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Abstract

We study the Cramér type moderate deviation for partial sums of random fields by applying the
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1 Introduction

In this paper we study the Cramér type moderate deviations for random fields, in particular
linear random fields (often called spatial linear processes in statistics literature) with short or
long memory (short or long range dependence). The study of moderate deviation probabilities in
non-logarithmic form for independent random variables goes back to 1920s. The first theorem in
this field was published by Khinchin (1929) who studied a particular case of the Bernoulli random
variables. In his fundamental work, Cramér (1938) studied the estimation of the tail probability
by the standard normal distribution under the condition that the random variable has moment
generating function in a neighborhood of the origin (cf. (3) below). This condition has been referred
to as the Cramér condition. Cramér’s work was improved by Petrov (1954) (see also Petrov (1975,
1995)). Their works have stimulated a large amount of research on moderate and large deviations;
see below for a brief (and incomplete) review on literature related to this paper. Nowadays, the
area of moderate and large deviation deviations is not only important in probability but also
plays an important role in many applied fields, for instance, the premium calculation problem,
risk management in insurance (cf. Asmussen and Albrecher (2010)), nonparametric estimation in
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statistics (see, e.g., Bahadur and Rao (1960), van der Vaart (1998), Joutard (2006, 2013)), and in
network information theory (cf. Lee et al. (2016, 2017)).

Let X,X1,X2, · · · be a sequence of independent and identically distributed (i.i.d.) random
variables with mean 0 and variance σ2. Let Sn =

∑n
k=1Xk (n ≥ 1) be the partial sums. By the

central limit theorem,
lim
n→∞

sup
x∈R

∣

∣P(Sn > xσ
√
n)− (1− Φ(x))

∣

∣ = 0,

where Φ(x) is the probability distribution of the standard normal random variable. If for a suitable
sequence cn, we have

lim
n→∞

sup
0≤x≤cn

∣

∣

∣

∣

P(Sn > xσ
√
n)

1− Φ(x)
− 1

∣

∣

∣

∣

= 0, (1)

or P(Sn > xσ
√
n) = (1 − Φ(x))(1 + o(1)) uniformly over x ∈ [0, cn], then Eq. (1) is called

moderate deviation probability or normal deviation probability for Sn since it can be estimated
by the standard normal distribution. We refer to [0, cn] as a range for the moderate deviation.
The most famous result of this kind is the Cramér type moderate deviation. Under Cramér’s
condition, one has the following Cramér’s theorem (Cramér (1938), Petrov (1954; 1975, p.218; or
1995, p.178)): If x ≥ 0 and x = o(

√
n) then

P(Sn > xσ
√
n)

1− Φ(x)
= exp

{

x3√
n
λ
( x√

n

)

}[

1 +O

(

x+ 1√
n

)]

. (2)

Here λ(z) =
∑∞

k=0 ckz
k is a power series with coefficients depending on the cumulants of the

random variable X. Eq. (2) provides more precise approximation than (1) which holds uniformly
on the range [0, cn] for any cn = o(

√
n). The moderate deviations under Cramér’s condition for

independent non-identically distributed random variables were obtained by Feller (1943), Petrov
(1954) and Statulevičius (1966). The Cramér type moderate deviation has also been established for
the sum of independent random variables with p-th moment, p > 2. To name a few, for example, see
Rubin and Sethuraman (1965), Nagaev (1965, 1979), Michel (1976), Slastnikov (1978), Amosova
(1979), and Frolov (2005). It should be pointed out that the ranges the moderate deviations in
these references are smaller (e.g., cn = O(

√
log n)).

The Cramér type moderate deviations for dependent random variables have also been studied
in the literature. Ghosh (1974), Heinrich (1990) studied the moderate deviation for m-dependent
random variables. Ghosh and Babu (1977), Babu and Singh (1978a) studied moderate deviation
for mixing processes. Grama (1997), Grama and Haeusler (2000, 2006) and Fan, Grama and Liu
(2013) investigated the large and moderate deviations for martingales. Babu and Singh (1978b) es-
tablished moderate deviation results for linear processes with coefficients satisfying

∑∞
i=1 i|ai| <∞.

Wu and Zhao (2008) studied moderate deviations for stationary processes under certain conditions
in terms of the physical dependence measure. But it can be verified that the results from Wu and
Zhao (2008) can only be applied to linear processes with short memory and their transformations.
Recently Peligrad et al. (2013) studied the exact moderate and large deviations for short or long
memory linear processes. Sang and Xiao (2018) studied exact moderate and large deviations for
linear random fields and applied the moderate result to prove a Davis-Gut law of the iterated
logarithm. Nevertheless, in the aforementioned works, the moderate deviations are studied for
dependent random variables with p-th moment, p > 2. The exact moderate deviation for random
fields under Cramér’s condition has not been well studied. For example, the optimal range [0, cn]
and the exact rate of convergence in (1) had been unknown in the random field setting.

The main objective of this paper is to establish exact moderate deviation analogous to (2) for
random fields under Cramér’s condition. Our main result is Theorem 2.1 below, whose proof is
based on the conjugate method to change the probability measure as in the classical case (see, e.g.,
Petrov (1965, 1975)). The extension of this method to the random field setting reveals the deep
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relationship between the tail probabilities and the properties of the cumulant generating functions
of the random variables such as the analytic radius and the bounds, for x within some ranges
related to the sum of the variances and the analytic radius of the cumulant generating functions
of these random variables. Compared with the results in Sang and Xiao (2018) for linear random
fields, Theorems 2.1 and 3.1 in this paper provide more precise convergence rate in the moderate
deviations and explicit information on the range [0, cn], which is much bigger than the range in
Theorem 2.1 in Sang and Xiao (2018). In Section 3 we show that Theorem 2.1 is applicable to
linear random fields with short or long memory and to nonparametric regression analysis. The
results there can be applied to approximate the quantiles and tail conditional expectations for the
partial sums of linear random fields.

In this paper we use the following notations. For two sequences {an} and {bn} of real numbers,
an∼bn means an/bn → 1 as n → ∞; an ∝ bn means that an/bn → C as n→ ∞ for some constant
C > 0; for positive sequences, the notation an ≪ bn or bn ≫ an means that an/bn is bounded.
For d,m ∈ N denote Γd

m = [−m,m]d ∩ Z
d. Section 2 gives the main results. In Section 3 we study

the application of the main results in linear random fields and nonparametric regression. All the
proofs go to Section 4.

