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Abstract. Consider a random vector U , whose distribution function coin-

cides in its upper tail with that of an Archimedean copula. We report the fact

that the conditional distribution of U , conditional on one of its components,

has under a mild condition on the generator function independent upper tails,

no matter what the unconditional tail behavior is. This finding is extended to

Archimax copulas.

1. Introduction

Let U = (U1, . . . , Ud) be a random vector (rv), whose distribution function (df)

F is in the domain of attraction of a multivariate extreme value df G, denoted

by F ∈ D(G), i.e., there are constants an = (an1, . . . , and) > 0 ∈ Rd, bn =

(bn1, . . . , bnd) ∈ Rd, n ∈ N, such that for each x = (x1, . . . , xd) ∈ Rd

Fn(anx + bn)→n→∞ G(x).

Note that all operations on vectors such as x + y, xy etc. are always meant

componentwise.

The rv U , or, equivalently, the df F , is said to have asymptotically independent

(upper) tails, if

G(x) =

d∏
i=1

Gi(xi),

where Gi, 1 ≤ i ≤ d, denote the univariate margins of G.
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We require in this paper that the df F of U coincides in its upper tail with a

copula, say C, i.e., there exists u0 = (u01, . . . , u0d) ∈ (0, 1)d such that

F (u) = C(u), u ∈ [u0,1] ⊂ Rd.

Each univariate margin of a copula is the uniform distribution H(u) = u, 0 ≤

u ≤ 1, and, thus, each univariate margin of F equals H(u) for u ∈ [v0, 1], where

v0 := max1≤i≤d u0i.

The significance of copulas is due to Sklar’s theorem (Sklar (1959, 1996)), by

which an arbitrary multivariate df can be represented as a copula together with its

univariate margins. The dependence structure among the margins of an arbitrary

rv is, therefore, determined by the copula. For an introduction to copulas we refer

to Nelsen (2006).

We require in this paper that the upper tail of C is that of an Archimedean copula

Cϕ, i.e., there exists a convex and strictly decreasing function ϕ : (0, 1] → [0,∞)

with ϕ(1) = 0, such that

Cϕ(u) = ϕ−1 (ϕ(u1) + · · ·+ ϕ(ud))

for u ∈ [u0,1] ⊂ Rd, where u0 = (u01, . . . , u0d) ∈ (0, 1)d.

A prominent example is ϕp(s) := (1 − s)p, s ∈ [0, 1], where p ≥ 1. In this case

we obtain

(1) Cϕp
(u) = 1−

(
d∑
i=1

(1− ui)p
)1/p

, u ∈ [u0,1].

Note that

Cϕp(u) := max

0, 1−

(
d∑
i=1

(1− ui)p
)1/p

 , u ∈ [0, 1]d,

defines a multivariate df only in dimension d = 2, see, e.g., McNeil and Nešlehová

(2009, Examples 2.1, 2.2). But one can find for arbitrary dimension d ≥ 2 a rv,

whose df satisfies equation (1), see, e.g., Falk (2019, (2.15)). This is the reason, why
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we require the Archimedean structure of Cϕ only on some upper interval [u0,1] and

we do not speak of Cϕ as a copula, but rather of a distribution function.

The behavior of Cϕ(u) for u close to 1 ∈ Rd determines the upper tail behavior

of the components of U . Precisely, suppose that Cϕ ∈ D(G), i.e.,

Cϕ

(
1 +

x

n

)n
→n→∞ G(x), x ≤ 0 ∈ Rd,

where the norming constants are prescribed by the univariate margins of Cϕ, which

is the df H(u) = u, u ∈ [v0, 1]. We obviously have for arbitrary x ≤ 0 and n large

enough

H
(

1 +
x

n

)n
=
(

1 +
x

n

)n
→ exp(x).

The multivariate max-stable df G, consequently, has standard negative exponential

margins Gi(x) = exp(x), x ≤ 0.

