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Abstract

In this paper, we analyze the set of all possible aggregate distributions of the sum of standard

uniform random variables, a simply stated yet challenging problem in the literature of distribu-

tions with given margins. Our main results are obtained for two distinct cases. In the case of

dimension two, we obtain four partial characterization results. For dimension greater or equal

to three, we obtain a full characterization of the set of aggregate distributions, which is the

first complete characterization result of this type in the literature for any choice of continuous

marginal distributions.
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1 Introduction

Many questions remain open in the determination of probability measures with given margins

and other constraints, since the seminal work of Strassen (1965). One of the challenging and recently

active questions is, for n given distributions F1, . . . , Fn on R, to determine all possible distributions

of Sn = X1+· · ·+Xn whereX1, . . . ,Xn are random variables with respective distributions F1, . . . , Fn

in an atomless probability space (Ω,A,P). Formally, denote the set of possible distributions of the

sum

Dn = Dn(F1, . . . , Fn) = {cdf of X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n} .
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where X ∼ F means that the cdf of a random variable X is F .

The question of characterizing Dn, although simply stated, is a challenging open question.

Generally, it is not easy to determine whether a given distribution G is in Dn, although many

moment inequalities can be used as necessary conditions. In the recent literature, some papers

partially address the question of Dn and provide sufficient conditions for G ∈ Dn; see Bernard et al.

(2014), Mao and Wang (2015) and Wang and Wang (2016). A particular question is whether a

point-mass belongs to Dn, which is referred to the problem of joint mixability (Wang et al. (2013)),

and has found many applications in optimization and risk management.

Yet, there are no known results on the characterization of Dn, except for the trivial case

where each of F1, . . . , Fn is a Bernoulli distribution in a low dimension. Perhaps, the attempt to

characterize Dn for generic F1, . . . , Fn is too ambitious. In this paper, we focus on the very special

case where F1, . . . , Fn are standard uniform distributions U[0, 1]. This problem might look naive at

the first glance, but with the technical challenges we shall see in this paper, the characterization of

Dn is highly non-trivial even for uniform distributions.

As a well-known fact, for any random variables X1, . . . ,Xn, their sum is dominated in convex

order by Xc
1 + · · · + Xc

n where Xc
i is identically distributed as Xi, i = 1, . . . , n, and Xc

1 , . . . ,X
c
n

are comonotonic. Hence, the set Dn(F1, . . . , Fn) is contained in the set Cn of distributions that are

dominated in convex order by the distribution of the comonotonic sum (for the precise definitions,

see Section 2). These two sets are asymptotically equivalent after normalization as shown by

Mao and Wang (2015). One naturally wonders whether they coincide for a finite n.

The main results of this paper can be summarized below in two distinct cases. Recall that

F1, . . . , Fn are standard uniform distributions U[0, 1]. For dimension n = 2, the sets Dn and Cn

are not equivalent, and a complete determination of D2 for uniform margins is still unclear. In

Section 3, we provide four results on equivalent conditions for various types of distributions to be

in Dn, including unimodal, bi-atomic, and tri-atomic distributions, and distributions dominating a

proportion of a uniform one. In Section 4, we are able to analytically characterize the set Dn for

dimension n > 3 by showing that Dn = Cn. This result came as a pleasant surprise to us, since it is

well known that the dependence structure gets much more complicated as the dimension grows. As

far as we are aware of, this result is the first full characterization of Dn for any types of continuous

marginal distributions.

For applications of the problem of possible distributions of the sum with specified marginal

distributions, we refer to Embrechts et al. (2013), Rüschendorf (2013), McNeil et al. (2015) and
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Bernard et al. (2018). A particular problem on the sum of standard uniform random variables is

the aggregation of p-values from multiple statistical tests, which are uniform by definition under

the null hypothesis. These p-values, as obtained from different tests, typically have an unspecified

dependence structure, and hence it is important to understand the possible distributions of the

aggregated p-value; see Vovk and Wang (2018).

We remark that the determination of whether Dn = Cn for general margins is unclear. Note

that the determination of Dn = Cn for a given tuple of margins requires more than the determination

of joint mixability of the margins, and the latter is known to be an open question in general. We

conjecture that for general margins on bounded intervals with sufficient smoothness, there is a

dimension n above which Dn equals Cn, but this is out of reach by current techniques, as our proofs

heavily rely on the specific form of uniform distributions.

2 Preliminaries and notation

In this paper, for any (cumulative) distribution function F , we denote by F−1(t) = inf{x :

F (x) > t}, t ∈ (0, 1], the quantile function of F . Denote by X the set of integrable random vari-

ables and F the set of distributions with finite mean. The terms “distributions” and “distribution

functions” are treated as identical in this paper. For F ∈ F , Supp(F ) is the essential support of

the distribution measure induced by F , which will be referred to as the support of F . For any dis-

tributions F , G ∈ F , we denote by F ⊕G the distribution with quantile function F−1(t) +G−1(t),

t ∈ [0, 1]. For a distribution F , µ(F ) denotes the expectation of F . Throughout ⌈x⌉ and ⌊x⌋

represent for the ceiling and the floor of x ∈ R, respectively. A density function f is unimodal if

there exists a ∈ R such that f is increasing on (−∞, a] and decreasing on [a,∞).