Acknowledgement The authors are grateful to the referee and the Associate Editor for care-
fully reading the paper and for insightful suggestions that significantly improved the presentation
of the paper. The research of Hailin Sang is supported by the Simons Foundation Grant 586789 and
the College of Liberal Arts Faculty Grants for Research and Creative Achievement at the Univer-
sity of Mississippi. The research of Yimin Xiao is partially supported by NSF grants DMS-1612885
and DMS-1607089.

2 Main results

Let {Xnj , n ∈ N, j ∈ Z
d} be a random field with zero means defined on a probability space

(Ω,F , P ). Suppose that for each n, the random variables Xnj , j ∈ Z
d are independent and satisfy

the following Cramér condition: There is a positive constant Hn such that the cumulant generating
function

Lnj(z) = logE ezXnj of Xnj is analytic in Dn, (3)

where Dn = {z ∈ C : |z| < Hn} is the disc of radius Hn on the complex plane C, and log denotes
the principal value of the logarithm so that Lnj(0) = 0. This setting is convenient for applications
to linear random fields in Section 3.

Without loss of generality we assume in this section that lim sup
n→∞

Hn < ∞. Within the disc

{z ∈ C : |z| < Hn}, Lnj can be expanded in a convergent power series

Lnj(z) =

∞
∑

k=1

γknj
k!

zk,

where γknj is the cumulant of order k of the random variable Xnj . We have that γ1nj = EXnj = 0
and γ2nj = EX2

nj = σ2nj. By Taylor’s expansion, one can verify that a sufficient condition for (3)
is the following moment condition

|EXm
nj | ≤

m!

2
σ2njH

2−m
n for all m ≥ 2.

This condition has been used frequently in probability and statistics, see Petrov (1975, p.55),
Johnstone (1999, p.64), Picard and Tribouley (2000, p.301), Zhang and Wong (2003, p.164), among
others.
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Denote
Sn =

∑

j∈Zd

Xnj , Sm,n =
∑

j∈Γd
m

Xnj ,

Bn =
∑

j∈Zd

σ2nj, Fn(x) = P (Sn < x
√

Bn)

and assume that Sn is well-defined and Bn < ∞ for each n ∈ N. The following is the main result
of this paper.

Theorem 2.1 Suppose that, for all n ∈ N and j ∈ Z
d, there exist non-negative constants cnj such

that
|Lnj(z)| ≤ cnj , ∀ z ∈ C with |z| < Hn, (4)

and suppose that BnH
2
n → ∞ as n→ ∞, and

Cn :=
∑

j∈Zd

cnj = O(BnH
2
n). (5)

If x ≥ 0 and x = o(Hn

√
Bn), then

1− Fn(x)

1− Φ(x)
= exp

{

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)

}(

1 +O

(

x+ 1

Hn

√
Bn

))

, (6)

Fn(−x)
Φ(−x) = exp

{

− x3

Hn

√
Bn

λn

(

− x

Hn

√
Bn

)

}(

1 +O

(

x+ 1

Hn

√
Bn

))

, (7)

where

λn(t) =
∞
∑

k=0

βknt
k

is a power series that stays bounded uniformly in n for sufficiently small values of |t| and the
coefficients βkn only depend on the cumulants of Xnj (n ∈ Z, j ∈ Z

d).

For the rest of the paper, we only state the results for x ≥ 0. Since λn(t) =
∑∞

k=0 βknt
k stays

bounded uniformly in n for sufficiently small values of |t| and β0n = Hn
6Bn

∑

j∈Zd γ3nj from the proof
of Theorem 2.1, we have the following corollary:

Corollary 2.1 Assume the conditions of Theorem 2.1 hold. Then for x ≥ 0 with x = O
(

(Hn

√
Bn)

1/3
)

we have

1− Fn(x)

1− Φ(x)
= exp

{

x3

6B
3/2
n

∑

j∈Zd

γ3nj

}(

1 +O
( x+ 1

Hn

√
Bn

)

)

.

Notice that x3

6B
3/2
n

∑

j∈Zd γ3nj = O(1) under the condition x = O
(

(Hn

√
Bn)

1/3
)

. Also taking into

the account the fact that for x > 0

1− Φ(x) <
e−x2/2

x
√
2π

,

we obtain the following corollaries:
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Corollary 2.2 Under the conditions of Theorem 2.1, we have that for x ≥ 0 with x = O
(

(Hn

√
Bn)

1/3
)

,

1− Fn(x) =
(

1− Φ(x)
)

exp

{

x3

6B
3/2
n

∑

j∈Zd

γ3nj

}

+O

(

e−x2/2

Hn

√
Bn

)

.

Corollary 2.3 Assume the conditions of Theorem 2.1 and
∑

j∈Zd γ3nj = 0 for all n ∈ N. Then

for x ≥ 0 with x = O
(

(Hn

√
Bn)

1/3
)

, we have

Fn(x)−Φ(x) = O

(

e−x2/2

Hn

√
Bn

)

.

Also as 1− Φ(x) ∼ 1
x
√
2π
e−x2/2, as x→ ∞, we have

Corollary 2.4 Under the conditions of Theorem 2.1, if x→ ∞, x = o(Hn

√
Bn), then

Fn(x+ c
x)− Fn(x)

1− Fn(x)
→ 1− e−c

for every positive constant c.

3 Applications

In this section, we provide some applications of the main result in Section 2. First, we derive a
moderate deviation result for linear random fields with short or long memory; then we apply this
result to risk measures and apply a same argument to study nonparametric regression.

3.1 Cramér type moderate deviation for linear random fields

Let X = {Xj , j ∈ Z
d} be a linear random field defined on a probability space (Ω,F , P ) by

Xj =
∑

i∈Zd

aiεj−i, j ∈ Z
d,

where the innovations εi, i ∈ Z
d, are i.i.d. random variables with mean zero and finite variances

σ2, and where {ai, i ∈ Z
d} is a sequence of real numbers that satisfy

∑

i∈Zd a2i <∞.

Linear random fields have been studied extensively in probability and statistics. We refer to
Sang and Xiao (2018) for a brief review on studies in limit theorems, large and moderate deviations
for linear random fields and to Koul et al. (2016), Lahiri and Robinson (2016) and the reference
therein for recent developments in statistics.

By applying Theorem 2.1 in Section 2, we establish the following moderate deviation result
for linear random fields with short or long memory, under Cramér’s condition on the innovations
εi, i ∈ Z

d. Compared with the moderate deviation results in Sang and Xiao (2018), our Theorem
3.1 below gives more precise convergence rate which holds on much wider range for x.