Moreover, there exists a norm ‖·‖D on Rd, such that G(x) = exp(−‖x‖D),

x ≤ 0 ∈ Rd; see, e.g., Falk (2019). This norm ‖·‖D describes the asymptotic tail

dependence of the margins of Cϕ; the index D, therefore, means dependence. In

particular ‖·‖D = ‖·‖1 is the case of (asymptotic) independence of the margins,

whereas ‖·‖D = ‖·‖∞ yields their total dependence. For the df Cϕp
in (1) we

obtain, for example, for n large,

Cϕp

(
1 +

x

n

)n
=

1− 1

n

(
d∑
i=1

|xi|p
)1/p

n

→n→∞ exp
(
−‖x‖p

)
, x = (x1, . . . , xd) ≤ 0 ∈ Rd,

where ‖x‖p =
(∑d

i=1 |xi|
p
)1/p

, p ≥ 1, is the logistic norm on Rd. In this case we

have tail independence only for p = 1.

In this paper we investigate the problem, if conditioning on a margin Uj = u has

an influence on the tail dependence of the left margins U1, . . . , Uj−1, Uj+1, . . . , Ud.

Actually, we will show that the rv (U1, . . . , Uj−1, Uj+1, . . . , Ud), conditional on

Uj = u, has in general independent tails, for each choice of j, no matter what
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the unconditional tail behavior is; see Section 3. This is achieved under a mild

condition on the generator function ϕ, which is introduced in Section 2.

2. Condition on the generator function

Our results are achieved under the following condition on the generator function

ϕ. There exists a number p ≥ 1 such that

(C0) lim
s↓0

ϕ(1− sx)

ϕ(1− s)
= xp, x > 0.

Remark 2.1. The exponent p in condition (C0) is necessarily greater than one

by the convexity of ϕ, which can easily be seen as follows. We have for arbitrary

λ, x, y ∈ (0, 1]

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y).

Setting x = 1− s and y = 1, we obtain

ϕ(λ(1− s) + 1− λ) = ϕ(1− λs) ≤ λϕ(1− s)

and, thus,

lim
s↓0

ϕ(1− λs)
ϕ(1− s)

= λp ≤ λ.

But this requires p ≥ 1.

A df Cϕ, whose generator satisfies condition (C0), is in the domain of attraction

of a multivariate extreme value distribution. Precisely, we have the following result.

Proposition 2.2. Suppose that the generator ϕ satisfies condition (C0). Then we

have Cϕ ∈ D(G), where G(x) = exp
(
−‖x‖p

)
, x ≤ 0 ∈ Rd.

Proof. First we show that condition (C0) implies for x > 0

(2) lim
s↓0

1− ϕ−1(sx)

1− ϕ−1(s)
= x1/p.

Choose δsx, δs ∈ (0, 1) such that

ϕ(1− δsx) = sx, ϕ(1− δs) = s,
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i.e.,

ϕ−1(sx) = 1− δsx, ϕ−1(s) = 1− δs.

Condition (C0) implies for s ↓ 0

x =
ϕ(1− δsx)

ϕ(1− δs)
=
ϕ
(

1− δs δsxδs
)

ϕ(1− δs)
∼
(
δsx
δs

)p
,

where ∼ means that the ratio of the left hand side and the right hand side converges

to one as s converges to zero. But this is

lim
s↓0

1− ϕ−1(sx)

1− ϕ−1(s)
= x1/p.

Next we show that for x = (x1, . . . , xd) ≤ 0 ∈ Rd

lim
n→∞

Cnϑ

(
1 +

x

n

)
= lim
n→∞

[
ϕ−1

(
d∑
i=1

ϕ
(

1 +
xi
n

))]n
= exp

(
−‖x‖p

)
.

Taking logarithms on both sides, this is equivalent with

lim
n→∞

n

[
1− ϕ−1

(
d∑
i=1

ϕ
(

1 +
xi
n

))]
= ‖x‖p .

