : Xk, Xk−1 ∈ T g} for n ≥ 1 and Yn := Xr(n), then Yn is a
β-biased random walk on T g coupled to Xn. Write ζY0 := 0 and for m = 1, 2, ... let

ζYm := inf{k > ζYm−1 : |Yj | < |Yk| ≤ |Yl| for all j < k ≤ l}

be regeneration times for the backbone walk. We can then define ζXk := inf{m ≥ 0 : Xm = YζY
k
} to be

the corresponding regeneration times for X . By [7, Proposition 3.4] we have that there exists, P-a.s., an
infinite sequence of regeneration times {ζXk }k≥1 and the sequence

{

(

ζXk+1 − ζXk
)

,
(∣

∣

∣XζX
k+1

∣

∣

∣ −
∣

∣

∣XζX
k

∣

∣

∣

)}

k≥1

is i.i.d. (as is the corresponding sequence for Y ). Furthermore, letting mt := sup{j ≥ 0 : ζXj ≤ t} be the
number of regenerations by time t, we have that mt is non-decreasing and diverges P-a.s.

By [7, Theorems 3.1 & 4.1], whenever µ > 1 and µ−1 < β < f ′(q)−1 we have that there exists
ν ∈ (0, 1) such that |Xn|n−1 converges P-a.s. to ν. Moreover, combined with [7, Corollary 3.5], we have
that the time and distance between regenerations of X both have finite means with respect to P. Let

χj := XζX
j
−XζX

j−1
− ν(ζXj − ζXj−1) = YζY

j
− YζY

j−1
− ν(ζXj − ζXj−1).

By the previous remark we have that χj are i.i.d. with respect to P. By the strong law of large numbers
and the definition of ν we have that χj are centred (see [7, Theorems 3.1 & 4.1]). We will show that χj

have finite second moment and that their sum

Σm :=

m
∑

j=2

χj =
(

XζX
m
− νζXm

)

−
(

XζX
1
− νζX1

)

can be used to approximate Bn
t .

By the remark preceding Lemma 2.1, the offspring distribution ξg of T g has exponential moments.
Since Y is a random walk on T g, by [8, Proposition 3] we have that E[(ζY2 − ζY1 )k] < ∞ for all k ∈ Z

whenever β > µ−1.
Let ηk := r(k + 1) − r(k) denote the total time taken between X making the kth and (k + 1)th

transition along the backbone. This time consists of

Nk :=

r(k+1)
∑

j=r(k)+1

1{Xj=Yk}

excursions into the finite trees appended to the backbone at this vertex and one additional step to the
next backbone vertex. Therefore, we can write

ηk := 1 +

Nk
∑

j=1

γk,j where γk,j :=

r(k+1)
∑

i=r(k)

1{
∑

i
l=r(k) 1{Xl=Yk}=j} (2.2)

is the duration of the jth such excursion.

Proposition 2.2. Under the assumptions of Theorem 1 we have that

E[(ζX2 − ζX1 )2] <∞.

Proof. The law of ζX2 −ζX1 under P is identical to its law under Pρ(·|ζY1 = 1). That is, by the independence
structure, we can condition the first regeneration vertex to be the first vertex reached by Y without
changing the law of ζX2 − ζX1 . We therefore have that E

[

(ζX2 − ζX1 )2
]

can be written as

E
[

(ζX2 − ζX1 )2
∣

∣ζY1 = 1
]

= E











ζY
2 −ζY

1
∑

k=1

ηk





2
∣

∣

∣ζY1 = 1






≤ E



(ζY2 − ζY1 )

ζY
2 −ζY

1
∑

k=1

η2k

∣

∣

∣ζY1 = 1





4



by convexity. Using convexity again with the decomposition (2.2) we can write this as

E






(ζY2 − ζY1 )

ζY
2 −ζY

1
∑

k=1



1 +

Nk
∑

j=1

γk,j





2
∣

∣

∣ζY1 = 1






≤ E



(ζY2 − ζY1 )

ζY
2 −ζY

1
∑

k=1

(Nk + 1)



1 +

Nk
∑

j=1

γ2
k,j





∣

∣

∣ζY1 = 1



 .

By conditioning on the backbone, buds and the walk on the backbone and buds we have that the
individual excursion times are independent of the regeneration times of Y and the number of excursions.

The excursion times are also distributed as the first return time to ρ for a walk started from ρ on T h
.