Suppose that there is a disc centered at z = 0 within which the cumulant generating function
L(z) = Lεi(z) = logE ezεi of εi is analytic and can be expanded in a convergent power series

L(z) =

∞
∑

k=1

γk
k!
zk,

5



where γk is the cumulant of order k of the random variables εi, i ∈ Z
d. We have that γ1 = E εi = 0

and γ2 = E ε2i = σ2, i ∈ Z
d.

We write

Sn =
∑

j∈Γd
n

Xj =
∑

j∈Zd

bnjεj , (8)

where bnj =
∑

i∈Γd
n
ai−j . In the setting of Section 2, we have Xnj = bnjεj , j ∈ Z

d. Then it can

be verified that for all n ≥ 1 and j ∈ Z
d, Xnj satisfy condition (3) for suitably chosen Hn. In the

notation of Section 2, we have

Bn = σ2
∑

j∈Zd

b2nj , Fn(x) = P (Sn < x
√

Bn).

Hence, we can apply Theorem 2.1 to prove the following theorem.

Theorem 3.1 Assume that the linear random field X = {Xj , j ∈ Z
d} has short memory, i.e.,

A :=
∑

i∈Zd

|ai| <∞, a :=
∑

i∈Zd

ai 6= 0, (9)

or long memory with coefficients

ai = l(|i|)b(i/|i|)|i|−α , i ∈ Z
d, |i| 6= 0, (10)

where α ∈ (d/2, d) is a constant, l(·) : [1,∞) → R is a slowly varying function at infinity and b(·) is
a continuous function defined on the unit sphere Sd−1. Suppose that there exist positive constants
H and C such that

|L(z)| < C (11)

in the disc |z| < H. Then for all x ≥ 0 with x = o(nd/2), we have

1− Fn(x)

1−Φ(x)
= exp

{

x3

nd/2
λn

( x

nd/2

)

}(

1 +O
(x+ 1

nd/2

)

)

, (12)

where

λn(t) =

∞
∑

k=0

βknt
k

is a power series that stays bounded uniformly in n for sufficiently small values of |t| and the
coefficients βkn only depend on the cumulants of εi and on the coefficients ai of the linear random
field.

To the best of our knowledge, Theorem 3.1 is the first result that gives the exact tail probability
for partial sums of random fields with dependence structure under the Cramér condition.

Due to its preciseness, Theorem 3.1 can be applied to evaluate the performance of approxima-
tion of the distribution of linear random fields by truncation. We often use the random variable
Xm

j =
∑

i∈Γd
m
aiεj−i with finite terms to approximate the linear random field Xj =

∑

i∈Zd aiεj−i

in practice. For example, the moving average with finite terms MA(m) is applied to approximate
the linear process (moving average with infinite terms). In this case, Theorem 3.1 also applies to
the partial sum Sm

n =
∑

j∈Γd
n
Xm

j =
∑

j∈Zd bmnjεj . Here only finite terms bmnj are non-zero. Denote

Bm
n = σ2

∑

j∈Zd

(bmnj)
2, Fm

n (x) = P (Sm
n < x

√

Bm
n ).
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Then for all x ≥ 0 with x = o(nd/2), we have

1− Fm
n (x)

1− Φ(x)
= exp

{

x3

nd/2
λmn

( x

nd/2

)

}(

1 +O
(x+ 1

nd/2

)

)

,

where

λmn (t) =
∞
∑

k=0

βmknt
k,

and where the coefficients βmkn have similar definition as βkn. To see the difference between the two
tail probabilities of the partial sums, we have

1− Fn(x)

1− Fm
n (x)

= exp

{

x3

nd/2

[

λn

( x

nd/2

)

− λmn

( x

nd/2

)]

}(

1 +O
(x+ 1

nd/2

)

)

= exp

{

x3

nd/2

[

β0n − βm0n +

∞
∑

k=1

(βkn − βmkn)
( x

nd/2

)k]
}(

1 +O
(x+ 1

nd/2

)

)

,

here as in the proof of Theorem 3.1, we take Mn = maxj∈Zd |bnj |, Hn = H
2Mn

, Mm
n = maxj∈Zd |bmnj |,

Hn = H
2Mm

n
,

β0n =
Hn

6Bn

∑

j∈Zd

γ3nj =
Hγ3

12MnBn

∑

j∈Zd

(bnj)
3,

βm0n =
Hm

n

6Bm
n

∑

j∈Zd

γm3nj =
Hγ3

12Mm
n B

m
n

∑

j∈Zd

(bmnj)
3.

If γ3 6= 0, 1−Fn(x)
1−Fm

n (x) is dominated by exp
{

x3

nd/2 (β0n − βm0n)
}

. If γ3 = 0, then β0n = βm0n = 0 and
1−Fn(x)
1−Fm

n (x) can be dominated by exp
{

x4

nd (β1n − βm1n)
}

which depends on whether γ4 = 0. In general,
Theorem 3.1 can be applied to evaluate whether the truncated version Xm

j is a good approximation

to Xj in terms of the ratio 1−Fn(x)
1−Fm

n (x) for x in different ranges which depends on the property of the

innovation ε and the sequence {ai, i ∈ Z
d}.

Theorem 3.1 can be applied to calculate the tail probability of the partial sum of some well-
known dependent models. For example, the autoregressive fractionally integrated moving average
FARIMA(p, β, q) processes in one dimensional case introduced by Granger and Joyeux (1980) and
Hosking (1981), which is defined as

φ(B)Xn = θ(B)(1−B)−βεn.

Here p, q are nonnegative integers, φ(z) = 1 − φ1z − · · · − φpz
p is the AR polynomial and θ(z) =

1+ θ1z+ · · · θqzq is the MA polynomial. Under the conditions that φ(z) and θ(z) have no common
zeros, the zeros of φ(·) lie outside the closed unit disk and −1/2 < β < 1/2, the FARIMA(p, β, q)

process has linear process form Xn =
∑∞

i=0 aiεn−i, n ∈ N, with ai =
θ(1)
φ(1)

iβ−1

Γ(β) +O(i−1). Here Γ(·)
is the gamma function.

3.2 Approximation of risk measures

Theorem 3.1 can be applied to approximate the risk measures such as quantiles and tail conditional
expectations for the partial sums Sn in (8) of linear random field X = {Xj , j ∈ Z

d}. Given the
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tail probability α ∈ (0, 1), let Qα,n be the upper α-th quantile of Sn. Namely P (Sn ≥ Qα,n) = α.
By Theorem 3.1, for all x ≥ 0 with x = o(nd/2),

P (Sn > x
√

Bn) = exp

{

x3

nd/2
λn

( x

nd/2

)

}

(1− Φ(x))(1 + o(1)).

