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Robust Wasserstein Profile Inference and

Applications to Machine Learning

JOSE BLANCHET, YANG KANG, AND KARTHYEK MURTHY

Abstract. We show that several machine learning estimators, including square-root LASSO
(Least Absolute Shrinkage and Selection) and regularized logistic regression can be represented
as solutions to distributionally robust optimization (DRO) problems. The associated uncer-
tainty regions are based on suitably defined Wasserstein distances. Hence, our representations
allow us to view regularization as a result of introducing an artificial adversary that perturbs
the empirical distribution to account for out-of-sample effects in loss estimation. In addition,
we introduce RWPI (Robust Wasserstein Profile Inference), a novel inference methodology
which extends the use of methods inspired by Empirical Likelihood to the setting of optimal
transport costs (of which Wasserstein distances are a particular case). We use RWPI to show
how to optimally select the size of uncertainty regions, and as a consequence, we are able to
choose regularization parameters for these machine learning estimators without the use of cross
validation. Numerical experiments are also given to validate our theoretical findings.

1. Introduction

Regularization has become crucial in machine learning practice and the goal of this paper
is to revisit the idea of regularization from an optimal transport perspective. Specifically, we
show that the role of regularization in machine learning can often be interpreted as the result
of optimally transporting mass from the empirical measure in order to maximize a certain loss
under a budget constraint. Thus, our results connect directly optimal transport phenomena (a
classical concept in probability reviewed in Section 2.1) to regularization (a key tool in machine
learning to be discussed in the sequel).

Moreover, this connection will show that the so-called regularization parameter (i.e. the co-
efficient of the regularization term) coincides with the size of the budget constraint by which
we permit mass transportation to occur. As we shall see, the budget constraint has a natural
interpretation based on a Distributionally Robust Optimization (DRO) formulation, which in
turn allows us to define a reasonable optimization criterion for the regularization parameter.
Thus, our approach uses optimal mass transportation phenomena to explain the nature of regu-
larization and how to select the regularization parameter in several machine learning estimators
– including square-root LASSO (Least Absolute Shrinkage and Selection), Regularized Logistic
Regression, among others.

The size of the budget constraint is also referred as the radius (or size) of the uncertainty
set in the literature of Distributionally Robust Optimization (DRO). The method that we
develop for optimally choosing this budget constraint can actually be applied to a wide range
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of inference and decision problems, but we have focused our discussion on machine learning
applications because of the substantial amount of activity that the area has generated, and as
well to demonstrate the utility of the tools that are commonly used in applied probability to
this rapidly growing area.

1.1. Regularization in Linear Regression. In order to introduce the proposed method for
optimally choosing the radius of the uncertainty set, let us walk through a simple application
in a familiar context, namely, that of linear regression. Throughout the paper any vector is
understood to be a column vector and the transpose of x is denoted by xT . We use the notation
EP[·] to denote expectation with respect to a probability distribution P.

Example 1 (Square-root Lasso). Consider a training data set {(X1, Y1), . . . , (Xn, Yn)}, where
the input Xi ∈ Rd is a vector of d predictor variables, and Yi ∈ R is the response variable. It is
postulated that

Yi = βT
∗ Xi + ei,

for some β∗ ∈ Rd and errors {e1, ..., en}. Under suitable statistical assumptions one may be
interested in estimating β∗. Underlying is a general loss function, l(x, y;β), which we shall take
for simplicity in this discussion to be the quadratic loss, namely, l(x, y;β) = (y − βTx)2. Let
Pn denote the empirical distribution:

Pn (dx, dy) :=
1

n

n∑

i=1

δ{(Xi,Yi)}(dx, dy).

Over the last two decades, various regularized estimators have been introduced and studied.
Many of them have gained substantial popularity because of their good empirical performance
and insightful theoretical properties, (see, for example, [50] for an early reference and [21]
for a discussion on regularized estimators). One such regularized estimator, implemented, for
example in the “flare” package, see [27], is the so-called square-root LASSO estimator; which is
obtained by solving the following convex optimization problem in β

min
β∈Rd

{√
EPn [l (X,Y ;β)] + λ ‖β‖1

}
= min

β∈Rd





√√√√ 1

n

n∑

i=1

l (Xi, Yi;β) + λ ‖β‖1



 , (1)

where ‖β‖p denotes the ℓp−norm. The parameter λ, commonly referred to as the regulariza-
tion parameter, is crucial for the performance of the algorithm. It is often chosen using cross
validation, a procedure that iterates over multitude of choices of λ in order to choose the best.

1.1.1. DRO representation of square-root LASSO. . One of our contributions in this paper
(see Section 2) is a representation of (1) in terms of a Distributionally Robust Optimization
formulation. We construct a discrepancy measure, Dc (P,Q), corresponding to a Wasserstein-
type distance between two probability measures P and Q which is defined in terms of a suitable
transportation cost function c(·). If c(·) is based on the ℓq−distance (for q > 1), we show that

min
β∈Rd

{√
EPn [l (X,Y ;β)] + λ ‖β‖p

}2
= min

β∈Rd
max

P: Dc(P,Pn)≤δ
EP [l(X,Y ;β)] , (2)

where 1/p + 1/q = 1 and λ =
√
δ. We can gain a great deal of insight from (2). For example,

note that the regularization parameter, λ =
√
δ, is fully determined by the size (or ‘radius’) of

the uncertainty, δ, in the distributionally robust optimization formulation on the right hand side
of (2). In addition, we can interpret (2) as a game in which an artificial adversary is introduced
in order to explore and quantify out-of-sample effects in our estimates of the expected loss.



RWPI AND APPLICATIONS TO MACHINE LEARNING 3

1.1.2. Optimal choice of the radius δ. The set Uδ(Pn) = {P : Dc(P,Pn) ≤ δ} is called the
uncertainty set in the language of distributionally robust optimization, and it represents the
class of models that are, in some sense, plausible variations of Pn. Note that Uδ(Pn) is precisely
the feasible region over which the maximization is taken in (2). Then we define the collection,

Λn(δ) :=
⋃

P∈Uδ(Pn)

arg min
β∈Rd

EP [l(X,Y ;β)] , (3)

comprising optimal β for every P ∈ Uδ(Pn) to be the set of plausible selections of the parameter
β∗. For δ chosen sufficiently large, the set Λn(δ) is a natural confidence region for β∗. Moreover,
we shall see that any β that solves infβ supP∈Uδ(Pn) E [l(X,Y ;β)] is a member of Λn(δ).

Given these interpretations, it is natural to select a confidence level, 1− α, and then choose
δ = δ∗n optimally via,

δ∗n = min{δ > 0 : P (β∗ ∈ Λn (δ)) ≥ 1− α}. (4)

In words, the optimization criterion can be stated as finding the smallest δ such that β∗ is,
itself, a plausible selection with 1 − α confidence. Essentially, given a desired confidence level
1−α, we seek to choose a δ just large enough such that Λn(δ) is a (1−α)−confidence region for
the parameter β∗. As we shall see in Section 4, this choice ensures that any β that minimizes
infβ supP∈Uδ(Pn) E [l(X,Y ;β)] is indeed in the confidence region Λn(δ). We next explain how to

solve the optimization problem in (4) asymptotically as n → ∞.

1.1.3. The associated Wasserstein Profile Function. In order to asymptotically solve (4) we
introduce a novel statistical inference methodology, which we call RWPI (Robust Wasserstein-
distance Profile-based Inference – pronounced similar to Rupee). RWPI can be understood as
an extension of Empirical Likelihood (EL) that uses optimal transport cost rather than the
likelihood. The extension is not just a formality, as we shall see, because different phenomena
and scalings arise relative to EL.

We next illustrate how δ∗n in (4) corresponds to the quantile of a certain object which we call
the Robust Wasserstein Profile (RWP) function evaluated at β∗. This will motivate a systematic
study of the RWP function as the sample size, n, increases.

Observe by convexity of the loss function that β ∈ Λδ(Pn) if and only if there exists P ∈ Uδ(Pn)
such that β satisfies the first order optimality condition, namely,

DβEP [l(X,Y ;β)] = EP

[(
Y − βTX

)
X
]
= 0. (5)

We then introduce the following object, which is the RWP function associated with the esti-
mating equation (5),

Rn(β) = inf
{
Dc (P,Pn) : EP

[(
Y − βTX

)
X
]
= 0

}
. (6)

It turns out that the infimum is achieved in the previous expression, so we can write min instead;
this is not crucial for our discussion but it is sometimes helpful to keep in mind. Using this
definition of Rn(β), we can see immediately that the events,

{Rn(β∗) ≤ δ} = {β∗ ∈ Λn(δ)},
which implies that δ∗n is precisely the 1− α quantile, χ

1−α , of Rn(β∗); that is

δ∗n = χ
1−α = inf

{
z : P (Rn(β∗) ≤ z) ≥ 1− α

}
.

Moreover, note that Rn(β) allows to provide an explicit characterization of Λn(χ1−α), namely,

Λn(χ1−α) = {β : Rn(β) ≤ χ
1−α}.
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So, Λn

(
χ

1−α

)
= {β : Rn(β) ≤ χ1−α} is a (1− α)-confidence region for β∗.

1.1.4. Further intuition behind the RWP function. In order to further explain the role of
Rn(β∗), let us define Popt :=

{
P : EP

[(
Y − βT

∗ X
)
X
]
= 0

}
. In words, Popt is the set of prob-

ability measures for which β∗ is an optimal risk minimization parameter. Naturally, the
distribution of (X,Y ), from which the samples are generated, is an element of Popt. Since
Rn(β∗) = inf{Dc(P,Pn) : P ∈ Popt}, the set {P : Dc(P,Pn) ≤ Rn(β∗)} denotes the smallest
uncertainty region around Pn (in terms of Dc) for which there exists a distribution P satisfying
the optimality condition EP

[
(Y − βT

∗ X)X
]
= 0. See Figure 1.1.4 for a pictorial representation

of Popt and Rn(β
∗).

Figure 1. Illustration of RWP function evaluated at β∗

In summary, Rn(β∗) denotes the smallest size of uncertainty that makes β∗ a plausible choice.
If we were to select a radius of uncertainty smaller than Rn(β∗), then no probability measure
in the neighborhood will satisfy the optimality condition EP

[
(Y − βT

∗ X)X
]
= 0. On the other

hand, if δ > Rn(β∗), the set
{
P : EP

[
(Y − βT

∗ X)X
]
= 0,Dc

(
P,Pn

)
≤ δ
}

is nonempty.

1.2. A broader perspective of our contribution. The previous discussion in the context
of linear regression highlights two key ideas: a) the RWP function as a key object of analysis,
and b) the role of distributionally robust representation of regularized estimators.

The RWP function can be applied much more broadly than in the context of regularized esti-
mators. We shall study the RWP function for estimating equations generally and systematically
but we showcase the use of the RWP function only in the context of optimal regularization.

Broadly speaking, RWPI can be seen as a statistical methodology that utilizes a suitably
defined RWP function to estimate a parameter of interest. From a philosophical standpoint,
RWPI borrows heavily from Empirical Likelihood (EL), introduced in the seminal work of
[31, 32]. There are important methodological differences, however, as we shall discuss in the
sequel. In the last three decades, there have been a great deal of successful applications of
Empirical Likelihood for inference [33, 55, 11, 22, 36]. In principle all of those applications can
be revisited using the RWP function and its ramifications.

We now provide a more precise description of our contributions:
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A) We explain how, by judiciously choosing Dc (·), we can define a family of regularized
regression estimators (See Section 2). In particular, we show how square-root LASSO (see
Theorem 1), regularized logistic regression and support vector machines (see Theorem 2) arise
as particular cases of suitable DRO formulations.

B) We derive general limit theorems for the asymptotic distribution (as the sample size
increases) of the RWP function defined for general estimating equations. These limit theorems,
derived in Section 3.3, allow one to employ RWPI to perform inference and choose the radius
of uncertainty δ in settings that are more general than linear/logistic regression.

C) We use our results from B) to obtain prescriptions for regularization parameters in
square-root LASSO and regularized logistic regression settings (see Section 4). We also illustrate

how coverage results for the optimal risk, that demonstrate O(n−1/2) rate of convergence, are
obtained immediately as a consequence of choosing δ ≥ Rn(β∗).

D) We analyze our regularization selection in the high-dimensional setting for square-root
LASSO. Under standard regularity conditions, we show (see Theorem 7) that the regularization
parameter λ might be chosen as,

λ =
π

π − 2

Φ−1 (1− α/2d)√
n

,

where Φ (·) is the cumulative distribution of the standard normal random variable and 1 − α
is a user-specified confidence level. The behavior of λ as a function of n and d is consistent
with regularization selections studied in the literature motivated by different considerations (see
Section 4.4 for further details).

E) We analyze the empirical performance of RWPI based selection of regularization param-
eter in the context of square-root LASSO. In Section 5, we compare the performance of RWPI
based optimal regularization with that of cross-validation based approach on both simulated
and real data. We conclude that RWPI based approach yields a similar performance, without
having to repeat the algorithm over various choices of regularization parameters (as done in
cross-validation).

We now provide a discussion on topics which are related to RWPI.

1.3. On related literature in Robust Optimization, Distributionally Robust Opti-
mization and Optimal Transport. Connections between robust optimization and regular-
ization procedures such as LASSO and Support Vector Machines have been studied in the
literature, see [53, 54, 3]. The methods proposed here differ subtly: While the papers [53, 54]
add deterministic perturbations of a certain size to the predictor vectors X to quantify uncer-
tainty, the Distributionally Robust Representations that we derive measure perturbations in
terms of deviations from the empirical distribution. While this change may appear cosmetic, it
brings a significant advantage: measuring deviations from the empirical distribution, as we shall
see, allows us to derive suitable limit laws (or) probabilistic inequalities that can be used to give
a systematic prescription for the radius of uncertainty, δ, in the definition of the uncertainty
region Uδ(Pn) = {P : Dc(P,Pn) ≤ δ}.

It is well-understood that as the number of samples n increase, the expected deviation of
the empirical distribution from the true distribution decays to zero, as a function of n, at a
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specific rate. To begin with, as a direct approach towards choosing the size of uncertainty δ,
one can perhaps use a suitable concentration inequality that measures such rate of convergence
in terms of Wasserstein distances (see, for example, [17], and references therein). Such a simple
specification of the size of uncertainty, suitably as a function of n, does not arise naturally in
the deterministic robust optimization approaches in [53, 54].

For an application of these concentration inequalities to choose the size of uncertainty set in
the context of distributionally robust logistic regression and data-driven DRO, refer [42, 28].
The exact representation for regularized logistic regression we derive later in Section 2.4 can be
can be seen as an extension, in which the approximate representation described in [42, Remark
1] is made to coincide exactly with the regularized logistic regression estimator that has been
widely used in practice. It is important to note that, despite imposing severe tail assumptions,
the concentration inequalities used to choose the radius of uncertainty set in [42, 28] dictate the

size of uncertainty to decay at the rate O(n−1/d); unfortunately, this prescription scales non-
gracefully as the number of dimensions d increase and the resulting coverage guarantees suffer
from a poor rate of convergence (see, for example, [42, Theorem 2],[28, Theorem 3.5]). Since
most of the modern learning and decision problems have huge number of covariates, application
of such concentration inequalities with poor rate of decay with dimensions may not be most
suitable for applications.

In contrast to directly using concentration inequalities, as we shall see, the prescription
obtained via RWPI typically has a rate of convergence of order O

(
n−1/2

)
as n → ∞ (for fixed

d). In particular, as we discuss in the case of LASSO, according to our results corresponding
to contribution E), RWPI based prescription of the size of uncertainty actually can be shown

(under suitable regularity conditions) to decay at rate O(
√

log d/n) (uniformly over d and n

such that log2 d ≪ n), which is in agreement with the findings of high-dimensional statistics
literature (see [12, 29, 2] and references therein). A profile function based approach towards
calibrating the radius of uncertainty in the context of empirical likelihood based DRO can be
found in [26, 14, 20, 25].

Although we have focused our discussion on the context of regularized estimators, our results
are directly applicable to the area of data-driven Distributionally Robust Optimization whenever
the uncertainty sets are defined in terms of a Wasserstein distance or, more generally, an optimal
transport metric. In particular, consider a distributionally robust formulation of the form

min
θ:G(θ)≤0

max
P: Dc(P,Pn)≤δ

EP [H(W, θ)] ,

for a random element W and a convex function H(W, ·) defined over a convex region {θ : G (θ) ≤
0} (assuming G : Rd → R convex). Here Pn is the empirical measure of the sample {W1, ...,Wn}.
One can then follow a reasoning parallel to what we advocate throughout our LASSO discussion.
Argue, by applying the corresponding KKT (Karush-Kuhn-Tucker) conditions, if possible, that
an optimal solution θ∗ to the problem

min
θ:G(θ)≤0

EPtrue[H (W, θ)]

satisfies a system of estimating equations of the form EPtrue[h (W, θ∗)] = 0, for a suitable h (·)
(where Ptrue is the weak limit of the empirical measure Pn as n → ∞). Then, given a confidence
level 1− α, one should choose δ as the (1− α) quantile of the RWP function,

Rn(θ∗) = inf{Dc(P,Pn) : EP[h (W, θ∗)] = 0}.
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The results in Section 2 can then be used directly to approximate the (1−α)-quantile of Rn (θ∗).
Just as we explain in our discussion of the square-root LASSO example, the selection of δ is the
smallest possible choice for which θ∗ is plausible with (1− α) confidence.

1.4. Connections to related inference literature. We next discuss the connections between
RWPI and EL. In EL one builds a Profile Likelihood for an estimating equation. For instance,
in the context of EL applied to estimating β satisfying (5), one would build a Profile Likelihood
Function in which the optimization object is defined as the likelihood (or the log-likelihood)
between a given distribution P with respect to Pn. Therefore, the analogue of the uncertainty
set {P : Dc(P,Pn) ≤ δ}, in the context of EL, will typically contain distributions whose support
coincides with that of Pn. In contrast, the definition of the RWP function does not require
the likelihood between an alternative plausible model P, and the empirical distribution, Pn, to
exist. Owing to this flexibility, for example, we are able to establish the connection between
regularization estimators and a suitable profile function.

There are other potential benefits of using a profile function which does not restrict the
support of alternative plausible models. For example, it has been observed in the literature
that in some settings EL might exhibit low coverage [34, 13, 52]. It is not the goal of this paper
to examine the coverage properties of RWPI systematically, but it is conceivable that relaxing
the support of alternative plausible models, as RWPI does, can translate into desirable coverage
properties.