We therefore have that the above expectation can be bounded above by

E
[

ET h

ρ

[

(τ+ρ )2
]]

E



(ζY2 − ζY1 )

ζY
2 −ζY

1
∑

k=1

(Nk + 1)2
∣

∣

∣ζY1 = 1



 .

Where, by Lemma 2.1, we have that E
[

ET h

ρ

[

(τ+ρ )2
]]

<∞.

Let (zj)
∞
j=0 denote the ordered distinct vertices visited by Y and

L(z, j) :=

j
∑

i=0

1{Yj=z}, L(z) := L(z,∞)

the local times of the vertex z. Write

Wz,l :=

∞
∑

j=0

1{Xj=z, Xj+1 /∈T g , L(z,j)=l}

to be the number of excursions from z (by X) on the lth visit to z (by Y ) for l = 1, ..., L(z) and

M := |{Yk}ζ
Y
2 −1

k=1 | the number of distinct vertices visited by Y between time 1 and time ζY2 − 1 then

E



(ζY2 − ζY1 )

ζY
2 −ζY

1
∑

k=1

(Nk + 1)2
∣

∣

∣ζY1 = 1





= E



(ζY2 − ζY1 )
M
∑

k=1

L(zk)
∑

l=1

(Wzk,l + 1)2
∣

∣

∣
ζY1 = 1





=
∞
∑

k=1

∞
∑

l=1

E
[

(ζY2 − ζY1 )1{k≤M, l≤L(zk)}(Wzk,l + 1)2|ζY1 = 1
]

≤
∞
∑

k=1

∞
∑

l=1

(

E
[

(ζY2 − ζY1 )21{k≤M, l≤L(zk)}|ζY1 = 1
]

E
[

(Wzk,l + 1)4|ζY1 = 1
]

)1/2

(2.3)

by Cauchy-Schwarz. Conditional on ζY1 = 1, for all 1 ≤ k ≤M we have that L(zk) ≤ ζY2 − ζY1 ; moreover,
M ≤ ζY2 − ζY1 therefore

1{k≤M, l≤L(zk)} ≤ 1{k,l≤ζY
2 −ζY

1 }.

Since the root does not have a parent, without any further information concerning the number
of children from a given vertex, we have that the walk is more likely to take an excursion into one
of the neighbouring traps when at the root than from this vertex. We can, therefore, stochastically
dominate the number of excursions from a vertex by the number of excursions from the root to see that
E
[

(Wzk,l + 1)4
]

≤ E
[

(Wz0,1 + 1)4
]

. Using this, Cauchy-Schwarz and that P(ζY1 = 1) > 0, the expression
(2.3) can be bounded above by

P(ζY1 = 1)−1
∞
∑

k=1

∞
∑

l=1

(

E

[

(ζY2 − ζY1 )21{k,l≤ζY
2 −ζY

1 }

]

E
[

(Wzk,l + 1)4
]

)1/2
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≤ CE
[

(ζY2 − ζY1 )4
]1/4

E
[

(Wz0,1 + 1)4
]1/2

∞
∑

k=1

∞
∑

l=1

P
(

k, l ≤ ζY2 − ζY1
)1/4

.

Since the offspring distribution ξg has exponential moments we have that the time between regenerations
has finite fourth moments by [8, Proposition 3]. That is, E

[

(ζY2 − ζY1 )4
]

<∞.
Write Zn and Zg

n to be the GW-processes associated with T and T g. The number of excursions from
the root is geometrically distributed with termination probability 1− pex where

pex :=
Z1 − Zg

1

Z1
.

Using properties of geometric random variables we therefore have that

E
[

(Wz0,1 + 1)4
]

≤ CE[(1 − pex)
−4] ≤ CE[Z4

1 ] < ∞

since Z1
d
= ξ which has exponential moments.

It remains to show that

∞
∑

k=1

∞
∑

l=1

P
(

k, l ≤ ζY2 − ζY1
)1/4

(2.4)

is finite. Note that P
(

k, l ≤ ζY2 − ζY1
)

= P
(

ζY2 − ζY1 ≥ l
)

whenever l ≥ k. Using Chebyshev’s inequality
we can then bound (2.4) above by

2

∞
∑

k=1

∞
∑

l=k

P
(

ζY2 − ζY1 ≥ l
)1/4 ≤ 2

∞
∑

k=1

∞
∑

l=k





E

[

(

ζY2 − ζY1
)j
]

lj





1/4

for any integer j. In particular, by [8, Proposition 3] we have that E
[

(

ζY2 − ζY1
)j
]

is finite for any integer

j. Choosing j > 8 we then have that this sum is finite which completes the proof.

