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Abstract

In their 1960 book on finite Markov chains, Kemeny and Snell estab-

lished that a certain sum is invariant. The value of this sum has become

known as Kemeny’s constant. Various proofs have been given over time,

some more technical than others. We give here a very simple physical

justification, which extends without a hitch to continuous-time Markov

chains on a finite state space.

For Markov chains with denumerably infinite state space, the constant

may be infinite and even if it is finite, there is no guarantee that the

physical argument will hold. We show that the physical interpretation

does go through for the special case of a birth-and-death process with a

finite value of Kemeny’s constant.

Keywords: Kemeny’s constant; discrete-time Markov chains; continuous-

time Markov chains; passage times; deviation matrix.
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1 Introduction

Consider a discrete-time, irreducible and aperiodic Markov chain {Xt : t =
0, 1, . . .} on a finite state space S, with transition matrix P and stationary
probability vector π such that πTP = πT and πT

1 = 1. For i ∈ S, define the
first passage times

Ti = inf{t ≥ 1 : Xt = i}. (1)

Denoting by Ei[·] the conditional expectation given that X0 = i, Kemeny and
Snell [10, Theorem 4.4.10] proved that

∑

j∈S

πjEi[Tj] = K, (2)
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independently of the initial state i. The value K is known as Kemeny’s constant.
A prize was offered to the first person to give an intuitively plausible rea-

son for the sum in (2) to be independent of i (Grinstead and Snell [7, Page
469]). The prize was won by Doyle [5] with an argument given in the next
section. We prove in Theorem 3.2 that (2) results from the obvious fact that
a discrete-time Markov chain takes n steps during an interval of time of length
n, independently of the initial state i. We move on to extend the argument
to finite-state continuous-time Markov chains, see (12). In Section 3, we also
discuss an important connection between K and the deviation matrix of the
Markov chain.

In Section 4, we consider Markov chains with a denumerably infinite state
space S. Here, the situation becomes more complex because the sum in (2)
might not converge. We show that it is independent of i in the sense that it is
infinite for all i or a constant independent of i.

In Section 5 we restrict our discussion to positive recurrent birth-and-death
processes. We show that K is infinite in discrete-time, and in continuous-time it
is finite if transitions from state i occur sufficiently fast as i approaches infinity.
Furthermore, our physical explanation holds for birth-and-death processes if
K < ∞.

2 A simple algebraic proof

The simplest proof goes as follows: define ωi =
∑

j∈S πjEi[Tj] and ω =
[
ωi

]
i∈S

,
condition on X1 and write

ωi = 1 +
∑

j∈S

πj

∑

k∈S,k 6=j

PikEk[Tj ]

= 1 +
∑

j∈S

πj

∑

k∈S

PikEk[Tj]−
∑

j∈S

Pij , using πj = 1/Ej[Tj],

=
∑

j∈S

πj

∑

k∈S

PikEk[Tj]

=
∑

k∈S

Pik ωk

so that ω = Pω (see, for example, Hunter [9]). Doyle [5] argued from the
maximum principle that all components of ω must be equal. Alternatively, one
may conclude from the Perron-Frobenius Theorem that ω must be proportional
to the eigenvector 1 of P .

Instead of the passage times Tj , we shall use the first hitting times {θi : i ∈ S}
with

θi = inf{t ≥ 0 : Xt = i}. (3)

The only difference is that θi = 0 < Ti if X0 = i, otherwise θi = Ti ≥ 1. Using
θj instead of Tj, we obtain another version of Kemeny’s constant:

∑

j∈S

πjEi[θj ] = K ′ (4)

where K ′ = K − 1. We prefer to work with this version of Kemeny’s constant
because the equality (4) holds in continuous-time as well; furthermore, using
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Ei[θj ] helps us establish a direct connection with the deviation matrix D of the
Markov chain. We shall discuss this in the next section.

3 The case when S is finite

Our physical justification is based on the following argument. We start from

∑

j∈S

πjEi[θj ] =
∑

j∈S

Ei[θj ]

Ej[Tj ]
(5)

which we transform to
∑

j∈S

πjEi[θj ] =
∑

j∈S

lim
n→∞

(Ej [Nj(n)]− Ei[Nj(n)]), (6)

where
Nj(n) =

∑

0≤t≤n

1{Xt = j}.

is the total number of visits to j during the interval of time [0, n].
The formal justification for the transition from (5) to (6) is given in Lemma 3.1

below, but we give a heuristic argument first, explained with the help of Figure
1. The upper line is a representation of a trajectory of the renewal process

✲× × × × × × × ×

✲◦ × × × ×

Figure 1: Visits to j starting in j (above) and i (below).