We approximate Qα,n by xα
√
Bn, where x = xα = o(nd/2) can be solved numerically from the

equation

exp

{

x3

nd/2
λn

( x

nd/2

)

}

(1− Φ(x)) = α.

The tail conditional expectation is computed as

E (Sn|Sn ≥ Qα,n) =
Qα,nP (Sn ≥ Qα,n) +

∫∞
Qα,n

P (Sn ≥ w)dw

P (Sn ≥ Qα,n)

= Qα,n +

√
Bn

α

∫ ∞

Qα,n/
√
Bn

exp

{

y3

nd/2
λn

( y

nd/2

)

}

(1− Φ(y))dy,

which can be solved numerically. The quantile and tail conditional expectation, which are also
called value at risk (VaR) or expected shortfall (ES) in finance and risk theory, are important
measures to model the extremal behavior of random variables in practice. The precise moderate
deviation results in this article provide a vehicle in the computation of these two measures of time
series or spacial random fields. See Peligrad et al. (2014a) for a brief review of VaR and ES in the
literature and a study of them when a linear process has p-th moment (p > 2) or has a regularly
varying tail with exponent t > 2.

3.3 Nonparametric regression

Consider the following regression model

Yn,j = g(zn,j) +Xn,j , j ∈ Γd
n,

where g is a bounded continuous function on R
m, zn,j’s are the fixed design points over Γd

n ⊆ Z
d

with values in a compact subset of Rm, and Xn,j =
∑

i∈Zd aiεn,j−i is a linear random field over
Z
d, where the i.i.d. innovations εn,i satisfy the same conditions as in Subsection 3.1. The kernel

regression estimation for the function g on the basis of sample pairs (zn,j, Yn,j), j ∈ Γ2
n ⊂ Z

2 has
been studied by Sang and Xiao (2018) under the condition that the i.i.d. innovations εn,i satisfy
‖εn,i‖p < ∞ for some p > 2 and (or) the innovations have regularly varying right tail with index
t > 2. See Sang and Xiao (2018) for more references in the literature for regression models with
independent or weakly dependent random field errors.

We study the kernel regression estimation for the function g on the basis of sample pairs
(zn,j, Yn,j), j ∈ Γd

n, when the i.i.d. innovations εn,i satisfy the conditions as in Subsection 3.1.
Same as in Sang and Xiao (2018) and the other references in the literature, the estimator that we
consider is given by

gn(z) =
∑

j∈Γd
n

wn,j(z)Yn,j , (13)

where the weight functions wn,j(·)’s on R
m have form

wn,j(z) =
K(

z−zn,j

hn
)

∑

i∈Γd
n
K(

z−zn,i

hn
)
.

8



Here K : Rm → R
+ is a kernel function and hn is a sequence of bandwidths which goes to zero as

n→ ∞. Notice that the weight functions satisfy the condition
∑

j∈Γd
n
wn,j(z) = 1.

For a fixed z ∈ R
m, let

Sn(z) = gn(z)− Egn(z) =
∑

j∈Γd
n

wn,j(z)Xn,j =
∑

j∈Zd

bn,j(z)εn,j ,

where bn,j(z) =
∑

i∈Γd
n
wn,i(z)ai−j . Let Bn(z) = σ2

∑

j∈Zd b2n,j(z), Mn(z) = max
j∈Zd

|bnj(z)|. By the

same analysis as in the proof of Theorem 3.1, we take Hn ∝ Mn(z)
−1 and derive a moderate

deviation result for Sn(z) = gn(z) − Egn(z). That is, if Bn(z)H
2
n → ∞ as n → ∞, x ≥ 0, x =

o(Hn

√

Bn(z)), then

P
(

Sn(z) > x
√

Bn(z)
)

= (1− Φ(x)) exp

{

x3

Hn

√

Bn(z)
λn

( x

Hn

√

Bn(z)

)

}(

1 +O
( x+ 1

Hn

√

Bn(z)

)

)

.

(14)
A similar bound can be derived for P

(

|Sn(z)| > x
√

Bn(z)
)

. Notice that these tail probability
estimates are more precise than those obtained in Sang and Xiao (2018), where an upper bound
for the law of the iterated logarithm of gn(z)− Egn(z) was derived. With the more precise bound
on the tail probability in (14) and certain assumptions on g and the fixed design points {zn,j} [cf.
Gu and Tran (2009)], one can construct a confidence interval for g(z).

More interestingly, our method in this paper provides a way for constructing confidence bands
for the function g(z) when z ∈ T , where T ⊂ R

m is a compact interval. Observe that for any
z, z′ ∈ T , we can write

Sn(z)− Sn(z
′) =

∑

j∈Zd

(

bn,j(z)− bn,j(z
′)
)

εn,j.

Under certain regularity assumption on g and the fixed design points {zn,j} [cf. Gu and Tran
(2009)], we can apply the argument in Subsection 3.1 to derive exponential upper bound for the

tail probability P
(

|Sn(z)−Sn(z′)| > x
√

Bn(z, z′)
)

, where Bn(z, z
′) = σ2

∑

j∈Zd

(

bn,j(z)−bn,j(z′)
)2
.

Such a sharp upper bound, combined with the chaining argument [cf. Talagrand (2014)] would
allow us to derive an exponential upper bound for

P

(

sup
z,z′∈T

|Sn(z)− Sn(z
′)|

√

Bn(z, z′)
> x

)

,

which can be applied to derive uniform convergence rate of gn(z) → g(z) for all z ∈ T and to
construct confidence band for the function g(z), z ∈ T . It is non-trivial to carry out this project
rigorously and the verification of the details is a little lengthy. Hence we will have to consider it
elsewhere.

4 Proofs

Proof of Theorem 2.1

Since γ1nj = 0, the cumulant generating function Lnj(z) of Xnj can be written as

Lnj(z) = logE ezXnj =

∞
∑

k=2

γknj
k!

zk.

9



Cauchy’s inequality for the derivatives of analytic functions together with the condition (4)
yields that

|γknj| <
k!cnj
Hk

n

. (15)

By following the conjugate method (cf. Petrov (1965, 1975)), we now introduce an auxiliary
sequence of independent random variables {Xnj}, j ∈ Z

d, with the distribution functions

V nj(x) = e−Lnj(z)

∫ x

−∞
ezydVnj(y),

where Vnj(y) = P (Xnj < y) and z ∈ (−Hn,Hn) is a real number whose value will be specified
later.

