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STOCHASTIC LU FACTORIZATIONS, DARBOUX

TRANSFORMATIONS AND URN MODELS

F. ALBERTO GRÜNBAUM AND MANUEL D. DE LA IGLESIA

Abstract. We consider UL (and LU) decompositions of the one-step transition prob-
ability matrix of a random walk with state space the nonnegative integers, with the
condition that both upper and lower triangular matrices in the factorization are also
stochastic matrices. We give conditions on the free parameter of the UL factorization in
terms of certain continued fraction such that this stochastic factorization is possible. By
inverting the order of multiplication (also known as a Darboux transformation) we get
a new family of random walks where it is possible the identify the spectral measures in
terms of a Geronimus transformation. The same can be done for the LU factorization
but now without a free parameter. Finally, we apply our results in two examples, the
random walk with constant transition probabilities and the random walk generated by
the Jacobi orthogonal polynomials. In both situations we give urn models associated
with all the random walks in question.

1. Introduction

The main motivation of this paper was to find simple ways to describe certain random
walks on the nonnegative integers in terms of urn models. The starting point was a paper
written by one the authors (see [8]) where an urn model associated with Jacobi orthogonal
polynomials was given. This was a rather contrived model compared to more familiar ones
such as those of Ehrenfest and Bernoulli-Laplace, and we wondered if there was an alternative
way of setting a less elaborate urn model.
The way we approach our goal in this paper is to divide the urn model associated with the

random walk into two different and simpler urn experiments and combine them together to
obtain a simpler description of the original urn model. For that we propose to factorize the
one-step transition probability matrix P of the random walk (which is a tridiagonal matrix,
see (2.1)) into its UL decomposition, i.e. P = PUPL. Here PL and PU are lower and upper
triangular matrices (bidiagonal), respectively, and we want them to be stochastic. As it is
very well known this factorization is not unique and it comes with a free parameter. The
factorization, if it can be achieved in terms of stochastic factors, will represent a family
of factorizations of the original transition matrix P . From a probabilistic point of view
the meaning of this factorization will be the composition of a family of two random walks
(one pure birth and another pure death), first the one associated with PU followed by the
one associated with PL. We will study the conditions on the free parameter mentioned
above under which this stochastic UL factorization is possible and will relate it with the
theory of continued fractions. We will see that this kind of stochastic factorizations will not
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always be possible for certain random walks. For instance, the symmetric random walk with
constant transition probabilities will give one of these bad cases. The same can be done if we
consider the LU decomposition but now the difference is that the stochastic factorization (if
possible) is unique and does not come with a free parameter, as the UL decomposition. The
stochastic LU decomposition will now be possible under certain boundary conditions on one
of the transition probabilities of the random walk, also related with a continued fraction.
This will be the content of Section 2. We mention that our factorization is in the same
spirit of one that was exhibited in a much more elaborate problem involving matrix-valued
orthogonal polynomials (see [11]). For the use of this kind of orthogonal polynomials in the
study of stochastic processes, see [3, 7].
UL and LU decompositions of stochastic matrices have been considered earlier in the

literature (see for instance [5, 6, 12, 18]). In [12] a decomposition is found as I − P =
(A− I)(B − S), where P is a stochastic matrix, A is strictly upper triangular, B is strictly
lower triangular and S is diagonal. The entries of A (expected values) and the entries of
B and S (probabilities) are related with certain Markov chains also known and censored
Markov chains. In [18] UL and LU factorizations are also considered of the form I − P =
(I − L)(I − K), where L is upper triangular and K is lower triangular. That means that
P = L+K −LK. In this paper the author explores the relation between this factorization
and the very well known Wiener-Hopf factorization for Markov chains, this last one as a
particular case of the LU factorizations, up to Fourier transforms (see [18] for more details).
These factorizations seem to be different from the one we try to consider here of the form
P = PUPL, where the three matrices involved are stochastic.
One of the main advantages of considering a factorization of the form P = PUPL for

tridiagonal stochastic matrices P is that we can make use of the so-called discrete Darboux

transformation, consisting of inverting the order of multiplication. The new matrix P̃ =
PLPU will also be tridiagonal and stochastic. Since the factorization comes with a free
parameter, we will have a family of new random walks different in general from the original
one. These Darboux transformations have been studied before (see for instance [9, 10, 17, 20,
21]) in the context of the theory of orthogonal polynomials, in particular in the description of
some families of Krall polynomials. It has played an important role in the study of integrable
systems (see [16]). An important property of the Darboux transformation is that one knows
how to relate the spectral measure associated with P with the spectral measure associated

with P̃ using the so-called Geronimus transformation. For the LU factorization we have
that these measures are related through the Christoffel transformation (see Section 3). A
more general way of performing a discrete Darboux transformation consists of introducing
a new parameter λ ∈ C such that we find a factorization of the form P = AB + λI, where
A is upper triangular and B is lower triangular (or P = BA+ λI for the LU factorization).
The case we study here is λ = 0 and A and B stochastic matrices.
Once we have the spectral measure it is easy to analyze the corresponding random walk

in terms of the orthogonal polynomials associated with that measure. This was first done
by a series of papers of S. Karlin and J. McGregor (inspired by work by W. Feller and H.P.
McKean) in the 1950s (see [13, 14, 15]) where they studied first continuous-time birth-and-
death processes and then the case of discrete-time random walks. After that many other
authors have been working in this connection, such as E. van Doorn, M. Ismail, J. Letessier,
G. Valent and H. Dette, to mention just a few. With the knowledge of the spectral measure
and the corresponding orthogonal polynomials it is possible to give an explicit integral
representation of the entries of the n-step transition probability matrix of the random walk
(Karlin-McGregor formula), and to study the corresponding invariant measure vector (or
distribution if the random walk is ergodic) in terms of the inverse of the norms of the
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orthogonal polynomials, and to study some other probabilistic properties like recurrence,
absorbing times, first return times or limit theorems.
We will apply the results of this paper to two examples in Sections 4 and 5. The first one

is the random walk with constant transition probabilities and the second one is the random
walk generated by Jacobi orthogonal polynomials. In both cases we show how to choose
the free parameter of the UL factorization (or conditions for the LU factorization) such
that we obtain a family of stochastic factorizations. In some cases we compute explicitly
the coefficients of both stochastic factors. We also give the spectral measure associated
with the random walks and explore the corresponding Darboux transformation, as well as
other probabilistic properties. Finally we give urn models for some particular cases of both
examples, exploring the probabilistic meaning of the free parameter in the UL factorization.
These simplified urn models arising from the stochastic factorizations are among the main
results in this paper.

2. Stochastic LU and UL factorizations

Let P be the transition probability matrix of an irreducible random walk with space state
Z≥0, given by

P =




b0 a0 0 0

c1 b1 a1 0

0 c2 b2 a2
. . .

. . .
. . .



. (2.1)

As usual, since P is stochastic, we have that all entries are nonnegative and

b0 + a0 = 1, cn + bn + an = 1, n ≥ 1.

The irreducibility conditions force us to take 0 < an, cn+1 < 1, n ≥ 0. A diagram of the
transitions between the states is given by

· · ·
a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

0 1 2 3 4 5

We would like to perform a UL decomposition of the matrix P in the following way

P =




b0 a0

c1 b1 a1
. . .

. . .
. . .


 =




y0 x0

0 y1 x1
. . .

. . .
. . .







s0 0

r1 s1 0

. . .
. . .

. . .