{θ
(k)
j : k ≥ 0} of successive visits to j, starting from X0 = j; the θ

(k)
j s are

marked with a cross ×. The lower line represents a trajectory of the delayed
renewal process of visits to j, starting from X0 = i 6= j.

Now, the jth term in the right-hand side of (6) is the expected difference
between the total number of events in the two processes. We observe a smaller
expected number of visits to j if the process starts from i 6= j because of
the initial delay. The expected length of this delay is Ei[θj ] and Ej[Tj ] is the
expected length of intervals between visits to j. The ratio Ei[θj ]/Ej[Tj] is the
expected number of visits that are missed over the whole history of the process
by starting from i instead of j. The formal argument is given now.

Lemma 3.1 For all i and j.

Ei[θj ]

Ej[Tj ]
= lim

n→∞
(Ej [Nj(n)]− Ei[Nj(n)]). (7)

Proof The statement is obvious if i = j for then Ej [θj ] = 0 by the definition
of θj . We assume now that i and j are different, arbitrary but fixed, and to

simplify the notation we define Ñi(n) = Ei[Nj(n)] and fi(t) = Pi[θj = t], with
fi(0) = 0. We have

Ñj(n) =
∑

0≤ν≤n

Pj[Xν = j].

3



Furthermore, conditioning on the first visit to state j, we can write, for n ≥ 0,

Ñi(n) =
∑

0≤t≤n

fi(t)Ñj(n− t)

=
∑

0≤t≤n

fi(t)
∑

0≤ν≤n−t

Pj[Xν = j]

=
∑

0≤ν≤n

Pj [Xν = j]
∑

0≤t≤n−ν

fi(t)

and so

Ñj(n)− Ñi(n) =
∑

0≤ν≤n

Pj[Xν = j]Pi[θj > n− ν].

Finally,

lim
n→∞

(Ñj(n)− Ñi(n)) = lim
n→∞

∑

0≤ν≤n

Pj[Xn−ν = j]Pi[θj > ν]

=
1

Ej[Tj ]

∑

ν≥0

Pi[θj > ν]

by the key renewal theorem (Resnick [13, Section 3.8]),

= πjEi[θj ].

This completes the proof. �

Lemma 3.1 leads immediately to a understanding of the reason why the left
hand side of (2) is independent of i.

Theorem 3.2 For an irreducible and aperiodic discrete-time Markov chain with
finite state space S and stationary distribution π,

∑
j∈S πjEi[Tj] is independent

of i.

Proof Since S is finite, we can interchange the limit and sum in Equation (6)
to get

∑

j∈S

πjEi[θj ] =
∑

j∈S

lim
n→∞

(Ej [Nj(n)]− Ei[Nj(n)])

= lim
n→∞




∑

j∈S

Ej[Nj(n)]−
∑

j∈S

Ei[Nj(n)]





= lim
n→∞



∑

j∈S

Ej[Nj(n)]− (n+ 1)


 (8)

independently of i. �

We see that the change of perspective from first hitting times to numbers of
visits brings a different physical interpretation from those previously suggested.
Indeed, as mentioned above, the second term under the limit in (8) just counts
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the number of steps that the Markov chain has taken, independently of its
starting state.

The deviation matrix lends itself beautifully to such a change of point of
view. It is defined as

D =
∑

n≥0

(Pn − 1 · πT) (9)

if the series converges. By Syski [15, Proposition 3.2], and Coolen-Schrijner and
van Doorn [4, Theorem 4.1], the series converges if and only if Eπ[θj ] < ∞
for some state j ∈ S, and then it is finite for every j, where Eπ[·] denotes the
conditional expectation, given that X0 has the distribution π. An equivalent
condition is that Ej[θ

2
j ] < ∞ for some j. When |S| < ∞, the series always

converges and D = (I − P )#, the group inverse of I − P (see Campbell and
Meyer [3]).

Obviously,

Dij = lim
n→∞

n∑

t=0

([P t]ij − πj)

= lim
n→∞

n∑

t=0

(Ei[I(Xt = j)]− Eπ [I(Xt = j)])

= lim
n→∞

(Ei[Nj(n)]− Eπ[Nj(n)]). (10)

In addition, Djj = πjEπ[θj ] by Syski [15, Proposition 3.3] with the discrete-
time analogue of the argument in Coolen-Schrijner and van Doorn [4, Equation
(5.7)], and so

∑

j∈S

Djj =
∑

j∈S

πjEπ[θj ]

=
∑

j∈S

πj

∑

i∈S

πiEi[θj ]

=
∑

i∈S

πi

∑

j∈S

πjEi[θj ]

=
∑

i∈S

πiK
′ = K ′. (11)

Equation (11) provides a convenient representation for Kemeny’s constant in
terms of the trace of the deviation matrix.