Denote
mnj = EXnj, σ2nj = E(Xnj −mnj)

2,

Sm,n =
∑

j∈Γd
m

Xnj , Sn =
∑

j∈Zd

Xnj ,

Mn =
∑

j∈Zd

mnj , Bn =
∑

j∈Zd

σ2nj

and

Fn(x) = P (Sn < Mn + x

√

Bn).

Note that, in the above and below, we have suppressed z for simplicity of notations.

We shall see in the later analysis that the quantities Sn,Mn and Bn are well-defined for
every n and z ∈ R with |z| < aHn, where a < 1 is a positive constant which is independent
of n. Throughout the proof we will obtain some estimates holding for the values of z satisfying
|z| < bHn, where the positive constant b < 1 may vary but is always independent of n. We will
then take a to be the smallest one among those constants b. The selection of the constants does
not affect the proof since the z = zn we need in the later analysis has property z = o(Hn).

Also, the change of the order of summation of double series presented in the proof is justified
by the absolute convergence of those series in the specified regions.

Step 1: Representation of P (Sn < x) in terms of the conjugate measure

First notice that by equation (2.11) on page 221 of Petrov (1975), for any m ∈ N, we have

P (Sm,n < x) = exp

{

∑

j∈Γd
m

Lnj(z)

}
∫ x

−∞
e−zydP (Sm,n < y). (16)

Note that the condition (5) implies that Cn <∞, n ∈ N. From (15) it follows that for any w with

10



|w| < 2
3Hn and for any m ∈ N we have

∣

∣

∣

∣

∑

j∈Γd
m

Lnj(w)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

j∈Γd
m

∞
∑

k=2

γknj
k!

wk

∣

∣

∣

∣

≤
∑

j∈Γd
m

∞
∑

k=2

|γknj|
k!

|w|k

≤
∑

j∈Zd

∞
∑

k=2

cnj
Hk

n

|w|k

≤ 4

3

∑

j∈Zd

cnj =
4

3
Cn <∞.

(17)

Therefore, for any v with |v| < 1
2Hn and z with |z| < 1

6Hn,

E exp{vSm,n} =
∏

j∈Γd
m

E exp{vXnj}

=
∏

j∈Γd
m

∫ ∞

−∞
evxdV nj(x) =

∏

j∈Γd
m

∫ ∞

−∞
evxe−Lnj(z)ezxdVnj(x)

=
∏

j∈Γd
m

e−Lnj(z)

∫ ∞

−∞
e(v+z)xdVnj(x) =

∏

j∈Γd
m

e−Lnj (z)eLnj(v+z)

→ exp

(

∑

j∈Zd

[Lnj(v + z)− Lnj(z)]

)

<∞, as m→ ∞.

(18)

Hence, Sn is well-defined and Sm,n converges to Sn in distribution or equivalently in probability
or almost surely as m→ ∞.

For the x in P (Sn < x), let f(y) = exp{−zy}1{y < x} and M > 0. By Markov’s inequality,
we have

E

{

f(Sm,n)1{|f(Sm,n)| > M}
}

≤ E

{

exp{−zSm,n}1{exp{−zSm,n} > M}
}

≤
[

E

{

exp{−2zSm,n}
}

]
1

2

[

E

{

1{exp{−zSm,n} > M}
}

]
1

2

≤
[

∏

j∈Γd
m

e−Lnj(z)eLnj(−z)

]
1

2

[

1

M
E

{

exp{−zSm,n}
}

]
1

2

=
1√
M

[

∏

j∈Γd
m

e−Lnj(z)eLnj(−z)

]
1

2

[

∏

j∈Γd
m

e−Lnj (z)eLnj(0)

]
1

2

.

Hence, by (17) we have that for |z| < 1
6Hn,

lim
M→∞

lim sup
m→∞

E

{

f(Sm,n)1{|f(Sm,n)| > M}
}

= 0.

Applying Theorem 2.20 from van der Vaart (1998), we have
∫ x

−∞
e−zydP (Sm,n < y) →

∫ x

−∞
e−zydP (Sn < y)

11



as m → ∞. And taking into account that

P (Sm,n < x) → P (Sn < x)

and

exp

{

∑

j∈Γd
m

Lnj(z)

}

→ exp

{

∑

j∈Zd

Lnj(z)

}

as m → ∞ we obtain from (16) that

P (Sn < x) = exp

{

∑

j∈Zd

Lnj(z)

}
∫ x

−∞
e−zydP (Sn < y). (19)

Step 2: Properties of the conjugate measure

From the calculation of (18) it follows that the cumulant generating function Lnj(v) of the random
variable Xnj exists when |v| is sufficiently small and we have

Lnj(v) = −Lnj(z) + Lnj(v + z), (20)

j ∈ Z
d. Denoting by γknj the cumulant of order k of the random variable Xnj , we obtain

γknj =
[dkLnj(v)

dvk

]

v=0
=
dkLnj(z)

dzk
.

Setting k = 1 and k = 2 we find that

mnj =
dLnj(z)

dz
=

∞
∑

ℓ=2

γℓnj
(ℓ− 1)!

zℓ−1, (21)

and

σ2nj =
d2Lnj(z)

dz2
=

∞
∑

ℓ=2

γℓnj
(ℓ− 2)!

zℓ−2. (22)

Hence, for |z| < 1
2Hn, (21) imples

|Mn| =
∣

∣

∣

∑

j∈Zd

mnj

∣

∣

∣
=
∣

∣

∣

∑

j∈Zd

∞
∑

k=2

γknj
(k − 1)!

zk−1
∣

∣

∣

≤
∑

j∈Zd

∞
∑

k=2

k!cnj
Hk

n

|z|k−1

(k − 1)!
≤ 3

Hn

∑

j∈Zd

cnj =
3Cn

Hn
,

(23)

which means that Mn is well-defined and, as a function of z ∈ C, is analytic in |z| < 1
2Hn.

Also, without loss of generality, we assume that

lim sup
n

Cn

BnH2
n

≤ 1. (24)

By the definition of Mn and (21), we have

Mn = z
∑

j∈Zd

γ2nj +
∑

j∈Zd

∞
∑

k=3

γknj
(k − 1)!

zk−1

= zBn +
∑

j∈Zd

∞
∑

k=3

γknj
(k − 1)!

zk−1.

(25)

12



It follows from (15) that
∣

∣

∣

∣

∞
∑

k=3

γknj
(k − 1)!

zk−1

∣

∣

∣

∣

≤ |z|
∞
∑

k=3

k!cnj
Hk

n

|z|k−2

(k − 1)!

