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Abstract

Let X1,X2, . . . be independent copies of a random vector X with values in Rd

and with a continuous distribution function. The random vector Xn is a complete

record, each of its components is a record. As we require X to have independent

components, crucial results for univariate records clearly carry over. But there are

substantial differences as well: While there are infinitely many records in case d = 1,

there occur only finitely many in the series if d ≥ 2. Consequently, there is a terminal

complete record with probability one. We compute the distribution of the random total

number of complete records and investigate the distribution of the terminal record. For

complete records, the sequence of waiting times forms a Markov chain, but differently

from the univariate case, now the state infinity is an absorbing element of the state

space

Keyword and phrases: Multivariate records, complete records, terminal record, wait-

ing time, Markov chain.

1 Introduction

LetX1,X2, . . . be independent copies of a random vectorX ∈ Rd with distribution function

F . We assume that the margins Fi, 1 ≤ i ≤ d, of F are continuous univariate distribution

functions. This is equivalent of assuming the condition that F itself is a continuous distri-

bution function.
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Records among a sequence of univariate independent and identically distributed (iid)

random variables X1, X2, . . . have been extensively investigated over the past decades, see,

e.g., Resnick (1987, Ch. 4.1 and 4.2), Galambos (1987, Ch. 6.2 and 6.3), and Arnold,

Balakrishnan, and Nagaraja (1998).

For example, consider the indicator function

em := 1(Xm is a record), m ∈ N,

where 1(E) denotes the indicator function of the event E and X1, X2, . . . are iid univariate

random variables with a joint continuous df F . It is well known that the indicator functions

e1, e2, . . . are independent with

Pr(em = 1) = m−1, m ∈ N, (1)

see, e.g., Galambos 1987, (Lemma 6.3.3).

In this paper we are interested in complete records. The d-dimensional random vector

(rv) Xj is a complete record if each of its components is a record, i.e.,

Xj > max
1≤i≤j−1

X i,

where the maximum is taken componentwise. All our operations on vectors x = (x1, . . . , xd),

y = (y1 . . . , yd), such as x < y, are meant componentwise. Clearly, X1 is a complete record.

Multivariate records have not been discussed that extensively, yet they have been ap-

proached by, Goldie and Resnick (1989), Goldie and Resnick (1995) and Arnold, Balakrish-

nan, and Nagaraja (1998, Chapter 8), for instance. For supplementary material on multi-

variate and functional records we refer to the thesis by Zott (2016) and the references cited

therein.

In this paper we focus on the case, where the components of X are independent. Then,

clearly, various of the results for univariate vectors carry over to the multivariate case. In

particular the preceding result carries over: Put

Im := 1(Xm is a complete record).

Then, the indicator functions I1, I2, . . . are independent with

Pr(Im = 1) = m−d, m ∈ N. (2)
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However, from equations (1) and (2) we immediately deduce a first difference between the

theory of univariate and multivariate records. If the joint distribution function of the se-

quence of iid univariate random variables is continuous, then the total number of records in

this series is infinite with probability one. On the other hand, by equation (2) we have

E

(∑
m∈N

Im

)
=
∑
m∈N

E(Im) =
∑
m∈N

m−d <∞ (3)

if d ≥ 2. As a consequence, the total number of complete records
∑

m∈N Im is finite with

probability one. Hence, in case d ≥ 2, there is a terminal complete record in the series

X1,X2, . . . In Section 2 we compute the distribution of the random total number of complete

records and we investigate the distribution of the terminal record. In Section 3 we study the

sequence of waiting times for the complete records. Such a sequence forms a Markov chain,

similarly to the univariate case, but in higher dimensions the state infinity is an absorbing

element of this state space.

Suppose that the components ofX are not independent, but that its distribution function

is in the max-domain of attraction of a multivariate extreme value distribution. Goldie and

Resnick (1989, Theorem 5.3) proved in case d = 2 that the total number of complete records

is finite if and only if the limiting extreme value distribution has independent components.