The set Dn is related to the notion of convex order. A distribution F ∈ F is smaller than

G ∈ F in convex order, denoted by F 4cx G, if

∫

R

φ(x) dF (x) 6

∫

R

φ(x) dG(x) for all convex φ : R → R;

provided that both expectations exist (finite or infinite). Standard references for convex order are

Müller and Stoyan (2002) and Shaked and Shanthikumar (2007). For a given distribution F ∈ F ,

denote by C(F ) the set of all distributions dominated by F in convex order, that is,

C(F ) = {G ∈ F : G 4cx F}.
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Checking whether a distribution G is in C(F ) can be conveniently done using an equivalent condition

(e.g. Theorem 3.A.1 of Shaked and Shanthikumar (2007)) is

inf
k∈R

(
∫

R

(x− k)+ dF (x)−

∫

R

(x− k)+ dG(x)

)

> 0. (2.1)

As the focus of this paper is the distribution of the sum of uniform random variables, we use

the following simplified notation. For n ∈ N and x ∈ R+, write

DU
n = Dn(U[0, 1], . . . ,U[0, 1]) and CU

x = C(U[0, x]),

where U[a, b] stands for the uniform distribution over an interval [a, b] ⊂ R.

Below we list some basic properties of the sets Dn(·) and C(·); certainly, they hold also for DU
n

and CU
x . First, note that if all distributions F1, . . . , Fn are shifted by some constants or scaled by

the same positive constant, then the elements in Dn(F1, . . . , Fn) are also simply shifted or scaled.

Moreover, Dn(F1, . . . , Fn) is symmetric in the distributions F1, . . . , Fn. These facts allow us to

conveniently exchange the order of the distributions F1, . . . , Fn and normalize these distributions

by shifts and a common scale. For given distributions F1, . . . , Fn ∈ F , the distribution F1⊕· · ·⊕Fn

is the maximum in convex order in the set Dn(F1, . . . , Fn). This fact is summarized in the following

lemma.

Lemma 2.1. For F1, . . . , Fn ∈ F , Dn(F1, . . . , Fn) ⊂ C(F1 ⊕ · · · ⊕ Fn).

Lemma 2.1 can be equivalently stated as the following. If X1 ∼ F1, . . . ,Xn ∼ Fn and F is

the distribution of X1 + · · · +Xn, then F 4cx F1 ⊕ · · · ⊕ Fn. For a history of this result, see, for

instance, Puccetti and Wang (2015). In particular, if F ∈ Dn(F1, . . . , Fn), then the mean of F is

fixed and is equal to the sum of the means of F1, . . . , Fn.

In view of Lemma 2.1, it would be natural to investigate when the two sets coincide, that is,

Dn(F1, . . . , Fn) = C(F1⊕· · ·⊕Fn). Note that for a given G ∈ F , the determination of G ∈ C(F ) can

be analytically checked with its equivalent condition (2.1). Hence, if the above two sets coincide,

then we have an analytical characterization of Dn(F1, . . . , Fn). In the case of uniform distributions,

one wonders whether DU
n = CU

n , noting that DU
n ⊂ CU

n always holds. Unfortunately, as shown in

Mao and Wang (2015) by a counter-example, in the simple case n = 2, DU
2 is an essential subset of

CU
2 ; see Theorem 3.4 in Section 3 for distributions in CU

2 but not in DU
2 .

Some basic properties of the set Dn(·) are given in the following lemma.
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Lemma 2.2. For any F1, . . . , Fn ∈ F , the set Dn(F1, . . . , Fn) is non-empty, convex and closed with

respect to weak convergence.

Another simple fact is that a distribution in Dn(F1, . . . , Fn) has to have the correct support gen-

erated by the marginal distributions. That is, for any F1, . . . , Fn ∈ F and G ∈ Dn(F1, . . . , Fn), we

have Supp(G) ⊂
∑n

i=1 Supp(Fi). For more properties on the sets Dn(·) and C(·), see Mao and Wang

(2015).

A useful concept for our analysis of Dn(·) is the joint mixability introduced by Wang et al.

(2013). An n-tuple of distributions (F1, . . . , Fn) ∈ Fn is said to be jointly mixable (JM), if

Dn(F1, . . . , Fn) contains a point-mass δK , K ∈ R. This point-mass is unique if the distributions

F1, . . . , Fn have bounded supports. If (F1, . . . , Fn) is JM and F1 = · · · = Fn = F , then we say that

F is n-completely mixable (n-CM).

3 Sums of two standard uniform random variables

In this section, we look at the sum of two U[0, 1] random variables. Unfortunately, as ex-

plained above, a full characterization of DU
2 appears difficult to obtain. In this section, we provide

characterization results for four different types of distributions to be in DU
2 . We first present the

main results on DU
2 in Section 3.1. Their proofs will be given in Section 3.2. Before presenting our

main findings, we summarize some existing results on DU
2 . These facts can be derived from existing

results on joint mixability in Wang and Wang (2016).

Proposition 3.1. We have

(i) DU
2 ( CU

2 .

(ii) Let F be any distribution with a monotone density function on Supp(F ). Then F ∈ DU
2 if

and only if Supp(F ) ⊂ [0, 2] and F has mean 1.

(iii) Let F be any distribution with a unimodal and symmetric density function on Supp(F ). Then

F ∈ DU
2 if and only if Supp(F ) ⊂ [0, 2] and F has mean 1.