For x ∈ T let Tx denote the subtree consisting of all descendants of x in T . Then, for y ∈ T g, let T −
y

be the branch at y; that is, the subtree rooted at y consisting only of y, the children of y not on T g and
their descendants. The tree T −

y then has the law of a tree rooted at y with some random number M−
y

of h-GW-trees attached to y. Since M−
y is dominated by ξ, by (1.1) we have that M−

y has exponential
moments. It therefore follows from [7, Theorem B] that there exists some constant C such that

P(H(T −
y ) ≥ n) ≤ Cf ′(q)n (2.5)

where, for a fixed rooted tree T , H(T ) := sup{d(ρ, x) : x ∈ T } is the height of T . Let Hn :=
max{H(T −

y ) : y ∈ {Yk}nk=0} denote the largest branch seen by Y by time n. It follows that

sup
t∈[0,T ]

∣

∣

∣

∣

Bn
t −

Σmtn

σ
√
n

∣

∣

∣

∣

≤
|XζX

1
|+ νζX1 +HnT

σ
√
n

+ sup
j=1,...,mnT

|YζY
j+1
| − |YζY

j
|+ ν(ζXj+1 − ζXj )

σ
√
n

. (2.6)

Up to time nT , the walk Y can have visited at most nT vertices on T g therefore the probability that
X has visited a branch of height at least C log(n) by time nT is at most CTnf

′(q)C log(n). In particular,
by Borel-Cantelli, choosing C suitably large we have that there are almost surely only finitely many n
such that Y has visited the root of a branch of height at least C log(n) by time nT . Since XζX

1
and ζX1

do not depend on n and have finite mean, we have that the first term in (2.6) converges P-a.s. to 0.
By [8, Proposition 3], for any k ∈ Z

+ we have that E[(|YζY
1
| − |YζY

1
|)k] < ∞ therefore the distance

between regeneration points is small. In particular, bounding mnT above by nT , using a union bound
and Markov’s inequality we have that for any ε > 0,

P

(

sup
j=1,...,mnT

|YζY
j+1
| − |YζY

j
|

σ
√
n

> ε

)

≤ CT,εE

[

(

|YζY
2
| − |YζY

1
|
)2

1{

|Y
ζY
2
|−|Y

ζY
1
|>ε

√
n
}

]
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which converges to 0 as n → ∞ by dominated convergence. Similarly, using Proposition 2.2, we have
that the same holds for the supremum of ζXj+1 − ζXj ; therefore, we have that

P

(

sup
t∈[0,T ]

∣

∣

∣

∣

Bn
t −

Σmtn

σ
√
n

∣

∣

∣

∣

> ε

)

converges to 0 as n→∞.
By the law of large numbers and that ζX1 /n converges P-a.s. to 0 we have that

ζXn = ζX1 +

n
∑

k=2

(ζXk − ζXk−1)

converges P-a.s. It therefore follows by continuity of the inverse at strictly increasing functions, [10,
Corollary 13.6.4], that mnt/n converges P-a.s. to a deterministic linear process.

By Proposition 2.2 and the remark leading to it we have that Σm is the sum of i.i.d. centred random
variables with finite second moment. By Donsker’s theorem we therefore have that (Σnt/

√
n)t≥0 con-

verges to a scaled Brownian motion. By continuity of composition at continuous limits, [10, Theorem
13.2.1], and the previous remarks we therefore have the following annealed central limit theorem.

Corollary 2.3. Under the assumptions of Theorem 1, there exists a constant σ2 > 0 such that the
process

Bn
t :=

|X⌊nt⌋| − nνt

σ
√
n

converges in P-distribution on D([0,∞),R) endowed with the Skorohod J1 topology to a standard Brow-
nian motion.