Write

1

n
= 1− ϕ−1

(
ϕ

(
1− 1

n

))
.

Then

n

[
1− ϕ−1

(
d∑
i=1

ϕ
(

1 +
xi
n

))]
=

1− ϕ−1
(∑d

i=1 ϕ
(
1 + xi

n

))
1− ϕ−1

(
ϕ
(
1− 1

n

))

=

1− ϕ−1
(
ϕ
(
1− 1

n

)∑d
i=1

ϕ(1+ xi
n )

ϕ(1− 1
n )

)
1− ϕ−1

(
ϕ
(
1− 1

n

))
→n→∞

(
d∑
i=1

(−xi)p
)1/p

by condition (C0) and equation (2), which is the assertion. �
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Condition (C0) on ϕ is, for example, implied by the condition

(C1) lim
s↓0

ϕ(1− s)
sp

= A

for some constant A > 0 and p ≥ 1, which is obviously satisfied by the generator

ϕp(s) = (1− s)p.

Condition (C1) is by l’Hospital’s rule implied by

(C2) − lim
s↓0

ϕ′(1− s)
sp−1

= pA.

As a consequence, (C2) implies the condition

(C3) − lim
s↓0

sϕ′(1− s)
ϕ(1− s)

= p.

Charpentier and Segers (2009, Theorem 4.1) showed, among others, that a cop-

ula Cϕ, whose generator satisfies (C3), is in the domain of attraction of G(x) =

exp(−‖x‖p), x ≤ 0 ∈ Rd; see also Falk (2019, Corollary 3.1.15). In this case we

have tail independence only if p = 1.

The Clayton family with generator ϕϑ(t) :=
(
t−ϑ − 1

)
/ϑ and ϑ > 0, satisfies

condition (C2) with p = 1 and A = 1. As a consequence, we have independent tails

for each ϑ > 0.

The Frank family has the generator

ϕϑ(t) := − log

(
e−ϑt − 1

e−ϑ − 1

)
, ϑ > 0.

It satisfies condition (C0) with p = 1, i.e., we have again independent tails for each

ϑ > 0.

Consider, on the other hand, the generator ϕϑ(t) := (− log(t))ϑ, ϑ ≥ 1, of

the Gumbel-Hougaard family of Archimedean copulas. This generator satisfies

condition (C0) with p = ϑ and, thus, we have tail independence only for ϑ = 1.
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3. Main Theorem

In this section we establish conditional tail independence of the margins of Cϕ,

if the generator ϕ satisfies condition (C0). First we compute the conditional df of

(U1, . . . , Uj−1, Uj+1, . . . , Ud), given that Uj = u.

Lemma 3.1. We have for j ∈ {1, . . . , d} and u = (u1, . . . , uj−1, u, uj+1, . . . , ud) ∈

[u0,1)

Hj,u(u1, . . . , uj−1, uj+1, . . . , ud) := P (Ui ≤ ui, 1 ≤ i ≤ d, i 6= j | Uj = u)

=
ϕ′(u)

ϕ′(C(u))

=
ϕ′(u)

ϕ′
(
ϕ−1

(
ϕ(u) +

∑
1≤i≤d, i 6=j ϕ(ui)

)) ,
provided the derivative ϕ′(v) exists in a neighborhood of u, that ϕ′ is continuous at

u with ϕ′(u) 6= 0, and that C(u) 6= 0 as well.