Remark 3.1. For a uniform distribution on an interval of length a, U[1 − a
2 , 1 + a

2 ] ∈ DU
2 if and

only if a ∈ [0, 2], a special case of (ii) and (iii) of Proposition 3.1. The case U[12 ,
3
2 ] ∈ DU

2 is shown

by Rüschendorf (1982), and the general case a ∈ [0, 2] is shown by Wang and Wang (2016).

3.1 Main results

As a first new result in this paper, we show that the class of distributions with a unimodal

density with the correct mean is contained in DU
2 .
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Theorem 3.2. Let F be a distribution with a unimodal density on [0, 2] and mean 1. Then F ∈ DU
2 .

Both the two previous results in Proposition 3.1 (ii) and (iii) are special cases of Theorem 3.2;

thus Theorem 3.2 generalizes the existing results derived from Wang and Wang (2016).

The second result of the paper concerns the class of distributions which dominate a proportion

of a uniform distribution.

Theorem 3.3. Let F be a distribution supported in [a, a+ b] with mean 1 and density function f .

If there exists h > 0 such that f > 3b/(4h) on [1− h, 1 + h], then F ∈ DU
2 .

In Theorem 3.3, the condition that the density of F dominates 3b/2 times that of U[1 −

h, 1 + h] immediately implies the following admissible ranges of a, b and h: a > 1/3, b 6 2/3,

and h 6 1/3. Hence, Supp(F ) ⊂ [0, 2], which is obviously necessary for F ∈ DU
2 (1, 1). Theorem

3.3 also immediately implies the following fact: For a distribution F with mean 0 and bounded

support, if F has a positive density f > ε in a neighbourhood of 0 for some ε > 0, then F ∈

D2(U[−m,m],U[−m,m]) for sufficiently large m > 0.

In addition to the two results on continuous distributions, we analyze discrete distributions.

We shall obtain two results, one characterizing bi-atomic distributions in DU
2 , and one characterizing

equidistant tri-atomic distributions in DU
2 .

Theorem 3.4. Let F be a bi-atomic distribution with mean 1 supported on {a, a + b} with b > 0.

Then F ∈ DU
2 if and only if 1/b ∈ N.

For a given a ∈ [0, 1) and a+ b ∈ (1, 2], there is a unique distribution on {a, a+ b} with mean

1. Hence, all the bi-atomic distributions that belong to DU
2 have the corresponding distribution

measures
{

ν : 1− ν({a}) = ν({a+ 1/k}) = (1− a)k, k ∈ N, a ∈ [0, 1)
}

.

Note that many bi-atomic distributions supported on {a, a + b} are in CU
2 but not in DU

2 , as long

as 1/b 6∈ N. For example, one can choose a bi-atomic distribution F with equal probability on

{1− 1/π, 1 + 1/π}, and easily see that F ∈ CU
2 , whereas from Theorem 3.4 we find that F is not in

DU
2 . Thus, Theorem 3.4 implies DU

2 ( CU
2 , a fact as noted by Mao and Wang (2015).

For a tri-atomic distribution F , write F = (f1, f2, f3) where f1, f2, f3 are the probability masses

of F . Note that on given three points, the set of tri-atomic distributions with mean 1 has one degree

of freedom. For tractability, we study the case of F having an equidistant support in the form of

{a − b, a, a + b} for some b > 0. We only consider the case b 6 a 6 1 since the case a > 1 is

symmetric.
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To state our characterization of tri-atomic distribution in DU
2 , we introduce the following

notation. For x > 0, define a measure of non-integrity

⌈x⌋ = min

{

⌈x⌉

x
− 1, 1 −

⌊x⌋

x

}

∈ [0, 1].

Obviously ⌈x⌋ = 0 ⇔ x ∈ N.

Theorem 3.5. Suppose that F = (f1, f2, f3) is a tri-atomic distribution with mean 1 supported in

{a− b, a, a+ b} and 0 < b 6 a 6 1. Then F ∈ DU
2 if and only if it is the following three cases.

(i) a = 1 and f2 > ⌈ 1
2b⌋.

(ii) a < 1 and 1
2b ∈ N.

(iii) a < 1, 1
2b −

1
2 ∈ N and f2 > a+ b− 1

2 .

The corresponding distributions in Theorem 3.5 are summarized below. Write c = a/b + 1 −

1/(2b). cx(x, y) stands for the convex set generalized by some vectors x, y.

(i) (f1, f2, f3) ∈ cx{(0, 1, 0), 1
2(1− ⌈ 1

2b⌋, 2⌈
1
2b⌋, 1− ⌈ 1

2b⌋)}.

(ii) (f1, f2, f3) ∈ cx{(0, c, 1 − c), 12(c, 0, 2 − c)}.

(iii) (f1, f2, f3) ∈ cx{(0, c, 1 − c), 12(c(1 − b), 2bc, 2 − c(1− b))}.

3.2 Proofs of the main results

To prove Theorem 3.2, we need the following lemma. To state it, we introduce the notion of

special simple unimodal functions. A function h is called a special simple unimodal (SSU) function

on [a, a + n), a ∈ R, n ∈ N, if it is unimodal, and h(x) is a constant on [a + k − 1, a + k) for each

k = 1, . . . , n.

Lemma 3.6. Let F be a distribution function with density function f and support [a, a + n),

a ∈ R−, n ∈ N. Suppose that F has mean 0 and f is a SSU function on [a, a + n). Then for

c > max{a+ n,−a}/2, we have F ∈ D2(U[−c, c],U[−c, c]).