From a technical standpoint, the definition of the Profile Function in EL gives rise to a finite
dimensional optimization problem. Moreover, there is a substantial amount of smoothness in the
optimization problems defining the EL Profile Function. This smoothness can be leveraged in
order to obtain the asymptotic distribution of the Profile Function as the sample size increases.
In contrast, the optimization problem underlying the definition of RWP function in RWPI is
an infinite dimensional linear program. Therefore, the mathematical techniques required to
analyze the associated RWP function are different (more involved) than the ones which are
commonly used in the EL setting.

A significant advantage of EL, however, is that the limiting distribution of the associated
Profile Function is typically chi-squared. Moreover, this distribution is self-normalized in the
sense that no parameters need to be estimated from the data. Unfortunately, this is typically
not the case in using RWPI. In many settings, however, the parameters of the distribution can
be easily estimated from the data itself.

Another methodology, strongly related to RWPI, has been studied recently by the name of
SOS (Sample-Out-of-Sample) inference [6]. A suitable RWP function is built in this setting as
well, but the support of alternative plausible models is assumed to be finite (but not necessarily
equal to that of Pn). Instead, the support of alternative plausible models is assumed to be
generated not only by the available data, but additional samples from independent distributions
(defined by the user). The limit results obtained for the RWP function in the context of SOS
are different from those obtained in this paper. For example, in the SOS setting, the rates
of convergence are dimension-dependent, which is not the case in the RWPI. As explained in
[6, 7], SOS inference is natural in applications such as semi-supervised learning, in which massive
amounts of unlabeled data inform the support of the covariates.

1.5. Organization of the paper. The rest of the paper is organized as follows. Section
2 corresponds to contribution A); we first introduce Wasserstein distances and then discuss
distributionally robust representations of popular machine learning algorithms. Section 3 deals
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with contribution B); we discuss the RWP function as an inference tool in a way which is
parallel to the Profile Likelihood in EL, and derive the asymptotic distribution of the RWP
function for general estimating equations. Section 4 discusses contributions C), namely the
application of the results from B) for optimal regularization. Our high-dimensional analysis of
the RWP function in the case of square-root LASSO is also presented in Section 4. Numerical
experiments using both simulated and real data sets are given in Section 5. Proofs of all the
results are presented in the supplementary material [8] made available at the end of this article.

2. Optimal Transport Definitions and DRO Representations of Machine

Learning Estimators

We begin with definitions of optimal transport costs and Wasserstein distances.

2.1. Optimal Transport Costs and Wasserstein Distances. Let c : Rm×Rm → [0,∞] be
any lower semi-continuous function such that c(u, u) = 0 for every u ∈ Rm.Given two probability
distributions P(·) and Q(·) supported on Rm, the optimal transport cost or discrepancy between
P and Q, denoted by Dc(P,Q), is defined as,

Dc(P,Q) = inf
{
Eπ [c(U,W )] : π ∈ P (Rm × Rm) , πU = P, πW = Q

}
. (7)

Here, P (Rm × Rm) is the set of joint probability distributions π of (U,W ) supported on Rm×Rm

and π
U
, π

W
denote the marginals of U and W, respectively, under the joint distribution π.

Intuitively, the quantity c(u,w) can be interpreted as the cost of transporting unit mass from
u in Rm to another element w in Rm. Then the expectation Eπ[c(U,W )] corresponds to the
expected transport cost associated with the joint distribution π.

In addition to the stated assumptions on the cost function c(·), if c1/ρ satisfies the properties

of a metric for any ρ > 1, then D1/ρ
c (P,Q) defines a metric between probability distributions

(see [51] for a proof and other properties of Dc). For example, if c(u,w) = ‖u− w‖22, then
ρ = 2 yields that c(u,w)1/2 = ‖u− w‖2 is symmetric, non-negative, lower semi-continuous and
it satisfies the triangle inequality. In that case,

D1/2
c (P,Q) = inf

{√
Eπ

[
‖U −W‖22

]
: π ∈ P (Rm × Rm) , πU = P, πW = Q

}

coincides with the Wasserstein distance of order two. More generally, if we choose c1/ρ (u,w) =

‖u− w‖q for some ρ, q ≥ 1, then D1/ρ
c (·) is the known as the Wasserstein distance of order ρ.

Wasserstein distances metrize weak convergence of probability measures under suitable mo-
ment assumptions and have received immense attention in probability theory (see [37, 38, 51] for
a collection of classical applications). In addition, earth-mover’s distance, a particular example
of Wasserstein distances, has been of interest in image processing (see [40, 47]). More recently,
optimal transport metrics and Wasserstein distances are being actively investigated for its use
in various machine learning applications (see [41, 35, 18, 48] and references therein for a growing
list of new applications).

Throughout this paper, we consider optimal transport costs Dc(·) for a judiciously chosen
cost function c(·) to result in formulations such as (2). As we shall see in Section 2.4, it is useful
to allow c(·) to be lower semi-continuous and potentially be infinite in some region. Thus our
setting requires discrepancy choices which are slightly more general than standard Wasserstein
distances.
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2.2. DRO formulation using optimal transport costs. A common theme in machine learn-
ing problems is to find the best fitting parameter in a family of parameterized models that relate
a vector of predictor variables X ∈ Rd to a response Y ∈ R. In this section, we shall focus on
a useful class of such models, namely, linear and logistic regression models. Associated with
these models, we have a loss function l(Xi, Yi;β) which evaluates the fit of regression coefficient
β for the given data points {(Xi, Yi) : i = 1, . . . , n.} Then, just as we explained in the case of
square-root LASSO in the Introduction, our first step will be to show that regularized linear and
logistic regression estimators admit a Distributionally Robust Optimization (DRO) formulation
of the form,

inf
β∈Rd

sup
P:Dc

(
P,Pn

)
≤δ

EP

[
l
(
X,Y ;β

)]
. (8)

In contrast to the empirical risk minimization that performs well only on the training data, the
DRO problem (8) aims to find an optimizer β that performs uniformly well over all probability
measures in the neighborhood that can be perceived as perturbations to the empirical training
data distribution. Hence the solution to (8) is said to be “distributionally robust”, and can be
expected to generalize better. See [53, 54] and [42] for earlier works that relate robustness and
generalization.

Recasting regularized regression as a DRO problem of form (8) lets us view these regularized
estimators under the lens of distributional robustness. The regularized estimators that we
consider in this paper include the regularized logistic regression estimators in Example 2 below,
the support vector machines (see [21]) and the family of ℓp−norm penalized linear regression
estimators of the form,

min
β∈Rd

{√
EPn [l (X,Y ;β)] + λ ‖β‖p

}
, (9)

for any p ∈ [1,∞). This collection includes the square-root Lasso estimator described in Example
1 as a special case where p = 1.

Example 2 (Regularized Logistic Regression). Consider the context of binary classification
in which case the training data is of the form {(X1, Y1), . . . , (Xn, Yn)}, with Xi ∈ Rd, response
Yi ∈ {−1, 1} and the model postulates that,

log

(
P (Yi = 1|Xi = x)

1− P (Yi = 1|Xi = x)

)
= βT

∗ x

for some β∗ ∈ Rd. In this case, the log-exponential loss function (or negative log-likelihood for
binomial distribution) is

l (x, y;β) = log
(
1 + exp(−y · βTx)

)
,

and one is interested in estimating β∗ by solving

min
β∈Rd

{
EPn [l (X,Y ;β)] + λ ‖β‖p

}
, (10)

for p ∈ [1,∞). Refer [21] for a more detailed discussion on regularized logistic regression.

2.3. Dual form of the DRO formulation (8). Though the DRO formulation (8) involves op-
timizing over uncountably many probability measures, recent strong duality results for Wasser-
stein DRO (see, for example, Theorem 1 in [9]) ensures that the inner supremum in (8) admits
a reformulation which is a simple, univariate optimization problem. Before stating the result,
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we recall that the definition of discrepancy measure Dc (see (7)) requires the specification of
cost function c((x, y), (x′, y′)) between any two predictor-response pairs (x, y), (x′, y′) ∈ Rd+1.

Proposition 1. Let c : Rd+1×Rd+1 → [0,∞] be a lower semi-continuous cost function satisfying
c((x, y), (x′, y′)) = 0 whenever (x, y) = (x′, y′). For γ ≥ 0 and loss functions l(x, y;β) that are
upper semi-continuous in (x, y) for each β, define

φγ(Xi, Yi;β) := sup
u∈Rd, v∈R

{
l(u, v;β) − γc

(
(u, v), (Xi, Yi)

)}
. (11)

Then

sup
P: Dc(P,Pn)≤δ

EP

[
l(X,Y ;β)

]
= min

γ≥0

{
γδ +

1

n

n∑

i=1

φγ(Xi, Yi;β)

}
.

Consequently, the DR regression problem (8) reduces to

inf
β∈Rd

sup
P: Dc(P,Pn)≤δ

EP

[
l(X,Y ;β)

]
= inf

β∈Rd
min
γ≥0

{
γδ +

1

n

n∑

i=1

φγ(Xi, Yi;β)

}
. (12)

Proposition 1 follows as a straightforward application of [9, Theorem 1]. As we shall see in
Section 2.4, the function φγ(·) is explicitly computable for various examples of interest. Of the
reformulations in the literature for Wasserstein distance based DRO (see [16, 9, 19]), the general
cost structure assumed in [9, Theorem 1] is essential for the exact recovery of machine learning
estimators that are presented below in Section 2.4.

2.4. Distributionally Robust Representations.

2.4.1. Example 1 (continued): Recovering regularized estimators for linear regression. We
examine the right-hand side of (12) for the square loss function for the linear regression model
Y = βTX + e, and obtain the following result without any further distributional assumptions
on X,Y and the error e. For brevity, let β̄ = (−β, 1), and recall the definition of the discrepancy
measure Dc in (7).

Proposition 2 (DR linear regression with square loss). Fix q ∈ (1,∞]. Consider the square
loss function and second order discrepancy measure Dc defined using ℓq-norm. In other words,
take l(x, y;β) = (y − βTx)2 and c

(
(x, y), (u, v)

)
= ‖(x, y)− (u, v)‖2q . Then,

inf
β∈Rd

sup
P: Dc(P,Pn)≤δ

EP

[
l(X,Y ;β)

]
= inf

β∈Rd

(√
MSEn(β) +

√
δ ‖β̄‖p

)2
, (13)

where MSEn(β) = EPn [(Y − βTX)2] = 1
n

∑n
i=1(Yi − βTXi)

2 is the mean square error for the
coefficient choice β and p is such that 1/p + 1/q = 1.

As an important special case, we consider q = ∞ and identify the following equivalence for
DR regression applying discrepancy measure based on neighborhoods defined using ℓ∞ norm:

argminβ∈Rd sup
P: Dc(P,Pn)≤δ

EP

[
l(X,Y ;β)

]
= argminβ∈Rd

{√
MSEn(β) +

√
δ ‖β̄‖1

}
.

The right hand side of (13) resembles ℓp-norm regularized regression (except for the fact that
we have ‖β̄‖p instead of ‖β‖p). In order to obtain the exact equivalence, we introduce a slight
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modification to the norm ‖ · ‖q to be used as the cost function, c(·), in defining Dc. We define

Nq

(
(x, y), (u, v)

)
=

{
‖x− u‖q, if y = v,

∞, otherwise,
(14)

in order to use c(·) = Nq(·) as the transportation cost instead of the standard ℓq norm ‖(x, y)−
(u, v)‖q . Subsequently, one can consider modified cost functions of form c((x, y), (u, v)) =
(Nq((x, y), (u, v)))

ρ . As this modified cost function assigns infinite cost when y 6= v, the infimum
in (6) is effectively over joint distributions that do not alter the marginal distribution of Y .
As a consequence, the resulting neighborhood set {P : Dc(P,Pn) ≤ δ} admits distributional
ambiguities only with respect to the predictor variables X.

The following result is essentially the same as Proposition 2 except for the use of the modified
cost Nq and the resulting norm regularization of form ‖β‖p (instead of ‖β̄‖p as in Proposition
2), thus exactly recovering the regularized regression estimators in (9).

Theorem 1. Consider the square loss, l(x, y;β) = (y − βTx)2, and discrepancy measure
Dc(P,Pn) defined as in (7) using the cost function c((x, y), (u, v)) = (Nq((x, y), (u, v)))

ρ with
ρ = 2. Then,

inf
β∈Rd

sup
P: Dc(P,Pn)≤δ

EP

[
l(X,Y ;β)

]
= inf

β∈Rd

(√
MSEn(β) +

√
δ ‖β‖p

)2
,

where MSEn(β) = EPn [(Y − βTX)2] = n−1
∑n

i=1(Yi − βTXi)
2 is the mean square error for the

coefficient choice β and p is such that 1/p + 1/q = 1.

2.4.2. Example 2 (continued): Recovering regularized estimators for classification. Apart from
exactly recovering norm regularized estimators for linear regression, the discrepancy measure
Dc based on the modified norm Nq in (14) is natural when our interest is in learning problems
where the responses Yi take values in a finite set – as in the binary classification problem where
the response variable Y takes values in {−1,+1}. The following result allows us to recover the
DRO formulation behind the regularized logistic regression estimators discussed in Example 2
and as well for the widely used support vector machines (see [21]).

Theorem 2 (Regularized regression for Classification). Consider the discrepancy measure Dc(·)
defined using the cost function c((x, y), (u, v)) = Nq((x, y), (u, v))

ρ with ρ = 1. Then for logistic
regression with log-exponential loss function and Support Vector Machine (SVM) with the hinge
loss function, we have

inf
β∈Rd

sup
P: Dc(P,Pn)≤δ

EP

[
log(1 + e−Y βTX)

]
= inf

β∈Rd

1

n

n∑

i=1

log
(
1 + e−YiβTXi

)
+ δ ‖β‖p ,

and

inf
β∈Rd

sup
P: Dc(P,Pn)≤δ

EP

[
(1− Y βTX)+

]
=

1

n

n∑

i=1

(1− Yiβ
TXi)

+ + δ ‖β‖p ,

where p is such that 1/p + 1/q = 1.

The proofs of all of the results in this subsection are provided in Appendix A.1 in the sup-
plementary material [8]. The example of logistic regression with Wasserstein distance based
uncertainty sets has been considered in [42]. The representation for regularized logistic regres-
sion in Theorem 2 can be seen as an extension in which the approximate representation described
in [42, Remark 1] is made to coincide exactly with the regularized logistic regression estimator
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that has been widely used in practice. The approximate representation for regularized logistic
regression in [42] is based on the semi-infinite linear programming duality results due to [44].
On the other hand, due to the presence of infinite transportation costs in our DRO formulation
that results in the desired exact representation (see Theorem 2), we utilize a different strong
duality result, [9, Theorem 1], that is specifically derived for Wasserstein DRO with general
cost structures. In addition, other equivalences described for square-root LASSO and Support
Vector Machines in terms of Wasserstein DRO, as far as we know, have been reported for the
first time in this paper. See [43] for additional examples.

3. The Robust Wasserstein Profile Function

Given an estimating equation EPn [h(W, θ)] = 0, the objective of this section is to study the
asymptotic behavior of the associated RWP function Rn(θ). As discussed in the Introduction,
this analysis is key in our approach towards constructing the confidence region Λn(θ) and
choosing the radius of the uncertainty set optimally.

3.1. The RWP Function for Estimating Equations and Its Use in Constructing Con-
fidence Regions. The RobustWasserstein Profile function’s definition is inspired by the notion
of the Profile Likelihood function, introduced in the pioneering work of Art Owen in the context
of EL (see [34]). We provide the definition of the RWP function for estimating θ∗ ∈ Rl, which
we assume satisfies

E [h (W, θ∗)] = 0, (15)

for a given random variable W taking values in Rm and an integrable function h : Rm×Rl → Rr.
The parameter θ∗ is required to be unique to ensure consistency, but uniqueness is not necessary
for the limit theorems that we shall state, unless we explicitly indicate so.

Given a set of samples {W1, ...,Wn}, which are assumed to be i.i.d. copies of W , we define
the Wasserstein Profile function for the estimating equation (15) as,

Rn(θ) := inf
{
Dc(P,Pn) : EP [h(W, θ)] = 0

}
. (16)

Here, recall that Pn denotes the empirical distribution associated with the training samples
{W1, . . . ,Wn} and c(·) is a chosen cost function. In this section, we are primarily concerned
with cost functions of the form,

c(u,w) = ‖w − u‖ρq , (17)

where ρ ∈ [1,∞) and q ∈ (1,∞]. We remark, however, that the methods presented here can
be easily adapted to more general cost functions. For simplicity, we assume that the samples
{W1, . . . ,Wn} are distinct.

Since, as we shall see, the asymptotic behavior of the RWP function Rn(θ) is dependent on
the exponent ρ in (17), we sometimes write Rn (θ; ρ) to make this dependence explicit; but
whenever the context is clear, we drop ρ to avoid notational burden. Also, observe that the
profile function defined in (6) for the linear regression example is obtained as a particular case
by selecting W = (X,Y ), β = θ and defining h(x, y, θ) = (y − θTx)x.

Our goal in this section is to develop an asymptotic analysis of the RWP function which
parallels that of the theory of EL. In particular, we shall establish,

nρ/2Rn (θ∗; ρ) ⇒ R̄ (ρ) , (18)

for a suitably defined random variable R̄(ρ). Throughout this paper, the symbol “⇒” is used
to denote convergence in distribution.
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As the empirical distribution weakly converges to the underlying probability distribution
from which the samples are obtained, it follows from the definition of RWP function in (18)
that Rn(θ; ρ) → 0, as n → ∞, if and only if θ satisfies E[h(W, θ)] = 0; for every other θ, we

have that nρ/2Rn(θ; ρ) → ∞. Therefore, the result in (18) can be used to provide confidence
regions around θ∗ as follows: Given a confidence level 1 − α in (0,1), if we denote ηα as the
(1− α)−quantile of R̄(ρ), that is, P(R̄(ρ) ≤ ηα) = 1− α, then the set,

Λ̄n

(
n−ρ/2ηα

)
=
{
θ : Rn(θ; ρ) ≤ n−ρ/2ηα

}

is an approximate (1− α)−confidence region for θ∗. This is because, by definition of Λ̄n (·),

P

(
θ∗ ∈ Λ̄n

(
n−ρ/2ηα

))
= P

(
nρ/2Rn (θ∗; ρ) ≤ ηα

)
≈ P

(
R̄ (ρ) ≤ ηα

)
= 1− α. (19)

Throughout the development in this section, the dimension m of the random vector W is
kept fixed and the sample size n is sent to infinity; the function h (·) can be quite general.