 = PUPL, (2.2)

with the condition that PU and PL are also stochastic matrices. This means that all entries
of PU and PL are nonnegative and

xn + yn = 1, n ≥ 0, s0 = 1, rn + sn = 1, n ≥ 1.

A direct computation shows that

an = xnsn+1, n ≥ 0

bn = xnrn+1 + ynsn, n ≥ 0, (2.3)

cn = ynrn, n ≥ 1.
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The irreducibility conditions force us to take xn, sn+1 > 0, n ≥ 0 and yn, rn > 0, n ≥ 1. The
free parameter y0 satisfies 0 ≤ y0 < 1. Observe that PU is a pure birth random walk on Z≥0

with diagram

· · ·
x0 x1 x2 x3 x4 x5y0

y1 y2 y3 y4 y5

0 1 2 3 4 5

while PL is a pure death random walk on Z≥0 with absorbing state at 0 with diagram

· · ·
r1 r2 r3 r4 r5 r6

1

s1 s2 s3 s4 s5

0 1 2 3 4 5

One could have performed the factorization the other way around like

P =




b0 a0

c1 b1 a1
. . .

. . .
. . .


 =




s̃0 0

r̃1 s̃1 0

. . .
. . .

. . .







ỹ0 x̃0

0 ỹ1 x̃1
. . .

. . .
. . .


 = P̃LP̃U , (2.4)

in which case we have a LU factorization with relations

an = s̃nx̃n, n ≥ 0

bn = r̃nx̃n−1 + s̃nỹn, n ≥ 0,

cn = r̃nỹn−1, n ≥ 1.

As we see, the important difference between both cases is that in the UL factorization case
there will be a free parameter y0 while in the LU factorization case the decomposition will
be unique. As before, the irreducibility conditions force us to take x̃n, s̃n > 0, n ≥ 0 and
ỹn, r̃n+1 > 0, n ≥ 0.

Lemma 2.1. Let P = PUPL like in (2.2). Then PU is stochastic if and only if PL is
stochastic. The same result holds for the LU decomposition (2.4).

Proof. Assume that PU is stochastic. We will prove that PL is stochastic by induction. If
x0 + y0 = 1 then, using the first and second relation in (2.3), we get

s1 + r1 =
a0
x0

+
b0 − y0
x0

=
1− y0
x0

= 1.

Assume now that sn + rn = 1. Then we have, using again (2.3), that

sn+1 + rn+1 =
an
xn

+
bn − ynsn

xn
=

1

xn
(an + bn − yn(1− rn))

=
1

xn
(an + bn + cn − yn) =

1

xn
(1− yn) = 1.

Finally, the entries of PL are all nonnegative following (2.3). On the other hand, if PL is
stochastic, then all entries of PU are nonnegative and adding up the three relations in (2.3)
we have

xn(sn+1 + rn+1) + yn(sn + rn) = an + bn + cn = 1.

The proof for the LU decomposition is similar. �
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From (2.3) it is clear that the we can generate all the sequences xn, yn, sn, rn directly
from an, bn, cn and there will be an unique free parameter y0 (something that it will not
be true for the LU decomposition). Indeed, we first calculate alternatively the sequences
sn+1, n ≥ 0, and yn, n ≥ 1, by using the first and third relation in (2.3). The sequences xn
and rn satisfy xn = 1 − yn, n ≥ 0, and rn = 1 − sn, n ≥ 1. The best order in which all
sequences are calculated is (y0 is a free parameter and s0 = 1), s1, r1, y1, x1, s2, r2, y2, x2, . . ..
Another way to generate these sequences will be by using certain recurrence relations as the
next lemma shows.

Lemma 2.2. Let xn, yn, sn, rn the sequences obtained by (2.2) with PU having all its rows
summing up to 1 (or PL). Then the sequence yn satisfies the recurrence relation (y0 is a
free parameter)

yn+1 =
cn+1

1− an
1− yn

, n ≥ 0, y0 ∈ R, (2.5)

while the sequence sn satisfies the recurrence relation

sn+1 =
an

1− cn
1− sn

, n ≥ 1, s1 =
a0

1− y0
. (2.6)

Proof. From the first and third relation in (2.3) we have

yn+1 =
cn+1

rn+1
=

cn+1

1− sn+1
=

cn+1

1− an
xn

=
cn+1

1− an
1− yn

,

sn+1 =
an
xn

=
an

1− yn
=

an

1− cn
1− sn

.

�

Remark 2.3. A simpler way of writing (2.5) and (2.6) is calculating alternatively both se-
quences by using

yn+1 =
cn+1

1− sn+1
, sn+1 =

an
1− yn

, n ≥ 0. (2.7)

Remark 2.4. For the LU decomposition we have similar recurrence relations, but now for r̃n
and x̃n. Indeed,

r̃n+1 =
cn+1

1− an
1− r̃n

=
cn+1

1− x̃n
, n ≥ 0, r̃0 = 0, (2.8)

and

x̃n+1 =
an+1

1− cn+1

1− x̃n

=
an+1

1− r̃n+1
, n ≥ 0, x̃0 = a0. (2.9)

Unlike the UL decomposition, there is no free parameter in this case.

The previous lemma gives one way to obtain recursively all coefficients xn, yn, sn, rn in
terms of a free parameter y0. Lemma 2.2 does not say anything about the positivity of
the coefficients xn, yn, sn, rn. This will be the goal of the next proposition, where we will
study how to choose appropriately the parameter y0 in such a way that PU and PL are both
stochastic. Before that, we need to introduce some notation about continued fractions. We
recommend the reference [19] for the reader unfamiliar with the subject.
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Let H be the continued fraction generated by alternatively choosing an and cn, i.e.

H = 1− a0

1− c1

1− a1

1− c2

1− · · ·

. (2.10)

Continued fractions admit different notations. In this paper we will also use

H = 1−
a0

1
−

c1

1
−

a1

1
−

c2

· · ·
.

The sequence a0, c1, a1, c2, . . . is called the sequence of partial numerators of the continued
fraction. Consider the so-called convergents (hn)n≥0 of the continued fraction H , given by
the sequence of truncated continued fractions of H , i.e.

h2n = 1−
a0

1
−

c1

1
− · · · −

cn

1
, n ≥ 0,

h2n+1 = 1−
a0

1
−

c1

1
− · · · −

an

1
, n ≥ 0.

It is well known (see [19]) that the convergents of a continued fraction can be written in the
form

hn =
An

Bn
, (2.11)

where the numbers An, Bn, can be calculated recursively by the formulas

An = An−1 − ξnAn−2, A−1 = 1, A0 = 1, n ≥ 1,

Bn = Bn−1 − ξnBn−2, B−1 = 0, B0 = 1, n ≥ 1.

Here ξn is the sequence given by ξ2n = cn and ξ2n+1 = an for n ≥ 1. In terms of h2n and
h2n+1 we have

A2n = A2n−1 − cnA2n−2, n ≥ 1,

B2n = B2n−1 − cnB2n−2, n ≥ 1.

and

A2n+1 = A2n − anA2n−1, n ≥ 0,

B2n+1 = B2n − anB2n−1, n ≥ 0.