Proof. We show the result by induction. For n = 1, then we have F is the uniform distribution

on [a, a + 1) with mean 0. This means a = −0.5, that is, F is the distribution of U[−0.5, 0.5],

and c > 0.5. By Theorem 3.1 of Wang and Wang (2016), we know that U[−0.5, 0.5], U[−c, c] and

U[−c, c] are jointly mixable as the mean inequality −0.5 − 2c + 2c 6 0 6 0.5 + 2c− 2c is satisfied.

This means F ∈ D2(U[−c, c],U[−c, c]).
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Next, we assume the result holds for n 6 k and show it holds for n = k + 1. Without loss of

generality, we assume a+ n > −a. Otherwise consider the distribution of X∗ = −X with X ∼ F .

Define a distribution H with density function h : [a, a+ n) → R+ defined as

h(x) =
n+ 1 + 2a

n
=: α, x ∈ [a, a+ 1), h(x) =

−1− 2a

n(n− 1)
=: β, x ∈ [a+ 1, a+ n).

It can be easily verified that it has mean 0 and α > 1/n > β > 0 as 2a+ n > 0. That is, h is a de-

creasing density function on [a, a+n) with mean 0. Then by Theorem 3.2 of Wang and Wang (2016),

we have H, U[−c, c] and U[−c, c]) are jointly mixable. Hence, we have H ∈ D2(U[−c, c],U[−c, c]).

Denote ai = f(a+ i), i = 0, . . . , n− 1. Since f is unimodal, without loss of generality, assume

that a1 6 . . . 6 ak > . . . > an for some k ∈ {0, . . . , n− 1}. Let

λ := min

{

a1
α
,
a2
β
, . . . ,

an
β

}

.

By contradiction, it immediately follows from
∑n

i=1 ai = 1 and α + (n − 1)β = 1 that λ 6 1. If

λ = 1, then a1 = α and αi = β, i = 2, . . . , n, that is, F = H ∈ D2(U[−c, c],U[−c, c]), which shows

the statement in the lemma. Next, we consider the case λ < 1. We first assert that the following

sequence

b1 = a1 − λα, bi = ai − λβ, i = 2, . . . , n.

is unimodal such that either b1 or bn is 0. To see it, we only need to show it is unimodal by the

definition of λ. We consider the following two cases.

(i) If k > 2, then a1 6 a2 and hence, b1 = a1 − λα 6 a2 − λβ = b2 as α > β. Also, note that

b2 6 . . . 6 bk > . . . > bn. Hence, the sequence {bi, i = 1, . . . , n} is unimodal.

(ii) If k = 1, then a1 > a2 > . . . > an, and hence, b2 > . . . > bn. No matter b1 > b2 or b1 6 b2, we

have that {bi, i = 1, . . . , n} is unimodal.

Define F0 =
F−λH
1−λ . It is easy to check that F0 is a distribution function with a density function f0

taking value bi/(1 − λ) on the interval [a, a + i), i = 1, . . . , n. By the above observations on the

sequence {bi, i = 1, . . . , n}, we know that F0 is a distribution with mean 0 and with support on a

subset of [a, a + n − 1) or [a + 1, a + n). Then by induction, we have F0 ∈ D2(U[−c, c],U[−c, c]).

Since F = (1− λ)F0 + λH, and D2 is a convex set, we have F ∈ D2(U[−c, c],U[−c, c]).

Now we are ready to prove Theorem 3.2.
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Proof of Theorem 3.2. Denote by f the density function of F , which is unimodal. Then there

exists x0 ∈ [0, 2] such that f(x0) = max{f(x), x ∈ [0, 2]}. Let X and Y be two independent random

variables such that X ∼ F and Y ∼ U[0, 1], and define Xm = ⌊m(X − 1)⌋ + Y , m ∈ N. Then the

density function of Xm, denoted by hm, is given by

hm(x) =

∫ (j+1)/m

j/m
f(x) dx =: pj , x ∈ [j −m, j −m+ 1), j = 0, . . . , 2m− 1.

Let k = ⌊mx0⌋. Then we have

p0 6 p1 6 . . . 6 pk−1, pk+1 > pk+2 > . . . > p2m,

and by f(x) is unimodal on [k/m, (k + 1)/m],

pk =

∫ (k+1)/m

k/m
f(x) dx >

1

m
min {f(k/m), f((k + 1)/m)} > min{pk−1, pk+1}.

That is, the sequence {pk, k = 1, . . . , 2m} is unimodal. It can be verified that

E[Xm] = E[⌊m(X − 1)⌋ −m(X − 1)] +
1

2
,

which lies in [−0.5, 0.5]. Then the random variable Ym := Xm − µ(Xm) has mean 0 and takes

value in a subset of [−m− 0.5,m+ 0.5]. By Lemma 3.6, we have the distribution of Ym belongs to

D2(U[−c, c],U[−c, c]) with c = m/2 + 0.25. Then obviously, we have the distribution of Ym/(2m+

0.5)+1 belongs to DU
2 . Note that Ym/(2m+0.5)+1 converges to X in L∞-norm as m → ∞. Hence,

by the closure of DU
2 with respect to L∞-norm, we have F ∈ DU

2 . This completes the proof.

To prove Theorems 3.3 - 3.5, we need the following lemma.