The point of view that we have taken in this section extends to finite-state
continuous-time Markov chains. For such a chain with irreducible generator Q,
define the first hitting time and the first passage time as

θi = inf{t ≥ 0 : Xt = i}

Ti = inf{t ≥ J1 : Xt = i},

where J1 is the first jump time of the Markov chain; if X0 = i, then θi = 0 < Ti,
otherwise θi = Ti > 0. Lemma 3.1 becomes

Lemma 3.3 For a continuous-time Markov chain,

πjEi[θj ] = lim
t→∞

(Ej [Mj(t)]− Ei[Mj(t)])

5



where Mj(t) =
∫ t

0
1{X(u) = j} du is the total time spent in j until time t.

Proof We follow the same steps as in Lemma 3.1 with the only difference that
here

Ej[Mj(t)] =

∫ t

0

Pj [X(u) = j] du

and

Ei[Mj(t)] =

∫ t

0

dGi(v)Ej [Mj(t− v)]

where Gi(t) = Pi[θj ≤ t]. �

From this, we obtain

∑

j∈S

πjEi[θj ] = lim
t→∞

(
∑

j∈S

Ej [Mj(t)]− t) (12)

independently of i. By an argument similar to that which led to (11), we also
have

∑

j∈S

πjEi[θj ] =
∑

j∈S

πjEπ[θj ]

=
∑

j∈S

Djj (13)

with the continuous-time deviation matrix defined by D =
∫∞

0
(eQt − 1 ·πT) dt.

4 The case when S is infinite

If S is denumerably infinite, it is not easy to see in general how the exchange of
limit and sum inherent in the step between the first and second equations of (8)
can be justified. However,

∑
j∈S πjEi[θj ] is still independent of i in the sense

that it is either finite and constant with respect to i, or infinite for all i.

Theorem 4.1 For an irreducible, positive-recurrent discrete or continuous-time
Markov chain {Xt} with a countably-infinite state space S, either

1.
∑

j∈S πjEi[θj ] is equal to a finite constant that is independent of i, or

2.
∑

j∈S πjEi[θj ] is infinite for all i ∈ S.

Proof The argument presented in Section 2 due to [5, 9] goes through even
when the state space is infinite. Writing the expressions in terms of Ei[θj ] rather

6



than Ei[Tj ], for a discrete-time Markov chain with transition matrix P we have

ξi ≡
∑

j∈S

πjEi[θj ]

=
∑

j 6=i

πj

[
1 +

∑

k∈S

PikEk[θj ]

]

= 1− πi +
∑

k∈S

Pik

∑

j 6=i

πjEk[θj ]

= 1− πi +
∑

k∈S

Pik(
∑

j∈S

πjEk[θj ]− πiEk[θi]) (14)

= 1− πi +
∑

k∈S

Pik

∑

j∈S

πjEk[θj ]− πi

∑

k∈S

PikEk[θi] (15)

where the series in (14) and the first series in (15) both converge or both diverge,
and the second series in (15) converges to Ei[Ti]− 1 < ∞ by assumption. Thus,
we may write

ξi = 1− πi +
∑

k∈S

Pikξk − πi [Ei[Ti]− 1]

=
∑

k∈S

Pikξk. (16)

Since we have assumed that {Xt} is recurrent, it follows from Theorem 5.4D of
Seneta [14] that, if ξ is entrywise finite, then it must be a multiple of 1. On the
other hand, if ξk is infinite for some k, then (16) implies that ξi must be infinite
for any i such that Pik > 0. It follows by irreducibility that ξi must be infinite
for all i ∈ S.

For a continuous-time Markov chain with transition matrix Q, similar rea-
soning holds with P the transition matrix of the jump chain with entries Pij =
qijI[i 6= j]/qi. �

Remark 4.2 In Section 5, we shall show that, for a discrete-time birth and
death process with state space {0, 1, . . .}, K ′ =

∑
j∈S πjEi[θj ] is infinite for all

i.
For a general m-state discrete-time Markov chain, Hunter [8, Theorem 4.2]

used a spectral argument to show that K ≥ (m + 1)/2 which implies that
K ′ ≥ (m− 1)/2. We do not see how to extend this argument to show that K ′

is infinite for a general infinite-state discrete-time Markov chain, but we do not
know of an example of such a chain with finite K ′. We conjecture that K ′ is
infinite for all infinite-state, discrete-time Markov chains.