=
|z|cnj
H2

n

∞
∑

k=3

k
∣

∣

∣

z

Hn

∣

∣

∣

k−2
≤ |z|cnj

2H2
n

for |z| < b1Hn and a suitable positive constant b1 < 1 which is independent of j and n. This
together with (25) implies that for |z| < b1Hn

|z|
(

Bn − Cn

2H2
n

)

≤ |Mn| ≤ |z|
(

Bn +
Cn

2H2
n

)

.

Taking into account the condition (24), we get that

Mn ∝ |z|Bn. (26)

Moreover, (25) implies that for |z| < 1
2Hn,

∣

∣Mn − zBn

∣

∣ ≤
∑

j∈Zd

∞
∑

k=3

k!cnj
Hk

n

|z|k−1

(k − 1)!

≤ |z|2
H3

n

∑

j∈Zd

∞
∑

k=3

kcnj
|z|k−3

Hk−3
n

≤ 8|z|2Cn

H3
n

.

(27)

Also, by the definition of Bn and (22), we have

Bn =
∑

j∈Zd

γ2nj +
∑

j∈Zd

∞
∑

k=3

γknj
(k − 2)!

zk−2

= Bn +
∑

j∈Zd

∞
∑

k=3

γknj
(k − 2)!

zk−2.

(28)

It follows from (15) that
∣

∣

∣

∣

∞
∑

k=3

γknj
(k − 2)!

zk−2

∣

∣

∣

∣

≤
∞
∑

k=3

k!cnj
Hk

n

|z|k−2

(k − 2)!
≤ cnj

2H2
n

for |z| < b2Hn and a suitable positive constant b2 < 1 which is independent of j and n. This
together with (28) implies that for |z| < b2Hn, Bn is well-defined and

Bn − Cn

2H2
n

≤ |Bn| ≤ Bn +
Cn

2H2
n

.

Condition (24) then implies that
Bn ∝ Bn. (29)

Furthermore, (28) and (15) imply that for |z| < 1
2Hn,

∣

∣

∣
Bn −Bn

∣

∣

∣
≤
∑

j∈Zd

∞
∑

k=3

k!cnj
Hk

n

|z|k−2

(k − 2)!

≤ |z|
H3

n

∑

j∈Zd

∞
∑

k=3

k(k − 1)cnj
|z|k−3

Hk−3
n

≤ 28|z|Cn

H3
n

.

(30)
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Step 3: Selection of z

Let z = zn be the real solution of the equation

x =
Mn√
Bn

, (31)

and let
t = tn =

x

Hn

√
Bn

. (32)

Then

t =
Mn

HnBn
=

1

HnBn

∑

j∈Zd

∞
∑

k=2

γknj
(k − 1)!

zk−1. (33)

By (23) we know that Mn
HnBn

is analytic in a disc |z| < 1
2Hn and

∣

∣

∣

Mn

HnBn

∣

∣

∣
≤ 3Cn

H2
nBn

in that disc. It follows from Bloch’s theorem (see, e.g., Privalov (1984), page 256) that (33) has a
real solution which can be written as

z =

∞
∑

m=1

amnt
m (34)

for

|t| <
(

√

1

2
+

3Cn

H2
nBn

−
√

3Cn

H2
nBn

)2

.

Moreover, the absolute value of that sum in (34) is less than 1
2Hn. Condition (5) implies that there

exists a disc with center at t = 0 and radius R that does not depend on n within which the series
on the right side of (34) converges.

It can be checked from (33) and (34) that

a1n = Hn and a2n = − H2
n

2Bn

∑

j∈Zd

γ3nj . (35)

Cauchy’s inequality implies that for every m ∈ N,

|amn| ≤
Hn

2Rm
.

Therefore, as t → 0, a1nt becomes the dominant term of the series in (34). Hence, for sufficiently
large n we have

1

2
tHn ≤ z ≤ 2tHn, z = o(Hn)

and taking into account (32) we get

x

2
√
Bn

≤ z ≤ 2x√
Bn

. (36)
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It follows from (17) and (23) that for z < 1
2Hn,

∣

∣

∣
zMn −

∑

j∈Zd

Lnj(z)
∣

∣

∣
≤ 3|z|
Hn

Cn +
4

3
Cn < 3Cn.

For the solution z of the equation (31) we also have

zMn −
∑

j∈Zd

Lnj(z) =
∑

j∈Zd

∞
∑

k=2

γknj
(k − 1)!

zk −
∑

j∈Zd

∞
∑

k=2

γknj
k!

zk

=
∑

j∈Zd

∞
∑

k=2

(k − 1)γknj
k!

( ∞
∑

m=1

amnt
m

)k

:=
∑

j∈Zd

γ2nj
2
a21nt

2 −
∞
∑

k=3

bknt
k

=
H2

nBnt
2

2
−H2

nBnt
3

∞
∑

k=3

bkn
H2

nBn
tk−3

=
H2

nBnt
2

2
−H2

nBnt
3λn(t),

(37)

where λn(t) =
∑∞

k=0 βknt
k with βkn = b(k+3)n(H

2
nBn)

−1.

Recall that the series
∑∞

m=1 amnt
m converges in the disc centered at t = 0 with radius R > 0

that does not depend on n, and the absolute value of this sum is less than 1
2Hn. We see from (37)

that the function λn(t) is obtained by the substitution of
∑∞

m=1 amnt
m in a series that converges

on the interval (−1
2Hn,

1
2Hn). It follows from Cauchy’s inequality that

∣

∣βkn
∣

∣ ≤ 3Cn

H2
nBnRk+3

≤ 3

Rk+3
, k ≥ 0,

which means that for |t| < 1
2R, λn(t) stays bounded uniformly in n. In particular, by (35) and

(37), we have β0n = Hn
6Bn

∑

j∈Zd γ3nj.

From now on we will assume that z is the unique real solution of the equation (31).

Step 4: The case 0 ≤ x ≤ 1

Now we prove the theorem for the case 0 ≤ x ≤ 1 using the method presented in Petrov and
Robinson (2006). Throughout the proof, C denotes a positive constant which may vary from line
to line, but is independent of j, n and z. If fn(s) is the characteristic function of Sn/

√
Bn we then

have that for |s| < Hn

√
Bn/2

fn(s) =

∞
∫

−∞

eisudP (Sn ≤ u
√

Bn)

=

∞
∫

−∞

eisy/
√
BndP (Sn ≤ y)

= exp

{

∑

j∈Zd

Lnj(is/
√

Bn)

}

.
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Then

log fn(s) =
∑

j∈Zd

Lnj(is/
√

Bn) =
∑

j∈Zd

∞
∑

k=2

γknj
k!