Lemma 3.7. Let Z be a random variable with distribution F supported in {b− k, b− k+1, . . . , b},

k ∈ N, b ∈ R, satisfying

P(Z = b− i) = pi > 0, i = 0, . . . , k, and
k

∑

i=0

pi = 1.

Then we have the following statements hold.

(i) If F ∈ D2(U[0, T ],U[−T, 0]), then at least one of b and T is an integer.

(ii) If k = 1, then F ∈ D2(U[0, T ],U[−T, 0]) if and only if b ∈ (0, 1) and T ∈ N.
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(iii) If k = 2, then F ∈ D2(U[0, T ],U[−T, 0]) if and only if one of the following three cases holds:

(a) b = 1, p2 = p0 = (1− p1)/2, p1 > r/T with T = 2m± r with m ∈ N and r ∈ (0, 1).

(b) b ∈ (0, 1)∪(1, 2), T is even, p1 ∈ (0,min{b, 2−b}), p2 = (b−p1)/2 and p0 = 1−(b+p1)/2.

(c) b ∈ (0, 1) ∪ (1, 2), T is odd, p1 ∈ (b∗/T, b∗) with b∗ = min{b, 2 − b}, p2 = (b− p1)/2 and

p0 = 1− (b+ p1)/2.

Proof. First we introduce the notation: for any random variable X and any set L ⊂ R, define

random events

AX(L) := {X − n ∈ L for some n ∈ N} = {X mod 1 ∈ L},

and a function

gX(x) = lim
δ↓0

P(AX([x− δ, x+ δ]))

2δ
, x ∈ R, if the limit exists.

Note that Z ≡ b mod 1, E[Z] = 0 and hence, b − k 6 0 6 b. If F ∈ D2(U[0, T ],U[−T, 0]),

then there exist two random variables X ∼ U[0, T ] and Y ∼ U[−T, 0] such that Z = X + Y a.s.

Since Z = X + Y ≡ b mod 1 a.s., we have AX(L) = AY (b − L) a.s. for any L ⊂ R, where

b − L = {b − x : x ∈ L}. We first show that at least one of b and T is an integer. To this end,

assume that T is not an integer. Then there exists ℓ ∈ N such that T = ℓ+ t with t ∈ (0, 1). Note

that X ∼ U[0, T ]. We have

gX(x) = lim
δ↓0

P(X mod 1 ∈ [x− δ, x+ δ])

2δ

=
1

2T
(#{n ∈ N : n+ x ∈ (0, T )} +#{n ∈ N : n+ x ∈ [0, T ]})

=



























ℓ+1
T , if x mod 1 ∈ (0, t),

ℓ+1/2
T , if x mod 1 = 0 or t,

ℓ
T , if x mod 1 ∈ (t, 1).

By the definition of AX(L) and Y
d
= −X, we have AY ([x − δ, x + δ]) = A−X([x − δ, x + δ]) =

AX([−x−δ,−x+δ]) a.s., and thus, gY (x) = gX(−x) for x ∈ R. Also, note that AX(L) = AY (b−L)

a.s. which implies gX(x) = gY (b− x). Therefore, we have

gX(x) = gY (b− x) = gX(x− b) for any x ∈ R.
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Note that there exists x ∈ R such that x mod 1 ∈ (0, t) and x− b mod 1 ∈ (t, 1) which contradicts

with the formula of gX . Hence, b must be an integer.

Next we consider the two cases that k = 1 and k = 2.

(i) For k = 1, note that for any b ∈ N, µ(F ) could not be 0. Hence, we only need to show

F ∈ D2(U[0, T ],U[−T, 0]) when b ∈ (0, 1) and T ∈ N. By µ(F ) = 0, we have p1 = b and

p0 = 1− b. Let X ∼ U[0, T ] and define random variable Y such that

[Y |X ∈ [k, k + b]] = b− 1−X, a.s. for k = 0, . . . , T − 1

and

[Y |X ∈ (k + b, k + 1]] = b−X, a.s. for k = 0, . . . , T − 1.

Then it is easy to see that Y ∼ U[−T, 0] and X + Y has the distribution F . Thus, we have

F ∈ D2(U[0, T ],U[−T, 0]).

(ii) If k = 2, by the necessity condition that at least one of b and T is an integer, we consider the

following three cases. Without loss of generality, assume pi = P(Z = b− i) > 0, i = 0, 1, 2.

(a) If b is an integer, for the mean-constraint to be satisfied, we have b = 1 and

P(Z = −1) = P(Z = 1) = p0 > 0 and P(Z = 0) = p1 = 1− 2p0.

Let T = 2m± r with r ∈ [0, 1] and m ∈ N. We only need to find the smallest value of p1

such that F ∈ D2(U[0, T ],U[−T, 0]) as δ0 ∈ D2(U[0, T ],U[−T, 0]) andD2(U[0, T ],U[−T, 0])

is closed under mixture, where δ0 is the point-mass at 0. Assume that there exist

X ∼ U[0, T ] and Y ∼ U[−T, 0] such that Z = X + Y a.s. If T = 2m+ r, then since b is

an integer, we have

AX((r, 1)) =
{

X ∈ ∪2m
k=1(r + k − 1, k)

}

= AY ({(−1,−r)}) =
{

Y ∈ ∪2m
k=1(−k,−r − k + 1)

}

a.s.