Assuming that the components of X are independent, we only require continuity of its

distribution function, we do not requite that it is in the max-domain of attraction of an

extreme value distribution.

2 Terminal record

Let

T := sup {m ∈ N : Im = 1} ,

which is the index of the ultimate complete record in the sequence X1,X2, . . . If d ≥ 2,

then we know from equation (3) that Pr(T <∞) = 1. In the next Lemma we compute the

distribution of T .

Lemma 2.1. For d ≥ 2 and k ∈ N

pk = Pr(T = k) =
1

kd

∏
m≥k+1

(
1− 1

md

)
. (4)
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In particular, when d = 2:

pk =
1

k(k + 1)
.

Proof. The independence of the indicator functions Im, m ∈ N, together with equation (2)

imply the first assertion.

In the case d = 2 we obtain

pk =
1

k2
lim

N→∞

N∏
m=k+1

(m− 1)(m+ 1)

m2
=

1

k2
lim

N→∞

k(N + 1)

N(k + 1)
=

1

k(k + 1)
.

The first observation X1 is a record by definition. By the preceding result, in dimension

d = 2, X1 is already the terminal complete record with probability p1 = 1/2. The next

observation X2 is with probability 1/4 a complete record, and it is with probability 1/6 the

terminal complete record. From equation (3) and Lemma 2.1 we have that

1 = Pr(T <∞) =
∑
k∈N

pk =
∑
k∈N

1

kd

∏
m≥k+1

(
1− 1

md

)
which, taken as a purely mathematical formula, is a nice by-product.

The probability p1 = p1(d) increases as the dimension increases, whereas pk = pk(d), k ≥
2, decreases. This is the content of the next Lemma.

Lemma 2.2. We have

lim
d→∞

p1(d) = lim
d→∞

∏
m≥2

(
1− 1

md

)
= 1,

whereas, for k ≥ 2, we have

lim
d→∞

pk(d) = lim
d→∞

1

kd

∏
m≥k+1

(
1− 1

md

)
= 0.

Proof. The second assertion is immediate from the bound
∏

m≥k+1

(
1− 1

md

)
≤ 1. The first

assertion is a consequence of the equation
∑

k∈N pk = 1 and the following bound, valid for

d ≥ 4, ∑
k≥2

pk =
∑
k≥2

1

kd

∏
m≥k+1

(
1− 1

md

)
≤ 1

2d−2

∑
k≥2

1

k2
−−−→
d→∞

0.
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Lemma 2.1 implies that the expected arrival time for the final complete record is

E(T ) =
∑
k∈N

kpk =
∑
k∈N

1

kd−1

∏
m≥k+1

(
1− 1

md

)
.

Therefore, we have

E(T ) =
∑
k∈N

1

k + 1
=∞

when d = 2, while

E(T ) ≤
∑
k∈N

1

kd−1
<∞

for d ≥ 3.

Finally, by repeating the arguments in the proof of Lemma 2.2, we have

E(T ) −−−→
d→∞

1.

Let η be a d-dimensional rv with independent components η1, . . . , ηd, each following

a standard negative exponential distribution, i.e., Pr(ηi ≤ x) = exp(x), x ≤ 0, for all

i ≤ d. In what follows we investigate the distribution of the terminal record, i.e., we

study Pr(ηT ≤ x), where T denotes again the random index of the terminal record and

x = (x1, . . . , xd) ∈ (−∞, 0]d. We have a closed formula for Pr(ηT ≤ x), see Theorem 2.5.

However, we first want to verify the following conjecture: Let T = T (d) be the random index

of the terminal record which depends on the dimension d. From Lemma 2.2 we know that

Pr(T (d) = 1) = p1(d) −−−→
d→∞

1. Therefore, one would expect that

Pr(ηT ≤ x) ≈ Pr(η1 ≤ x) = exp

(
d∑

i=1

xi

)
,

when d gets large. This conjecture is verified in the next result. To ease the notation we

drop the dependence on d, wherever it causes no ambiguities.