Proof. For notational simplicity we establish the result for the choice j = d. We

have for for u = (u1, . . . , ud) ∈ [u0,1)

P (Ui ≤ ui, 1 ≤ i ≤ d− 1 | Ud = ud)

= lim
ε↓0

P (Ui ≤ ui, 1 ≤ i ≤ d− 1, Ud ∈ [ud, ud + ε])

P (Ud ∈ [ud, ud + ε])

= lim
ε↓0

P (Ui ≤ ui, 1 ≤ i ≤ d− 1, Ud ≤ ud + ε)− P (Ui ≤ ui, 1 ≤ i ≤ d− 1, Ud ≤ ud)
ε

= lim
ε↓0

ϕ−1
(∑d−1

i=1 ϕ(ui) + ϕ(ud + ε)
)
− ϕ−1

(∑d
i=1 ϕ(ui)

)
ε

=
(
ϕ−1

)′( d∑
i=1

ϕ(ui)

)
ϕ′(ud)

=
ϕ′(ud)

ϕ′
(
ϕ−1

(∑d
i=1 ϕ(ui)

))
=

ϕ′(ud)

ϕ′(Cϕ(u))
,

which is the assertion. �
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Note that the univariate margins of the df Hj,u, 1 ≤ j ≤ d, coincide in their

upper tails, where they are equal to

Hu(v) :=
ϕ′(u)

ϕ′
(
ϕ−1 (ϕ(u) + ϕ(v))

) , v0 ≤ v ≤ 1,

with v0 = max1≤i≤d u0i.

The upper endpoint of Hu is one, and, therefore, if the df Hu is in the domain of

attraction of a univariate extreme value df G, then the family of negative Weibull

distributions Gα(x) := exp (− |x|α), x ≤ 0, with α > 0, is the first choice. Note

that α = 1 yields the standard negative exponential distribution.

The univariate df Hu is in the domain of attraction of Gα for some α > 0 if and

only if (iff)

lim
s↓0

1−Hu(1− sx)

1−Hu(1− s)
= xα, x > 0,

see, e.g., Galambos (1987, Theorem 2.1.2).

Lemma 3.2. Suppose that the second derivative of ϕ exists in a neighborhood of

u > v0, and that it is continuous in u with ϕ′′(u) 6= 0 6= ϕ′(u). The univariate df

Hu satisfies Hu ∈ D(Gp) for some p ≥ 1 iff ϕ satisfies condition (C0).

Proof. Applying Taylor’s formula twice shows that

1−Hu(1− s) =
ϕ′
(
ϕ−1

(
ϕ(u) + ϕ(1− s)

))
− ϕ′(u)

ϕ′
(
ϕ−1

(
ϕ(u) + ϕ(1− s)

))
∼ ϕ′′(u)

ϕ′(u)2
ϕ(1− s)

as s ↓ 0, which is the assertion. �

The next result is our main theorem.

Theorem 3.3. Suppose the generator ϕ of Cϕ satisfies condition (C0). Then, if

u > u0j, and ϕ satisfies the differentiability conditions in Lemma 3.2, we obtain
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for x = (x1, . . . , xd) ≤ 0 ∈ Rd−1

Hj,u (1 + canx)
n →n→∞ exp

(
−
d−1∑
i=1

(−xi)p
)
,

with c :=
(
ϕ′(u)2/ϕ′′(u)

)1/α
and an := 1− ϕ−1(1/n), n ≥ n0.

Note that the convexity of ϕ implies that ϕ′′(u) ≥ 0.

Remark 3.4. The preceding result shows tail independence of Hj,u, as the limiting

df is the product of its margins.

Lemma 3.2 implies, moreover, that also the reverse implication in the previous

result holds, i.e., ifHj,u is in the domain of attraction of a multivariate max-stable df

G with negative Weibull margins having parameter at least one, then condition (C0)

is satisfied by Lemma 3.2, and G has by the preceding result identical independent

margins.

Finally, by the preceding arguments, we have Hj,u ∈ D(G), where G has negative

Weibull margins, iff just one univariate margin of Hj,u is in the domain of attraction

of a univariate extreme value distribution, and in this case G has identical and

independent margins.

Proof. For notational simplicity we establish this result for j = d. It is sufficient to

establish for x = (x1, . . . , xd) ≤ 0 ∈ Rd−1

(3) n
(
1−Hd,u (1 + canx)

)
→n→∞

d−1∑
i=1

(−xi)p.