3.2. The dual formulation of RWP function. The first step in the analysis of the RWP
function Rn(θ) is to use the definition of the discrepancy measure Dc to rewrite Rn(θ) as,

Rn(θ) = inf
{
Eπ [c(U,W )] : π ∈ P (Rm × Rm) , Eπ [h(U, θ)] = 0, π

W
= Pn

}
,

which is a problem of moments of the form,

Rn(θ) = inf
π∈P(Rm×Rm)

{
Eπ [c(U,W )] : Eπ [h (U, θ)] = 0, Eπ [I(W = Wi)] =

1

n
, i ≤ n

}
. (20)

The problem of moments is a classical linear programming problem for which the respective
dual formulation and strong duality have been well-studied (see, for example, [23, 46]). The
linear program problem over the variable π in (20) admits a simple dual semi-infinite linear
program of form,

sup
ai∈R,λ∈Rr

{
a0 +

1

n

n∑

i=1

ai : a0 +
n∑

i=1

ai1{w=Wi}(u,w) + λTh(u, θ) ≤ c(u,w), ∀u,w ∈ Rm

}

= sup
λ∈Rr

{
1

n

n∑

i=1

inf
u∈Rm

{
c(u,Wi)− λTh(u, θ)

}
}

= sup
λ∈Rr

{
− 1

n

n∑

i=1

sup
u∈Rm

{
λTh(u, θ)− c(u,Wi)

}
}
.

Proposition 3 below states that strong duality holds under mild assumptions, and the dual
formulation above indeed equals Rn(θ).

Proposition 3. Let h(·, θ) be Borel measurable, and Ω = {(u,w) ∈ Rm × Rm : c(u,w) < ∞}
be Borel measurable and non-empty. Further, suppose that 0 lies in the interior of the convex
hull of {h(u, θ) : u ∈ Rm}. Then,

Rn(θ) = sup
λ∈Rr

{
− 1

n

n∑

i=1

sup
u∈Rm

{
λTh(u, θ)− c(u,Wi)

}
}
.

A proof of Proposition 3, along with an introduction to the problem of moments, is provided
in Appendix B in the supplementary material [8].
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3.3. Asymptotic Distribution of the RWP Function. In order to gain intuition behind
(18), let us first consider the simple example of estimating the expectation θ∗ = E[W ] of a
real-valued random variable W , using h (w, θ) = w − θ.

Example 3. Let h (w, θ) = w − θ with m = 1 = l = r. First, suppose that the choice of cost
function is c(u,w) = |u− w|ρ for some ρ > 1. As long as θ lies in the interior of convex hull of
support of W, Proposition (3) implies,

Rn(θ; ρ) = sup
λ∈R

{
− 1

n

n∑

i=1

sup
u∈R

{
λ(u− θ)− |Wi − u|ρ

}
}

= sup
λ∈R

{
−λ

n

n∑

i=1

(Wi − θ)− 1

n

n∑

i=1

sup
u∈R

{
λ (u−Wi)− |Wi − u|ρ

}
}
.

As max∆{λ∆ − |∆|ρ} = (ρ− 1)|λ/ρ|ρ/(ρ−1), we obtain

Rn (θ; ρ) = sup
λ

{
−λ

n

n∑

i=1

(Wi − θ)− (ρ− 1)

∣∣∣∣
λ

ρ

∣∣∣∣
ρ

ρ−1

}

=

∣∣∣∣∣
1

n

n∑

i=1

(Wi − θ)

∣∣∣∣∣

ρ

.

Then, under the hypothesis that E [W ] = θ∗, and assuming Var[W ] = σ2
W

< ∞, we obtain,

nρ/2Rn (θ∗; ρ) ⇒ R̄ (ρ) ∼ σρ
W
|N (0, 1)|ρ ,

where N (0, 1) denotes a standard Gaussian random variable. The limiting distribution for the
case ρ = 1 can be formally obtained by setting ρ = 1 in the above expression for R̄(ρ), but the
analysis is slightly different. When ρ = 1,

Rn (θ) = sup
λ∈R

{
−λ

n

n∑

i=1

(Wi − θ)− 1

n

n∑

i=1

sup
u∈R

{
λ (u−Wi)− |u−Wi|

}
}

= sup
λ

{
−λ

n

n∑

i=1

(Wi − θ)− sup
∆∈R

{
λ∆− |∆|

}
}
.

Following the notion that ∞× 0 = 0,

Rn(θ) = sup
λ

{
λ

n

n∑

i=1

(Wi − θ)−∞I (|λ| > 1)

}

= max
|λ|≤1

λ

n

n∑

i=1

(Wi − θ) =

∣∣∣∣∣
1

n

n∑

i=1

(Wi − θ)

∣∣∣∣∣ .

So, indeed if E[W ] = θ∗ and V ar [W ] = σ2
W

< ∞, we obtain

n1/2Rn (θ∗) ⇒ σ
W
|N (0, 1)| .

We now discuss far reaching extensions to the developments in Example 3 by considering
estimating equations that are more general. First, we state a general asymptotic stochastic
upper bound, which we believe is the most important result from an applied standpoint as it
captures the speed of convergence of Rn(θ∗) to zero. Following this, we obtain an asymptotic
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stochastic lower bound that matches with the upper bound (and therefore the weak limit) under
mild, additional regularity conditions. We discuss the nature of these additional regularity
conditions, and also why the lower bound in the case ρ = 1 can be obtained basically without
additional regularity.

For the asymptotic upper bound we shall impose the following assumptions.

Assumptions:

A1) Assume that c(u,w) = ‖u− w‖ρq for q ≥ 1 and ρ ≥ 1. For a chosen q ≥ 1, let p be such
that 1/p + 1/q = 1.

A2) Suppose that θ∗ ∈ Rl satisfies E [h(W, θ∗)] = 0 and E ‖h(W, θ∗)‖22 < ∞. (While we do
not assume that θ∗ is unique, the results are stated for a fixed θ∗ satisfying E[h(W, θ∗)] = 0.)

A3) Suppose that the function h(·, θ∗) is continuously differentiable with derivativeDwh(·, θ∗).
A4) Suppose that for each ζ 6= 0,

P

(∥∥ζTDwh (W, θ∗)
∥∥
p
> 0
)
> 0. (21)

Assumptions A1) - A3) make precise the setting considered. Assumption A4) is the only
assumption which is technical in nature and it can be equivalently stated as

E[Dwh(W, θ∗)Dwh(W, θ∗)
T ] ≻ 0,

where A ≻ 0 is used to denote that the matrix A is positive definite. Verification of this positive
definitenes condition for the linear and logistic regression problems is executed, respectively, in
Sections 4.2 and 4.3. In order to state the theorem, let us introduce the notation for asymptotic
stochastic upper bound,

nρ/2Rn(θ∗; ρ) .D R̄ (ρ) ,

which expresses that, for every continuous and bounded non-decreasing function f (·) , we have,

limn→∞E

[
f
(
nρ/2Rn(θ∗; ρ)

)]
≤ E

[
f
(
R̄ (ρ)

)]
.

Similarly, we write &D for an asymptotic stochastic lower bound, namely

limn→∞E
[
f
(
nρ/2Rn(θ∗; ρ)

)]
≥ E

[
f
(
R̄ (ρ)

)]
.

Therefore, if both stochastic upper and lower bounds hold, then nρ/2Rn(θ∗; ρ) ⇒ R̄ (ρ) as
n → ∞. (see, for example, [5]). Now we are ready to state our asymptotic upper bound.

Theorem 3. Under Assumptions A1) to A4) we have, as n → ∞,

nρ/2Rn(θ∗; ρ) .D R̄ (ρ) ,

where, for ρ > 1,

R̄ (ρ) := max
ζ∈Rr

{
ρζTH − (ρ− 1)E

∥∥ζTDwh (W, θ∗)
∥∥ρ/(ρ−1)

p

}
,

and if ρ = 1,

R̄ (1) := max
ζ:P(‖ζTDwh(W,θ∗)‖p>1)=0

{ζTH}.

In both cases H ∼ N (0,Cov[h(W, θ∗)]), and Cov[h(W, θ∗)] = E
[
h(W, θ∗)h(W, θ∗)T

]
.
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We remark that as ρ → 1, one can verify that R̄(ρ) ⇒ R̄ (1), so formally one can simply
keep in mind the expression R̄ (ρ) with ρ > 1. It is interesting to note that R̄(ρ) resembles
Fenchel transform when viewed as a function of H. Indeed, in the case where p = q = ρ = 2
and E[Dwh(W, θ∗)] is invertible, the expression for R̄(ρ) simplifies as follows:

R̄(ρ) = max
ζ∈Rr

{
2ζTH − ζTE [Dwh(W, θ∗)] ζ

}
= HT (E [Dwh(W, θ∗)])

−1 H. (22)

We now study some sufficient conditions which guarantee that R̄ (ρ) is also an asymptotic

lower bound for nρ/2Rn(θ∗; ρ). We consider the case ρ = 1 first, which will be used in applica-
tions to logistic regression discussed later in the paper.

Proposition 4. In addition to assuming A1) to A4), suppose that W has a positive density
(almost everywhere) with respect to the Lebesgue measure. Then,

n1/2Rn(θ∗; 1) ⇒ R̄(1).

The following set of assumptions can be used to obtain tight asymptotic stochastic lower
bounds when ρ > 1; the corresponding result will be applied to the context of square-root
LASSO.

A5) (Growth condition) Assume that there exists κ ∈ (0,∞) such that for ‖w‖q ≥ 1,

‖Dwh(w, θ∗)‖p ≤ κ ‖w‖ρ−1
q , (23)

and that E ‖Wi‖ρ < ∞.

A6) (Locally Lipschitz continuity) Assume that there exists exists κ̄ : Rm → [0,∞) such
that,

‖Dwh(w +∆, θ∗)−Dwh(w, θ∗)‖p ≤ κ̄ (Wi) ‖∆‖q ,
for ‖∆‖q ≤ 1, and E [κ̄ (w)c] < ∞, for c ≤ max{2, ρ

ρ−1}.

We now summarize our last weak convergence result of this section.

Proposition 5. If Assumptions A1) to A6) hold and ρ > 1, then

nρ/2Rn(θ∗; ρ) ⇒ R̄ (ρ) .

Before we move on with the applications of the previous results, it is worth discussing the
nature of the additional assumptions introduced to ensure that an asymptotic lower bound can
be obtained which matches the upper bound in Theorem 3.

As we shall see in the technical development in Appendix A.3 (see supplementary material
[8]) where the proofs of the above results are furnished, the dual formulation of RWP function
in Proposition 3 can be re-expressed, assuming only A1) to A4), as,

nρ/2Rn (θ∗; ρ) = sup
ζ

{
ζTHn − 1

n

n∑

k=1

sup
∆

{∫ 1

0
ζTDh

(
Wi +∆u/n1/2, θ∗

)
∆du− ‖∆‖ρq

}}
.

(24)

In order to make sure that the lower bound asymptotically matches the upper bound obtained
in Theorem 3 we need to make sure that we rule out cases in which the inner supremum is infinite
in (24) with positive probability in the prelimit.
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In Proposition 4 we assume that W has a positive density with respect to the Lebesgue
measure because in that case the condition

P

(∥∥ζTDh (W, θ∗)
∥∥
p
≤ 1
)
= 1,

(which appears in the upper bound obtained in Theorem 3) implies that
∥∥ζTDh (w, θ∗)

∥∥
p
≤ 1

almost everywhere with respect to the Lebesgue measure. Due to the appearance of the integral
in the inner supremum in (24), an upper bound can be obtained for the inner supremum, which

translates into a tight lower bound for nρ/2Rn (θ∗).

Moving to the case ρ > 1 studied in Proposition 5, condition (23) in A5) guarantees that (for
fixed Wi and n) ∥∥∥Dh

(
Wi +∆u/n1/2, θ∗

)
∆
∥∥∥ = O

(
‖∆‖ρq /n(ρ−1)/2

)
,

as ‖∆‖q → ∞. Therefore, the cost term
(
−‖∆‖ρq

)
in (24) will ensure a finite optimum in the

prelimit for large n. The condition that E ‖W‖ρq < ∞ is natural because we are using a optimal

transport cost c(u,w) = ‖u− w‖ρq . If this condition is not satisfied, then the underlying nominal
distribution is at infinite transport distance from the empirical distribution.

The local Lipschitz assumption A6) is just imposed to simplify the analysis and can be
relaxed; we have opted to keep A6) because we consider it mild in view of the applications that
we will study in the sequel.

4. Using RWPI for optimal regularization

In this section, we aim to utilize the limit theorems for the RWP function derived in Section
3.3 to select the radius of uncertainty, δ, in the DRO formulation (8). Then owing to the DRO
representations derived in Section 2.4, this would imply an automatic choice of regularization
parameter λ =

√
δ in the square-root LASSO example (following Theorem 1), or λ = δ in the

regularized logistic regression (following Theorem 2). In the development below, we follow the
logic described in the Introduction for the square-root LASSO setting.

4.1. Selection of δ and coverage properties. Throughout this section, let β∗ denote the un-
derlying linear or logistic regression model parameter from which the training samples {(Xi, Yi) :
i = 1, . . . , n} are obtained. Lemma 1 below establishes that the infimum and the supremum in
the DRO formulation (8) can be exchanged. See Appendix C for a proof of Lemma 1.

Lemma 1. In the settings of Theorems 1 and 2, if E‖X‖22 < ∞, we have that

inf
β∈Rd

sup
P∈ Uδ(Pn)

EP

[
l
(
X,Y ;β

)]
= sup

P∈ Uδ(Pn)
inf
β∈Rd

EP

[
l
(
X,Y ;β

)]
. (25)

Recall the definition of Λn(δ) in (3). As a consequence of Lemma 1, the set Λn(δ) contains
the optimal solution obtained by solving the problem in the left hand side of (25). Indeed, if
this was not the case, the left hand side in (25) would be strictly smaller than the right hand
side of (25). Recall from Section 1.1.2 that our primary criterion for choosing δ is to choose δ
large enough so that β∗ ∈ Λn(δ) with desired confidence. The property that estimator obtained
by solving the DRO formulation (8) lies in Λn(δ), we believe, makes our selection of δ logically
consistent with the ultimate goal of the overall estimation procedure, namely, estimating β∗.
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Due to the optimality of β∗, the convexity of the loss ℓ(x, y; · ) in Examples 1 - 2 and finiteness
of E‖X‖22, we have that E[Dβ l(X,Y ;β∗)] = 0. Consider the RWP function with estimating
equation Dβ l(x, y;β) = 0 given by,

Rn(β) = inf
{
Dc(P,Pn) : DβEP [l(X,Y ;β)] = 0

}
.

Then, as explained in Section 1.1.3, the events {Rn(β∗) ≤ δ} and {β∗ ∈ Λn(δ)} coincide. If δ
is selected so that δ ≥ Rn(β∗), then the worst-case loss estimated by the DRO formulation (8)
can be shown to form an upper bound to the empirical risk evaluated at β∗, thus controlling
the bias portion of the generalization error. This is the content of Proposition 6 below.

Proposition 6. In the settings of Theorems 1 and 2, if δ ≥ Rn(β∗), we have,
∣∣∣∣∣EPn [l(X,Y ;β∗)]− inf

β
sup

P∈Uδ(Pn)
EP [l(X,Y ;β)]

∣∣∣∣∣ ≤ C1δ + C2(n)1{ρ=2}
√
δ,

where C1 := (2ρ− 1)‖β∗‖ρ and C2(n) := 2‖β∗‖p
√
EPn [l(X,Y ;β∗)].

Now, in order to guarantee that δ ≥ Rn(β∗) (or equivalently, β∗ ∈ Λn(δ)) with a desired
confidence 1− α, it is sufficient to proceed as in Section 3.1: Let ηα be the (1 − α)-quantile of

the weak limit, R̄, resulting from nρ/2Rn(β∗) ⇒ R̄, derived in Section 3.3. In light of Theorems
1 and 2, we have ρ = 2 for Example 1 and ρ = 1 for Example 2. If we take η ≥ ηα,

δ = n−ρ/2η and Λn(δ) = {β : Rn(β) ≤ n−ρ/2η}, (26)

then limn→∞ P(Rn(β∗) > n−ρ/2η) ≤ α. Then, as demonstrated in (19), we have limn→∞ P(β∗ ∈
Λn(δ)) ≥ 1− α. In Sections 4.2 - 4.3 below, we illustrate the application of this prescription by
deriving upper bounds for R̄ that are not dependent on the knowledge of β∗.

Theorem 4. In the settings of Theorems 1 and 2, suppose that the samples {(Xi, Yi) : i ≤ n}
are obtained from the distribution P∗ and EP∗‖X‖22 < ∞. For any 1−α ∈ (1/2, 1), if δ is chosen

to be n−ρ/2η for some η ≥ ηα, then we have that,

lim
n→∞

P

(∣∣∣∣∣ infβ∈Rd
EP∗ [l(X,Y ;β)]− inf

β∈Rd
sup

P∈Uδ(Pn)
EP [l(X,Y ;β)]

∣∣∣∣∣ <
C√
n

)
≥ 1− 2α,

for some positive constant C depending on ρ, EP∗ [ℓ(X,Y ;β∗)] and VarP∗ [ℓ(X,Y ;β∗] .

Proofs of Propositon 6 and Theorem 4 are furnished in Appendix A.2 in the supplementary
material. Explicit prescriptions for the selection of δ satisfying conditions of Theorem 4 for the
case of linear and logistic regression examples are provided in Sections 4.2 and 4.3.