Using the relations above it is not hard to prove that

A2n+2B2n+1 −A2n+1B2n+2 = −a0c1a1c2 · · · an−1cn, n ≥ 0,

A2n+1B2n −A2nB2n+1 = −a0c1a1c2 · · · cnan, n ≥ 0,

or, in other words,

h2n+2 − h2n+1 =
A2n+2

B2n+2
− A2n+1

B2n+1
= −a0c1a1c2 · · ·an−1cn

B2n+1B2n+2
, n ≥ 0, (2.12)

h2n+1 − h2n =
A2n+1

B2n+1
− A2n

B2n
= −a0c1a1c2 · · · cnan

B2nB2n+1
, n ≥ 0. (2.13)

From here we get the following:
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Proposition 2.5. Let H the continued fraction given by (2.10) and the corresponding con-
vergents hn = An/Bn defined by (2.11). Assume that

0 < An < Bn, n ≥ 1. (2.14)

Then H is convergent. Moreover, let P = PUPL like in (2.2). Then, both PU and PL are
stochastic matrices if and only if we choose y0 in the following range

0 ≤ y0 ≤ H. (2.15)

Proof. First, following the assumptions (2.14) and properties (2.12) and (2.13), we have that
(recall that 0 < an, cn+1 < 1, n ≥ 0)

0 < · · · < h2n+2 < h2n+1 < h2n < · · · < h1 < h0 = 1.

Therefore hn is a bounded strictly decreasing sequence, so it is convergent to H .
Assume first that both PU and PL are stochastic. That means that 0 ≤ y0 < 1, 0 <

xn, sn+1 < 1, n ≥ 0 and 0 < yn, rn < 1, n ≥ 1, following the irreducibility conditions for
the matrix P . Therefore, we already have the lower bound for y0, i.e. 0 ≤ y0. In order to
proof that y0 ≤ H we will use the definition of yn and sn in (2.7). Consider the sequence of
numbers αn, n ≥ 0, given by α2n = yn, α2n+1 = sn+1, n ≥ 0. We will see that the condition
αn < 1 implies that y0 < hn for every n. Therefore, since hn is a positive bounded and
decreasing sequence, we will have (2.15).
For α0 = y0 it is clear that 0 ≤ y0 < 1 = h0. For α1 = s1, we have, by definition,

α1 = s1 =
a0

1− y0
< 1 ⇔ y0 < 1− a0 = h1.

For α2 = y1 we have, using (2.7) and the previous bound, that

α2 = y1 =
c1

1− s1
< 1 ⇔ s1 < 1− c1 ⇔ a0

1− y0
< 1− c1 ⇔ y0 < 1− a0

1− c1
= h2.

For an even index 2n we have, using (2.7) and all the previous bounds, that

α2n = yn =
cn

1− sn
< 1 ⇔ sn < 1− cn ⇔ an−1

1− yn−1
< 1− cn ⇔ yn−1 < 1− an−1

1− cn

⇔ sn−1 < 1− cn−1

1− an−1

1− cn

⇔ · · · ⇔ y0 < 1−
a0

1
−

c1

1
− · · · −

cn

1
= h2n.

Similarly, for an odd index 2n+ 1 we have, using (2.7) and all the previous bounds, that

α2n+1 = sn+1 =
an

1− yn
< 1 ⇔ yn < 1− an ⇔ cn

1− sn
< 1− an ⇔ sn < 1− cn

1− an

⇔ yn−1 < 1− an−1

1− cn
1− an

⇔ · · · ⇔ y0 < 1−
a0

1
−

c1

1
− · · · −

an

1
= h2n+1.

On the contrary, if (2.15) holds, in particular we have that 0 ≤ y0 ≤ H < hn for every n ≥ 0.
Following the same steps as before, using an argument of strong induction will lead us to
the fact that both PU and PL are stochastic matrices with the conditions that 0 ≤ y0 < 1,
0 < xn, sn+1 < 1, n ≥ 0 and 0 < yn, rn < 1, n ≥ 1. �

Remark 2.6. For the LU decomposition there is no free parameter, so the positivity condition
comes in terms of an upper bound of the coefficient ỹ0 = a0. Indeed, one must have

0 ≤ a0 ≤ H̃,
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where

H̃ = 1−
c1

1
−

a1

1
−

c2

1
−

a2

· · ·
, (2.16)

as long as we have 0 < Ãn < B̃n, n ≥ 1, where h̃n = Ãn/B̃n are the convergents of H̃ . The
proof is similar to the one in the previous proposition, using now the recurrence relations
(2.8) and (2.9).

Remark 2.7. The subject of calculating the exact value of a continued fraction or establishing
its convergence is a delicate matter. There are many results allowing one to decide whether
a continued fraction is convergent or not. We refer again to [19] to find a collection of
convergence results for different types of continued fractions. For instance, one of the oldest
results is the Worpitzky’s Theorem, which states that a continued fraction converges if all
partial numerators have moduli less than 1/4. Another interesting case is given if the
sequence of partial numerators is a chain sequence (see for instance Theorem 3.1 of [2]).
Indeed, consider the continued fraction

C = 1−
α1

1
−

α2

1
−

α3

1
−

α4

· · ·
.

Assume that αn can be written as αn = (1−mn−1)mn, where 0 ≤ m0 < 1 and 0 < mn < 1
for n ≥ 1. Then

C = m0 +
1−m0

1 + L
,

where

L =

∞∑

n=1

m1m2 · · ·mn

(1−m1)(1 −m2) · · · (1−mn)
. (2.17)

Moreover, in that case the convergents satisfy the condition (2.14) of the Proposition 2.5.
Indeed, following Section 3.3 of [2], it is possible to see that the convergents Cn = An/Bn

of C satisfy

An =

n∏

k=1

(1−mk) +m0

(
n−1∑

k=1

m1 · · ·mk(1−mk+1) · · · (1−mn) +

n∏

k=1

mk

)

Bn =

n∏

k=1

(1−mk) +

n−1∑

k=1

m1 · · ·mk(1−mk+1) · · · (1−mn) +

n∏

k=1

mk.

From here it is clear that 0 < An < Bn, n ≥ 1. The argument above will be used for the
Jacobi polynomials in Section 5.

Remark 2.8. Observe that the case y0 = 0 allows for UL decomposition with a free parameter
s0 not necessarily equal to 1. Indeed, x0 = 1, the sequences yn, xn, n ≥ 1, can be obtained
by (2.5) and they are independent of s0. The same is true for the sequences rn, sn, n ≥ 1,
which can be obtained by (2.6) and they are independent of s0. Therefore we can take any
s0 such that 0 ≤ s0 ≤ 1. The probabilistic meaning of taking y0 = 0 is that the random
walk PU has a repelling barrier at state 0. For the random walk PL it is convenient to think
of an ignored state (say −1) as an absorbing state from the state 0 with probability 1− s0.



STOCHASTIC LU, DARBOUX TRANSFORMS AND URN MODELS 9

3. Stochastic Darboux transformations

Now that we know the conditions under which a stochastic tridiagonal matrix can be
decomposed as a UL (or LU) factorization where both factors are still stochastic matrices, we
can perform what is called a discrete Darboux transformation. The Darboux transformation
has a long history but probably the first reference of a discrete Darboux transformation like
we study here appeared in [16] in connection with the Toda lattice. We explain now what
is a Darboux transformation in our context.
If P = PUPL as in (2.2), then by inverting the order of multiplication we obtain another

tridiagonal matrix of the form

P̃ = PLPU =




s0 0

r1 s1 0

. . .
. . .

. . .







y0 x0

0 y1 x1
. . .

. . .
. . .


 =




b̃0 ã0

c̃1 b̃1 ã1
. . .

. . .
. . .


 . (3.1)

Now the new coefficients are given by

ãn = snxn, n ≥ 0,

b̃n = rnxn−1 + snyn, n ≥ 0,

c̃n = rnyn−1, n ≥ 1.