On the other hand, it is possible for K ′ to be finite for an infinite-state
continuous-time Markov chain. We shall present some examples in Section 5.

Remark 4.3 In Section 3, we showed that, when S is finite, K ′ is equal to the
trace of the deviation matrix. The argument in Appendix A shows that this is
the case when S is infinite and D exists. Specifically K ′ is finite and equal to∑

j∈S Djj if this sum is finite, and infinite when
∑

j∈S Djj is infinite.

7



When D does not exist, Eπ[θj ] must be infinite for all j ∈ S, by Syski [15,
Proposition 3.2], and Coolen-Schrijner and van Doorn [4, Theorem 4.1]. Then

∑

i∈S

πi

∑

j∈S

πjEi[θj ] =
∑

j∈S

πj

∑

i∈S

πiEi[θj ]

=
∑

j∈S

πjEπ[θj ]

= ∞.

Since
∑

j∈S πjEi[θj ] must be independent of i if it is finite, the last equality can
occur only if K ′ =

∑
j∈S πjEi[θj ] = ∞.

5 Birth-and-death processes

Let us assume now that {Xt} is a birth-and-death process on the infinite state
space {0, 1, . . .}. Choosing X0 = 0 without loss of generality, we have

K ′ =
∑

j≥0

πjE0[θj ]. (17)

We shall examine continuous and discrete-time processes simultaneously. In
continuous-time, we denote by λn and µn the transition rates from n to n+1 and
from n to n− 1, respectively; in discrete-time these are the one-step transition
probabilities. We assume that λn > 0 for all n ≥ 0, µn > 0 for all n ≥ 1, so that
the process is irreducible. We further assume that the birth-and-death process
is positive recurrent, so that B =

∑
n≥0 βn is finite, where

β0 = 1, βn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

for n ≥ 1, (18)

and the stationary distribution is given by πn = B−1βn, see [4, Equation (6.3)],
which is still valid in the discrete-time case.

Theorem 5.1 For an irreducible, positive recurrent, birth-and-death process on
{0, 1, . . .}, the constant K ′ is finite if and only if

Θ =
∑

k≥0

(λkπk)
−1

∑

j≥k+1

πj < ∞. (19)

In that case, K ′ = Θ− Eπ[θ0], with

Eπ[θ0] =
∑

k≥0

(λkπk)
−1(

∑

j≥k+1

πj)
2 < Θ. (20)

Proof We start from (17) and write

K ′ =
∑

j≥1

πj

∑

0≤k≤j−1

(λkπk)
−1

∑

0≤ℓ≤k

πℓ

=
∑

k≥0

(λkπk)
−1(

∑

j≥k+1

πj)(1 −
∑

ℓ≥k+1

πℓ)

=
∑

k≥0

(λkπk)
−1

∑

j≥k+1

πj −
∑

k≥0

(λkπk)
−1(

∑

j≥k+1

πj)
2 (21)
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if both series converge, with the first equation following from [4, Equation (6.4)],
which is still valid in the discrete-time case. The first series is Θ by definition, the
second is equal to Eπ[θ0] by [4, Equation (6.6)]. It is obvious that Eπ[θ0] ≤ Θ.

If Θ < ∞, then Eπ[θ0] < ∞, the deviation matrix exists and K ′ = Θ−Eπ[θ0]
by (21). If Θ = ∞ and Eπ[θ0] < ∞, then K ′ = ∞ by (21) again. Finally, if
Eπ[θ0] = ∞, then we have already seen in Remark 4.3 that K ′ = ∞. �

Remark 5.2 First, let us deal with discrete-time birth and death processes.
From [4, Equation (6.6)], we see that Θ = limn→∞ En[θ0] and we may interpret
Theorem 5.1 as saying that, for Kemeny’s constant to be finite, it is necessary
(and sufficient) that having ventured to any state n, no matter how far from
the origin, the process will reach state 0 in bounded expected time.

In discrete-time, every transition from a state to one of its neighbours re-
quires at least one unit of time, so that En[θ0] ≥ n is unbounded. This tells us
that (17) diverges for all discrete-time birth-and-death processes.