In contrast to the O(n−1/d) rate of convergence for the prescription of δ resulting from
concentration inequalities for Dc(Pn,P∗) (see, for example, [42, Theorem 2], [28, Theorem 3.5]),
Theorem 4 asserts that the DRO formulation with RWPI based prescription for δ enjoys the
optimal O(n−1/2)−rate of convergence for the optimal risk. Roughly speaking, this is because
the objective of RWPI is to choose the radius δ resulting in good coverage properties for the
optimal parameter β∗, which has d−degrees of freedom; on the other hand, the objective behind
concetration inequalities is to choose δ with good coverage properties for the data-generating
probability distribution itself, which is an infinite dimensional object. It is well-known that
the distance between a probability distribution and an empirical version of itself constituting
n−independent samples is Ω(n−1/d) as n → ∞ (see, for example, [49]).
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Coverage for the optimal risk, for the particular example of LASSO estimator, can also be
derived, for example, from the limit theorems in [24]. Once δ is chosen using RWP function,
as it can be seen from the proofs of Proposition 6 and Theorem 4, the deduction of the rate of
convergence and coverage turns out to be fairly intuitive and simple. This serves to illustrate
the fundamental role played by the RWP function in determining the radius of the uncertainty
set. A unified profile function based method to deduce coverage of optimal risk for regularized
estimators is entirely novel. We believe that the approach described here could serve as a
template for deducing similar coverage guarantees for more general DRO formulations that are
not necessarily amenable to be recast as regularized estimators.

4.2. Linear regression models with squared loss function. In this section, we derive the
asymptotic limiting distribution of suitably scaled profile function corresponding to the esti-
mating equation, E[(Y −βTX)X] = 0. The chosen estimating equation describes the optimality
condition for the expected loss E[(Y − βTX)2], and therefore, the corresponding Rn(β∗) is

suitable for choosing δ as in (26), and the regularization parameter λ =
√
δ in Example 1.

4.2.1. A stochastic upper bound for the RWP limit. Let H0 denote the null hypothesis that
the training samples {(X1, Y1), . . . , (Xn, Yn)} are obtained independently from the linear model
Y = βT

∗ X + e, where the error term e has zero mean, variance σ2, and is independent of X. Let
Σ = E[XXT ].

Theorem 5. Consider the discrepancy measure Dc(·) defined as in (7) using the cost function
c((x, y), (u, v)) = (Nq((x, y), (u, v)))

2 (the function Nq is defined in (14)). For β ∈ Rd, let

Rn(β) = inf
{
Dc(P,Pn) : EP

[
(Y − βTX)X

]
= 0

}
.

Then, under the null hypothesis H0,

nRn(β∗) ⇒ L1 := max
ξ∈Rd

{
2σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2
p

}
,

as n → ∞. In the above limiting relationship, Z ∼ N (0,Σ). Further,

L1

D
≤ L2 :=

E[e2]

E[e2]− (E|e|)2
‖Z‖2q .

Specifically, if the additive error term e follows a centered normal distribution, then

L1

D
≤ L2 :=

π

π − 2
‖Z‖2q .

In the above theorem, the relationship L1

D
≤ L2 denotes that L1 is stochastically dominated

by L2, in the sense that, P(L1 ≥ x) ≤ P(L2 ≥ x) for all x ∈ R. Note that this notation for
stochastic upper bound is different from the notation .D introduced in Section 3.3 to denote
asymptotic stochastic upper bound. A proof of Theorem 5 as an application of Theorem 3 and
Proposition 5 is presented in Appendix Section A.4 (see supplementary material [8]).

4.2.2. Using Theorem 5 to obtain regularization parameter for (9). Let η
1−α denote the (1−α)

quantile of the limiting random variable L1 in Theorem 5, or its stochastic upper bound L2.
Then following the prescription in (26) and the DRO equivalence in Theorem 1, regularization
parameter for the ℓp-penalized linear regression in (9) can be chosen as follows:
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1) Draw samples Z from N (0,Σ) to estimate the 1 − α quantile of one of the random
variables L1 or L2 in Theorem 5. Let us use η̂

1−α to denote the estimated quantile.
While L2 is simply the norm of Z, obtaining realizations of limit law L1 involves solving
an optimization problem for each realization of Z. If Σ = E[XXT ] is not known, one
can use a simple plug-in estimator for E[XXT ] in place of Σ.

2) Choose the regularization parameter λ to be,

λ =
√
δ =

√
η̂
1−α/n.

It is interesting to note that the prescription of regularization parameter obtained by using
L2 does not depend on the variance of e, thus removing the need for estimating the variance
of e. This property is a key advantage of the use of square-root LASSO estimator over the
traditional LASSO (see [2]).

4.2.3. On the approximation ratio L2/L1 when p = q = 2. In the case where q is taken to be
q = p = 2 in Theorem 1 (corresponding to ℓ2−penalization as in ridge regression), it is possible
to obtain an explicit expression for the limit law L1 as follows: Under the assumptions stated
in Theorem 5, we have E[(eId − XβT

∗ )(eId − XβT
∗ )

T ] = σ2Id + ‖β∗‖2Σ. Then, as in (22), we

obtain, L1 = σ2ZT
(
σ2Id + ‖β∗‖2Σ

)−1
Z. Suppose that X is centered so that E[X] = 0 and Σ is

invertible. Then, if Σ = UΛUT is the eigen decomposition of Σ, we have that N = Λ−1/2UTZ
has normal distribution with mean 0 and covariance Id. As a result,

L1 = σ2ZT
(
σ2Id + ‖β∗‖2Σ

)−1
Z =

d∑

i=1

Λii

1 + Λii‖β∗‖2/σ2
N2

i , and

E[e2]− (E|e|)2
E[e2]

L2 = ‖Z‖22 =
d∑

i=1

ΛiiN
2
i .

If we let c1 = 1 + σ−2‖β∗‖2 maxi=1,...,dΛii and c2 = Var[e]/Var|e|, we arrive at the relationship
that, L1 ≤ L2 ≤ c1c2L1.

One could aim to achieve lower bias in estimation by working with the (1 − α)-quantile of
the limit law L1 (see Proposition 6), instead of that of the stochastic upper bound L2. In order
to do so, we propose to use any consistent estimator for β∗ to be plugged in the expression for
L1 to result in asymptotically optimal prescription for δ. The argument goes as follows: Let us
write the limit law L1 as L1(β∗) in order to make the dependence of the limit law L1 on β∗
explicit. As L1(·) is a continuous function, if βn → β∗ in probability, we have

nRn (β∗)− L1 (βn) = (nRn (β∗)− L1 (β∗)) + (L1 (β∗)− L1 (βn)) ⇒ 0.

One could use, for example, sample average approximations (without regularization) to compute
βn. We seek to verify in future research that the estimator obtained via this plug-in approach
indeed enjoys better generalization guarantees.

4.3. Logistic Regression with log-exponential loss function. In this section, we apply
results in Section 3.3 to prescribe regularization parameter for ℓp-penalized logistic regression
in Example 2.
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4.3.1. A stochastic upper bound for the RWP function. Let H0 denote the null hypothesis that
the training samples (X1, Y1), . . . , (Xn, Yn) are obtained independently from a logistic regression
model satisfying

log

(
P(Y = 1|X = x)

1− P(Y = 1|X = x)

)
= βT

∗ x,

for predictors X ∈ Rd and corresponding responses Y ∈ {−1, 1}; further, under null hypoth-
esis H0, the predictor X has positive density almost everywhere with respect to the Lebesgue
measure on Rd. The log-exponential loss (or negative log-likelihood) that evaluates the fit of a
logistic regression model with coefficient β is given by

l(x, y;β) = − log p(y|x;β) = log
(
1 + exp(−yβTx)

)
.

If we let

h(x, y;β) = Dβl(x, y;β) =
−yx

1 + exp(yβTx)
, (27)

then the optimal β∗ satisfies the first order condition that E [h(x, y;β∗)] = 0.

Theorem 6. Consider the discrepancy measure Dc(·) defined as in (7) using the cost function
c((x, y), (u, v)) = Nq((x, y), (u, v)) (the function Nq is defined in (14)). For β ∈ Rd, let

Rn(β) = inf
{
Dc(P,Pn) : EP

[
h(x, y;β)

]
= 0

}
,

where h(·) is defined in (27). Then, under the null hypothesis H0,
√
nRn(β∗) ⇒ L3 := sup

ξ∈A
ξTZ

as n → ∞. In the above limiting relationship,

Z ∼ N
(
0,E

[
XXT

(1 + exp(Y βT∗ X))2

])
and

A =
{
ξ ∈ Rd : ess supx,y

∥∥ξTDxh(x, y;β∗)
∥∥
p

≤ 1
}
.

Moreover, the limit law L3 admits the following simpler stochastic bound:

L3

D
≤ L4 := ‖Z̃‖q,

where Z̃ ∼ N (0,E[XXT ]).

A proof of Theorem 5 as an application of Theorem 3 and Proposition 4 is presented in Appendix
A.4 (see supplementary material [8]).

4.3.2. Using Theorem 6 to obtain regularization parameter for (10) . Similar to linear regression,
the regularization parameter for Regularized Logistic Regression discussed in Example 2 can be
chosen by the following procedure:

1) Estimate the (1−α)-quantile of L4 := ‖Z̃‖q, where Z̃ ∼ N (0,E[XXT ]). Let us use η̂
1−α

to denote the estimate of the quantile.
2) Choose the regularization parameter λ in the norm regularized logistic regression esti-

mator (10) in Example 2 to be,

λ = δ = η̂
1−α/

√
n.
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4.4. Optimal regularization in high-dimensional square-root LASSO . In this section,
let us restrict our attention to the square-loss function l(x, y;β) = (y − βTx)2 for the linear
regression model and the discrepancy measure Dc defined using the cost function c = Nq with
q = ∞ in (14). Then, due to Theorem 1, this corresponds to the interesting case of square-root
LASSO or ℓ2-LASSO that was rather a particular example in the class of ℓp norm penalized
linear regression estimators considered in Section 4.2.

As an interesting byproduct of the RWP function analysis, the following theorem presents a
prescription for regularization parameter even in high dimensional settings where the ambient
dimension d is larger than the number of samples n. Given observations {(Xi, Yi) : i = 1, . . . , n}
from the linear model Y = βT

∗ X + e, let ẽi := (Yi − βT
∗ Xi)/σ, for i = 1, . . . , n. We have that the

variance of the normalized error terms ẽi do not depend on σ.

Theorem 7. Suppose that the assumptions imposed in Theorem 5 hold. Then,

nRn(β∗)
D
≤ ‖Zn‖2∞

Varn|ẽ|
,

where, Zn := 1√
n

∑n
i=1 ẽiXi and Varn|ẽ| :=

∑n
i=1(|ẽi| − n−1

∑n
k=1 |ẽi|)2.

Remark 1. Suppose that the additive error e is normally distributed and the observations
Xi = (Xi1, . . . ,Xid) are normalized so that n−1

∑n
i=1 X

2
ij = 1 for j = 1, . . . , d. Then, for any

α < 1/8, C > 0, ε > 0, due to Lemma 1(iii) of [2], the stochastic bound in Theorem 7 simplifies
as follows: Conditional on the observations {Xi : i = 1, . . . , n}, we have,

√
Rn(β∗) ≤

π

π − 2

Φ−1(1− α/2d)√
n

,

with probability asymptotically larger than 1 − α, as n → ∞, uniformly in d such that
log d ≤ Cn1/2−ε. Here, Φ−1(1 − α) denotes the quantile x satisfying Φ(x) = 1 − α and Φ(·)
is the cumulative distribution function of the standard normal distribution defined on R. More-
over, if the additive error e is not normally distributed, then under additional assumption that
supn≥1 sup1≤j≤d EPn |Xj |a < ∞ for some a > 2, we obtain from Lemma 2(iii) of [2] that,

√
Rn(β∗) ≤

E[e2]

E[e2]− (E|e|)2
Φ−1(1− α/2d)√

n
,

with probability asymptotically larger than 1 − α, as n → ∞, uniformly in d such that d ≤
0.5αn(a−2−ε)/2.

A proof of Theorem 7 is presented in Appendix A.4 (see supplementary material [8]). A
commonly adopted approach in the high dimensional regression literature (see, for example,

[4, 29, 2, 1] and references therein) is to start with any choice λ > ‖S̃‖q, where S̃ is the score
function DβEn [l(X,Y ;β∗)] . This choice, in the context of square-root Lasso, results in the reg-

ularization parameter to be chosen larger than the (1 − α)-quantile of n−1/2‖Z‖∞/
√

Varn[ẽ]
(see (10) in [2]). As observed in Theorem 7, working with an upper bound of the RWP function

results in choosing the (1−α)-quantile of n−1/2‖Z‖∞/
√

Varn|ẽ|. Indeed, this agreement of the
regularization parameter with the high dimensional linear regression literature strengthens the
RWPI based approach for selecting the radius of uncertainty. Since the RWPI based approach
results in a prescription of regularization parameter that is larger (by a factor Varn[ẽ]/Varn|ẽ|),
the generalization error bounds derived in the literature for high dimensional regularized re-
gression (see, for example, [2, Corollary 1]) hold.
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The approach in Theorem 7 is to identify an upper bound that does not depend on β∗.
Instead, one could choose δ ≥ Rn(β̂n), by plugging in any consistent estimator β̂n. We identify
investigating the possibility of obtaining tighter error bounds via this plug-in approach as a
subject of future research.

5. Numerical Examples

In this section, we consider two examples that compare the numerical performances of the
square-root LASSO algorithm (see Example 1) when the regularization parameter λ is selected
in the following two ways: 1) as described in Section 4.2 using a suitable quantile of the RWPI
limiting distribution, and 2) using cross-validation. For comparison purposes, we also list the
performance of the respective ordinary least squares estimator. As such, in both the examples,
cross-validation based approach iterates over multitude of choices of λ, whereas the optimal
regularization via RWPI utilizes the respective square-root LASSO algorithm only once for the
prescribed value of λ. This naturally suggests potentially huge savings in computation that
could be valuable in large scale settings.

Example 4. Consider the linear model Y = 3X1+2X2+1.5X4+e where the vector of predictor
variables X = (X1, . . . ,Xd) is distributed according to the multivariate normal distribution

N (0,Σ) with Σk,j = 0.5|k−j| and additive error e is normally distributed with mean 0 and
standard deviation σ = 10. Letting n denote the number of training samples, we illustrate
the effectiveness of the RWPI based square-root LASSO procedure for various values of d and
n by computing the mean square loss / error (MSE) over a simulated test data set of size
N = 10000. Specifically, we take the number of predictors to be d = 300 and 600, the number
of standardized i.i.d. training samples to range from n = 350, 700, 3500, 10000, and the desired
confidence level to be 95%, that is, 1 − α = 0.95. In each instance, we run the square-root
LASSO algorithm using the ‘flare’ package proposed in [27] (available as a library in R) with
regularization parameter λ chosen as prescribed in Section 4.2.

Repeating each experiment 100 times, we report the average training and test MSE in Tables
1 and 2, along with the respective results for ordinary least squares regression (OLS) and square-
root LASSO algorithm with regularization parameter chosen as prescribed by cross-validation
(denoted as SQ-LASSO CV in the tables.) We also report the average ℓ1 and ℓ2 error of
the regression coefficients in Tables 1 and 2. In addition, we report the empirical coverage
probability that the optimal error E[(Y − βT

∗ X)2] = σ2 = 100 is smaller than the worst case
expected loss computed by the DRO formulation (8). As this empirical coverage probability
reported in Table 3 is closer to the desired confidence 1−α = 0.95, the worst case expected loss
computed by (8) can be seen as a tight upper bound of the optimal loss E[l(X,Y ;β∗)] (thus
controlling generalization) with probability at least 1− α = 0.95.

Example 5. Consider the diabetes data set from the ‘lars’ package in R (see [15]), where
there are 64 predictors (including 10 baseline variables and other 54 possible interactions) and 1
response. After standardizing the variables, we split the entire data set of 442 observations into
n = 142 training samples (chosen uniformly at random) and the remaining N = 300 samples
as test data for each experiment, in order to compute training and test mean square errors
using the square-root LASSO algorithm with regularization parameter picked as in Section 4.2.
After repeating the experiment 100 times, we report the average training and test errors in
Table 4, and compare the performance of RWPI based regularization parameter selection with
other standard procedures such as OLS and square-root LASSO algorithm with regularization
parameter chosen according to cross-validation.
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Training data Method Training Error Test Error ℓ1 loss ℓ2 loss
size, n ‖β − β∗‖1 ‖β − β∗‖2

350

RWPI 101.16(±8.11) 122.59(±6.64) 4.08(±0.69) 5.23(±0.76)
SQ-LASSO CV 92.23(±7.91) 117.25(±6.07) 3.91(±0.42) 5.02(±1.28)

OLS 13.95(±2.63) 702.73(±188.05) 31.59(±3.64) 436.19(±50.55)

700

RWPI 101.81(±3.01) 117.96(±4.80) 3.31(±0.40) 4.38(±0.48)
SQ-LASSO CV 99.66(±4.64) 115.46(±4.36) 2.96(±0.37) 3.98(±0.66)

OLS 56.82(±3.94) 178.44(±21.74) 10.99(±0.57) 152.04(±8.25)

3500

RWPI 102.55(±2.39) 108.44(±2.54) 2.18(±0.16) 3.28(±1.66)
SQ-LASSO CV 100.74(±2.35) 113.83(±2.33) 2.66(±0.14) 3.91(±2.18)

OLS 90.37(±2.17) 114.78(±5.50) 3.96(±0.20) 54.67(±3.09)

10000

RWPI 102.12(±8.11) 105.97(±0.88) 1.13(±0.08) 1.63(±0.11)
SQ-LASSO CV 100.69(±7.91) 112.82(±0.71) 1.15(±0.07) 1.94(±0.12)

OLS 95.91(±1.11) 107.74(±2.96) 2.23(±0.10) 30.91(±1.43)

Table 1. Sparse linear regression for d = 300 predictor variables in Example
4. The training and test mean square errors of RWPI based square-root LASSO
regularization parameter selection is compared with ordinary least squares esti-
mator (written as OLS) and cross-validation based square-root LASSO estimator
(written as SQ-LASSO CV)

Training data Method Training Error Test Error ℓ1 loss ℓ2 loss
size, n ‖β − β∗‖1 ‖β − β∗‖2

350

RWPI 108.05(±8.38) 109.46(±4.68) 4.02(±0.71) 4.08(±0.70)
SQ-LASSO CV 93.17(±10.83) 104.51(±4.76) 2.23(±0.38) 6.89(±2.35)

OLS − − − −

700

RWPI 104.33(±5.03) 103.18(±2.14) 2.91(±0.42) 2.99(±0.43)
SQ-LASSO CV 100.50(±4.70) 99.92(±2.18) 1.45(±0.28) 2.82(±0.64)

OLS 14.27(±2.02) 699.06(±137.45) 31.66(±2.21) 518.02(±44.87)

3500

RWPI 101.52(±2.52) 96.38(±0.80) 1.23(±0.24) 1.32(±0.24)
SQ-LASSO CV 102.58(±2.49) 98.55(±0.94) 1.18(±0.15) 1.94(±0.24)

OLS 82.22(±2.31) 102.01(±6.14) 6.76(±0.23) 114.05(±5.73)

10000

RWPI 101.36(±1.11) 94.86(±0.36) 0.75(±0.13) 0.81(±0.14)
SQ-LASSO CV 103.00(±1.11) 98.55(±0.49) 1.16(±0.08) 1.94(±0.13)

OLS 95.11(±1.10) 99.53(±4.83) 3.26(±0.11) 63.67(±2.16)

Table 2. Sparse linear regression for d = 600 predictor variables in Example
4. The training and test mean square errors of RWPI based square-root LASSO
regularization parameter selection is compared with ordinary least squares esti-
mator (written as OLS) and cross-validation based square-root LASSO estimator
(written as SQ-LASSO CV). As n < d when n = 350, OLS estimation is not
applicable in that case (denoted by a blank)

6. Conclusions

We showed that popular machine learning estimators such as square-root LASSO, regularized
logistic regression, support vector machines, etc. can be recast as particular examples of optimal
transport based DRO formulation in (8). We introduced Robust Wasserstein Profile function
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No. of predictors Training sample size
d 350 700 3500 10000
300 0.974 0.977 0.975 0.969
600 0.963 0.966 0.970 0.968

Table 3. Coverage Probability of empirical worst case expected loss in Example 4

Training Error Testing Error
RWPI 0.58(±0.05) 0.60(±0.04)

SQ-LASSO CV 0.44(±0.06) 0.57(±0.03)
OLS 0.26(±0.05) 1.38(±0.68)

Table 4. Linear Regression for Diabetes data in Example 5 with 142 training
samples and 300 test samples. The training and test mean square errors of RWPI
based square-root LASSO regularization parameter selection is compared with
ordinary least squares estimator (written as OLS) and cross-validation based
square-root LASSO estimator (written as SQ-LASSO CV).

and utilized its behaviour at the optimal parameter β∗ to present a criterion for choosing
the radius, δ, in the DRO formulation (8). We illustrated how this translates to choosing
regularization parameters and coverage guarantees for optimal risk in the settings of ℓp−norm
regularized linear and logistic regression. We observe that the proposed prescriptions of the
radius δ for the DRO formulation (8) result in similar prescriptions that arise from independent
considerations in Statistics literature. This indeed strengthens the Wasserstein Profile function
based approach towards choosing the radius, δ, for the DRO formulation (8).