We let

[Y |X ∈ A1] = −X − 1 and [Y |X ∈ A2] = −X + 1 a.s.
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where A1 = ∪m
k=1(r + 2k − 3, 2k − 1) and A2 = ∪m

k=1(r + 2k − 1, 2k). Then [X + Y |X ∈

A1 ∪A2] = [X + Y |AX((r, 1))] takes values on {−1, 1}. On the other hand, note that

AX((0, r)) =
{

X ∈ ∪2m
k=0(k, k + r)

}

= AY ((−r, 0)) =
{

Y ∈ ∪2m
k=0(−k − r,−k)

}

.

Then on the set AX((0, r)), X + Y could not only take values on {−1, 1}. There is at

least one k ∈ {0, . . . , 2m} such that X + Y = 0 on {X ∈ (k, k + r)}. Hence, p1 >

(2m + 1)r/(2m + 1)T = r/T . We next show that r/T can be attained by p1 for F ∈

D2(U[0, T ],U[−T, 0]). It suffices to let [Y |X ∈ (2m, 2m + r)] = −X a.s. and for k =

0, . . . ,m− 1

[Y |X ∈ (2k, 2k + r)] = −X − 1, [Y |X ∈ (2k + 1, 2k + 1 + r)] = −X + 1 a.s.

In this case, we have p1 = r/T. By symmetry, we can also get the same result if T =

2m− r. To see this, note that almost surely

AX((0, 1 − r)) =
{

X ∈ ∪2m−1
k=0 (k, k + 1− r)

}

= AY ((r − 1, 0)) =
{

Y ∈ ∪2m−1
k=0 (−k − 1 + r,−k)

}

.

We let

[Y |X ∈ A1] = −X − 1 and [Y |X ∈ A2] = −X + 1 a.s.

where A1 = ∪m−1
k=0 (2k, 2k+1− r) and A2 = ∪m−1

k=0 (2k+1, 2k+2− r). Then [X + Y |X ∈

A1 ∪A2] = [X+Y |AX((0, 1− r))] takes values on {−1, 1}. On the other hand, note that

almost surely

AX((1− r, 1)) =
{

X ∈ ∪2m−1
k=1 (k − r, k)

}

= AY ({(−1, r − 1)}) =
{

Y ∈ ∪2m−1
k=1 (−k, r − k)

}

.

Then on the set AX((1 − r, 1)), X + Y could not only take values on {−1, 1}. There

is at least one k ∈ {1, . . . , 2m − 1} such that X + Y = 0 on {X ∈ (k − r, k)}. Hence,

p1 > (2m − 1)r/(2m − 1)T = r/T . We next show that r/T can be attained by p1 for

F ∈ D2(U[0, T ],U[−T, 0]). It suffices to let [Y |X ∈ (2m− 1− r, 2m− 1)] = −X a.s. and
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for k = 1, . . . ,m− 1

[Y |X ∈ (2k − r, 2k)] = −X − 1, [Y |X ∈ (2k + 1− r, 2k + 1)] = −X + 1 a.s.

In this case, we have p1 = r/T. Hence, we have when b is an integer, Z ∈ D2(U[0, T ],U[−T, 0])

if and only if b = 1 and P(Z = −1) = P(Z = 1) 6 1/2 − r/(2T ).

(b) If b is not an integer and T is a even integer, without loss of generality, assume b ∈ (0, 1) as

the case b ∈ (1, 2) can be discussed similarly by considering the symmetric distribution

on {−b, 1 − b, 2 − b} and noting that D2(U[0, T ],U[−T, 0]) is closed under symmetric

transform. To make sure E[Z] = 0, we have p0 − p2 = 1 − b. By Part (i), we know the

distribution, denoted by F1, on {b − 1, b} with mean 0 belongs to D2(U[0, T ],U[−T, 0])

which is also closed under mixture. Hence, we have F ∈ D2(U[0, T ],U[−T, 0]) implies

λF + (1− λ)F0 = λp2δb−2 + (λp1 + (1− λ)b)δb−1 + (λp0 + (1− λ)(1− b))δb

= λp2δb−2 + (λp1 + (1− λ)b)δb−1 + (λp2 + 1− b)δb

∈ D2(U[0, T ],U[−T, 0]) for any λ ∈ [0, 1],

where the second equality follows from p0 − p2 = 1− b. Therefore, we only need to find

the smallest and the largest values of p1 such that p0 + p1 + p2 = 1, p0 − p2 = 1− b and

F ∈ D2(U[0, T ],U[−T, 0]).

Note that F ∈ D2(U[0, T ],U[−T, 0]) is equivalent to there exist X ∼ U[0, T ] and Y ∼

U[−T, 0] such that Z = X + Y a.s. Then by AX(L) = AY (b−L) a.s. for any L ⊂ R, we

have

AX((b, 1)) =
{

X ∈ ∪T
k=1(b+ k − 1, k)

}

= AY ({(b− 1, 0)}) =
{

Y ∈ ∪T
k=1(b− k, 1− k)

}

.

It is easy to verify that E[X + Y |AX((b, 1))] = b. Note that the X + Y takes values on

{b− 2, b− 1, b}. Then [X + Y |AX((b, 1))] = b a.s. This implies on AX((b, 1)), X + Y is

not equal to b − 1 a.s., which in turn implies b is an upper bound of p1. On the other

hand, note that

AX((0, b)) =
{

X ∈ ∪T
k=1(k − 1, b+ k − 1)

}
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= AY ({(0, b)}) =
{

Y ∈ ∪T
k=1(−k, b− k)

}

.