We know from Lemma 3.1 that for (u1, . . . , ud−1, u) ∈ [u0,1],

(4) Hd,u(u1, . . . , ud−1) =
ϕ′(u)

ϕ′
(
ϕ−1

(
ϕ(u) +

∑d−1
i=1 ϕ(ui)

)) .
As a consequence we obtain

n
(
1−Hd,u (1 + canx)

)
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= n

1− ϕ′(u)

ϕ′
(
ϕ−1

(
ϕ(u) +

∑d−1
i=1 ϕ (1 + canxi)

))


= n
ϕ′
(
ϕ−1

(
ϕ(u) +

∑d−1
i=1 ϕ (1 + canxi)

))
− ϕ′(u)

ϕ′
(
ϕ−1

(
ϕ(u) +

∑d−1
i=1 ϕ (1 + canxi)

)) ,

where the denominator converges to ϕ′(u) as n increases.

Taylor’s formula yields that the nominator equals

ϕ′′(ϑn)

(
ϕ−1

(
ϕ(u) +

d−1∑
i=1

ϕ (1 + canxi)

)
− u

)
,

where ϕ′′(ϑn) converges to ϕ′′(u) as n increases. Applying Taylor’s formula again

yields

ϕ−1

(
ϕ(u) +

d−1∑
i=1

ϕ (1 + canxi)

)
− u =

1

ϕ′ (ϕ−1(ξn))

d−1∑
i=1

ϕ (1 + canxi) ,

where ξn converges to ϕ(u) as n increases. But

n

d∑
i=1

ϕ (1 + canxi) =

d∑
i=1

ϕ (1 + canxi)

ϕ(1− an)
→n→∞

d−1∑
i=1

(−cxi)p.

by condition (C0). This yields the assertion. �

4. Archimax Copulas

Let ϕ : (0, 1] → [0,∞) be the generator of an Archimedean copula Cϕ(u) =

ϕ−1
(∑d

i=1 ϕ(ui)
)

, u = (u1, . . . , ud) ∈ (0, 1]d, and let ‖·‖D be an arbitrary D-

norm. Put

(5) C(u) := ϕ−1 (‖(ϕ(u1), . . . , ϕ(ud))‖D) , u ∈ (0, 1]d.

It was established by Charpentier et al. (2014) that C actually defines a copula

on Rd, called Archimax copula. Choosing ‖·‖D = ‖·‖1 yields C(u) = Cϕ(u) and,

thus, the concept of Archimax copulas generalizes that of Archimedean copulas

considerably.
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To include also the generator family ϕp(s) = (1−s)p, s ∈ [0, 1], p ≥ 1, we require

the representation of C in equation (5) only for u ∈ [u0,1] ⊂ (0, 1]d. There actually

exists a rv, whose copula satisfies

C(u) = ϕ−1
(
‖(ϕ(u1), . . . , ϕ(ud))‖p

)
, u ∈ [u0,1]

with some u0 ∈ (0, 1)d. This follows from the fact that ‖(|x1|p , . . . , |xd|p)‖
1/p
D is

again a D-norm, with an arbitrary D-norm ‖·‖D and p ≥ 1, see Proposition 2.6.1

and equations (2.14), (2.15) in Falk (2019).

An Archimax copula is in the domain of attraction of a multivariate extreme

value distribution, if the generator satisfies condition (C0). Precisely, we have the

following result.

Proposition 4.1. Suppose the generator ϕ satisfies condition (C0). Then the

corresponding Archimax copula C, with arbitrary D-norm ‖·‖D, satisfies C ∈ D(G),

where G(x) = exp
(
−‖(|x1|p , . . . , |xd|p)‖

1/p
D

)
, x ≤ 0 ∈ Rd.