Remark 2.4. The branch of a subcritical GW-tree conditioned to survive can be constructed by attaching
a random number of subcritical GW-trees to a root vertex. In [4, Lemma 4.12] it is shown that, conditional
on having a single vertex in the first generation of the branch, the second moment of the first return time
to the root is infinite whenever β2µ̃ ≥ 1 where µ̃ is the mean of the subcritical GW-law. It therefore
follows from this that

E
[

ET h

ρ

[

(τ+ρ )2
]]

=∞

whenever β2f ′(q) ≥ 1 and µ > 1. In particular, if we have that β2f ′(q) ≥ 1 then χj have infinite
second moments since Proposition 2.2 fails. In this case, we do not have a central limit theorem for
Σm from which it follows that Bn

t does not converge in distribution. This shows that the condition
β2f ′(q) < 1 is necessary for the annealed central limit theorem. We note here that when p0 = 0 we have
that q = 0 = f ′(q) and, therefore, this condition is necessarily satisfied.

3 A quenched invariance principle

We now extend Corollary 2.3 to a quenched functional central limit theorem. For each n ∈ N write
B
n
t (X) to be the linear interpolation satisfying

B
n
k/n(X) =

|Xk| − kν

σ
√
n

for k ∈ N. We then have that Bn
t = B

n
t for t > 0 such that nt ∈ N and |Bn

t − B
n
t | ≤ n−1/2(ν + 1)/σ

therefore it suffices to consider the interpolation. To begin, we prove the following lemma which is the
analogue of [3, Lemma 4.1] and follows by the same method.

Lemma 3.1. Suppose that the assumptions of Theorem 1 hold and that for any bounded Lipschitz

7



function F : C([0, T ],R)→ R and b ∈ (1, 2) we have that

∑

k≥1

VarP

(

ET
[

F
(

B
⌊bk⌋
)])

<∞. (3.1)

Then, for P-a.e. T , the process (Bn
t )t≥0 converges in PT -distribution on D([0,∞),R) endowed with the

Skorohod J1 topology to a standard Brownian motion.

Proof. Suppose that for any bounded Lipschitz function F : C([0, T ],R)→ R and b ∈ (1, 2) we have that
P-a.s.

ET [F (B⌊bk⌋)]→ E [F (B)] (3.2)

where B is a standard Brownian motion. For any δ, T > 0, the function FT,δ(ω) := sup{|ω(s)−ω(t)|∧1 :
s, t ≤ T, |t− s| ≤ δ} is bounded and Lipschitz; furthermore, for P-a.e. T

lim
δ→0

lim sup
k→∞

ET [FT,δ(B
⌊bk⌋)] = 0 (3.3)

since, by properties of Brownian motion, E [FT,δ(B)]→ 0 as δ → 0. In particular, by Markov’s inequality
we then have that for any ε > 0

lim
δ→0

lim sup
k→∞

PT






sup

s,t≤T :
|s−t|≤δ

|B⌊bk⌋
s − B

⌊bk⌋
t | > ε






≤ lim

δ→0
lim sup
k→∞

ε−1ET
[

FT,δ(B
⌊bk⌋)

]

= 0

which gives tightness of (B
⌊bk⌋
· )∞k=1 under PT .

For n ∈ N let kn denote the unique integer such that ⌊bkn⌋ ≤ n < ⌊bkn+1⌋ then, by Markov’s
inequality and the definition of the interpolation, we have that for any ε ∈ (0, 1)

lim
δ→0

lim sup
k→∞

PT






sup

s,t≤T :
|s−t|≤δ

|Bn
s − B

n
t | > ε






≤ lim

δ→0
lim sup
n→∞

ET






sup

s,t≤T :
|s−t|≤δ

|Bn
s − B

n
t | ∧ 1






ε−1

≤ lim
δ→0

lim sup
n→∞

ET






sup

s,t≤T :
|s−t|≤δ

∣

∣

∣

∣

B
⌊bkn ⌋
s n

⌊bkn ⌋

− B
⌊bkn ⌋
t n

⌊bkn ⌋

∣

∣

∣

∣

∧ 1






ε−1

≤ lim
δ→0

lim sup
k→∞

ET






sup

u,v≤2T :
|u−v|≤2δ

|B⌊bk⌋
u − B

⌊bk⌋
v | ∧ 1






ε−1

since b < 2 implies that |s n
⌊bkn ⌋ − t n

⌊bkn ⌋ | < 2δ whenever |s− t| < δ. In particular, the above expression

is equal to 0 by (3.3) therefore the laws of Bn
· are tight under PT .