Letting [Y |AX((0, b))] = b −X − 1 a.s. and [Y |AX((b, 1))] = b −X a.s. yield that b is

the largest value of p1.

To find the smallest value of p1, we consider two cases that T is even and odd. If T is

even, then T = 2m for some m ∈ N. On the set AX(0, b), for k = 0, 1, . . . ,m− 1, we let

[Y |X ∈ (2k, b+ 2k)] = b−X − 2 and [Y |X ∈ (2k + 1, b+ 2k + 1)] = b−X, a.s.

In this case, p1 is zero which is the smallest possible value of p1.

(c) If b is not an integer and T is an odd integer, then similar to Part (b), we only need to

find the largest and the smallest value of p1 for the case b ∈ (0, 1). The largest value of

p1 is b. To find the smallest value, note that T = 2m + 1 for some m ∈ N. On the set

AX(0, b), we let [Y |X ∈ (2m, b+ 2m)] = b−X a.s. and for k = 0, 1, . . . ,m− 1,

[Y |X ∈ (2k, b+ 2k)] = b−X − 2, [Y |X ∈ (2k + 1, b+ 2k + 1)] = b−X, a.s.

In this case, p1 = b/T which is the smallest possible value of p1. This is due to [X+Y |X ∈

(2m, b + 2m)] > −1 > b − 2 as {X ∈ (2m, b + 2m)} ⊂ AY (0, b) and [Y |AY ((0, b))] >

−2m− 1 a.s.

Combining the above three cases, we complete the proof for the case of k = 2.

Proof of Theorem 3.3. Note that 3b/4h×2h = 3b/2 6 1, hence b 6 2/3. Therefore, [a, a+b] ⊂ [0, 2].

Denote λ = 3b/2 > 3h and let H denote the distribution function of U[1 − h, 1 + h]. Define

G = (F − λH)/(1− λ). By the assumption on F , G is also a distribution with positive density and

mean 1. There exists a sequence of distribution functions {Gn}n>2 with finite support on [a, a+ b]

and mean 1 which converges to G in distribution as n → ∞. Define Fn = λH + (1− λ)Gn, n > 2.

Then Fn converges to F is distribution as n → ∞. Note that DU
2 is closed with respect to weak

convergence by Lemma 2.2. We only need to show Fn ∈ DU
2 for n > 2. Without loss of generality,

assume

Gn({xi}) = pi, i = 1, . . . , n with p1 + · · · + pn = 1, a 6 x1 < · · · < xn 6 a+ b.

We show it by induction on n. Note that a 6 1 − h 6 1 + h 6 b. For n = 2, without loss of
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generality, let c, d > 0 be such that x1 = 1− c and x2 = 1 + d > 0, 3(c+ d)/2 6 λ and then

G2({1− c}) =
d

c+ d
and G2({1 + d}) =

c

c+ d
. (3.1)

Since 1 > λ > c+ d+ h, we have

1− h

c+ d
−

1− λ

c+ d
> 1 and

1− h

c+ d
> 1.

Then there exists some integer k > 1 such that

1− h

c+ d
> k >

1− λ

c+ d
.

That is, 1− k(c+ d) > h and k(c+ d) > 1− λ. Denote

θ :=
k(c+ d) + λ− 1

k(c+ d)
∈ [0, λ] as λ− θ =

(1− λ)(1− k(c+ d))

k(c+ d)
> 0.

Note that the length of the support of U[0, k(c+d)] (U[1−k(c+d), 1]) is a multiple of (1+d)−(1−c).

By Lemma 3.7 (i), we have G2 ∈ D2(U[0, k(c + d)],U[1 − k(c + d), 1]). Similarly, we have H ∈

D2(U[k(c+ d), 1],U[0, 1 − k(c+ d)]). Also, by Theorem 3.2, we know H ∈ DU
2 . It follows that

F2 = (1− λ)G2 + (λ− θ)H + θH ∈ DU
2 .

Suppose that Fn = (1−λ)Gn+λH ∈ DU
2 for n 6 k and we aim to show Fk+1 = (1−λ)Gk+1+λH ∈

DU
2 . Let Gk+1,1 be defined by (3.1) with c = 1− x1 > 0 and d = xk+1 − 1 > 0. That is,

Gk+1,1({x1}) =
xk+1 − 1

xk+1 − x1
and Gk+1,1({xk+1}) =

1− x1
xk+1 − x1

.

Let α := min{p1(c+ d)/d, pn(c+ d)/c}. Then G2:k+1 := (Gk+1 −αGk+1,1)/(1−α) is a distribution

function with support on {x1, . . . , xk} or {x2, . . . , xk+1} and mean 1. Then we have

Fk+1 = (1− λ)(αGk+1,1 + (1− α)G2:k+1) + λH

= α((1 − λ)Gk+1,1 + λH) + (1− α)((1 − λ)G2:k+1 + λH)).