Proof. We have for x = (x1, . . . , xd) ≤ 0 ∈ Rd

n
[
1− ϕ−1

(∥∥∥(ϕ(1 +
x1
n

)
, . . . , ϕ

(
1 +

xd
n

))∥∥∥
D

)]

=

1− ϕ−1
(
ϕ
(
1− 1

n

) ∥∥∥∥(ϕ(1+ x1
n )

ϕ(1− 1
n )
, . . . ,

ϕ(1+ xd
n )

ϕ(ϕ(1− 1
n ))

)∥∥∥∥
D

)
1− ϕ−1

(
ϕ
(
1− 1

n

))
→n→∞ ‖(|x1|p , . . . , |xd|p)‖

1/p
D

by condition (C0) and equation (2). Repeating the arguments in the proof of

Proposition 2.2 yields the assertion. �

Let the rv U = (U1, . . . , Ud) follow an Archimax copula with generator function

ϕ and D-norm ‖·‖D. Does it also have independent tails, conditional on one of its

components? We give a partial answer to this question.
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Suppose the underlying ‖·‖D is a logistic one ‖·‖q, with q ≥ 1. Then

ϕ−1
(
‖(ϕ(u1), . . . , ϕ(ud))‖q

)
= ϕ−1

( d∑
i=1

ϕ(ui)
q

)1/q


= ψ−1

(
d∑
i=1

ψ(ui)

)
,

where

ψ(s) := ϕ(s)q, s ∈ [0, 1].

If the generator ϕ satisfies condition (C0), then the generator ψ clearly satisfies

condition (C0) as well:

lim
s↓0

ψ(1− sx)

ψ(1− s)
= xpq, x > 0.

If ϕ satisfies the differentiability conditions in Lemma 3.2, then the conclusion of

Theorem 3.3 applies, i.e., with the choice ‖·‖D = ‖·‖q, q ≥ 1, the rv U has again

independent tails, conditional on one of its components.

Set, on the other hand U = (U, . . . , U), where U is a rv that follows the uniform

distribution on (0, 1). Choose ‖·‖D = ‖·‖∞ with ‖x‖∞ = max1≤i≤d(|xi|). Then

we have for every function ϕ : (0, 1] → [0,∞), which is continuous and strictly

decreasing,

C(u) = P (U ≤ u1, . . . , U ≤ ud)

= min
1≤i≤d

ui

= ϕ−1 (‖(ϕ(u1), . . . , ϕ(ud))‖∞) , u ∈ (0, 1]d.

The copula C is, therefore, an Archimax copula, but it has completely dependent

conditional margins.

5. Simulation Study

We conducted a simulation study to illustrate our findings on the conditional tail

independence of the Archimedean Gumbel-Hougaard copula family with dimension
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d > 2 and dependence parameter ϑ > 1. The condition on ϑ implies that copula’s

tails are asymptotically dependent. There are several statistical tests to verify

whether the tails of a multivariate distribution are asymptotically independent,

provided that the latter is in the domain of attraction of a multivariate extreme

value df. In the bivariate case, some tests have been suggested by Draisma et al.

(2004), Hüsler and Li (2009), Chapter 6.5 in Falk et al. (2011). However, to extend

them in higher dimensions than two is not straightforward. Therefore, we rely on

the hypothesis testing proposed by Guillou et al. (2018), which is based on the

componentwise maximum approach and is meant for an arbitrary dimension d ≥ 2.

Such a test is based on a system of hypotheses where under the null hypothesis it is

assumed that A(t) = 1 for all t ∈ Sd, i.e. the tails are asymptotically independent,

while under the alternative hypothesis it is assumed that A(t) < 1 for at least

one t ∈ Sd, i.e. some tails are asymptotically dependent. Here, A is the Pickands

dependence function and Sd is d-dimensional unit simplex (e.g., Falk et al., 2011,

Ch. 4). In Guillou et al. (2018) the authors proposed to use the test statistic

Ŝn = supt∈Sd
√
n|Ân(t) − 1| to decide whether or not to reject null hypothesis,

where Ân is an appropriated estimator of the the Pickands dependence function

and n is the sample size of the componentwise maxima. Under the null hypothesis,

the test statistic converges to a suitable random variable S, for large samples. Large

values of the observed test statistic provide evidence against the null hypothesis and

in particular the quantiles of the distribution of S to use for rejection of the null

hypothesis are reported in Table 1 of Guillou et al. (2018).