Let F be bounded and Lipschitz; without loss of generality we may assume ||F ||∞, ||F ||Lip ≤ 1. For
n ∈ N we have that

lim sup
n→∞

|ET [F (Bn)]− ET [F (B⌊bkn ⌋)]|

≤ ||F ||Lip lim sup
n→∞

ET
[

sup
s≤T
|Bn

s − B
⌊bkn ⌋
s | ∧ 1

]

≤ lim sup
n→∞

ET
[

sup
s≤T

∣

∣

∣

∣

∣

√

⌊bkn⌋
n

B
⌊bkn ⌋
s n

⌊bkn ⌋

− B
⌊bkn ⌋
s

∣

∣

∣

∣

∣

∧ 1

]
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≤ lim sup
n→∞

ET
[

sup
s≤T

∣

∣

∣

∣

∣

(
√

⌊bkn⌋
n
− 1

)

B
⌊bkn ⌋
s n

⌊bkn ⌋

∣

∣

∣

∣

∣

∧ 1

]

+ ET






sup

s,t≤T :
|s−t|≤T (b−1)

∣

∣

∣B
⌊bkn ⌋
s − B

⌊bkn ⌋
t

∣

∣

∣ ∧ 1







≤ |1 − b−1/2|E
[

sup
s≤bT

|Bs|
]

+ lim sup
k→∞

ET
[

FT,T (b−1)(B
⌊bk⌋)

]

which converges to 0 as b → 1. In particular, when (3.2) holds for any F : C([0, T ],R) → R with
||F ||∞, ||F ||Lip ≤ 1 and b ∈ (1, 2) P-a.s. we have that

ET [F (Bn)]→ E [F (B)]. (3.4)

Bounded Lipschitz functions are separable and dense in the space of continuous bounded functions
therefore we have that (3.4) holds P-a.s. ∀F ∈ Cb(C([0, T ],R)) which completes the quenched functional
CLT. It therefore remains to show that (3.1) implies (3.2).

By Corollary 2.3 we have that for any bounded Lipschitz function,

E
[

ET
[

F (B⌊bk⌋)
]]

= E

[

F (B⌊bk⌋)
]

→ E [F (B)]

as k → ∞ therefore, it suffices to show that for P-a.e. tree T we have that |E[ET [F (B⌊bk⌋)]] −
ET [F (B⌊bk⌋)]| converges to 0. By Chebyshev’s inequality, for ε > 0,

P
(

|E[ET [F (B⌊bk⌋)]]− ET [F (B⌊bk⌋)]| > ε
)

≤ ε−2VarP

(

ET
[

F
(

B
⌊bk⌋
)])

.

The result follows from Borel-Cantelli and (3.1).

We now complete the proof of the quenched functional CLT by following the method used in [8] to
show that condition (3.1) holds for any bounded Lipschitz function F : C([0, T ],R) → R and b ∈ (1, 2)
under the assumptions of the theorem.

Proof of Theorem 1. For a fixed tree T , let X1, X2 be independent β-biased walks on T and Y 1, Y 2 the
corresponding backbone walks. For i = 1, 2, k ∈ N and t, s ≥ 0 let

B
k,i
t,s = B

⌊bk⌋
t (X i

·+s)− B
⌊bk⌋
t (X i

s)

be a random variable with law of the interpolation B
⌊bk⌋ started from the vertex X i

s. Define

ϑY i

k := min{m > ⌊bk/4⌋ : m ∈ {ζY i

j }j≥1} and ϑXi

k = min
{

m ≥ 0 : X i
m = Y i

ϑY i

k

}

to be the first regeneration time of Y i after time ⌊bk/4⌋ and the corresponding time for X i.
Let

A1
k :=

{

{Y 1
s : s ≤ ϑY 1

k } ∩ {Y 2
ϑY 2

k

} = φ
}

=
{

{X1
s : s ≤ ϑX1

k } ∩ {X2
ϑX2

k

} = φ
}

,

A2
k :=

{

{Y 2
s : s ≤ ϑY 2

k } ∩ {Y 1
ϑY 1

k

} = φ
}

=
{

{X2
s : s ≤ ϑX2

k } ∩ {X1
ϑX1

k

} = φ
}

and Ak := A1
k ∩ A2

k be the event that, after the first regeneration times after time ⌊bk/4⌋, the paths of

Y 1, Y 2 do not intersect. Write Bk,i := {ϑY i

k ≤ bk/3} to be the event that the first regeneration after time
bk/4 happens before time bk/3.