The matrix P̃ is actually stochastic, since the multiplication of two stochastic matrices is
again a stochastic matrix. Therefore it gives a family of new random walks with coefficients
(ãn)n, (b̃n)n and (c̃n)n and depending on a free parameter y0. In terms of a model driven
by urn experiments (as we will see in the example below) the factorization P = PUPL may
be thought as two urn experiments, Experiment 1 and Experiment 2, respectively. We first
perform the Experiment 1 and with the result we immediately perform the Experiment 2.

The urn model for P̃ = PLPU will proceed in the reversed order, first the Experiment 2 and
with the result the Experiment 1. We will see more on this later for some specific examples.

The same can be done for the LU decomposition (2.4) of the form P = P̃LP̃U but now we
do not get a family of random walks and the transformation is unique. The corresponding
Darboux transformation is

P̂ = P̃U P̃L =




ỹ0 x̃0

0 ỹ1 x̃1
. . .

. . .
. . .







s̃0 0

r̃1 s̃1 0

. . .
. . .

. . .


 =




b̂0 â0

ĉ1 b̂1 â1
. . .

. . .
. . .


 . (3.2)

The new coefficients are given by

ân = x̃ns̃n+1, n ≥ 0,

b̂n = x̃nr̃n+1 + ỹns̃n, n ≥ 0,

ĉn = ỹnr̃n, n ≥ 1.

One important property of the Darboux transformation is how to transform the spectral
measure associated with a random walk with one-step transition probability P . It is very
well known (see [15]) that for every tridiagonal stochastic matrix P (also known as a Jacobi
matrix) there exists an unique positive measure ω defined on the interval −1 ≤ x ≤ 1. This
is just a consequence of the very well known Spectral Theorem (or Favard’s Theorem in the
context of orthogonal polynomials). The Darboux transformation (3.1) gives a family of

random walks P̃ which is also a Jacobi matrix. Therefore, there will exist an unique family
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of positive measures ω̃ associated with P̃ . It is possible to derive (see for instance Theorem
2 of [10]) that the moments of this new ω̃ are given by

µ̃0 = 1, µ̃n = y0µn−1, n ≥ 1,

where µn are the moments of ω and y0 is the free parameter from the UL factorization. If

the moment µ−1 =
∫ 1

−1 dω(x)/x is well defined, then a candidate for the family of spectral
measures is then

ω̃(x) = y0
ω(x)

x
+Mδ0(x), M = 1− y0µ−1, (3.3)

where δ0(x) is the Dirac delta located at x = 0. This transformation of the spectral measure
ω is also known as a Geronimus transformation.

Similarly, for the LU decomposition, the corresponding Darboux transformation (3.2) P̂
gives rise to a Jacobi matrix and a spectral measure ω̂. In this case, it is possible to see that
this new spectral measure is given by

ω̂(x) = xω(x), (3.4)

or, in other words, a Christoffel transformation of ω. For more information about the
connection between Darboux transformations and Geronimus or Christoffel transformations
see [9, 10, 17, 20, 21].

Remark 3.1. Following Remark 2.8 we can see now how the choice of y0 = 0 affects the

random walk P̃ (3.1) obtained from the Darboux transformation. Indeed, in this case we

must have that b̃0 = 0, ã0 = s0 and c̃1 = 0, so P̃ will be a random walk with a free parameter

s0. The random walk P̃ can be decomposed as

P̃ =




0 s0 0 · · ·
0

0

...

P̆



,

where P̆ is stochastic, irreducible and does not depend on s0. If s0 < 1 there is a probability
that the process is absorbed at state −1 if the random walk is at state 0, given by 1 − s0.

But the random walk P̃ can never reach the state 0, unless it starts there. In terms of the

spectral measure for P̃ in (3.3) we see that if y0 = 0 then ω̃(x) = δ0(x) and we have a
degenerate measure.

4. Random walk with constant transition probabilities

In this section we apply the machinery developed in previous sections to the study of the
random walk with one-step transition probability matrix given by

P =




b0 a0 0 0

c b a 0

0 c b a

. . .
. . .

. . .



, (4.1)

where b0+a0 = 1 and a+ b+ c = 1. In order to apply Proposition 2.5 the continued fraction
H in (2.10) can be written as

H = 1− a0
F
,
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where

F = 1−
c

1
−

a

1
−

c

1
−

a

· · ·
. (4.2)

We observe that F is a periodic continued fraction of period 2. This means that F , if it
converges, will be the solution of certain quadratic equation.

Proposition 4.1. Let c ≤ (1−√
a)2. Then the continued fraction F (4.2) converges to

F =
1

2

(
1 + a− c+

√
(1 + a− c)2 − 4a

)
. (4.3)

Proof. Heuristically the expression of F in (4.2) can be written as

F = 1− c

1− a

F

.

Then F satisfies the quadratic equation

F 2 − (1 + a− c)F + a = 0,

and the solutions are given by

F± =
1

2

(
1 + a− c±

√
(1 + a− c)2 − 4a

)
.

We now see that the condition c ≤ (1−√
a)2 implies that F is actually a real number and

the value of the continued fraction F is exactly the solution having the larger modulus. A
more rigorous proof can be done following Theorem 8.1 of [19]. �

Remark 4.2. From here we already see that there are many cases of random walks with con-
stant transition probabilities where it is not possible to obtain a stochastic UL factorization.
For instance, the case of a symmetric random walk with c = 1− a (and therefore b = 0). In
this case the condition c ≤ (1 −√

a)2 is equivalent to a ≥ 1 which is possible only if a = 1.
But then P would not be irreducible.

Corollary 4.3. Let P be like in (4.1) with a0 ≤ F , where F is given by (4.3). Then
P = PUPL like in (2.2) where both PU and PL are stochastic matrices if and only if we
choose y0 in the following range

0 ≤ y0 ≤ 1− a0
F
.

Proof. The condition a0 ≤ F gives that 1−a0/F is actually a number between 0 and 1 since
F is always positive. �

There are two interesting cases:

• If a = c, then the continued fraction F in (4.2) has period 1 and the condition
c ≤ (1−√

a)2 is equivalent to a ≤ 1/4. Then F =
(
1 +

√
1− 4a

)
/2 and

0 ≤ y0 ≤ 1− 2a0

1 +
√
1− 4a

,

as long as a0 ≤
(
1 +

√
1− 4a

)
/2. Additionally we have b = 1− 2a.

• If c = (1−√
a)2, then the continued fraction F in (4.2) gives that F =

√
a and

0 ≤ y0 ≤ 1− a0√
a
,

as long as a0 ≤ √
a. Additionally we have b = 2(

√
a− a).
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It is possible to calculate the coefficients xn, yn, sn, rn of the UL decomposition using
Lemma 2.2. These coefficients will depend on a0 and y0. In general the formulas are quite
cumbersome, but in the special cases introduced above, these formulas simplify considerably.
For illustration purposes we will give the coefficients xn, yn, sn, rn for two cases:

a) a = c = 1/4 (and therefore b = 1/2). We have F = 1/2 and then 0 ≤ y0 ≤ 1 − 2a0 as
long as a0 ≤ 1/2. A simple computation shows

yn =
2a0 + (2n− 1)(1− y0 − 2a0)

4a0 + 4n(1− y0 − 2a0)
, xn = 1− yn, n ≥ 1,

sn =
a0 + (n− 1)(1− y0 − 2a0)

2a0 + (2n− 1)(1− y0 − 2a0)
, rn = 1− sn, n ≥ 1, s0 = 1.