Remark 5.3 For the continuous-time birth and death process with birth rates
λn and death rates µn, the right hand side of (19) is the ‘D Series’, see Ander-
son [1, Page 261], or Kijima [11, page 245]. A recurrent continuous-time birth
and death process with a finite D Series is said to have an entrance boundary at
∞, a classification that goes back to Feller [6]. Bansaye, Méléard and Richard
[2] described this as instantaneously coming down from infinity.

A number of authors have looked at consequences of the D-series being
finite. For example, when there is an absorbing state at -1, this condition is
equivalent to the existence of a unique quasistationary distribution (see van
Doorn [16, Theorem 3.2]). The condition is also equivalent to strong ergodicity
of the birth and death process in the sense that limt→∞ supi |pij(t) − πj | = 0,
see [17, Theorem 3.1], [18, Corollary 2.4] and [12, Theorem 3.1].

For a continuous-time birth and death process with finite K ′, we can show
that the change of limit and sum in (8) can be justified, and so the physical
interpretation given in Section 3 holds in this case as well. The details are given
in the following lemma.

Corollary 5.4 Consider a continuous-time, irreducible, positive recurrent, birth-
and-death process on {0, 1, . . .}. If Θ < ∞, then

K ′ = lim
t→∞

(
∑

j∈S

Ej [Mj(t)]− t).

Proof We fix i = 0 and note that

K ′ =
∑

j∈S

πjE0[θj ]

=
∑

j∈S

lim
t→∞

(Ej [Mj(t)]− E0[Mj(t)])

by Lemma 3.3. We plan to use the Fatou-Lebesgue dominated convergence
theorem to justify the change of limit and sum. To that end we construct a
bound mj for Ej[Mj(t)]− E0[Mj(t)] such that

∑
j mj < ∞.

9



Denote by (0)mj(t) the expected sojourn time in j during the interval (0, t),
starting from j, under taboo of state 0 and let (0)mj(∞) = limt→∞((0)mj(t)).
Then

Ej [Mj(t)]− E0[Mj(t)] =
(0)mj(t) +

∫ t

0

E0[Mj(t− u)] dPj[θ0 ≤ u]− E0[Mj(t)]

≤ (0)mj(t)− (1− P0[θ0 ≤ t])E0[Mj(t)]

≤ (0)mj(t)

≤ (0)mj(∞)

It is a simple matter to show that (0)mj(∞) = πj

∑
1≤k≤j

1
πkµk

and that
∑

j∈S
(0)mj(∞) = Θ, which is finite by assumption. Thus,

K ′ = lim
t→∞

∑

j∈S

(Ej [Mj(t)]− E0[Mj(t)])

= lim
t→∞

∑

j∈S

(Ej [Mj(t)]− t])

by dominated convergence, and this concludes the proof. �

Example 5.5 For the M/M/1 queue, λn = λ and µn = µ, independently of n.
The process is positive recurrent if and only if the ratio ρ = λ/µ is strictly less
than 1, and πn = (1− ρ)ρn. Equation (19) becomes

Θ =
∑

k≥0

λ−1ρ−k
∑

j≥k+1

ρj

=
∑

k≥0

1/(µ− λ) = ∞

so that Kemeny’s constant is infinite. However, it may be finite for a process
that we name the sped-up M/M/1 queue: we take an arbitrary sequence {λn}
and define µn = ρλn−1, with ρ < 1. Here, βn = ρn so that the process is
positive recurrent, πn = (1 − ρ)ρn and

Θ =
∑

k≥0

λ−1
k ρ−k

∑

j≥k+1

ρj

=
∑

k≥0

λ−1
k ρ/(1− ρ)

which converges if λn → ∞ sufficiently fast. In that case, µn tends to ∞ also.

The sped-up M/M/1 queue example illustrates that for Kemeny’s constant
to be finite, transitions have to occur faster as the process is further away from
0. Actually, as we show in the next lemma, it is necessary that transitions from
n to n − 1 occur sufficiently fast, transition rates from n to n + 1 being less
critical.

Lemma 5.6 For Θ to be finite, it is necessary, but not sufficient, that the series∑
j≥1 1/µj converges.
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Proof We rewrite (19) as

Θ =
∑

j≥1

fj (22)

with

fj = πj

∑

0≤k≤j−1

(λkπk)
−1

= πj−1
λj−1

µj

(
∑

0≤k≤j−2

(λkπk)
−1 + (λj−1πj−1)

−1)

= (λj−1fj−1 + 1)/µj for j ≥ 1, (23)

if we define f0 = 0.
This shows that fj ≥ 1/µj, so that the series (22) diverges if

∑
j≥1 1/µj

diverges. The proof that this is not a sufficient condition is given by Example 5.9
below. �

Remark 5.7 Lemma 5.6 gives a different justification for the fact that (17)
diverges for all discrete-time birth-and-death processes.: here, µn ≤ 1− λn < 1
by assumption, and the series

∑
j≥1 1/µj diverges.