Recall that for x ∈ T g we denote by H(T −
x ) the height of the branch attached to the vertex x. Using

Lipschitz properties of Bk,i we have that

sup
t≤T

∣

∣

∣

∣

B
k,i
t,0 − B

k,i

t,ϑXi

k

∣

∣

∣

∣

≤ sup
m≤Tbk

b−k/2
∣

∣

∣
|X i

m| −mν − |X i

m+ϑXi

k

|+ (m+ ϑXi

k )ν + |X i

ϑXi

k

| − ϑXi

k ν
∣

∣

∣

= sup
m≤Tbk

b−k/2
∣

∣

∣|X i
m| − |X i

m+ϑXi

k

|+ |X i

ϑXi

k

|
∣

∣

∣
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≤ b−k/2 max
m≤Tbk

∣

∣

∣

∣

∣

∣
|Y i

m| − |Y i

m+ϑY i

k

|
∣

∣

∣
+ |Y i

ϑY i

k

|
∣

∣

∣
+ b−k/2Hi

Tbk

where Hi
Tbk is the height of the tallest branch seen by time Tbk by Y i. By time Tbk the walk Y i can visit

at most Tbk +1 unique vertices. At the first hitting time of a vertex, the bud and backbone distribution
from this vertex are independent of the past; therefore, by (2.5)

P
(

Hi
Tbk ≥ C log(bk)

)

≤ CT b
kP(H(T −

ρ ) ≥ C log(bk)) ≤ CT b
kf ′(q)C log(bk) ≤ CT b

−k (3.5)

for C sufficiently large. Furthermore, by the Lipschitz property of Y i we have that

b−k/2 max
m≤Tbk

∣

∣

∣

∣

∣

∣|Y i
m| − |Y i

m+ϑY i

k

|
∣

∣

∣ + |Y i

ϑY i

k

|
∣

∣

∣ ≤ 2ϑY i

k b−k/2

which is bounded above by 2b−k/6 on the event Bk,i. Letting Ck,i := {Hi
Tbk < C log(bk)}, we then have

that, on the event Bk,i ∩ Ck,i,
∣

∣

∣

∣

F
(

B
k,i
·,0

)

− F

(

B
k,i

·,ϑXi

k

)∣

∣

∣

∣

≤ Cb−k/6

for any bounded Lipschitz function F : C([0, T ],R)→ R.
Using the Lipschitz and boundedness properties of F , we then have that

VarP

(

ET
[

F
(

B
⌊bk⌋
)])

= E

[

ET
[

F (B⌊bk⌋)
]2
]

−E
[

ET
[

F (B⌊bk⌋)
]]2

= E
[

F (Bk,1)F (Bk,2)
]

− E
[

F (Bk,1)
]

E
[

F (Bk,2)
]

≤ C
(

P
(

(Bk,1)c
)

+ P
(

(Ck,1)c
)

+ b−k/6
)

+ E

[

F

(

B
k,1

·,ϑX1

k

)

F

(

B
k,2

·,ϑX2

k

)]

− E

[

F

(

B
k,1

·,ϑX1

k

)]

E

[

F

(

B
k,2

·,ϑX2

k

)]

.

On the event Ak we have that Bk,1

·,ϑX1

k

, Bk,2

·,ϑX2

k

are independent therefore

E

[

F

(

B
k,1

·,ϑX1

k

)

F

(

B
k,2

·,ϑX2

k

)

|Ak

]

− E

[

F

(

B
k,1

·,ϑX1

k

)

|Ak

]

E

[

F

(

B
k,2

·,ϑX2

k

)

|Ak

]

= 0.

Using the Lipschitz property of F we then have that

VarP

(

ET
[

F
(

B
⌊bk⌋
)])

≤ C
(

P
(

(Ak,1)c
)

+ P
(

(Bk,1)c
)

+ P
(

(Ck,1)c
)

+ b−k/6
)

.

For i = 1, 2 we have that Y i are biased random walks on a supercritical GW-tree without leaves T g,
whose offspring law has exponential moments. It follows that the estimates P((Ak,1)c),P((Bk,1)c) ≤ b−c̃k

given in the proof of [8, Theorem 3] still hold. Combining these with (3.5) we have that there exists
c > 0 such that for k sufficiently large

VarP

(

ET
[

F
(

B
⌊bk⌋
)])

≤ Cb−ck

which shows (3.1) and therefore the result follows from Lemma 3.1.
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