Proposition 2.3. Let x1, x2, . . . be a sequence of numbers in (−∞, 0].

(i) If
∞∑
i=1

xi ∈ (−∞, 0],

then, with xd := (x1, . . . , xd), d ∈ N, we have

Pr(ηT ≤ xd) −−−→
d→∞

exp

(
∞∑
i=1

xi

)
= lim

d→∞
Pr(η1 ≤ xd).
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(ii) If

lim
d→∞

d∑
i=1

xi = −∞,

but such that

lim sup
d→∞

∣∣∣∣∣1d
d∑

i=1

xi

∣∣∣∣∣ < log 2 (5)

then
Pr(ηT ≤ xd)

Pr(η1 ≤ xd)
−−−→
d→∞

1.

Proof. We have

Pr(ηT ≤ xd) = Pr(ηT ≤ xd, T = 1) + Pr(ηT ≤ xd, T ≥ 2)

with

Pr(ηT ≤ xd, T ≥ 2) =
∞∑
k=2

Pr(ηT ≤ xd, T = k)

≤
∞∑
k=2

Pr(ηk ≤ xd,ηk is a complete record)

=
∞∑
k=2

Pr(ηk ≤ xd | ηk is a complete record)
1

kd

=
∞∑
k=2

exp

(
k

d∑
i=1

xi

)
1

kd

= exp

(
d∑

i=1

xi

)
∞∑
k=2

exp

(
(k − 1)

d∑
i=1

xi

)
1

kd

= exp

(
d∑

i=1

xi

)
o(1).

(6)

In the preceding list we used the fact that the univariate distribution function Pr(ηk ≤ x |
ηk is a record) equals exp(kx), x ≤ 0, k ∈ N, as established in Falk, Khorrami, and Padoan

(2017).
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From equation (6) we obtain

Pr(ηT ≤ xd) = Pr(ηT ≤ xd, T = 1) + exp

(
d∑

i=1

xi

)
o(1)

= Pr(η1 ≤ xd)− Pr(η1 ≤ xd, T ≥ 2) + exp

(
d∑

i=1

xi

)
o(1)

= Pr(η1 ≤ xd)− Pr(η1 ≤ xd | T ≥ 2) Pr(T ≥ 2) + exp

(
d∑

i=1

xi

)
o(1)

As Pr(T ≥ 2) −−−→
d→∞

0, this implies the first assertion.

Next, suppose that
∞∑
i=1

xi = −∞.

We have to show that

Pr(η1 ≤ xd, T ≥ 2) = exp

(
d∑

i=1

xi

)
o(1) (7)

as well. Hoelder’s inequality implies with p, q ≥ 1, p−1 + q−1 = 1,

Pr(ηT ≤ xd, T ≥ 2) = E (1(η1 ≤ xd)1(T ≥ 2))

≤ Pr(η1 ≤ xd)
1/pPr(T ≥ 2)1/q

= exp

(
1

p

d∑
i=1

xi

)
Pr(T ≥ 2)1/q

where

Pr(T ≥ 2) = Pr(T = 2) +
∞∑
k=3

Pr(T = k)

≤ 2−d +
∞∑
k=3

k−d

≤ 2−d +

∫ ∞
2

x−ddx

= 2−d +
2−d+1

d− 1
≤ 3

2d
.
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Thus, we obtain

Pr(η1 ≤ xd, T ≥ 2) ≤ exp

(
1

p

d∑
i=1

xi

)
31/q

2d/p

= exp

(
d∑

i=1

xi

)
exp

((
1

p
− 1

) d∑
i=1

xi −
d

q
log 2

)
31/q

= exp

(
d∑

i=1

xi

)
exp

(
−1

q

d∑
i=1

xi −
d

q
log 2

)
31/q

= exp

(
d∑

i=1

xi

)
exp

(
d

q

(
−1

d

d∑
i=1

xi − log 2

))
31/q

= exp

(
d∑

i=1

xi

)
o(1)

by condition (3). This proves the second assertion as well.