Following the results presented in this paper, we investigate the behaviour of the profile
function Rn(θ) in the vicinity of the optimal parameter θ∗ in [10] and establish a limiting
relationship of the form, nρ/2Rn(θ∗+∆/

√
n) ⇒ L(∆), for a continuous L(·). Such a relationship

can be used to accomplish the following tasks: 1) construct confidence intervals for the optimal
parameter θ∗, 2) establish error bounds for the solution to the DRO formulation (8), and 3)
systematically establish the validity of plugging-in any consistent estimator for θ∗ in order to
obtain an asymptotically optimal prescription of the radius δ. Such a plug-in approach would
obviate the need to derive stochastic upper bounds, on a case-by-case basis, as is presently
required in Section 4.

Supplementary material

Proofs of the all the results in this article are furnished in the supplementary material [8]
available after the References section below.
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Supplementary material to the paper

Robust Wasserstein Profile Inference and Applications to Machine Learning

This supplementary material to the paper “Robust Wasserstein Profile Inference and Appli-
cations to Machine Learning” is organized as follows: Proofs of all the main results in the paper
are furnished in Section A. As some of the main results in our paper utilize strong duality for
problems of moments, a quick introduction to problem of moments along with a well-known
strong duality result that is useful in our context is provided in Section B. A technical result
on exchange of sup and inf in the DRO formulation (8) is presented in Section C. Relevant bib-
liography utilized in this supplementary material is available at the end of this supplementary
material.

Appendix A. Proofs of main results

This section, comprising the proofs of the main results, is organized as follows: Subsection A.1
is devoted to derive the results on distributionally robust representations presented in Section
2.4. The proofs of results on coverage properties are presented in Section A.2. Subsection A.3
contains the proofs of stochastic upper and lower bounds (and hence weak limits) presented
in Section 3.3. Subsection A.4 contains the proofs of Theorems 5 and 6 as applications of the
stochastic upper and lower bounds presented in Section 3.3. Some of the useful technical results
that are not central to the argument are presented in Sections B and C.

A.1. Proofs of the distributionally robust representations in Section 2.4. Here we
provide proofs for results in Sections 2.3, 2.4 that recover various norm regularized regressions
as a special cases of distributionally robust regression (Proposition 2, Theorems 1 and 2).

Proof of Proposition 2. We utilize the duality result in Proposition 1 to prove Proposition
2. For brevity, let X̄i = (Xi, Yi) and β̄ = (−β, 1). Then the loss function becomes l(Xi, Yi;β) =
(β̄T X̄i)

2. We first decipher the function φγ(Xi, Yi;β) defined in Proposition 1:

φγ(Xi, Yi;β) = sup
ū∈Rd+1

{
(β̄T ū)2 − γ‖X̄i − ū‖2q .

}

To proceed further, we change the variable to ∆ = ū− X̄i, and apply Hölder’s inequality to see
that |β̄T∆| ≤ ‖β̄‖p‖∆‖q, where the equality holds for some ∆ ∈ Rd+1. Therefore,

φγ(X̄i;β) = sup
∆∈Rd+1

{ (
β̄T X̄i + β̄T∆

)2 − γ ‖∆‖2q
}

= sup
∆∈Rd+1

{(
β̄T X̄i + sign

(
β̄T X̄i

) ∣∣β̄T∆
∣∣)2 − γ ‖∆‖2q

}

= sup
∆∈Rd+1

{(
β̄T X̄i + sign

(
β̄T X̄i

)
‖∆‖q

∥∥β̄
∥∥
p

)2
− γ ‖∆‖2q

}
.
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On expanding the squares, the above expression simplifies as below:

φγ(X̄i;β) =
(
β̄T X̄i

)2
+ sup

∆∈Rd+1

{
−
(
γ −

∥∥β̄
∥∥2
p

)
‖∆‖2q + 2

∣∣β̄T X̄i

∣∣ ∥∥β̄
∥∥
p
‖∆‖q

}

=

{ (
β̄T X̄i

)2
γ/(γ −

∥∥β̄
∥∥2
p
) if γ >

∥∥β̄
∥∥2
p
,

+∞ if γ ≤
∥∥β̄
∥∥2
p
.

(28)

With this expression for φγ(Xi, Yi;β), we next investigate the right hand side of the duality rela-
tion in Proposition 1. As φγ(x, y;β) = ∞ when γ ≤ ‖β‖2p, we obtain from the dual formulation
in Proposition 1 that

sup
P:Dc(P,Pn)≤δ

EP [l(X,Y ;β)] = inf
γ≥0

{
γδ +

1

n

n∑

i=1

φγ(Xi, Yi;β)

}

= inf
γ>‖β‖2p

{
γδ +

γ

γ − ‖β̄‖2p
1

n

n∑

i=1

(β̄T X̄i)
2

}
. (29)

Now, see that
∑n

i=1(β̄
T X̄i)

2/n is nothing but the mean square error MSEn(β). Next, as the
right hand side of (29) is a convex function growing to ∞ (when γ → ∞ or γ → ‖β̄‖2p ), its
global minimizer can be characterized uniquely via first order optimality condition. This, in
turn, renders the right hand side of (29) as

sup
P:Dc(P,Pn)≤δ

EP [l(X,Y ;β)] =
(√

MSEn(β) +
√
δ‖β̄‖p

)2
.

This completes the proof of Proposition 2. �

Outline of a proof of Theorem 1. The proof of Theorem 1 is essentially the same as the proof
of Proposition 2, except for adjusting for ∞ in the definition of cost function Nq((x, y), (u, v))
when y 6= v (as in the derivation leading to φγ(Xi, Yi;β) defined in (11)). First, see that

φγ(Xi, Yi;β) = sup
x′∈Rd,y′∈R

{
(y′Tx′2 − γNq

(
(x′, y′), (Xi, Yi)

)}
.

As Nq((x
′, y′), (Xi, Yi)) = ∞ when y′ 6= Yi, the supremum in the above expression is effectively

over only (x′, y′) such that y′ = Yi. As a result, we obtain,

φγ(Xi, Yi;β) = sup
x′∈Rd

{
(Yi − βTx′2 − γNq

(
(x′, Yi), (Xi, Yi)

)}
.

= sup
x′∈Rd

{
(Yi − βTx′2 − γ‖x′ −Xi‖2q

)}
.

Now, following same lines of reasoning as in the proof of Theorem 2 and the derivation leading
to (28), we obtain

φγ(x, y;β) =

{
γ

γ−‖β‖2p
(Yi − βTXi)

2 when λ > ‖β‖2p,
+∞ otherwise.

The rest of the proof is same as in the proof of Proposition 2.
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Proof of Theorem 2. As in the proof of Proposition 2, we apply the duality formulation in
Proposition 1 to write the worst case expected log-exponential loss function as:

sup
P: Dc(P,Pn)≤δ

EP

[
l(X,Y ;β)

]
= inf

λ≥0

{
δλ+

1

n

n∑

i=1

sup
x

{
log
(
1 + exp(−Yiβ

Tx)
)
− λ ‖x−Xi‖p

}}
.

For each (Xi, Yi), following Lemma 1 in [42], we obtain

sup
x

{
log
(
1 + exp(−Yiβ

Tx)
)
− λ ‖x−Xi‖p

}
=





log
(
1 + exp(−Yiβ

TXi)
)

if ‖β‖q ≤ λ,

+∞ if ‖β‖q > λ.

Then we can write the worst case expected loss function as,

inf
λ≥0

{
δλ+

1

n

n∑

i=1

sup
x

{
log
(
1 + exp(−Yiβ

Tx)
)
− λ ‖x−Xi‖p

}}

= inf
λ≥0

{
δλ +

1

n

n∑

i=1

(
log
(
1 + exp(−Yiβ

TXi)
)
1{λ>‖β‖q} +∞1{λ≤‖β‖q}

)}

= inf
λ>‖β‖q

{
δλ+

1

n

n∑

i=1

log
(
1 + exp(−Yiβ

TXi)
)
}

=
1

n

n∑

i=1

log
(
1 + exp(−Yiβ

TXi)
)
+ δ ‖β‖q ,

which is equivalent to regularized logistic regression in the theorem statement.

For SVM with hinge loss function, let us apply the duality formulation in Proposition 1 to
write the worst case expected Hinge loss function as:

sup
P: Dc(P,Pn)≤δ

EP

[ (
1− Y βTX

)+ ]
= inf

λ≥0

{
δλ+

1

n

n∑

i=1

sup
x

{(
1− Yiβ

Tx
)+ − λ ‖x−Xi‖p

}}
.

For each i, let us consider the maximization problem and for simplicity we denote ∆i = x−Xi

sup
∆ui

{(
1− Yiβ

T (Xi +∆i)
)+ − λ ‖∆i‖p

}

= sup
∆i

sup
0≤αi≤1

{
αi

(
1− Yiβ

T (Xi +∆i)
)
− λ ‖∆i‖p

}

= sup
0≤αi≤1

sup
∆i

{
αiYiβ

T∆i − λ ‖∆i‖p + αi

(
1− Yiβ

TXi

)}

= sup
0≤αi≤1

sup
∆i

{
αi ‖β‖q ‖∆i‖p − λ ‖∆i‖p + αi

(
1− Yiβ

TXi

)}

=





(
1− Yiβ

TXi

)+
if ‖β‖q ≤ λ +∞

+∞ if ‖β‖q > λ

The first equality follows from the observation that x+ = sup0≤α≤1 x; second equality is because
the function is concave in ∆i, linear in α; as α is in a compact set, we can apply minimax theorem
to switch the order of maxima; third equality is due to applying Hölder inequality to the first
term, and since the second term only depends on the norm of ∆i, the equality holds for this
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maximization problem. For the outer minimization, it is sufficient to restrict to λ ≥ ‖β‖q. As
a result, we obtain

inf
λ≥‖β‖q

{
δλ+

1

n

n∑

i=1

(
1− Yiβ

TXi

)+
}

=
1

n

n∑

i=1

(
1− Yiβ

TXi

)+
+ δ ‖β‖q .

This completes the proof. �

A.2. Proofs of results on coverage properties.

Proof of Proposition 6. Let P̂ be a probability measure from the set,

{P : Dc(P,Pn) ≤ δ, EP

[
Dβ l(X,Y ;β∗)] = 0},

which is non-empty, because δ > Rn(β∗). Then,

inf
β∈Rd

sup
P:Dc(P,Pn)≤δ

EP [l(X,Y ;β)] ≥ inf
β∈Rd

E
P̂
[l(X,Y ;β)] = E

P̂
[l(X,Y ;β∗)] .

Moreover, since Dc(·) is symmetric in its arguments, we have Dc(P̂,Pn) ≤ δ. As a result,

EPn [l(X,Y ;β∗)]− inf
β

sup
P∈Uδ(Pn)

EP [l(X,Y ;β)] ≤ sup
P:Dc(P̂,P)≤δ

EP [l(X,Y ;β∗)]− E
P̂
[l(X,Y ;β∗)] .

(30)

On the other hand,

inf
β

sup
P∈Uδ(Pn)

EP [l(X,Y ;β)]− EPn [l(X,Y ;β∗)] ≤ sup
P:Dc(Pn,P)≤δ

EP [l(X,Y ;β∗)]− EPn [l(X,Y ;β∗)] ,

which can be bounded from above to result in the desired bound, C1δ + C2(n)1ρ=2

√
δ, by

substituting the regularized regression estimators derived in Theorem 1 (when ρ = 2) and
Theorem 2 (when ρ = 1). Likewise, repeating the proofs of Theorems 1 and 2 for the case

where the baseline distribution is set to be P̂ (instead of Pn), we obtain for any β ∈ Rd that

sup
P:Dc(P̂,P)≤δ

EP [l(X,Y ;β)]− E
P̂
[l(X,Y ;β)] = δ‖β‖p,

for the logistic regression example in Theorem 2; and

sup
P:Dc(P̂,P)≤δ

EP [l(X,Y ;β)]− E
P̂
[l(X,Y ;β)] = 2

√
δ‖β‖p

√
E
P̂
[(Y − βTX)2] + δ‖β‖2p

≤ 2
√
δ‖β‖p

√
sup

P∈Uδ(Pn)
EP [(Y − βTX)2] + δ‖β‖2p,

= 2
√
δ‖β‖p

√
EPn [(Y − βTX)2] + 3δ‖β‖2p,

for the linear regression example in Theorem 1. This verifies the upper bound for (30). �

Proof of Theorem 4. Since δ = n−ρ/2η for some η ≥ ηα, we have from the definition of ηα that,

lim
n→∞

P(Rn(β∗) > δ) = lim
n→∞

P(nρ/2Rn(β∗) > η) ≤ α,

as n → ∞. Then it follows from Proposition 6 that,
∣∣∣∣∣EPn [l(X,Y ;β∗)]− inf

β∈Rd
sup

P∈Uδ(Pn)
EP [l(X,Y ;β)]

∣∣∣∣∣ ≤ C1ηn
−ρ/2 +C2(n)

√
η1{ρ=2}n

−ρ/4,
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with probability greater than or equal to 1 − α, as n → ∞. Moreover, due to Chebyshev’s
inequality, we obtain,

|EPn [l(X,Y ;β∗)]− EP∗ [l(X,Y ;β∗)]| ≤
√

VarP∗[l(X,Y ;β∗)]
αn

,

and subsequently, C2(n)/(2‖β∗‖p) ≤
√

EP∗[l(X,Y ;β∗)] + (α−1n−1VarP∗ [l(X,Y ;β∗)])1/4, with
probability exceeding 1−α. Since EP∗[l(X,Y ;β∗)] = infβ EP∗[l(X,Y ;β)], the desired convergence
in the statement of Theorem 4 follows from triangle inequality and an application of union bound
to the above two inequalities. �

A.3. Proofs of asymptotic stochastic upper and lower bounds of RWP function in
Section 3.3. We first use Proposition 3 to derive a dual formulation for nρ/2Rn(θ∗) which will
be the starting point of our analysis. Due to Assumption A2), E[h(W, θ∗)] = 0. Combining this
observation with the positive definiteness in Assumption A4), we have that 0 lies in the interior
of convex hull of {h(u, θ∗) : u ∈ Rm} by using a supporting hyperplane argument as in the proof
of [10, Proposition 8]. Then, due to Proposition 3,

Rn(θ∗) = sup
λ∈Rr

{
− 1

n

n∑

i=1

sup
u∈Rm

{
λTh(u, θ∗)− ‖u−Wi‖ρq

}
}
.

In order to simplify the notation, throughout the rest of the proof we will write h (Wi) instead
of h (Wi, θ∗) and Dh (Wi) for Dwh (Wi, θ∗).

Letting Hn = n−1/2
∑n

i=1 h(Wi) and changing variables to ∆ = u−Wi, we obtain

Rn(θ∗) = sup
λ

{
−λT Hn

n1/2
− 1

n

n∑

i=1

sup
∆

{
λT
(
h(Wi +∆)− h(Wi)

)
− ‖∆‖ρq

}
}
.

Due to the fundamental theorem of calculus (using Assumption A3)), we have that

h (Wi +∆)− h (Wi) =

∫ 1

0
Dh (Wi + u∆)∆du.

Now, redefining ζ = λn(ρ−1)/2 and ∆ = ∆/n1/2 we arrive at following representation

nρ/2Rn(θ∗) = sup
ζ

{
−ζTHn −Mn (ζ)

}
, (31)

where

Mn (ζ) =
1

n

n∑

i=1

sup
∆

{
ζT
∫ 1

0
Dh

(
Wi + n−1/2∆u

)
∆du− ‖∆‖ρq

}
. (32)

The reformulation in (31) is our starting point of the analysis.