(is/
√

Bn)
k

= −
∑

j∈Zd

γ2nj
2
s2/Bn +

∑

j∈Zd

∞
∑

k=3

γknj
k!

(is/
√

Bn)
k = −s2/2 +

∑

j∈Zd

∞
∑

k=3

γknj
k!

(is/
√

Bn)
k.

Thus, using (15) we get that for |s| < δHn

√
Bn/2, with 0 < δ < 1,

| log fn(s) + s2/2| ≤
∑

j∈Zd

∞
∑

k=3

cnj

( |s|
Hn

√
Bn

)k

≤ Cn

( |s|
Hn

√
Bn

)3

(1− δ)−1

Then, for appropriate choice of δ we have that

|fn(s)− e−s2/2| < C
e−s2/4|s|3Cn

H3
n

√
Bn

3 < C
e−s2/4|s|3
Hn

√
Bn

,

for |s| < δHn

√
Bn/2. Now applying Theorem 5.1 from Petrov (1995) with b = 1/π and T =

δHn

√
Bn/2 we get that

sup
x

|Fn(x)− Φ(x)| < C

Hn

√
Bn

. (38)

Since 0 ≤ x ≤ 1, BnH
2
n → ∞ as n→ ∞, and λn

(

x
Hn

√
Bn

)

is bounded uniformly in n, we have

exp

{

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)

}

= 1 +O(H−1
n B−1/2

n ).

Together with condition (5), to have (6) in the case 0 ≤ x ≤ 1, it is sufficient to show

1− Fn(x)

1− Φ(x)
= 1 +O

(

C

Hn

√
Bn

)

,

which is given by (38), since 1/2 ≤ Φ(x) ≤ Φ(1) for 0 ≤ x ≤ 1.

So we will limit the proof of the theorem to the case x > 1, x = o(Hn

√
Bn).

Step 5: The case x > 1, x = o(Hn

√
Bn)

Making a change of variables y  Mn + y
√

Bn and applying (31), we can rewrite (19) as

1− Fn(x) = exp

{

− zMn +
∑

j∈Zd

Lnj(z)

}
∫ ∞

(x
√
Bn−Mn)/

√
Bn

exp
{

− zy

√

Bn

}

dFn(y)

= exp

{

− zMn +
∑

j∈Zd

Lnj(z)

}
∫ ∞

0
exp

{

− zy

√

Bn

}

dF n(y). (39)

Denote rn(x) = Fn(x)− Φ(x) and we show that for sufficiently large n

sup
x

|rn(x)| ≤
C

Hn

√
Bn

. (40)
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Let fn(s) be the characteristic function of (Sn −Mn)/
√

Bn. We then have that

fn(s) =

∞
∫

−∞

eisudP (Sn ≤ u

√

Bn +Mn)

=

∞
∫

−∞

eis(y−Mn)/
√

BndP (Sn ≤ y)

= exp

{

− isMn/

√

Bn −
∑

j∈Zd

Lnj(z)

}

∞
∫

−∞

e(z+is/
√

Bn)ydP (Sn ≤ y)

= exp

{

− isMn/

√

Bn −
∑

j∈Zd

Lnj(z) +
∑

j∈Zd

Lnj(z + is/

√

Bn)

}

.

Then by (20) for|z| < 1
2Hn and |s| < Hn

√

Bn/6 we have that

log fn(s) = −isMn/

√

Bn +
∑

j∈Zd

Lnj(is/

√

Bn)

= −1

2
s2 +

1

6

(

is/

√

Bn

)3
[d3

∑

j∈Zd Lnj(y)

dy3

]

y=θis/
√

Bn

,

where 0 ≤ |θ| ≤ 1. For |z| < 1
2Hn and |s| < δHn

√

Bn/6, with 0 < δ < 1, we have that

∣

∣

∣

[d3
∑

j∈Zd Lnj(y)

dy3

]

y=θis/
√

Bn

∣

∣

∣
=
∣

∣

∣

[ d3

dy3

∑

j∈Zd

∞
∑

k=1

γknj
k!

yk
]

y=θis/
√

Bn

∣

∣

∣

=
∣

∣

∣

∑

j∈Zd

∞
∑

k=3

γknj
(k − 3)!

(θis/

√

Bn)
k−3
∣

∣

∣

≤
∑

j∈Zd

∞
∑

k=3

k(k − 1)(k − 2)
cnj

(Hn/2)k

(

s/

√

Bn

)k−3

=
48Cn

H3
n

(

1− s/
√

Bn

Hn/2

)−4

≤ 48Cn

H3
n

(1− δ)−4.

Thus,

| log fn(s) + s2/2| < 8|s|3Cn

H3
n

√

Bn
3 (1− δ)−4.

Then, for appropriate choice of δ we have that

|fn(s)− e−s2/2| < C
e−s2/4|s|3Cn

H3
n

√

Bn

3 < C
e−s2/4|s|3

Hn

√

Bn

for |s| < δHn

√

Bn/6. Now applying (29) and Theorem 5.1 from Petrov (1995) with b = 1/π and

T = δHn

√

Bn/6, we have (40).
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By (40) we have

∫ ∞

0
exp

{

− zy

√

Bn

}

dFn(y) =
1√
2π

∫ ∞

0
exp

{

− zy

√

Bn − y2

2

}

dy − rn(0)

+ z

√

Bn

∫ ∞

0
rn(y) exp

{

− zy

√

Bn

}

dy

=
1√
2π

∫ ∞

0
exp

{

− zy

√

Bn − y2

2

}

dy + αn,

(41)

where |αn| ≤ C
Hn

√
Bn
.

Denote

I1 =

∫ ∞

0
exp

{

− zy

√

Bn − y2

2

}

dy = ψ(z

√

Bn)

and

I2 =

∫ ∞

0
exp

{

− Mn√
Bn

− y2

2

}

dy = ψ(MnB
− 1

2
n ),

where

ψ(x) =
1− Φ(x)

Φ′(x)
= e

x2

2

∫ ∞

x
e−

t2

2 dt

is the Mills ratio which is known to satisfy

x

x2 + 1
< ψ(x) <

1

x
,

for all x > 0. Hence, by (36) and (29) we obtain

αn

xI1
=
αnz

√

Bn

x
+

αn

xz
√

Bn

≤ C

(

z
√
Bn

xHn

√
Bn

+
1

Hn

√
Bnxz

√
Bn

)

≤ C

(

1

Hn

√
Bn

+
1

Hn

√
Bnx2

)

≤ C

Hn

√
Bn

.