By assuming the componentwise representation Xi = F−1i (exp(ηi)), i = 1, . . . , d, d ∈ N,

for each component i = 1, . . . , d, the preceding result immediately carries over to a sequence

X1,X2, . . . of independent copies of a rv X with independent components and univariate

continuous marginal df F1, . . . , Fd.

Corollary 2.4. Let y1, y2, . . . be a sequence of numbers in R.

(i) If
∞∏
i=1

Fi(yi) ∈ (0, 1),

then

Pr(XT ≤ yd) −−−→
d→∞

∞∏
i=1

Fi(yi) = lim
d→∞

Pr(X1 ≤ yd).

(ii) If
∞∏
i=1

Fi(yi) = 0,

but such that

lim inf
d→∞

(
d∏

i=1

Fi(yi)

)1/d

>
1

2
,

then
Pr(XT ≤ yd)

Pr(X1 ≤ yd)
−−−→
d→∞

1.
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In the final result of this section we derive the exact distribution of the terminal complete

record for fixed dimension d ≥ 2. We suppose again a sequence X1,X2, . . . of independent

copies of a rv X ∈ Rd with independent components and continuous univariate marginal df

F1, . . . , Fd.

Theorem 2.5. The distribution function of the final complete record is

Pr (XT ≤ xd) =
∞∑
k=1

(∏d
i=1 u

k
i

kd
−
∑
K⊆J

(−1)|K|−1
d∏

i=1

(∑
r∈K′

uri
r
∏

s 6=r∈K′(s− r)
+

1∏
r∈K′ r

))
,

where ui = Fi(xi), J = {k + 1, k + 2, . . . }, K ⊆ J , K ′ = {k} ∪ K and |K| is the total

number of elements in the set K.

Proof of Theorem 2.5. Without loss of generality we provide the proof with uniform margins

U1, U2 . . . We look for the solution of

Pr (UT ≤ ud) =
∞∑
k=1

Pr

(
U k ≤ ud | Ik = 1,

∞⋂
m=k+1

{Im = 0}

)
Pr(T = k),

and Pr(T = k) = pk. The probability of the conditioning event is given by (4), therefore we

only need to compute

Pr

(
U k ≤ ud, Ik = 1,

∞⋂
m=k+1

{Im = 0}

)

= Pr (U k ≤ ud, Ik = 1)− Pr

(
U k ≤ ud, Ik = 1,

(
∞⋂

m=k+1

{Im = 0}

)c)

Since the components of U are independent, it is easy to see that

Pr (U k ≤ ud, Ik = 1) =

∏d
i=1 u

k
i

kd
.

By means of the inclusion-exclusion principle, we have that

Pr

(
U k ≤ ud, Ik = 1,

(
∞⋂

m=k+1

{Im = 0}

)c)
=
∑
K⊆J

(−1)|K|−1 Pr (U k ≤ ud, Ik = 1, It = 1, t ∈ K)

=
∑
K⊆J

(−1)|K|−1
d∏

i=1

Pr (Uk,i ≤ ui, Ik = 1, It = 1, t ∈ K)
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where K = {j1, . . . , j|K|} ⊆ J = {k + 1, k + 2, . . . }. Note that

Pr (Uk,i ≤ ui, ek = 1, et = 1, t ∈ K) =

∫
· · ·
∫

0<z≤min (ui,z1)<z2≤···≤z|K|≤1

zk−1
|K|∏
t=1

z
jt−jt−1−1
t dz dz1 . . . dz|K|.

We compute the previous probability by using the induction principle. We claim that

Am =

∫
· · ·
∫

0<z≤min (ui,z1)<z2≤···≤zm

zk−1
m−1∏
t=1

z
jt−jt−1−1
t dz dz1 . . . dz|K|−1

=
m−1∑
t=0

(−1)t
ujti∏t−1

r=0(jt − jr)jt
∏m−1

r=t+1(jr − jt)
zjm−1−jt
m 1(ui < zm) +

zjm−1
m∏m−1
t=0 jt

1(ui > zm),

where j0 = k and the products in the denominator in the second row of the term on the

left-hand side are equal one by convention, whenever t− 1 < 0 or m− 1 < t+ 1. At the first

step we have

A1 =

∫ min(ui,z1)

0

zk−1dz =
uki
k
1 (ui ≤ z1) +

zk1
k
1 (ui > z1) .