To proceed further, we first state a result which will allow us to apply a localization argument
in the representation of nρ/2Rn (θ∗) in (31). Recall the definition of Mn above in (32) and that

Hn = n−1/2
∑n

i=1 h(Wi).

Lemma 2. Suppose that the Assumptions A2) to A4) are in force. Then, for every ε > 0, there
exists n0 > 0 and b ∈ (0,∞) such that

P

(
sup

‖ζ‖p≥b

{
−ζTHn −Mn (ζ)

}
> 0

)
≤ ε,

for all n ≥ n0.



RWPI AND APPLICATIONS TO MACHINE LEARNING 33

Proof of Lemma 2. Recall that q > 1 and p = q/(q − 1). For ζ 6= 0, we write ζ̄ = ζ/ ‖ζ‖p. Let

us define the vector Vi

(
ζ̄
)
= Dh (Wi)

T ζ̄, and put

∆′
i = ∆′

i

(
ζ̄
)
=
∣∣Vi

(
ζ̄
)∣∣p/q sgn

(
Vi

(
ζ̄
))

. (33)

Define the set C0 = {w ∈ Rm : ‖w‖p ≤ c0}, where c0 will be chosen large enough momentarily.

Then, for any c > 0, plugging in ∆ = c∆′
i, we have ζTDh(Wi)∆ = c‖ζTDh(Wi)‖p‖∆′

i‖q, and
therefore,

sup
∆

{
ζT
∫ 1

0
Dh(Wi + n−1/2∆u)∆du− ‖∆‖ρq

}

= sup
∆

{
ζTDh(Wi)∆ − ‖∆‖ρq + ζT

∫ 1

0

[
Dh(Wi + n−1/2∆u)−Dh(Wi)

]
∆du

}

≥ max

{
c
∥∥ζTDh(Wi)

∥∥
p

∥∥∆′
i

∥∥
q
− cρ

∥∥∆′
i

∥∥ρ
q

+ cζT
∫ 1

0

[
Dh(Wi + cn−1/2∆′

iu)−Dh (Wi)
]
∆′

idu, 0

}
I (Wi ∈ C0) . (34)

Due to Hölder’s inequality,

I (Wi ∈ C0)

∣∣∣∣ζT
∫ 1

0

[
Dh(Wi + cn−1/2∆′

iu)−Dh(Wi)
]
∆′

idu

∣∣∣∣

≤ I (Wi ∈ C0) ‖ζ‖p
∫ 1

0

∥∥∥
[
Dh(Wi + cn−1/2∆′

iu)−Dh(Wi)
]
∆′

i

∥∥∥
q
du.

Because of continuity Dh (·) and the fact that Wi ∈ C0 (so the integrand is bounded), we have
that the previous expression converges to zero as n → ∞. Therefore, for given positive constants
ε′, c (note than convergence is uniform on Wi ∈ C0), there exists n0 such that for all n ≥ n0

cI (Wi ∈ C0)

∣∣∣∣ζT
∫ 1

0

[
Dh(Wi + cn−1/2∆′

iu)−Dh(Wi)
]
∆′

idu

∣∣∣∣ ≤ cε′ ‖ζ‖p . (35)

Next, as ‖ζ̄TDh(Wi)‖p/qp = ‖∆′
i‖q and 1 + p/q = p,

c
∥∥ζTDh (Wi)

∥∥
p

∥∥∆′
i

∥∥
q
− cρ

∥∥∆′
i

∥∥ρ
q
= c ‖ζ‖p ‖ζ̄TDh(Wi)‖pp − cρ‖ζ̄TDh(Wi)‖

ρ p
q

p .

Consequently, it follows from (34) and (35) that

Mn(ζ) ≥
1

n

n∑

i=1

{
c ‖ζ‖p ‖ζ̄TDh(Wi)‖pp − cρ‖ζ̄TDh(Wi)‖

ρ p
q

p − cε′‖ζ‖p
}
I (Wi ∈ C0) . (36)

Now, since the map ζ̄ →֒
∥∥ζ̄TDh(Wi)

∥∥p
p
is Lipschitz continuous on

∥∥ζ̄
∥∥
p
= 1, we conclude that,

1

n

n∑

i=1

∥∥ζ̄TDh(Wi)
∥∥p
p
I (Wi ∈ C0) →E

[∥∥ζ̄TDh (W )
∥∥p
p
I (W ∈ C0)

]
, (37)

with probability one as n → ∞. Moreover, due to Fatou’s lemma we have that the map

ζ̄ →֒ P

(∥∥ζ̄TDh (W )
∥∥
p
> 0
)

is lower semi-continuous. Therefore, by A4), we have that there

exists δ > 0 such that

inf
ζ̄
E
∥∥ζ̄TDh (W )

∥∥p
p
> δ. (38)
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Consecutively, by selecting c0 > 0 large enough, we conclude from (37) that for n ≥ N ′ (δ),

1

n

n∑

i=1

∥∥ζ̄TDh(Wi)
∥∥p
p
I (Wi ∈ C0) >

δ

2
. (39)

Further, if we let c1 := supw∈C0
‖ζ̄TDh(w)‖p/qp < ∞, then

1

n

n∑

i=1

∥∥ζ̄TDh(Wi)
∥∥ρ p

q

p
I (Wi ∈ C0) < cρ1,

for all n > N ′(δ). As a consequence, if n ≥ N ′ (δ), it follows from (36) and (39) that

sup
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
≤ sup

‖ζ‖p>b

{
−ζTHn −

(
cδ‖ζ‖p

2
− (cc1)

ρ − cε′‖ζ‖p
)}

≤ sup
‖ζ‖p>b

{
−ζTHn − ‖ζ‖p

{
c

(
δ

2
− ε′

)
− (cc1)

ρ

b

}}
.

Consequently, on the set ‖Hn‖q ≤ b′, we obtain

sup
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
≤ sup

‖ζ‖p>b
‖ζ‖p

[
b′ −

{
c

(
δ

2
− ε′

)
− (cc1)

ρ

b

}]
.

Now, if we take c > 4(b′ + 1)/δ, ε′ = δ/4 and b to be large enough such that b > (cc1)
ρ then

b′ −
{
c

(
δ

2
− ε′

)
− (cc1)

ρ

b

}
< 0.

Therefore, if n ≥ n0 (see (35)), then

P

(
max
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
> 0

)
≤ P

(
‖Hn‖q > b′

)
+ P

(
N ′ (δ) > n

)
.

The result now follows immediately from the previous inequality by choosing b′ large enough
so that P(‖Hn‖q > b′) ≤ ε/2 and later n0 so that P(N ′(δ) > n0) ≤ ε/2. The selection of b′ is
feasible due to A2). This proves the statement of Lemma 2. �

Lemma 3. For any b > 0 and c0 ∈ (0,∞) ,

1

n

n∑

i=1

∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

p
I
(
‖Wi‖p ≤ c0

)
→ E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p
I(‖W‖p ≤ c0)

]
,

uniformly over ‖ζ‖p ≤ b in probability as n → ∞.

Proof of Lemma 3. We first argue a suitable Lipschitz property for the map ζ →֒
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p
.

It is elementary that for any 0 ≤ a0 < a1 and γ > 1

aγ1 − aγ0 = γ

∫ a1

a0

tγ−1dt ≤ γaγ−1
1 (a1 − a0) .
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Applying this observation with

a1 = max
(∥∥ζT1 Dh (Wi)

∥∥
p
,
∥∥ζT0 Dh (Wi)

∥∥
p

)
,

a0 = min
(∥∥ζT1 Dh (Wi)

∥∥
p
,
∥∥ζT0 Dh (Wi)

∥∥
p

)
,

γ = ρ/(ρ− 1),

and using that
∥∥ζTDh (Wi)

∥∥
p
≤ b ‖Dh (Wi)‖p for ‖ζ‖p ≤ b, we obtain

∣∣∣
∥∥ζT0 Dh (Wi)

∥∥ρ/(ρ−1)

p
−
∥∥ζT1 Dh (Wi)

∥∥ρ/(ρ−1)

p

∣∣∣ ≤ ρ

ρ− 1
b1/(ρ−1) ‖Dh (Wi)‖ρ/(ρ−1)

p ‖ζ0 − ζ1‖p .

Consequently, we have that

∣∣∣∣∣
1

n

n∑

i=1

∥∥ζT0 Dh (Wi)
∥∥ ρ

ρ−1

p
− 1

n

n∑

i=1

∥∥ζT1 Dh (Wi)
∥∥ ρ

ρ−1

p

∣∣∣∣∣ ≤
ρ

ρ− 1
‖ζ0 − ζ1‖p

b
1

ρ−1

n

n∑

i=1

‖Dh (Wi)‖
ρ

ρ−1

p .

Since Dh(·) is continuous, E
[
‖Dh (W )‖ρ/(ρ−1)

p I(‖W‖p ≤ c0)
]
< ∞, thus yielding the tightness

of

1

n

n∑

i=1

‖ζTDh(Wi)‖ρ/(ρ−1)
p I (‖Wi‖p ≤ c0),

under the uniform topology on compact sets. The Strong Law of Large Numbers guarantees
that finite dimensional distributions converge (for any choice of ζ1, . . . , ζk, k ≥ 1), and, since
the limit is deterministic, we obtain the desired convergence in probability. �

Proof of Theorem 3. Let us first observe that Rn(θ∗) ≥ 0 (choosing ζ = 0). Then, as a
consequence of Lemma 2, there exists b > 0 such that the event

An =

{
nρ/2Rn(θ∗) = max

‖ζ‖p≤b

{
−ζTHn −Mn (ζ)

}
}
, (40)

where the outer supremum is attained at some ‖ζ∗‖p ≤ b, occurs with probability at least 1− ε,
as long as n ≥ n0. In other words, P(An) ≥ 1− ε when n ≥ n0.

We first consider the case ρ > 1. For ζ 6= 0, write ζ̄ = ζ/ ‖ζ‖p . Next, define the vector

Vi(ζ̄) via Vi

(
ζ̄
)
= Dh (Wi)

T ζ̄ (that is, the j-th entry of Vi

(
ζ̄
)
is the j-th entry of the vector

Dh (Wi)
T ζ̄), and put

∆′
i = ∆′

i

(
ζ̄
)
=
∣∣Vi

(
ζ̄
)∣∣p/q sgn

(
Vi

(
ζ̄
))

. (41)

Next, let ∆̄i = ci∆
′
i with ci chosen so that

∥∥∆̄i

∥∥
q
=

(
1

ρ

∥∥ζTDh (Wi)
∥∥
p

)1/(ρ−1)

.
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In such case we have that

max
∆

{
ζTDh (Wi)∆− ‖∆‖ρq

}
= max

‖∆‖q≥0

{∥∥ζTDh (Wi)
∥∥
p
‖∆‖q − ‖∆‖ρq

}

= ζTDh (Wi) ∆̄i −
∥∥∆̄i

∥∥ρ
q

=
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
. (42)

Pick c0 ∈ (0,∞) and define C0 = {‖Wi‖p ≤ c0}. Note that

Mn (ζ) ≥ M ′
n (ζ, c0) ,

where

M ′
n (ζ, c0) =

1

n

n∑

i=1

I (Wi ∈ C0)

{
ζT
∫ 1

0
Dh

(
Wi + n

−1/2
i ∆̄iu

)
∆̄idu−

∥∥∆̄i

∥∥ρ
q

}+

.

Therefore

max
‖ζ‖p≤b

{
−ζTHn −Mn (ζ)

}
≤ max

‖ζ‖p≤b

{
−ζTHn −M ′

n (ζ, c0)
}
. (43)

Define

M̂n (ζ, c0) =
1

n

n∑

i=1

I (Wi ∈ C0)
{
ζTDh (Wi) ∆̄idu−

∥∥∆̄i

∥∥ρ
q

}+

=
1

n

n∑

i=1

I (Wi ∈ C0)
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
,

where the equality follows from (42). We then claim that

sup
‖ζ‖q≤b

∣∣∣M̂n (ζ, c0)−M ′
n (ζ, c0)

∣∣∣→ 0. (44)

In order to verify (44), note, using the continuity of Dh (·) , that for any ε′ > 0 there exists n0

such that if n ≥ n0 then (uniformly over ‖ζ‖p ≤ b),
∣∣∣∣
∫ 1

0
I (Wi ∈ C0)

∥∥∥ζT
[
Dh(Wi + n−1/2∆̄iu)−Dh(Wi)

]∥∥∥
p

∥∥∆̄i

∥∥
q
du

∣∣∣∣ ≤ ε′.

Therefore, if n ≥ n0,

1

n

n∑

i=1

I (Wi ∈ C0)

∣∣∣∣ζT
∫ 1

0

[
Dh(Wi + n−1/2∆̄iu)−Dh(Wi)

]
∆̄idu

∣∣∣∣ ≤ ε′.

Since ε′ > 0 is arbitrary, (44) stands verified. Then, applying Lemma 3 we obtain

M̂n (ζ, c0) → E

(
ζTDh (Wi) ∆̄idu−

∥∥∆̄i

∥∥ρ
q

)+
I (Wi ∈ C0) ,

uniformly over ‖ζ‖p ≤ b as n → ∞, in probability. Therefore, applying the continuous mapping
principle, we have that

max
‖ζ‖p≤b

{
−ζTHn −M ′

n (ζ, c0)
}

⇒ max
‖ζ‖p≤b

{
−ζTH − κ (ρ)E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p
I
(
‖W‖p ≤ c0

)]}
, (45)
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as n → ∞, where

κ (ρ) =

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
,

and H ∼ N (0, Cov[h (W, θ∗)]). From (43) and the construction of (40), we can easily obtain

that nρ/2Rn (θ∗) is stochastically bounded (asymptotically) by

max
ζ

{
−ζTH − κ (ρ)E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p

]}
,

which verifies the first part of the theorem when ρ > 1.

Now, for ρ = 1, we will follow very similar steps. Again, due to Lemma 2 we concentrate
on the region ‖ζ‖p ≤ b for some b > 0. For the upper bound, define ∆′

i as in (41). Using a
localization technique similar to that described in the proof of Lemma 2 in which the set C0

as introduced we might assume that ‖Wi‖p ≤ c0 for some c0 > 0. Then, for a given constant

c > 0, setting ∆i = c∆′
i, we obtain that

max
‖ζ‖p≤b

{
−ζTHn − 1

n

n∑

i=1

sup
∆i

{
ζT
∫ 1

0
Dh(Wi +∆iu/n

1/2)∆idu− ‖∆i‖q
}}

≤ max
‖ζ‖p≤b

{
−ζTHn − 1

n

n∑

i=1

(
cζT

∫ 1

0
Dh(Wi + c∆′

iu/n
1/2)∆′

idu− c
∥∥∆′

i

∥∥
q

)
I (Wi ∈ C0)

}
.

As in the case ρ > 1 we have that

1

n

n∑

i=1

I(Wi ∈ C0)

∫ 1

0
ζT
[
Dh(Wi + c∆′

iu/n
1/2)−Dh(Wi)

]
∆′

idu → 0

in probability uniformly on ζ-compact sets. Similarly, in addition, for any c > 0 and any b > 0

max
‖ζ‖p≤b

{
−ζTHn − 1

n

n∑

i=1

(
cζTDh(Wi)∆

′
idu− c

∥∥∆′
i

∥∥
q

)
I (Wi ∈ C0)

}

= max
‖ζ‖≤b

{
−ζTHn − 1

n

n∑

i=1

c
(∥∥ζTDh (W )

∥∥
p
− 1
)+

‖∆′
i‖qI(‖Wi‖p ≤ c0)

}

⇒ max
‖ζ‖≤b

{
−ζTH − cE

[(∥∥ζTDh (W )
∥∥
p
− 1
)+

‖ζ̄TDh(W )‖p/qp I(‖W‖p ≤ c0)

]}
,

because ‖∆′‖qq = ‖ζ̄TDh(Wi)‖pp. Next, as the constant c can be arbitrarily large, we obtain a
stochastic upper bound of the form

max
‖ζ‖≤b:P(‖ζTDh(W )‖p≤1)=1

{
−ζTH

}
≤ max

ζ:P(‖ζTDh(W )‖p≤1)=1

{
−ζTH

}
.

This completes the proof of Theorem 3. �

Proof of Proposition 4. We follow the notation introduced in the proof of Theorem 3. Recall
from (31) and (32) that

n1/2Rn (θ∗) = sup
ζ

{
ζTHn − 1

n

n∑

k=1

sup
∆

{∫ 1

0
ζTDh

(
Wi +∆u/n1/2

)
∆du− ‖∆‖q

}}
.
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Let A := {ζ : esssup
∥∥ζTDh (w)

∥∥
p
≤ 1}, where the essential supremum is taken with respect

to the Lebesgue measure. Then, due to Hölder’s inequality, if ζ ∈ A,

sup
∆

{∫ 1

0
ζTDh

(
Wi +∆u/n1/2

)
∆du− ‖∆‖q

}

≤ sup
∆

{∫ 1

0

∥∥∥ζTDh
(
Wi +∆u/n1/2

)∥∥∥
p
‖∆‖q du− ‖∆‖q

}

≤ sup
∆

‖∆‖q
{∫ 1

0

(∥∥∥ζTDh
(
Wi +∆u/n1/2

)∥∥∥
p
− 1

)
du

}
≤ 0.

Consequently,

n1/2Rn (θ∗) ≥ sup
ζ∈A

ζTHn.

Letting n → ∞ we conclude that

sup
ζ∈A

ζTHn ⇒ sup
ζ∈A

ζTH.

Because Wi is assumed to have a density with respect to the Lebesgue measure it follows that

P

(∥∥ζTDh (Wi)
∥∥
p
≤ 1
)
= 1 if and only if ζ ∈ A and the result follows. �

Finally, we provide the proof of Proposition 5.

Proof of Proposition 5. Recall from (31) and (32) that

n1/2Rn (θ∗) = sup
ζ

{
ζTHn − 1

n

n∑

k=1

sup
∆

{∫ 1

0
ζTDh

(
Wi +∆u/n1/2

)
∆du− ‖∆‖ρq

}}
. (46)

As in the proof of Theorem 3, due to Lemma 2, we might assume that ‖ζ‖p ≤ b for some b > 0.