We clearly see from these formulas that 0 < xn, yn < 1, n ≥ 0 and 0 < sn, rn < 1, n ≥ 1.
There are certain choices of y0 where the coefficients are independent of a0. For instance,
taking y0 = 1− ka0, k ≥ 2, with a0 ≤ 1/k, gives

yn =
2 + (2n− 1)(k − 2)

4 + 4n(k − 2)
, xn = 1− yn, n ≥ 1, (4.4)

sn =
1 + (n− 1)(k − 2)

2 + (2n− 1)(k − 2)
, rn = 1− sn, n ≥ 1, s0 = 1.

For k = 2 we see that xn = yn = sn = rn = 1/2, n ≥ 1. We will give a probabilistic
implementation in terms of urns models below.

Remark 4.4. Following Remark 2.6, for the LU factorization we must have 0 ≤ a0 ≤ H̃ = F ,
where F is the continued fraction (4.2). As long as we are in the conditions of Proposition 4.1
we will have a convergent continued fraction F which value is given by (4.3). The coefficients
x̃n, ỹn, s̃n, r̃n in (2.4) can be calculated in the same way as before. For instance, for the case
of a = c = 1/4 (and therefore b = 1/2), we have F = 1/2 and then a0 must be taken in the
range 0 ≤ a0 ≤ 1/2. Then a simple computation shows that

x̃n =
a0 + n(1 − 2a0)

2a0 + 2n(1− 2a0)
, ỹn = 1− x̃n, n ≥ 0,

r̃n =
2a0 + (2n− 1)(1− 2a0)

4a0 + 4n(1− 2a0)
, s̃n = 1− r̃n, n ≥ 1, s̃0 = 1.

b) a = 1/9, c = (1 − √
a)2 = 4/9 (and therefore b = 4/9). We have F = 1/3 and then

0 ≤ y0 ≤ 1− 3a0 as long as a0 ≤ 1/3. In this case we have to differentiate between odd and
even cases. Therefore

y2n =
6a0 + (6n− 1)(1− y0 − 3a0)

9a0 + 9n(1− y0 − 3a0)
, y2n−1 =

12a0 + (12n− 8)(1 − y0 − 3a0)

18a0 + 9(2n− 1)(1 − y0 − 3a0)
, n ≥ 1,

s0 = 1, s1 =
a0

1− y0
, sn =

1

9(1− yn−1)
, n ≥ 2, xn = 1− yn, rn = 1− sn, n ≥ 1.

As before, if we take y0 = 1− ka0, k ≥ 3, with a0 ≤ 1/k, we get the coefficients independent
of a0.

For any values of a and c the sequence yn seems to have the following form (a0 ≤ F )

yn =
β1a0 + ξ1n(1− y0 − a0/F )

β2a0 + ξ2n(1− y0 − a0/F )
, n ≥ 1,

for certain constants βi, i = 1, 2, and sequences ξin, i = 1, 2, with β1 < β2 and ξ1n < ξ2n, n ≥ 1.
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4.1. The spectral measure. It is well known how to get the spectral measure associated
with the random walk (4.1) using the techniques developed in [15] (see also [1]). First we
notice that P can be decomposed as

P =




b0 a0 0 · · ·
c

0

...

P̆



, P̆ =




b a

c b a

. . .
. . .

. . .


 .

The spectral measure associated with P̆ can be easily calculated since the associated process
(or the process built from P̆ by deleting the first row and column of P̆ ) is exactly the same

as P̆ . Therefore the Stieltjes transform of the spectral measure ψ is given by (b0 = 1 − a0
and b = 1− a− c)

B(z;ψ)
.
=

∫ 1

−1

dψ(x)

x− z
=
b− z ±

√
(z − σ+)(z − σ−)

2ac
, σ± = 1− (

√
a∓

√
c)2.

An application of the Stieltjes-Perron inversion formula gives that the spectral measure has
only a continuous part given by

ψ(x) =
1

2πac

√
(x− σ−)(σ+ − x), x ∈ [σ−, σ+] ⊆ [−1, 1].

The orthogonal polynomials associated with this measure are basically affine transformations
of the Chebyshev polynomials of the second kind.
Now we compute the spectral measure ω of the process P . For that we use the same trick

as before but now we know the expression of B(z;ψ). After straightforward computations
we have that the Stieltjes transform of the spectral measure ω is given by (b0 = 1− a0 and
b = 1− a− c)

B(z;ω) =
2a− aa0 − a0 + a0c+ (a0 − 2a)z + a0

√
(z − σ+)(z − σ−)

2(1− z)((a0 − a)z + a− aa0 + a0c+ a20 − a0)
.

Observe that the Stieltjes transform has two real poles (or one if a0 = a). One at z = 1 and
the other at z = γ, where

γ =
a0 − a+ aa0 − a0c− a20

a0 − a
.

This means that the measure ω will consist of a continuous density plus possibly some delta
masses located at x = 1 and/or x = γ with certain weights, i.e.

ω(x) = ωc(x) + ω ({1}) δ1(x) + ω ({γ}) δγ(x). (4.5)

Again, using the Stieltjes-Perron inversion formula, the continuous part of the measure is
given by

ωc(x) =
a0
√
(x − σ−)(σ+ − x)

2π(1− x)((a0 − a)x+ a− aa0 + a0c+ a20 − a0)
, x ∈ [σ−, σ+] ⊆ [−1, 1]. (4.6)

The discrete masses in ω (4.5) come from the residues at the simple poles of B(z;ω). A
simple computation shows that

ω ({1}) = c− a

a0 + c− a
χ{c>a}, ω ({γ}) = (a0 − a)2 − ac

(a0 − a)2 − ac+ a0c
χ{(a0−a)2>ac},

where χA is the indicator function. It is also possible to see that the location of γ is outside
of [σ−, σ+] and that with the condition (a0 − a)2 > ac we must have γ ∈ [−1, 1] \ [σ−, σ+].
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The condition (a0 − a)2 > ac can also be written in terms of a0 if we choose either a0 <
max{0, a − √

ac} or a0 > min{a + √
ac, 1} whenever one or both relations hold. In other

words
[√
a >

√
c AND a0 < a−

√
ac
]

OR
[√
a+

√
c < 1/

√
a AND a0 > a+

√
ac
]
.
(4.7)

Let us recall the two interesting cases introduced after Corollary 4.3:

• If a = c we have that σ− = 1− 4a, σ+ = 1, ω ({1}) = 0 (no mass at x = 1) and (the
left hand side of (4.7) does not count)

ω ({γ}) = a0 − 2a

a0 − a
χ{a<1/2,a0>2a}, γ = 1− a20

a0 − a
.

Therefore the spectral measure (4.5) is given by

ω(x) = ωc(x) +
a0 − 2a

a0 − a
χ{a<1/2,a0>2a}δγ(x). (4.8)

where

ωc(x) =
a0

2π[(a0 − a)x+ a− a0 + a20]

√
x− 1 + 4a

1− x
, x ∈ [1− 4a, 1].

• If c = (1−√
a)2 we have that σ− = 0, σ+ = 4(

√
a− a),

ω ({1}) = 1− 2
√
a

1 + a0 − 2
√
a
χ{a<1/4},

and

ω ({γ}) =
[

a

a− a0
+

a0
a0 + 1− 2

√
a

]
χ{{a<1/4,a0<2a−√

a}∪{a0>
√
a}}, γ =

(a0 −
√
a)2

a− a0
.

Therefore the spectral measure ω is given by (4.5) where the continuous part ωc is

ωc(x) =
a0
√
x(4

√
a− 4a− x)

2π(1− x)((a0 − a)x+ a20 + a− 2a0
√
a)
, x ∈ [0, 4(

√
a− a)].