Now, let us suppose the claim is true for m− 1, i.e.

Am−1 =
m−2∑
t=0

(−1)t
ujti∏t−1

r=0(jt − jr)jt
∏m−2

r=t+1(jr − jt)
z
jm−2−jt
m−1 1(ui < zm−1)+

z
jm−2

m−1∏m−2
t=0 jt

1(ui > zm−1),

and prove it for m.

Am =

∫ zm

0

z
jm−1−jm−2−1
m−1 Am−1dzm−1

=
m−2∑
t=0

(−1)t
ujti∏t−1

r=0(jt − jr)jt
∏m−2

r=t+1(jr − jt)
zjm−1−jt
m − ujm−1−jt

i

jm−1 − jt
1(ui < zm)

+
1∏m−2

t=0 jt

(∫ ui

0

z
jm−1−1
m−1 dzm−11(ui < zm) +

∫ zm

0

z
jm−1−1
m−1 dzm−11(ui > zm)

)
which proves the claim. By considering zm = 1 and by noting that

∏t−1
r=0(jt − jr) =

(−1)t
∏t−1

r=0(jr − jt) and substituting with ui = Fi(xi), the proof is complete.

3 Complete Record Times

In this section we derive some results on record times. Let

R(n) := inf

{
m ∈ N :

m∑
i=1

Ii = n

}
, n ≥ 2, R(1) := 1, (8)
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be the arrival time of the n-th complete record, where inf ∅ :=∞, which describes the case

when there is no further complete record. We have seen in equation (3) that the number of

complete records is finite with probability one, if the dimension d of our observations is at

least 2. We start with the exact distribution of R(n). Note that the distribution of R(n) does

not depend on the underlying univariate df F1, . . . , Fd, provided that they are continuous.

Proposition 3.1. For a generic size d ≥ 2 we have

Pr(R(n) = k) = k−d
∑

A⊆{2,...,k−1},|A|=n−2

∏
q∈A

q−d
∏
m∈Ac

(
1−m−d

)
, k ≥ n, (9)

where |A| is the total number of elements in the set A.

Proof. Note that

Pr(R(n) = k) = Pr (Ik = 1, Sk−1 = n− 1) = Pr (Ik = 1) Pr (Sk−1 = n− 1) ,

where Sk−1 =
∑k−1

m=1 Im is a sum of independent Bernoulli random variables, each with

parameter m−d. Therefore,

Pr (Sk−1 = n− 1) = Pr

(
k−1∑
m=2

Im = n− 2

)
=

∑
A∈An−2

∏
q∈A

q−d
∏
m∈Ac

(
1−m−d

)
,

which is a Poisson-Binomial distribution.

Example 3.2. For n = 2 we get

Pr(R(2) = k) =
1

kd

k−1∏
j=2

(
1− 1

jd

)
, k ≥ 2

while if n = 3

Pr(R(3) = k) =
1

kd

k−1∏
j=2

(
1− 1

jd

) k−1∑
i=2

1

id − 1
, k ≥ 3.

Thus in the special case d = 2 we obtain

Pr(R(2) = k) =
1

2k(k − 1)
, Pr(R(3) = k) =

3k2 − 7k + 2

8k2(k − 1)2
. (10)

The sequence R(n), n ≥ 2, is a Markov chain, as it is in the univariate case, see, e.g.,

Galambos 1987, (Section 6.3). Note that the state space is now {2, 3, . . . } ∪ {∞}.
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Proposition 3.3. The sequence R(n), n ≥ 2 forms a Markov chain with the following

transition probabilities

Pr (R(n) = k|R(n− 1) = j) =


k−d, for k = j + 1,

k−d
∏k−1

m=j+1

(
1−m−d

)
, for k > j + 1,∏∞

m=j+1

(
1−m−d

)
, for k =∞ > j,

(11)

with j ≥ n − 1. The state {∞} is absorbing, that is Pr(R(n) = ∞ | R(n − 1) = ∞) = 1,

when n ≥ 3.