The strategy will be to split the inner supremum in values of ‖∆‖q ≤ δn1/2 and values

‖∆‖q > δn1/2 for a suitably small positive constant δ. In Step 1, we shall show that the
supremum is achieved with high probability in the former region. Then, in Step 2, we analyze
the region in which ‖∆‖q ≤ δn1/2 and argue that the integrals inside the summation in (46)

can be replaced by ζTDh (Wi)∆. Once this substitution is performed we can solve the inner
maximization problem explicitly in Step 3 and, finally, we will apply a weak convergence result
on ζ-compact sets to conclude the result. We now proceed to execute this strategy.

Execution of Step 1: Pick δ > 0 small, to be chosen in the sequel, then note that A5) implies
(by redefining κ if needed, due to the continuity of Dh (·)) that

‖Dh (w)‖p ≤ κ
(
1 + ‖w‖ρ−1

q

)
.

Therefore, for ζ such that ‖ζ‖p ≤ b,

sup
‖∆‖q≥δn1/2

{∫ 1

0

∣∣∣ζTDh
(
Wi +∆u/n1/2

)
∆
∣∣∣ du− ‖∆‖ρq

}

≤ sup
‖∆‖q≥δn1/2

{
bκ

(
1 +

∫ 1

0

∥∥∥Wi +∆u/n1/2
∥∥∥
ρ−1

q
du

)
‖∆‖q − ‖∆‖ρq

}
.
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Note that if ρ ∈ (1, 2), then 0 < ρ−1 < 1, and therefore by the triangle inequality and concavity

∥∥∥Wi +∆u/n1/2
∥∥∥
ρ−1

q
≤
(
‖Wi‖q +

∥∥∥∆/n1/2
∥∥∥
q

)ρ−1

≤ ‖Wi‖ρ−1
q +

∥∥∥∆/n1/2
∥∥∥
ρ−1

q
.

On the other hand, if ρ ≥ 2, then ρ− 1 ≥ 1 and the triangle inequality combined with Jensen’s
inequality applied as follows:

‖a+ c‖ρ−1 ≤ 2ρ−1

(
1

2
‖a‖ρ−1 +

1

2
‖c‖ρ−1

)
= 2ρ−2

(
‖a‖ρ−1 + ‖c‖ρ−1

)
,

yields
∥∥∥Wi +∆u/n1/2

∥∥∥
ρ−1

q
≤ 2ρ−2

(
‖Wi‖ρ−1

q +
∥∥∥∆/n1/2

∥∥∥
ρ−1

q

)
.

So, in both cases we can write

sup
‖∆‖q≥δn1/2

{∫ 1

0

∣∣∣ζTDh(Wi +∆u/n1/2)∆
∣∣∣ du− ‖∆‖ρq

}

≤ sup
‖∆‖q≥δn1/2

{
bκ

(
1 + 2ρ−1

(
‖Wi‖ρ−1

q +
∥∥∥∆/n1/2

∥∥∥
ρ−1

q

))
‖∆‖q − ‖∆‖ρq

}

≤ sup
‖∆‖q≥δn1/2

{
bκ
(
‖∆‖q + 2ρ−1 ‖Wi‖ρ−1

q ‖∆‖q + 2ρ−1 ‖∆‖ρq /n(ρ−1)/2
)
− ‖∆‖ρq

}
.

Next, as E‖Wn‖ρ < ∞, we have that for any ε′ > 0,

P

(
‖Wn‖ρq ≥ ε′n i.o.

)
= 0,

therefore we might assume that there exists n0 such that for all i ≤ n and n ≥ n0, ‖Wi‖ρ−1
q ≤

(ε′n)(ρ−1)/ρ. Therefore, if (ε′)(ρ−1)/ρ ≤ δρ−1/ (bκ2ρ), we conclude that if ‖∆‖q ≥ δn1/2 and
n > n0,

bκ2ρ−1 ‖Wi‖ρ−1
q ‖∆‖q ≤ bκ2ρ−1

(
ε′n
)(ρ−1)/ρ ‖∆‖q

≤ 1

2
δρ−1n(ρ−1)/ρ ‖∆‖q ≤

1

2
‖∆‖ρq .

Similarly, choosing n sufficiently large we can guarantee that

bκ
(
‖∆‖q + 2ρ−1 ‖∆‖ρq /n(ρ−1)/ρ

)
≤ 1

2
‖∆‖ρq .

Therefore, we conclude that for any fixed δ > 0,

sup
‖∆‖q≥δ

√
n

{∫ 1

0

∣∣∣ζTDh(Wi +∆u/n1/2)∆
∣∣∣ du− ‖∆‖ρq

}
≤ 0 (47)

provided n is large enough, thus achieving the desired result over the region ‖∆‖q ≥ δ
√
n.
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Execution of Step 2: Next, we let ε′′ > 0, and note that

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζTDh(Wi +∆u/n1/2)∆du− ‖∆‖ρq

}
(48)

≤ sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh(Wi +∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}

+ sup
‖∆‖q≤δ

√
n

{
ζTDh (Wi)∆− (1− ε′′) ‖∆‖ρq

}
.

We now argue locally, using A6), a bound for the first term in the right hand side of (48):

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh(Wi +∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
(49)

≤ sup
‖∆‖q≤δ

√
n

{
‖ζ‖pκ̄ (Wi) ‖∆‖2q /n1/2 − ε′′ ‖∆‖ρq

}

≤ sup
‖∆̄‖

q
≤1

{
bκ̄ (Wi)

∥∥∆̄
∥∥2
q
δ2n1/2 − ε′′

∥∥∆̄
∥∥ρ
q

(
δn1/2

)ρ}
.

As supx∈[0,1]
{
anx

2 − bnx
ρ
}
≤ (ρ− 2)+(aρn/b2n)

1/(ρ−2)/ρ when bn > an, we have, for all n suffi-
ciently large, that

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh(Wi +∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
≤ (ρ− 2)+

ρ

(
bκ̄(Wi)

ε′′
√
n

)ρ/(ρ−2)

.

Since E[κ̄(W )2] < ∞ (from Assumption A6)), we have that P(κ̄(Wi) > ε′′′
√
i i.o.) = 0 for any

ε′′′ > 0. Consecutively, κ̄(Wi) < ε′′′
√
i for all i large enough, and therefore,

limn→∞
1

n

n∑

i=1

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh

(
Wi +∆u/n1/2

)
−Dh (Wi)

]
∆du− ε′′ ‖∆‖ρq

}

≤ (ρ− 2)+

ρ
limn→∞

(
b

ε′′

)ρ/(ρ−2) 1

n

n∑

i=1

(
κ̄(Wi)√

n

)ρ/(ρ−2)

≤ (ρ− 2)+

ρ

(
b
ε′′′

ε′′

)ρ/(ρ−2)

,

which can be made arbitrarily small by choosing ε′′′ arbitrarily small. Therefore, for any fixed
ε′′, δ > 0,

limn→∞
1

n

n∑

i=1

sup
‖∆‖q≤δ

√
n

{∫ 1

0
ζT
[
Dh

(
Wi +∆u/n1/2

)
−Dh (Wi)

]
∆du− ε′′ ‖∆‖ρq

}
= 0. (50)
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Execution of Step 3: Next, it follows from (47), (48) and (50) that for any fixed ε′′, δ > 0, there
exists N0 such that if n ≥ N0,

1

n

n∑

i=1

sup
∆

{∫ 1

0
ζTDh

(
Wi +∆u/n1/2

)
∆du− ‖∆‖ρq

}

≤ 1

n

n∑

i=1

sup
∆≤δ

√
n

{
ζTDh (Wi)∆du− (1− ε′′) ‖∆‖ρq

}
+ δ

≤ 1

n

n∑

i=1

min
{
κ
(
ρ, ε′′

) ∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

p
, cn

}
+ δ,

where

κ
(
ρ, ε′′

)
=

(
1

ρ(1− ε′′)

)1/(ρ−1)(
1− 1

ρ

)
,

and cn → ∞ as n → ∞ (the exact value of cn is not important).

Next, note that A5) implies that

‖Dh (Wi)‖ρ/(ρ−1)
p I (‖Wi‖ ≥ 1) ≤ κI (‖Wi‖ ≥ 1) ‖Wi‖ρq ≤ κ ‖Wi‖ρq

and, therefore, since Dh (·) is continuous (therefore locally bounded) and E ‖Wi‖ρq < ∞ also by

A5), we have that

E ‖Dh (W )‖ρ/(ρ−1)
p < ∞.

Then, an argument similar to Lemma 3 shows that

sup
‖ζ‖p≤b

{
ζTHn − 1

n

n∑

i=1

{
κ
(
ρ, ε′′

) ∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

q
, cn

}}

⇒ sup
‖ζ‖p≤b

{
ζTH − κ

(
ρ, ε′′

)
E
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

q

}
,

as n → ∞ (where ⇒ denotes weak convergence). Finally, we can send ε′′, δ → 0 and b → ∞ to
obtain the desired asymptotic stochastic lower bound. �

A.4. Proofs of RWP function limit theorems for linear and logistic regression ex-
amples. We first obtain the dual formulation of the respective RWP functions for linear and
logistic regressions using Proposition 3. Let E[h(x, y;β)] = 0 be the estimating equation under
consideration (h(x, y;β) = (y − βTx)x for linear regression and h(x, y;β) as in (27) for logistic
regression). Recall that the cost function is c(·) = Nq(·). Due to the duality result in Proposition
3, we obtain

Rn(β∗) = inf
{
Dc(P,Pn) : EP[h(X,Y ;β∗)] = 0

}

= sup
λ

{
− 1

n

n∑

i=1

sup
(x′,y′)

{
λTh(x′, y′;β∗)−Nq

(
(x′, y′), (Xi, Yi)

)}
}
.

As Nq((x
′, y′), (Xi, Yi)) = ∞ when y′ 6= Yi, the above expression simplifies to,

Rn(β∗) = sup
λ

{
− 1

n

n∑

i=1

sup
x′

{
λTh(x′, Yi;β∗)− ‖x′ −Xi‖ρq

}
}
, (51)

where ρ = 2 for the case of linear regression (Theorem 5) and ρ = 1 for the case of logistic
regression (Theorem 6). As RWP function here is similar to the RWP function for general
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estimating equation in Section 3.3, a similar limit theorem holds. We state here the assumptions
for proving RWP limit theorems for the dual formulation in (51).

Assumptions:
A2’) Suppose that β∗ ∈ Rd satisfies E[h(X,Y ;β∗)] = 0 and E‖h(X,Y ;β∗)‖22 < ∞ (While we do
not assume that β∗ is unique, the results are stated for a fixed β∗ satisfying E[h(X,Y ;β∗)] = 0.)

A4’) Suppose that for each ξ 6= 0, the partial derivative Dxh(x, y;β∗) satisfies,

P

(∥∥ξTDxh(X,Y ;β∗)
∥∥
p
> 0
)
> 0.

A6’) Assume that there exists κ̄ : Rm → ∞ such that

‖Dxh(x+∆, y;β∗)−Dxh(x, y;β∗)‖p ≤ κ̄(x, y)‖∆‖q,
for all ∆ ∈ Rd, and E[κ̄(X,Y )2] < ∞.

Lemma 4. If ρ ≥ 2, under Assumptions A2’), A4’) and A6’), we have,

nRn(β∗; ρ) ⇒ R̄(ρ),

where

R̄(ρ) = sup
ξ∈Rd

{
ρξTH − (ρ− 1)E

∥∥ξTDxh(X,Y ;β∗)
∥∥ρ/(ρ−1)

p

}
,

with H ∼ N (0,Cov[h(X,Y ;β∗)] and 1/p + 1/q = 1.

Lemma 5. If ρ = 1, in addition to assuming A2’), A4’), suppose that Dxh(·, y;β∗) is continuous
for every y in the support of probability distribution of Y. Also suppose that X has a positive
probability density (almost everywhere) with respect to the Lebesgue measure. Then,

nRn(β∗; 1) ⇒ R̄(1),

where

R̄(1) = sup
ξ:P(‖ξTDxh(X,Y ;β∗)‖p>1)=0

{
ξTH

}
,

with H ∼ N (0,Cov[h(X,Y ;β∗]).

The proof of Lemma 4 and 5 follows closely the proof of our results in Section 3 and therefore
it is omitted. We prove Theorem 5 and 6 as a quick application of these lemmas.

Proof of Theorem 5. To show that the RWP function dual formulation in (51) converges in
distribution, we verify the assumptions of Lemma 4 with h(x, y;β) = (y − βTx)x. Under the
null hypothesis H0, Y − βT

∗ X = e is independent of X, has zero mean and finite variance σ2.
Therefore,

E [h(X,Y ;β)] = E [eX] = 0, and

E‖h(X,Y ;β)‖22 = E
[
e2XTX

]
= σ2E‖X‖22,

which is finite, because trace of the covariance matrix Σ is finite. This verifies Assumption A2’).
Further,

Dxh(X,Y ;β∗) =
(
y − βT

∗ X
)
Id −XβT

∗ = eId −XβT
∗ ,

where Id is the d× d identity matrix. For any ξ 6= 0,

P
(
‖ξTDxh(X,Y ;β∗)‖p = 0

)
= P

(
eξ = (ξTX)β

)
= 0,
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thus satisfying Assumption A4’) trivially. In addition,

‖Dxh(x+∆, y;β∗)−Dxh(x, y;β∗)‖p =
∥∥βT

∗ ∆Id −∆βT
∗
∥∥
p
≤ c‖∆‖q,

for some positive constant c. This verifies Assumption A6’). As all the assumptions imposed in
Lemma 4 are easily satisfied, using ρ = 2, we obtain the following convergence in distribution
as a consequence of Lemma 4.

Rn(β∗) ⇒ sup
ξ∈Rd

{
2ξTH − E

∥∥eξ − (ξTX)β∗
∥∥2
p

}
,

as n → ∞. Here, H ∼ N (0,Cov[h(X,Y ;β∗)]. As Cov[h(X,Y ;β∗)] = E
[
e2XXT

]
= σ2Σ, if we

let Z = H/σ, we obtain the limit law,

L1 = sup
ξ∈Rd

{
2σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2
p

}
,

where Z = N (0,Σ), as in the statement of the theorem.

Proof of the stochastic upper bound in Theorem 5: For the stochastic upper bound, let us
consider the asymptotic distribution L1 and rewrite the maximization problem as,

L1 = sup
‖ξ‖p=1

sup
α≥0

{
2σαξTZ − α2E

∥∥eξ − (ξTX)β∗
∥∥2
p

}

≤ sup
‖ξ‖p=1

sup
α≥0

{
2σα ‖Z‖q − α2E

∥∥eξ − (ξTX)β∗
∥∥2
p

}
,

because of Hölder’s inequality. By solving the inner optimization problem in α, we obtain

L1 ≤ sup
‖ξ‖p=1

σ2 ‖Z‖2q
E ‖eξ − (ξTX)β∗‖2p

=
σ2 ‖Z‖2q

inf‖ξ‖p=1 E ‖eξ − (ξTX)β∗‖2p
. (52)

Next, consider the minimization problem in the denominator: Due to triangle inequality,

inf
‖ξ‖p=1

E
∥∥eξ − (ξTX)β∗

∥∥2
p
≥ inf

‖ξ‖p=1
E

(
|e| ‖ξ‖p −

∣∣ξTX
∣∣ ‖β∗‖p

)2

= E |e|2 + inf
‖ξ‖p=1

{
‖β∗‖2p E

∣∣ξTX
∣∣2 − 2 ‖β∗‖p E |e|E

∣∣ξTX
∣∣
}

≥ E |e|2 + inf
‖ξ‖p=1

{
‖β∗‖2p

(
E
∣∣ξTX

∣∣)2 − 2 ‖β∗‖p E |e|E
∣∣ξTX

∣∣
}

= E |e|2 − (E |e|)2 + inf
‖ξ‖p=1

(
‖β∗‖p E

∣∣ξTX
∣∣− E |e|

)2

≥ E |e|2 − (E |e|)2 = Var [|e|] .
Combining the above inequality with (52), we obtain,

sup
ξ∈Rd

{
σ2ξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2
p

}
≤

σ2 ‖Z‖2q
Var |e| .

Consequently,

nRn(β∗)
D−→ L1 := max

ξ∈Rd

{
σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2
p

} D
≤ E[e2]

E[e2]− (E |e|)2 ‖Z‖2q .
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If random error e is normally distributed, then

nRn(β∗) .D
π

π − 2
‖Z‖2q ,

thus establishing the desired upper bound. �

Proof of Theorem 6. Under null hypothesis H0, the training samples (X1, Y1), . . . , (Xn, Yn) are
produced from the logistic regression model with parameter β∗. As β∗ minimizes the expected
log-exponential loss l(x, y;β), the corresponding optimality condition is E[h(X,Y ;β∗)] = 0,
where

h(x, y;β∗) =
−yx

1 + exp(yβ∗x)
.

As E‖h(X,Y ;β∗)‖22 ≤ E‖X‖22 is finite, Assumption A2’) is satisfied. Let Id denote d×d identity
matrix. While

Dxh(x, y;β∗) =
−yId

1 + exp(yβT∗ x)
+

xβT
∗

(1 + exp(yβT∗ x))(1 + exp(−yβT∗ x))

is continuous (as a function of x) for every y, it is also true that

P
(∥∥ξTDxh(X,Y ;β∗)

∥∥
p
= 0
)
= P

(
Y
(
1 + exp(−Y βT

∗ X)
)
ξ = (ξTX)β

)
= 0,

for any ξ 6= 0, thus satisfying Assumption A4’). As all the conditions required for the conver-
gence in distribution in Lemma 5 are satisfied, we obtain,

√
nRn(β∗) ⇒ sup

ξ∈A
ξTZ,

where Z ∼ N (0,E[XXT /(1 + exp(Y βT
∗ X))2]) as a consequence of Lemma 5. Here, the set

A = {ξ ∈ Rd : ess sup‖ξTDxh(X,Y ;β∗)‖ ≤ 1}.
Proof of the stochastic upper bound in Theorem 6: First, we claim that A is a subset of the
norm ball {ξ ∈ Rd : ‖ξ‖p ≤ 1}. To establish this, we observe that,

∥∥ξTDxh(X,Y ;β∗)
∥∥
p
≥
∥∥∥∥

−Y ξ

1 + exp(Y βT∗ X)

∥∥∥∥
p

−
∥∥∥∥∥

(ξTX)β∗(
1 + exp(Y βT∗ X)

)(
1 + exp(Y βT∗ X)

)
∥∥∥∥∥
p

≥
(

1

1 + exp(Y βT∗ X)
− ‖X‖q‖β∗‖p(

1 + exp(Y βT∗ X)
)(
1 + exp(−Y βT∗ X)

)
)
‖ξ‖p,

(53)

because Y ∈ {+1,−1}, and due to Hölder’s inequality |ξTX| ≤ ‖ξ‖p‖X‖q. If ξ ∈ Rd is such that

‖ξ‖p = (1− ǫ)−2 > 1 for a given ǫ > 0, then following (53), ‖ξTDxh(X,Y )‖p > 1, whenever

(X,Y ) ∈ Ωǫ :=

{
(x, y) :

‖x‖q‖β∗‖p
1 + exp(−yβT∗ x)

≤ ǫ

2
,

1

1 + exp(yβT∗ x)
≥ 1− ǫ

2

}
.