Example 5.8 A direct consequence of Lemma 5.6 is that K ′ is infinite for the
M/M/∞ queue for which µn = nµ: the transition rates from n to n− 1 are not
large enough. We may, however, use Lemma 5.6 to design processes for which
Kemeny’s constant is finite. To that end, we choose a sequence {fj} such that
the series (22) converges, use (23) to define the sequence

µj = (λj−1fj−1 + 1)/fj, (24)

and then find a sequence {λj} such that the process is positive recurrent, that
is, such that

∑
n≥0 βn converges, with βn defined in (18). Two such examples

follow. For the first,

f1 = 0, fj = 1/j2, for j ≥ 1,

µ1 = 1, µj = j2(1 + 1/(j − 1)2), for j ≥ 2, and

λj = 1 for all j.

We easily see that

βn = 1/
∏

2≤j≤n

j2(1 + 1/(j − 1)2) < 1/(n!)2.

For the second,

fj = γj, with γ < 1,

µj = γ−j + λj−1γ
−1, and

{λj} is arbitrary.

Here,

βn =
∏

0≤j≤n−1

λj/
∏

0≤j≤n−1

(λjγ
−1 + γ−(j+1)) < γn.
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Example 5.9 This last example shows that Lemma 5.6 is not a necessary and
sufficient condition. Take

µj = j1+α, with 0 < α < 1, and

λj = µj , for j ≥ 1, λ0 = 1.

With these parameters βn = 1/µn, so that both
∑

n≥1 1/µn and
∑

n≥1 βn con-
verge.

By (23), we have fjµj = 1 + fj−1µj−1 = j, so that

∑

j≥1

fj =
∑

j≥1

j/µj =
∑

j≥1

1/jα

diverges.
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A Proof that when D exists, K
′ is given by its

trace

Here we show that, whenever the deviation matrix D exists, which occurs if and
only if Eπ[θj ] < ∞ for some state j ∈ S, then K ′ is finite and equal to

∑
j∈S Djj

if this sum is finite, and infinite when
∑

j∈S Djj is infinite.
Since the deviation matrix exists, Coolen-Schrijner and van Doorn [4, Equa-

tion (5.5)] implies that

Dij = πj (Eπ [θj ]− Ei[θj ]) (25)

which gives us
πjEi[θj ] = Djj −Dij , (26)

observing that Ej [θj ] = 0. Summing (26) over j we see that

∑

j∈S

πjEi[θj ] =
∑

j∈S

(Djj −Dij)

= lim
K→∞

∑

j∈SK

(Djj −Dij)

= lim
K→∞




∑

j∈SK

Djj −
∑

j∈SK

Dij



 , (27)

12



where {SK} is a monotone sequence of finite subsets converging to S.
By [4, Theorem 5.2],

∑
j∈S Dij = 0 for all i ∈ S. Therefore, for any ǫ > 0,

there exists K0(i) such that

−ǫ/2 ≤
∑

j∈SK

Dij ≤ ǫ/2

for all K ≥ K0(i).
If
∑

j∈S Djj = ∞ then, for any M > 0, there exists K1 such that
∑

j∈SK
Djj ≥

M for all K > K1. It follows that, if K > max(K0(i),K1) then

∑

j∈SK

Djj −
∑

j∈SK

Dij ≥ M − ǫ/2

and so ∑

j∈S

πjEi[θj ] =
∑

j∈S

(Djj −Dij) = ∞

independently of i.
On the other hand, if

∑
j∈S Djj = L < ∞ then, for any ǫ > 0, there exists

K1 such that L− ǫ/2 ≤
∑

j∈SK
Djj ≤ L+ ǫ/2 for all K > K1. Then, again for

fixed i, taking K > max(K0(i),K1),

L− ǫ ≤
∑

j∈SK

Djj −
∑

j∈SK

Dij ≤ L+ ǫ

and so ∑

j∈S

πjEi[θj ] =
∑

j∈S

Djj = L.

This argument holds for all i, and we see that
∑

j∈S πjEi[θj ] is independent of i.
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