As we mentioned in Section 3 the spectral measure associated with the Darboux transfor-
mation is given by the Geronimus transformation (3.3) of the measure ω in (4.5). For this
to work we need to have the moment µ−1 =

∫
ω(x)/xdx well defined. The delta at x = 1

does not add any additional problem to this moment. The delta at x = γ may produce a
problem if γ = 0, which is possible if

c =
(1− a0)(a0 − a)

a0
, ac < (a0 − a)2.

Substituting the value of c in the inequality gives that a0 >
√
a. With this assumption we

have that F = a0. According to Corollary 4.3 the only possible choice is for y0 = 0, which we
already know gives a degenerate measure. If ac ≥ (a0 − a)2 then there is no delta at x = γ
and since γ is always located outside of [σ−, σ+] there is no problem with the continuous
part ωc of ω.
As for the continuous part ωc (4.6), since we are dividing by x in the Geronimus trans-

formation, there may be a problem of integrability if 0 ∈ (σ−, σ+). On one side, it is easy
to see that σ+ > 0. On the other side, we have that σ− < 0 if and only if

√
a+

√
c > 1. In

other words, ac > b2/4. But in this case we should have that c > (1 − √
a)2 and this is a

contradiction with the assumptions of Proposition 4.1.
As a conclusion, every time we want to perform a Darboux transformation with stochastic

factors, it is always possible to find the associated spectral measure via the Geronimus
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transformation of ω and there will be no integrability problems. For the LU factorization
the associated spectral measure is the Christoffel transformation (3.4) as long as 0 ≤ a0 ≤ F .
But this does not bring in any integrability problems to ω.

4.2. A factorization and its associated urn models. We will give a probabilistic im-
plementation of the UL factorization in terms of a family of urn models for the case of
a = c = 1/4 and y0 = 1− ka0, k ≥ 2, with a0 ≤ 1/k given by (4.4) (the rest of cases such as
the LU factorization or the case a = 1/9, c = 4/9 can be treated in a similar way with small
modifications). We will assume that k ≥ 2 is a positive integer (certain number of balls).
The stochastic matrix P is then given by

P =




1− a0 a0 0 0

1/4 1/2 1/4 0

0 1/4 1/2 1/4

. . .
. . .

. . .



.

This is already a very simple random walk and one could argue that analyzing it any further
is unnecessary. It is given here as an illustration of what will be done later in a more
complicated case.
From (4.4) we see that the factors PU and PL in (2.2) are given by

PU =




1− ka0 ka0 0 0

0 k
4k−4

3k−4
4k−4 0

0 0 3k−4
8k−12

5k−8
8k−12

. . .
. . .

. . .



, PL =




1 0 0 0

k−1
k

1
k 0 0

0 2k−3
3k−4

k−1
3k−4 0

. . .
. . .

. . .



.

Each one of these matrices PU and PL will represent an experiment in terms of an urn
model, which we call Experiment 1 and Experiment 2, respectively. Observe that k ≥ 2
is a free positive integer, so we will have a family of urn experiments which combined
gives the same urn model for P . There is a very simple case where k = 2 and then
xn = yn = sn = rn = 1/2, n ≥ 1, so we will assume that k ≥ 3.
The Experiment 1 (for PU ) consists of a discrete time pure birth random walk on the

nonnegative integers Z≥0 (see diagram below (2.3)) where each state represents the number
of blue balls in the urn. Assume that this urn sits in a bath consisting of an infinite number
of blue and red balls. If the state of the system is n blue balls (n ≥ 1), take k + n(2k − 5)
blue balls and 2 + (2n− 1)(k − 2) red balls from the bath and add them to the urn. Draw
one ball from the urn at random with the uniform distribution. The probability of having a
blue ball is given by xn, while the probability of having a red ball is yn. If we had initially
drawn a red ball, then we remove all red balls in the urn and k + n(2k − 5) blue balls from
the urn (i.e. all balls we introduced at the beginning) and start over. If we get a blue ball,
then we remove all red balls and k− 1+n(2k− 5) blue balls from the urn (so that there are
n+ 1 blue balls in the urn) and start over. We follow this strategy except when the initial
number of blue balls is 0, in which case there is an initial test to determine if in one step of
time we add 1 blue ball to the urn. This initial test may be though of as tossing a (probably
biased) coin with probability of heads equal to ka0. If we get heads, then we add 1 blue ball
to the urn, otherwise we repeat the coin tossing until we get heads.
The Experiment 2 (for PL) is very similar but without an initial test. In this case we will

have a discrete time pure death random walk on the nonnegative integers Z≥0 (see diagram
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above (2.4)) where each state represents again the number of blue balls in the urn. If the
state of the system is n blue balls (n ≥ 1), take 1+n(k− 3) blue balls and 1+(n− 1)(k− 2)
red balls from the bath and add them to the urn. Draw again one ball from the urn at
random. The probability of having a blue ball is given by rn, while the probability of having
a red ball is sn. If we had initially drawn a red ball, then we remove all red balls in the urn
and 1 + n(k − 3) blue balls from the urn (i.e. all balls we introduce at the beginning) and
start over. If we get a blue ball, then we remove all red balls and 2 + (n − 1)(k − 2) blue
balls from the urn (so that there are n− 1 blue balls in the urn) and start over. If the urn
is empty we stop the experiment.
The urn model for P will be the composition of both experiments, first the Experiment

1 and then the Experiment 2, while the urn model for the Darboux transformation P̃ (3.1)
will also be the composition of both experiments but proceeds in the reversed order. There
will be 4 possibles results, n+1, n (twice) or n− 1 blue balls in the urn. A diagram for this
urn model is similar to the one given at the end of Section 5.

Since a0 ≤ 1/k ≤ 1/2, k ≥ 2, we have that the spectral measure associated with P is given
by only the continuous part of (4.8), i.e.

ω(x) =
2a0

π[(4a0 − 1)x+ (1− 2a0)2]

√
x

1− x
, x ∈ [0, 1].

In order to calculate the spectral measure ω̃ for the Darboux transformation P̃ we need
to compute the Geronimus transformation of ω (see (3.3)). An easy computation shows

µ−1 =

∫ 1

0

ω(x)

x
dx =

1

1− 2a0
.

We exclude the case a0 = 1/2 when k = 2 in which case we have y0 = 0 and ω̃ will be a
degenerate measure. Therefore

ω̃(x) =
2a0(1− ka0)

π[(4a0 − 1)x+ (1− 2a0)2]
√
x(1− x)

+
a0(k − 2)

1− 2a0
δ0(x), x ∈ [0, 1].

From the probabilistic point of view and since we have explicit expressions of the spectral

measures ω and ω̃, we can see that
∫ 1

0
ω

1−x = ∞ and
∫ 1

0
ω̃

1−x = ∞. Therefore, both random
walks are always recurrent. From the inverse of the norms of the corresponding orthogonal
polynomials we see that the invariant measure (not a distribution) is given by

π = (1, 4a0, 4a0, . . .) .

5. Random walk generated by the Jacobi polynomials

In this section we will study in detail the case of the Jacobi orthogonal polynomials. For
α, β > −1 define the coefficients

an =
(n+ β + 1)(n+ 1+ α+ β)

(2n+ α+ β + 1)(2n+ 2 + α+ β)
, n ≥ 0,

bn =
(n+ β + 1)(n+ 1)

(2n+ α+ β + 1)(2n+ 2 + α+ β)
+

(n+ α)(n + α+ β)

(2n+ α+ β + 1)(2n+ α+ β)
, n ≥ 0, (5.1)

cn =
n(n+ α)

(2n+ α+ β + 1)(2n+ α+ β)
, n ≥ 1.