Since X has positive density almost everywhere, the set Ωǫ has positive probability for every
ǫ > 0. Thus, if ‖ξ‖p > 1, ‖ξTDxh(X,Y ;β∗)‖p > 1 with positive probability. Therefore, A is a
subset of {ξ : ‖ξ‖p ≤ 1}. Consequently,

L3 := sup
ξ∈A

ξTZ
D
≤ sup

ξ:‖ξ‖p≤1
ξTZ = ‖Z‖q.
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If we let Z̃ ∼ N (0,E[XXT ]), then Cov[Z̃] − Cov[Z] is positive definite. As a result, L3 is

stochastically dominated by L4 := ‖Z̃‖q, thus verifying the desired stochastic upper bound in
the statement of Theorem 6. �

Proof of Theorem 7. Instead of characterizing the exact weak limit, we will find a stochastic
upper bound for Rn(β∗). The RWP function, as in the proof of Theorem 5, admits the following
dual representation (see (51)):

Rn(β∗) = sup
λ

{
− 1

n

n∑

i=1

sup
x′

{
λT (Yi − βT

∗ x
′)x′ − ‖x′ −Xi‖2∞

}
}

= sup
λ

{
−λT Zn√

n
− 1

n

n∑

i=1

sup
∆

{
eiλ

T∆− (βT
∗ ∆)(λTXi)−

(
‖∆‖2∞ + (βT

∗ ∆)(λT∆)
)}
}
,

where Zn = n−1/2
∑n

i=1 eiXi, ei = Yi − βT
∗ Xi. In addition, we have changed the variable from

x′ −Xi = ∆. If we let ζ =
√
nλ, then

nRn(β∗) = sup
ζ

{
−ζTZn − 1√

n

n∑

i=1

sup
∆

{
eiζ

T∆− (βT
∗ ∆)(ζTXi)−

(√
n‖∆‖2∞ + (βT

∗ ∆)(ζT∆)
)}
}

≤ sup
ζ

{
−ζTZn − 1√

n

n∑

i=1

sup
‖∆‖∞

{∥∥eiζT − (ζTXi)β
T
∗
∥∥
1
‖∆‖∞ −√

n

(
1 +

‖β∗‖1‖ζ‖1√
n

)
‖∆‖2∞

}}
,

where we have used Hölder’s inequality thrice to obtain the upper bound. If we solve the inner
supremum over the variable ‖∆‖, we obtain,

nRn(β∗) ≤ sup
ζ

{
−ζTZn − 1√

n

n∑

i=1

∥∥eiζ − (ζTXi)β∗
∥∥2
1

4
√
n
(
1 + ‖β∗‖1‖ζ‖1n−1/2

)
}

≤ sup
a≥0

sup
ζ:‖ζ‖1=1

{
−aζTZn − a2

4
(
1 + a‖β∗‖1n−1/2

) 1
n

n∑

i=1

∥∥eiζ − (ζTXi)β∗
∥∥2
1

}
,

where we have split the optimization into two parts: one over the magnitude (denoted by a), and
another over all unit vectors ζ. Further, due to Hölder’s inequality, we have |ζTZn| ≤ ‖Zn‖∞ as

‖ζ‖1 = 1. Therefore, letting c1(n) = ‖Zn‖∞, c2(n) = infζ:‖ζ‖1=1
1
n

∑n
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2
1
and

c3(n) = 1 + a‖β‖21n−1/2, observe that

nRn(β∗) ≤ sup
a≥0

{
c1(n)a− c2(n)

4c3(n)
a2
}

=
c21(n)

c2(n)
(1 + o(1)) =

‖Zn‖2∞(1 + o(1))

inf{ζ:‖ζ‖1=1}
1
n

∑n
i=1 ‖eiζ − (ζTXi)β∗‖21

.

Since
∥∥eiζ − (ζTXi)β∗

∥∥2
1
≥
(
|ei| ‖ζ‖1 −

∣∣ζTXi

∣∣ ‖β∗‖1
)2

, the denominator, c2(n), can be lower
bounded as follows:

c2(n) := inf
ζ:‖ζ‖1=1

EPn

∥∥eζ − (ζTX)β∗
∥∥2
1
≥ inf

ζ:‖ζ‖1=1
EPn

[(
|e| − |ζTX|‖β∗‖1

)2]

≥ EPn

[
inf

ζ:‖ζ‖1=1
EPn

[(
|e| − |ζTX|‖β∗‖1

)2 |X
]]

≥ EPn

[
inf
c∈R

EPn

[
(|e| − c)2 |X

]]
.

Since ei and Xi are independent and minc E[(Z − c)2] = Var[Z] for any random variable Z, we

obtain that c2(n) ≥ Varn|e|. Therefore nRn(β∗) ≤ ‖Zn‖2∞ (1 + o(1))/Varn |e|. �
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Appendix B. Strong duality for the linear semi-infinite program resulting

from the RWP function

In the main body of the paper, we have utilized strong duality of linear semi-infinite programs
to derive a dual representation of the RWP function in order to perform asymptotic analysis (see
Proposition 3). Establishing strong duality in this context relies on the following well-known
result on problem of moments ([23, 30]).

The problem of moments. Let Ω be a nonempty Borel measurable subset of Rm, which, in
turn, is endowed with the Borel sigma algebra BΩ. Let X be a random vector taking values in
the set Ω, and f = (f1, . . . , fk) : Ω → Rk be a vector of moment functionals. Let PΩ and M+

Ω
denote, respectively, the set of probability and non-negative measures, respectively on (Ω,BΩ)
such that the Borel measurable functionals φ, f1, f2, . . . , fk, defined on Ω, are all integrable.
Given a real vector q = (q1, . . . , qk), the objective of the problem of moments is to find the
worst-case bound,

v(q) := sup
{
Eµ[φ(X)] : Eµ[f(X)] = q, µ ∈ PΩ

}
. (54)

If we let f0 = 1Ω, it is convenient to add the constraint, Eµ[f0(X)] = 1, by appending

f̃ = (f0, f1, . . . , fk), q̃ = (1, q1, . . . , qk), and consider the following reformulation of the above
problem:

v(q) := sup

{∫
φ(x)dµ(x) :

∫
f̃(x)dµ(x) = q̃, µ ∈ M+

Ω

}
. (55)

Then, under the assumption that a certain Slater’s type of condition is satisfied, one has the
following equivalent dual representation for the moment problem (55). See Theorem 1 (and the
discussion of Case [I] following Theorem 1) in [23] for a proof of the following result:

Proposition 7. Let Qf̃ =
{ ∫

f̃(x)dµ(x) : µ ∈ M+
Ω

}
. If q̃ = (1, q1, . . . , qk) is an interior point

of Qf̃ , then

v(q) = inf

{
k∑

i=0

aiqi : ai ∈ R,

k∑

i=0

aif̃i(x) ≥ φ(x) for all x ∈ Ω

}
.

In the rest of this section, we recast the dual reformulation of RWP function (in (3)) and the
dual reformulation of the distributional representation in Proposition 1 as particular cases of
the dual representation of the problem of moments in Proposition 7.

Dual representation of RWP function. Recall from Section 3.2 that W is a random vector
taking values in Rm and h(·, θ) is Borel measurable.

Proof of Proposition 3. For simplicity, we do not write the dependence on parameter θ in h(u, θ)
and Rn(θ) in this proof; nevertheless, we should keep in mind that the RWP function is a
function of parameter θ. Given estimating equation E[h(W )] = 0, recall the definition of the
corresponding RWP function,

Rn := inf
{
Dc(P,Pn) : EP

[
h(W )

]
= 0

}

= inf
{
Eπ

[
c(U,W )

]
: Eπ

[
h(U)

]
= 0, π

W
= Pn, π ∈ P(Rm × Rm)

}
,

where π
W

denotes the marginal distribution of W and Pn is the empirical distribution formed
from distinct samples {W1, . . . ,Wn}. To recast this as a problem of moments as in (54), let
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Ω = {(u,w) ∈ Rm × {W1, . . . ,Wn} : c(u,w) < ∞},

f(u,w) =




1
{w=W1}

(u,w)

1
{w=W2}

(u,w)
...

1
{w=Wn}

(u,w)

h(u)




and q =




1/n
1/n
...

1/n
0



.

Further, let φ(u,w) = −c(u,w), for all (u,w) ∈ Ω. Then,

Rn = − sup
{
Eπ

[
φ(U,W )

]
: Eπ

[
f(U,W )

]
= q, π ∈ PΩ

}
,

is of the same form as (54). Since the constraints Eπ[1{w=Wi}(U,W )] = 1/n, for i = 1, . . . , n,
together specify that Pπ(Ω) = 1, the constraint that Eπ[1Ω(U,W )] = 1 is redundant. Moreover,
as {0} lies in the interior of convex hull of the range {h(u) : (u,w) ∈ Ω}, observe that the set
Qf := {

∫
fdµ : µ ∈ M+

Ω} is simply Rn
+ × R. Then it is immediate that the Slater’s condition

q ∈ int(Qf ) is satisfied for the moment problem,

Rn = − sup

{∫
φ(u,w)dµ(u,w) :

∫
f(u,w)dµ(u,w) = q, µ ∈ M+

Ω

}
.

Consequently, we obtain the following dual representation of Rn due to Proposition 7:

Rn = − inf
ai∈R

{
1

n

n∑

i=1

ai :

n∑

i=1

ai1{w=Wi}
(u,w) +

k∑

i=n+1

aihi(u) ≥ −c(u,w), for all (u,w) ∈ Ω

}

= − inf
ai∈R

{
1

n

n∑

i=1

ai : ai ≥ sup
u:c(u,Wi)<∞

{
−c(u,Wi)−

k∑

i=n+1

aihi(u)

}}
.

As the inner supremum is not affected even if we take supremum over {u : c(u,Wi) = ∞}, after
letting λ = (an+1, . . . , ak) for notational convenience, we obtain

Rn = sup
λ

{
1

n

n∑

i=1

inf
u∈Rm

{
c(u,Wi) + λTh(u)

}
}
. (56)

As λ is a free variable, we flip the sign of λ to arrive at the statement of Proposition 3. This
completes the proof. �

Appendix C. Exchange of sup and inf in the DRO formulation (8)

The inf-sup exchange in Proposition 8 below is obtained by suitably modifying the inf-sup
exchange in [10, Theorem 2] and its proof to accommodate more relaxed assumptions than in
[10]. The sequence of steps in the proof of Proposition 8 is similar to that of [10, Theorem 2]
and is given here for completeness.

Proposition 8. For a given probability distribution Q, define

g(β) := sup
P:Dc(P,Q)≤ δ

EP

[
l
(
X,Y ;β

)]
,

for β ∈ Rd. Suppose that g(·) is real-valued and the level set {β ∈ Rd : g (β) ≤ b} is bounded for
every b ∈ R. In addition, suppose that EP

[
l
(
X,Y ;β

)]
is convex and lower semicontinuous in

the variable β, for every P ∈ Uδ(Q) := {P : Dc(P,Q) ≤ δ}. Then,
inf
β∈Rd

sup
P:Dc(P,Q)≤δ

EP

[
l
(
X,Y ;β

)]
= sup

P:Dc(P,Q)≤δ
inf
β∈Rd

EP

[
l
(
X,Y ;β

)]
.
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Proof. We begin by defining the sequence of approximation problems,

gN (β) := sup
P∈UN

δ (Q)

EP

[
l
(
X,Y ;β

)]
,

where N = 1, 2, . . . , and

UN
δ (Q) = {P ∈ P(KN ) : Dc(P,Q) ≤ δ} ,

with P(KN ) denoting the set of probability distributions over the set KN := {x : ‖x‖2 ≤ N} .
Then, due to the compactness of the set UN

δ (Q), we obtain

inf
β∈Rd

gN (β) = inf
β∈Rd

sup
P∈UN

δ (Q)

EP

[
l
(
X,Y ;β

)]
= sup

P∈UN
δ (Q)

inf
β∈Rd

EP

[
l
(
X,Y ;β

)]
,

as a consequence of Sion’s minimax theorem [45]. Therefore, with gN (·) being an increasing
sequence of functions, we have

lim
N→∞

inf
β∈Rd

gN (β) = sup
N≥1

inf
β∈Rd

gN (β) = sup
N≥1

sup
P∈UN

δ (Pn)

inf
β∈Rd

EP

[
l
(
X,Y ;β

)]

≤ sup
P∈Uδ(Q)

inf
β∈Rd

EP

[
l
(
X,Y ;β

)]
≤ inf

β∈Rd
sup

P∈Uδ(Q)
EP

[
l
(
X,Y ;β

)]
(57)

= inf
β∈Rd

g(β).

The rest of the proof is divided into three technical steps:

Step 1: In this step, we show that the sequence of functions {g
N
(·) : N ≥ 1} converges

pointwise to the function g(·), as N → ∞. Since gN (β) is increasing in N, we have that gN (β)
converges as N → ∞, for every β. Let the function g∗(·) denote the pointwise limit, g∗(·) =
limN→∞ gN (·). With gN (·) ≤ g(·) for every N, we have g∗(β) ≤ g(β). Since g(·) is real-valued,
we consequently have g∗(β) ≤ g(β) < +∞, for every β ∈ Rd.

To show that g∗(β) necessarily equals g(β) for every β, we argue via contradiction as follows:
Suppose that ε := g(β) − g∗(β) > 0 for some β ∈ Rd. Consider any P′ ∈ Uδ(Pn) such that
EP′ [l(X,Y ;β)] ∈ (g(β) − ε/2, g(β)]. With g(β) being finite, there exists N0 sufficiently large
such that

EP′ [l(X,Y ;β)I(‖X‖2 > N)] < ε/4 and
[
1− P′(KN )

]
EQ [l(X,Y ;β)I(‖X‖2 ≤ N)] > −ε/4,

for all N > N0. From P′, we construct a measure P′
N ∈ UN

δ (Q) by letting,

P′
N (·) = P′(·) +

[
1− P′(KN )

] Q(·)
Q(KN )

,

for all N large enough such that Q(KN ) > 0. Then,

g∗(β) ≥ gN (β) ≥ EP′
N
[l(X,Y ;β)] > EP′ [l(X,Y ;β)] − ε/2,

for all N > N0. With EP′ [l(X,Y ;β)] ∈ (g(β)− ε/2, g(β)], we then have g∗(β) > g(β)− ε, which
leads to a contradiction to the assumption that ε := g(β) − g∗(β) > 0. This verifies that the
pointwise limit g∗(·) = g(·).

Step 2: In this next step, we show that the sequence of functions {gN (·) : N ≥ 1} epicon-
verges to the function g(·), as N → ∞. See, for example, [39, Definition 7.1] for a definition
of epiconvergence. To accomplish this step, we first see that for every sequence {βN : N ≥ 1}
satisfying βN → β ∈ Rd,

lim inf
N→∞

gN (βN ) ≥ lim inf
N→∞

gM (βN ) ≥ gM (β),
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for any positive integer M. Indeed, this is because gN (·) is an increasing sequence of functions
and gM (·), being pointwise maxima of lower semicontinuous functions, is lower semicontinuous.
Letting M → ∞, we then have

lim inf
N→∞

gN (βN ) ≥ g(β),

due to the pointwise convergence concluded in Step 1. Next, for any β ∈ Rd, if we pick the
sequence βN = β, we have limN→∞ gN (βN ) = limN→∞ gN (β) = g(β). We therefore have from
the epiconvergence characterization in [39, Proposition 7.1] that the sequence {gN : N ≥ 1}
epiconverges to the function g(·).

Step 3: In this final step, we show that the optimal values infβ∈Rd gN (β) converge to
infβ∈Rd g(β), as N → ∞. With EP[l(X,Y ;β)] being convex in the variable β, we have that the
pointwise maximum g(·) is convex. Combining this observation with the level-boundedness of
the limiting function g(·), we have from [39, Exercise 7.32(c)] that the sequence {gN (β) : N ≥ 1}
is eventually level-bounded. Further, since the functions gN (·), g(·) are lower semicontinuous
and proper, we obtain the desired optimal value convergence,

inf
β∈Rd

gN (β) → inf
β∈Rd

g(β),

as a consequence of [39, Theorem 7.33].

The conclusion in Step 3 forces the inequalities in (57) to be equalities, thus rendering the
desired inf-sup interchange in the statement of Proposition 8. �

Proof of Lemma 1. Let us consider linear regression loss function first. Under the null hypothe-
sis, E‖X‖22 < ∞ and E[e2] < ∞. Therefore, for any β ∈ Rd, E[l(X,Y ;β)] = E[(Y −βTX)2] < ∞.
Further, as the loss function l(x, y;β) is a convex and continuous in the variable β, we have that
EP[l(X,Y ;β)] is convex and lower semicontinuous for any P ∈ Uδ(Pn). Next, the distributionally
robust representation in Theorem 1,

g(β) = sup
P∈ Uδ(Pn)

EP[l(X,Y ;β)] =

(√
EPn [(Y − βTX)2] +

√
δ‖β‖p

)2

allows us to conclude that g(β) is finite for every β ∈ Rd. Further, as g(β) → ∞ when ‖β‖p → ∞
and g(β) is convex and continuous in Rd, the level sets {β : g(β) ≤ b} are compact and nonempty

for every b > (
√

EPn [(Y − βT∗ X)2] +
√
δ‖β∗‖)2. This verifies the level-boundedness requirement

in the statement of Proposition 8. As all the conditions in Proposition 8 are satisfied, the
sup and inf in the DRO formulation (8) can be exchanged in the linear regression example as
a consequence of Proposition 8. Exactly similar reasoning applies for logistic regression loss
function when E‖X‖22 is finite. �
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