Proof. For a finite sequence of finite states, by the independence of I1, I2, . . . we have

Pr (R(m) = jm, 2 ≤ m ≤ n) =
n∏

m=2

Pr (Ijm = 1) Pr

 jm−1∑
i=jm−1+1

Ii = 0

 , (12)

where j1 = 2 by convention. Using this formula we obtain for the conditional probability

Pr (R(n) = jn|R(m) = jm, 2 ≤ m ≤ n− 1) = Pr (Ijn = 1) Pr

 jn−1∑
i=jn−1+1

Ii = 0

 . (13)

Note that

Pr (R(n− 1) = jn−1) = Pr
(
Ijn−1 = 1

)
Pr

(
jn−1−1∑
i=2

Ii = n− 2

)
and

Pr (R(n) = jn, R(n− 1) = jn−1) = Pr (Ijn = 1) Pr

 jn−1∑
i=jn−1+1

Ii = 0


Pr
(
Ijn−1 = 1

)
Pr

(
jn−1−1∑
i=2

Ii = n− 2

)
.

Therefore Pr (R(n) = jn|R(n− 1) = jn−1) is equal to right hand-side of (13).

For the case that a time moves from a finite state to infinity we have

Pr (R(n) =∞, R(m) = jm, 2 ≤ m ≤ n− 1) =
n−1∏
m=2

Pr (Ijm = 1)

× Pr

 jm−1∑
i=jm−1+1

Ii = 0


× Pr

(
∞∑

i=jm+1

Ii = 0

)
.
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Using this result and the one in (12) we obtain

Pr (R(n) =∞|R(m) = jm, 2 ≤ m ≤ n− 1) = Pr

 ∞∑
i=jn−1+1

Ii = 0

 . (14)

Now, noting that Pr (R(n− 1) = jn−1) = Pr
(
Ijn−1 = 1

)
and

Pr (R(n) =∞, R(n− 1) = jn−1) = Pr
(
Ijn−1 = 1

)
Pr

 ∞∑
i=jn−1+1

Ii = 0

 ,

then Pr (R(n) =∞|R(n− 1) = jn−1) is equal to right hand-side of (14).

To compute the transition probabilities, note that Pr(In = 1) = n−d and Pr(In = 0) =

1− n−d. Finally, to complete the proof we need to check that

pn|n−1 =
∑

k≥j+1

Pr (R(n) = k|R(n− 1) = j) + Pr (R(n) =∞|R(n− 1) = j) = 1,

for each j ≥ 2, i.e.

(j + 1)−d +
∞∑

k=j+2

k−d
k−1∏

m=j+1

(1−m−d) +
∞∏

m=j+1

(1−m−d) = 1.

We prove by induction that

M∑
k=j+2

k−d
k−1∏

m=j+1

(1−m−d) +
M∏

m=j+1

(1−m−d) = 1− (j + 1)−d, (15)

for each M ∈ N.

Step M = j + 2:

(j + 2)−d(1− (j + 1)−d) + (1− (j + 1)−d)(1− (j + 2)−d) = 1− (j + 1)−d.

Now, we suppose (15) is true for M and we prove it is true also for M + 1.

M+1∑
k=j+2

k−d
k−1∏

m=j+1

(1−m−d) +
M+1∏

m=j+1

(1−m−d)

=
M∑

k=j+2

k−d
k−1∏

m=j+1

(1−m−d) + (M + 1)−d
M∏

m=j+1

(1−m−d) + (M + 1)−d
M∏

m=j+1

(1−m−d)

= (1− (j + 1)−d)((M + 1)−d + 1− (M + 1)−d) = 1− (j + 1)−d.

Therefore pn|n−1 = 1 and the proof is completed.
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