Hence,

αn = I1O
( x

Hn

√
Bn

)

. (42)

For every y1 < y2 we have that ψ(y2) − ψ(y1) = (y2 − y1)ψ
′(u), where y1 < u < y2. As for
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u > 0, |ψ′(u)| < u−2, then using (5), (36), (26), (27), (29) and (30) we get that

|I2 − I1| =
∣

∣

∣
ψ′(u)

∣

∣

∣

∣

∣

∣
MnB

− 1

2

n − z

√

Bn

∣

∣

∣

≤ 1

u2
√
Bn

∣

∣

∣
Mn − z

√

Bn

√

Bn

∣

∣

∣

≤ 1

u2
√
Bn

(
∣

∣

∣
Mn − zBn

∣

∣

∣
+
∣

∣

∣
zBn − z

√

Bn

√

Bn

∣

∣

∣

)

≤ C

(14x)
2
√
Bn

(z2Cn

H3
n

+ z
√
Bn

∣

∣

∣

√

Bn −
√

Bn

∣

∣

∣

)

≤ C

x2
√
Bn

( x2Cn

BnH3
n

+
x|Bn −Bn|√
Bn +

√

Bn

)

≤ C

x2
√
Bn

( x2Cn

BnH3
n

+
xzCn

H3
n

√
Bn

)

≤ C

x2
√
Bn

( x2Cn

BnH3
n

+
x2Cn

H3
nBn

)

=
CCn

B
3

2

nH3
n

≤ C

Hn

√
Bn

.

Hence,

|I2 − I1|
xI2

≤ C

xHn

√
Bnψ(MnB

− 1

2
n )

=
C

xHn

√
Bnψ(x)

<
C

xHn

√
Bn

x2 + 1

x
<

C

Hn

√
Bn

,

which means that

I1 = I2

(

1 +O
( x

Hn

√
Bn

))

. (43)

Finally, combining (39), (31), (32), (37), (41) and (42) we get

1− Fn(x) = exp

{

− H2
nBnt

2

2
+H2

nBnt
3λn(t)

}
∫ ∞

0
exp

{

− zy

√

Bn

}

dF n(y)

= exp

{

− x2

2
+

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)

}(

1√
2π
I1 + αn

)

= exp

{

− x2

2
+

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)

}

1√
2π
I1

(

1 +O
( x

Hn

√
Bn

)

)

.

By (43) and the fact that I2 = ψ(x), we see that

1− Fn(x)

1− Φ(x)
= exp

{

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)

}(

1 +O
( x

Hn

√
Bn

)

)

.

This proves (6). The proof of (7) follows a same pattern and is omitted.

Proof of Theorem 3.1

Since γ1 = 0, we see that the cumulant generating function Lnj(z) of the random variable
bnjεj , j ∈ Z

d, is given by

Lnj(z) = logE ezbnjεj =

∞
∑

k=2

γkb
k
nj

k!
zk.
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Cauchy’s inequality for the derivatives of analytic functions together with the condition (11) yields
that

|γk| <
k!C

Hk
. (44)

DenoteMn = max
j∈Zd

|bnj|. Then by (44), for any Hn with 0 < Hn ≤ H
2Mn

and for any z with |z| < Hn

we have

∣

∣Lnj(z)
∣

∣ ≤
∞
∑

k=2

|γk||bnj |k
k!

|z|k ≤ C

∞
∑

k=2

|bnjHn|k
Hk

=
C

H

b2njH
2
n

H − |bnjHn|
≤

2Cb2njH
2
n

H2
.

Hence,

Cn =
∑

j∈Zd

2Cb2njH
2
n

H2
=

2CBnH
2
n

σ2H2
.

Then by Theorem 2.1, if BnH
2
n → ∞ as n→ ∞, we have

1− Fn(x)

1− Φ(x)
= exp

{

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)

}(

1 +O
( x+ 1

Hn

√
Bn

)

)

(45)

for x ≥ 0, x = o(Hn

√
Bn).

If the linear random field has long memory then we have that (see Surgailis (1982), Theorem
2) Bn ∝ n3d−2αl2(n). As the function b(·) is bounded, then for j ∈ Γd

n we have

|bnj| ≤ C1

∑

i∈Γd
n

l(|i− j|)|i − j|−α

≤ C1

2dn
∑

k=1

kd−1l(k)k−α ∝ nd−αl(n),

where we have used the fact (see Bingham et al. (1987) or Seneta (1976)) that for a slowly varying
function l(x) defined on [1,∞) and for any θ > −1,

∫ x

1
yθl(y)dy∼x

θ+1l(x)

θ + 1
, as x→ ∞.

It follows from the definition of ai in (10) that (for sufficiently large n) Mn = max
j∈Zd

|bnj| is attained

at some j ∈ Γd
n. Hence, Mn = O(nd−αl(n)). We take Hn ∝ n−d+αl−1(n) which yields

Hn

√

Bn ∝ nd/2.

Then the result follows from (45).

If the linear random field has short memory, i.e., A :=
∑

i∈Zd |ai| <∞, a :=
∑

i∈Zd ai 6= 0, we
can take Mn = A and Hn = H

2A . Moreover, we also have

∑

j∈Zd

|bnj | ≤
∑

j∈Zd

∑

i∈Γd
n

|ai−j | = (2n + 1)d
∑

i∈Zd

|ai| = A(2n + 1)d

and
∑

j∈Zd

|bnj | ≥ |
∑

j∈Zd

∑

i∈Γd
n

ai−j | = (2n + 1)d|
∑

i∈Zd

ai| = |a|(2n + 1)d,
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which means that
∑

j∈Zd |bnj | ∝ nd.

As for all n ∈ N we have that |bnj| ≤ A by the definition of A, then

∑

j∈Zd

b2nj ≤ A
∑

j∈Zd

|bnj | ≤ A2(2n + 1)d.

On the other hand, for j ∈ Γd
⌊n/2⌋ we have that |bnj| > |a|/2 for sufficiently large n. Hence,

∑

j∈Zd

b2nj ≥
∑

j∈Γd
⌊n/2⌋

b2nj ≥
a2

4

(

2 ⌊n/2⌋+ 1
)d
.

Thus,
∑

j∈Zd b2nj ∝ nd and the result follows from (45).
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