Observe that all these coefficients are nonnegative, a0 + b0 = 1 and an + bn + cn = 1, n ≥ 1,
so they are the coefficients of a discrete time random walk on the nonnegative integers and
depend on the state of the system. Also it is easy to see that the random walk is irreducible
for the values α, β > −1.
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The family of polynomials generated by the three-term recursion relation

xQ(α,β)
n (x) = anQ

(α,β)
n+1 (x) + bnQ

(α,β)
n (x) + cnQ

(α,β)
n−1 (x), n ≥ 0,

where Q
(α,β)
−1 (x) = 0 and Q

(α,β)
0 (x) = 1 is the well known family of Jacobi polynomials, which

are orthogonal with respect to the (normalized) weight

w(x) =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
xα(1− x)β , x ∈ [0, 1]. (5.2)

Notice that the Jacobi polynomials satisfy the condition

Q(α,β)
n (1) = 1.

The normalization in terms of an, bn, cn+1, n ≥ 0, is natural when one thinks of these poly-
nomials (at least for some values of α, β) as the spherical functions for some appropriate
symmetric space, and insists that these functions take the value 1 at the North pole of the
corresponding sphere. The simplest of all cases is the one with α = β = 0 when one gets
the Legendre polynomials and the usual two dimensional sphere sitting in R3.
We need to see that we can apply the stochastic UL (or LU) factorization. For that we

need to apply Proposition 2.5 and see if the continued fraction H in (2.10) is convergent.
In this case it is possible to check that the corresponding sequence of alternating numbers
a0, c1, a1, c2, . . . is a chain sequence. Following the notation of Remark 2.7 let us call αn, n ≥
1, the sequence of partial numerators a0, c1, a1, c2, . . .. Therefore, αn = (1−mn−1)mn where

m2n =
n

2n+ α+ β + 1
, m2n+1 =

n+ β + 1

2n+ α+ β + 2
, n ≥ 0.

Since m0 = 0, then H converges to (1 +L)−1 where L is given by (2.17), which in this case
is a hypergeometric series. It is possible to see that

L =
β + 1

α
.

Since we have a chain sequence the conditions of the Proposition 2.5 hold, so we have that
the stochastic UL factorization is always possible if we choose the free parameter y0 in the
range

0 ≤ y0 ≤ 1

1 + L
=

α

α+ β + 1
. (5.3)

For the LU factorization there is no free parameter and we need to have

a0 =
β + 1

α+ β + 2
≤ H̃,

where H̃ is the continued fraction given by (2.16). In this case, if we call αn, n ≥ 1, the
sequence of partial numerators c1, a1, c2, a2, . . ., then αn is a chain sequence with coefficients

m2n =
n+ β + 1

2n+ α+ β + 2
, m2n+1 =

n+ 1

2n+ α+ β + 3
, n ≥ 0.

Observe now that m0 6= 0. Therefore we have

H̃ = m0 +
1−m0

1 + L
,

where L is given by (2.17). As before, it is possible to calculate L, which in this case it is
given by L = 1/α. Therefore

H̃ =
β + 1

α+ β + 2
+

α+1
α+β+2

1 + 1/α
=
α+ β + 1

α+ β + 2
.
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We clearly see that a0 ≤ H̃ and therefore we can always perform a stochastic LU factoriza-
tion, but now without a free parameter. From (2.3), (2.8) and (2.9) we can see that

x̃n =
n+ β + 1

2n+ α+ β + 2
, ỹn =

n+ α+ 1

2n+ α+ β + 2
, n ≥ 0, (5.4)

s̃n =
n+ α+ β + 1

2n+ α+ β + 1
, r̃n =

n

2n+ α+ β + 1
, n ≥ 1, s̃0 = 1.

Coming back to the UL factorization, there are two cases where all coefficients xn, yn, sn, rn
simplify considerably, namely when y0 coincides with one of the endpoints of the range (5.3).
They are

(1) y0 = 0. From Lemma 2.2 one can check that the coefficients xn, yn, sn, rn are given
by

xn =
n+ α+ β + 1

2n+ α+ β + 1
, yn =

n

2n+ α+ β + 1
, n ≥ 0,

sn =
n+ β

2n+ α+ β
, rn =

n+ α

2n+ α+ β
, n ≥ 1, s0 = 1.

(2) y0 = α
α+β+1 . From Lemma 2.2 one can check that the coefficients xn, yn, sn, rn are

given by

xn =
n+ β + 1

2n+ α+ β + 1
, yn =

n+ α

2n+ α+ β + 1
, n ≥ 0, (5.5)

sn =
n+ α+ β

2n+ α+ β
, rn =

n

2n+ α+ β
, n ≥ 1, s0 = 1.

These coefficients are scalar counterparts of the matrix-valued coefficients given in
[11], where the authors consider a special case of the UL block factorization.

If 0 < y0 < α
α+β+1 then the coefficients xn, yn, sn, rn are more difficult to calculate.

Nevertheless it is possible to derive explicit formulas as the following:

xn =
γn + δny0

(εn + νny0)(2n+ α+ β + 1)
, yn = 1− xn, n ≥ 0,

sn =
εn + νny0

(γn−1 + δn−1y0)(2n+ α+ β)
, sn = 1− rn, n ≥ 1, s0 = 1,

where

γn = (α+ 1)n(α+ β + 2)n,

αδn = n!(β + 1)n+1 − (α+ β + 1)γn,

εn = (α+ 1)n(α+ β + 2)n−1,

ανn = n!(β + 1)n − (α+ β + 1)εn.

These sequences also satisfy the recurrence formulas

εn = (2n+ α+ β)γn−1 − (n+ β)(n+ α+ β)εn−1,

νn = (2n+ α+ β)δn−1 − (n+ β)(n+ α+ β)νn−1.

If y0 = 0 or y0 = α
α+β+1 these formulas reduce to the simpler form introduced above. There

is a more convenient way of writing the coefficients xn, yn, sn, rn if we make the substitution
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y0 = α
α+β+1h0 (in which case 0 ≤ h0 ≤ 1). Indeed,

xn =
n+ α+ β + 1

2n+ α+ β + 1
· h0n!(β + 1)n(n+ β + 1) + (1− h0)(α + 1)n(α+ β + 1)n+1

h0n!(β + 1)n(n+ α+ β + 1) + (1 − h0)(α+ 1)n(α+ β + 1)n+1
,

(5.6)

yn =
n+ α

2n+ α+ β + 1
· h0n!(β + 1)n(n+ α) + (1 − h0)(α+ 1)n(α+ β + 1)nn

h0n!(β + 1)n(n+ α) + (1− h0)(α+ 1)n(α + β + 1)n(n+ α)
,

sn =
n+ α+ β

2n+ α+ β
· h0(n− 1)!(β + 1)n(n+ α+ β) + (1 − h0)(α+ 1)n−1(α+ β + 1)n(n+ β)

h0(n− 1)!(β + 1)n(n+ α+ β) + (1− h0)(α + 1)n−1(α+ β + 1)n(n+ α+ β)
,

rn =
n+ α

2n+ α+ β
· h0n!(β + 1)n + (1− h0)(α + 1)n(α+ β + 1)n
h0(n− 1)!(n+ α)(β + 1)n + (1− h0)(α+ 1)n(α+ β + 1)n

.