We performed the following simulation experiment. In the first step we simulated

a sample of size n = 110K of independent observations from a Gumbel-Hougaard

copula with d = 3 and ϑ = 3. Then, we computed the vector of normalized

componentwise maxima mn,j = maxi=1,...,n(ui,j−bn,j)/an,j with an,j = n, bn,j = 1

and j = 1, . . . , d. In the second step, for u = 0.99 and ε = 0.0005 we selected

the observations (ui,1, . . . , ui,j−1, ui,j+1, . . . , ui,d) such that ui,j ∈ [u − ε, u + ε],

i = 1, . . . , n. To work with a sample with fixed size we considered only k = 1000
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of such observations. Then, we computed the vector of normalized componentwise

maxima m∗k,s = maxi=1,...,k ui,s/(cak,s), where c =
(
ϕ′(u)2/ϕ′′(u)

)1/ϑ
and ak,s :=

1−ϕ−1(1/k) with ϕ(t) := (− log(t))ϑ and s = 1, . . . , j−1, j−1, . . . , d. We repeated

the first and second steps N = 100 times obtaining two samples of componentwise

maxima, one from the d-dimensional copula and one from the corresponding d −

1 conditional distribution. The top-left and top-right panel of Figure 1 display

an example of maxima obtained from the Gumbel-Hougaard and the associated

estimate of the Pickands dependence function, respectively. A strong dependence

among the variables is evident. To see this better in the middle panels the maxima

of a pair of variables and the relative estimate of the Pickands dependence function

are reported. Indeed, the latter is close to lower bound max(1− t, t), i.e. the case of

complete dependence. The bottom panels of Figure 1 display the maxima obtained

with the second step of the simulation experiment and the associated estimate of

the Pickands dependence function. These maxima, in contrast to the previous ones,

seem to be independent and indeed the estimated Pickands dependence function

is close to the upper bound (i.e. the case of independence). Then, we applied the

hypothesis test with the sample of maxima obtained in the first and second step of

the simulation experiment, leading to the observed values of test statistic of 3.843

and 0.348, respectively. Since the 0.95-quantiles of the distribution of S are 1.300

and 0.960 for d = 3 and d = 2, respectively (Guillou et al., 2018), we conclude

that we reject the hypothesis of tails independence with the first sample of maxima

whereas we do not reject it with the second sample. These results are consistent

with our theoretical finding.

We repeated this simulation experiment M = 1000 times and with the maxima

obtained with the second step of the simulation experiment we computed the rejec-

tion rate of the null hypothesis. Since we simulated data under the null hypothesis

we expect that the rejection rate is close the nominal value of the first type error,

i.e. 5%. We did this for different dimension d and values of the parameter ϑ.
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Figure 1. Top-left panel displays the maxima obtain with the
data simulated from a trivariate Gumbel-Hougaard copula with
ϑ = 4. The middle one shows the maxima corresponding to two
components. Finally, the one below shows the maxima obtain with
the simulated data where one component is set to be a high value.
The right-column report the relative estimated Pickands depen-
dence function.

The results are collected in Table 1. Again the simulation results show that our

theoretical findings are correct.
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Table 1. Rejection rate (in percentage) of the null hypothesis
(asymptotic independent tails) based on M = 1000 simulations.

Dimension Dependence parameter
d ϑ : 2 3 4 5 6
3 5.414 4.877 5.438 5.352 5.725
4 5.216 5.783 5.491 4.841 4.591
5 5.353 4.396 5.791 4.685 4.454
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