From these formulas we clearly see that each coefficient xn, yn, sn, rn is the multiplication
of two positive numbers less than 1. We will give probabilistic implementations of these
coefficients in the next subsection.

Finally we explore the spectral measure associated with the Darboux transformation (3.1).
We need to apply the Geronimus transformation (3.3). In this case it is easy to see from
(5.2) that

µ−1 =

∫ 1

0

w(x)

x
dx =

α+ β + 1

α
.

Therefore, following (3.3), we have that

w̃(x) = y0
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
xα−1(1− x)β +

(
1− y0

α+ β + 1

α

)
δ0(x), x ∈ [0, 1].

This measure is integrable as long as α > 0 and β > −1. We see that if y0 is in the range
(5.3) then the mass at 0 is always nonnegative, and vanishes if y0 = α

α+β+1 . The case y0 = 0

was treated in Remark 3.1 and in this case the spectral measure is just the Dirac delta δ0(x)
(degenerate).
Finally, for the LU decomposition, the associated (normalized) weight is given by the

Christoffel transform of w, i.e.

ŵ(x) =
Γ(α+ β + 3)

Γ(α+ 2)Γ(β + 1)
xα+1(1− x)β , x ∈ [0, 1].

In order to study recurrence we have to see the behavior of the integral
∫ 1

0
w(x)
1−x dx. But

we can see that this behavior only depends on the parameter β. If −1 < β ≤ 0 then the
integral is ∞, so the process will always be recurrent. Otherwise, for β > 0, the process will
be transient.
Again the inverse of the norms of the Jacobi orthogonal polynomials gives the explicit

expression of the components of the invariant measure (not a distribution in any case).
Indeed we have

‖Q(α,β)
n ‖2w =

n!(α+ 1)n
(β + 1)n(α+ β + 2)n−1(2n+ α+ β + 1)

,

Therefore

π =

(
1,

(β + 1)(α+ β + 3)

α+ 1
,
(β + 1)2(α + β + 2)(α+ β + 5)

2(α+ 2)2
, · · ·

)
.
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5.1. An urn model for the Jacobi polynomials. We now give an urn model associated
with the Jacobi polynomials. We will use first the simpler UL decomposition with coefficients
given by (5.5) and then make a few comments about the general case (5.6). In the latter
case, as in the previous section, we have a family of urn model experiments, which combined
give the same model for the Jacobi polynomials. A similar urn model can be derived from
the LU decomposition (5.4), but now without a free parameter.
In [8] one finds what is probably the first urn model going along with the Jacobi polyno-

mials. This is a rather contrived model when compared to more familiar ones such as those
of Ehrenfest and Bernoulli-Laplace. These can be found in W. Feller’s classical book, see [4].
It turns out that these celebrated models are related to the Krawtchouk and Hahn orthog-
onal polynomials, in the same way that our models are related to the Jacobi polynomials.
Here we give a slightly less elaborate urn model based on the composition of two easier urn
experiments given by the UL factorization (5.5).
From now on, it will be assumed that the parameters α and β are nonnegative integers.

Consider the discrete time random walk on the nonnegative integers Z≥0 whose one step
transition probability matrix P coincides with the one that gives the three-term recursion
relation given in (5.1). Consider the UL factorization P = PUPL (2.2) with coefficients
xn, yn, sn, rn given by (5.5). Each one of these matrices PU and PL will represent an experi-
ment in terms of an urn model, which we call Experiment 1 and Experiment 2, respectively.
At times t = 0, 1, 2, . . . an urn contains n blue balls and this determines the state of our
random walk on Z≥0 at that time. Each urn for both experiments sits in a bath consisting
of an infinite number of blue and red balls.
The Experiment 1 (for PU ) consists of a discrete time pure birth random walk on the

nonnegative integers Z≥0 (see diagram below (2.3)). If the state of the system is n blue
balls (n ≥ 0), take β + 1 blue balls and n+ α red balls from the bath and add them to the
urn. Draw one ball from the urn at random with the uniform distribution. The probability
of having a blue ball is given by xn, while the probability of having a red ball is yn. If we
had initially drawn a red ball, then we remove all red balls in the urn and β + 1 blue balls
from the urn (i.e. all balls we introduce in this first step) and start over. If we get a blue
ball, then we remove all red balls and β blue balls from the urn (so that there are n+1 blue
balls in the urn) and start over.
The Experiment 2 (for PL) consists of a discrete time pure death random walk on the

nonnegative integers Z≥0 (see diagram above (2.4)). If the state of the system is n blue balls
(n ≥ 0), take n+ α + β red balls from the bath and add them to the urn. Draw again one
ball from the urn at random. The probability of having a blue ball is given by rn, while the
probability of having a red ball is sn. If we had initially drawn a red ball, then we remove
all red balls in the urn and start over. If we get a blue ball, then we remove that blue ball
and all red balls from the urn (so that there are n− 1 blue balls in the urn) and start over.
If the urn is empty we stop the experiment. Observe that if we have 0 blue balls in the urn
the experiment will not change from that moment on.
As in the previous section, the urn model for P will be the composition of Experiment

1 and then Experiment 2, while the urn model for the Darboux transformation P̃ (3.1)
proceeds in the reversed order. If we perform first Experiment 1 we will end up with an urn
with either n (if we draw a red ball) or n + 1 (if we draw a blue ball) blue balls. Now we
perform Experiment 2 with n or n+1 blue balls, in which case we may have either n−1 (if we
draw a blue ball) or n (if we draw a red ball) blue balls, while for the n+1 case we may have
either n (if we draw a blue ball) or n+1 (if we draw a red ball) blue balls. The combination
of probabilities of these four cases gives the coefficients of the three-term recurrence relation
(5.1) (see also (2.3)) for P for the Jacobi polynomials (see diagram below).
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B

R

R

B

R

B

n B n+ β + 1 B

n+ α R

n+ 1 B

n B

n+ 1 B

n+ α+ β + 1 R

n B

n+ α+ β R

n+ 1 B

n B

n− 1 B

Experiment 1 Experiment 2

For the general coefficients xn, yn, sn, rn in (5.6) we obtain a family of Experiments 1
and 2, depending on 0 ≤ h0 ≤ 1. Now both experiments are more complicated, but we
observe that each probability xn, yn, sn, rn is the multiplication of two positive numbers less
than 1. Than means that for each experiment we will have to perform another experiment
(different for each experiment) which combined gives the probabilities xn, yn, sn, rn. All
these experiments can be seen as urn models with blue and red balls very similar to the ones
we have already shown. There are certain choices of the parameters where all coefficients
simplify considerably. For instance, for α = β = 0, we have

xn =
n+ 1

2n+ 1
, yn =

n

2n+ 1
, n ≥ 0, sn = rn =

1

2
, n ≥ 1, s0 = 1.

Another (more complicated) example is for α = 1, β = 0 and h0 = 1/2:

xn =
1 + (n+ 1)(n+ 2)

2[1 + (n+ 1)2]
, yn =

1 + n(n+ 1)

2[1 + (n+ 1)2]
, n ≥ 0,

sn =
(n+ 1)(n2 + 1)

(2n+ 1)(1 + n(n+ 1))
, rn =

n(1 + (1 + n)2)

(2n+ 1)(1 + n(n+ 1))
, n ≥ 1, s0 = 1.

Different (and more complicated) urn models for matrix-valued generalizations of Jacobi
polynomials, as well as other probabilistic models in terms of Young diagrams, can be found
in [11]. The model above can be seen as an application of rather sophisticated ideas from
group representation theory in [11] to a much more classical setup.
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