By induction, we have (1 − λ)Gk+1,1 + λH ∈ DU
2 and (1 − λ)G2:k+1 + λH ∈ DU

2 . Then by the

convexity of DU
2 from Lemma 2.2, we have Fk+1 ∈ DU

2 . Thus, we complete the proof.
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Proof of Theorems 3.4 and 3.5. We only give the proof of Theorem 3.5 as Theorem 3.4 can be

proved similarly based on Lemma 3.7 (ii). Note that the cumulative distribution function of a

random variable Z belongs to DU
2 if and only if the cumulative distribution function of T (Z − 1)

belongs to D2(U[0, T ],U[−T, 0]) for T > 0. Let Z be a random variable with distribution F and let

T := 1/b and c := (a+ b− 1)/b, that is, b = 1/T and a = c/T + 1− 1/T . Then ZT := T (Z − 1) is

a random variable satisfying

P(ZT = c− i) = fi+1, i = 0, 1, 2.

By Lemma 3.7 (iii), we know the cumulative distribution function of ZT belongs to DU
2 if and only

if one of the three cases of Lemma 3.7 (iii) holds by replacing b by c and T by 1/b respectively.

That is,

(a) a+ b− 1/b = 1, f2 > rb with 1/b = 2m± r with m ∈ N and r ∈ (−1, 1).

(b) (a+ b− 1)/b < 1, 1/b is even, f2 ∈ (0, (a + b− 1)/b), f3 = (c − f2)/2 and f1 = 1− ((a+ b−

1)/b + f2)/2.

(c) (a+b−1)/b < 1, 1/b is odd, f2 ∈ (a+b−1, (a+b−1)/b), f3 = (c−f2)/2 and f1 = 1−(c+f2)/2.

Note that under the constraint 0 < b 6 a 6 1, we have c 6 1; c = 1 is equivalent to a = 1;

rb = ⌈1/(2b)⌋; 1/b is even if and only if 1/(2b) ∈ N; 1/b is odd if and only if 1/(2b)− 1/2 ∈ N. Also,

by E[Z] = 1, we have f3 = f1 + (1 − a)/b and thus, f2 = 1 − 2f1 − (1 − a)/b which implies that

f2 ∈ (0, (a + b− 1)/b) always holds. Hence, the statement in Theorem 3.5 holds.

4 Sums of three or more standard uniform random variables

In this section, we aim to show that for n > 3, the two sets DU
n and CU

n are identical, in sharp

contrast to the case of n = 2 analyzed in Section 3. We start with the bi-atomic distribution. Let F

be the distribution function of a random variable X such that P(X = a) = p and P(X = b) = 1− p

with E[X] = 1/2, a < b and 0 < p < 1 and Tn(F ) be the distribution function of nX. That is,

F = pδa + (1− p)δb and Tn(F ) = pδna + (1− p)δnb,

where δx denotes the point-mass at x ∈ R.

Lemma 4.1. Let F be a bi-atomic distribution on {a, b} with a < b. Then the following statements

are equivalent.
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(i) F 4cx U[0, 1].

(ii) b− a 6 1/2 and µ(F ) = 1/2.

(iii) Tn(F ) ∈ DU
n (1, . . . , 1) for n > 3.

Proof. It is easy to verify (iii) ⇒ (i). It suffices to show (i) ⇒ (ii) ⇒ (iii). Let X be a random

variable having distribution F and P(X = a) = p = 1− P(X = b). Note that under the constraint

of (i), we must have a, b ∈ (0, 1) and µ(F ) = 1/2 which implies 0 < a < 1/2 < b < 1; under the

constraint of (ii), by µ(F ) = 1/2, we have a < 1/2 < b. Then by b− a 6 1/2, we also have a > 0

and b < 1. Thus, in the following proof, we always assume 0 < a < 1/2 < b < 1.

Without loss of generality, we also assume 0 < a 6 1 − b 6 1/2 by symmetry. Otherwise,

consider another random variable X∗ = 1 − X with distribution F ∗ and it suffices to note that

µ(F ∗) = 1/2, b∗ − a∗ = b− a., and F 4cx U[0, 1] is equivalent to F ∗ 4cx U[0, 1].

(i) ⇒ (ii): By F 4cx U[0, 1], we have E[X] = 1/2 and E[(X − t)+] 6 (1− t)2/2, for t ∈ [0, 1],

that is,

(b− t)(1 − p) 6
(1− t)2

2
, a 6 t 6 b. (4.1)

To show (ii), we only need to show b− a 6 1/2, that is, the largest possible value of b− a is 1/2.

To do this, we fix the value of p and denote ℓ1(t) := (b− t)(1− p), t ∈ [a, b] and ℓ2(t) := (1− t)2/2,

t ∈ [0, 1]. Note that ℓ1(t) is a linear function with fixed and constant derivative equaling to p − 1

and lies below the quadratic curve ℓ2(t) for t ∈ [a, b]. Also note that as a decreases or b increases,

ℓ1 moves upwards. Hence, when b− a attains its largest possible value, we have the line ℓ1 and the

quadratic curve ℓ2 are tangent and the tangent point satisfies the equation ℓ′2(t) = t − 1 = p − 1,

that is, the tangent point is t = p. Then by ℓ1(p) = ℓ2(p), we get b = 1 + p/2 which is the largest

possible value of b. Then by E[X] = 1/2, we can get a = p/2, which is the smallest possible value

of a. Therefore, we have the largest possible value of b− a is 1/2.

(ii) ⇒ (iii): Let Gx,y be the distribution of U[x, y]. It suffices to show that G0,1 = (1 −

p)H1 + pH2 such that both H1 and H2 are n-CM, µ(H1) = a and µ(H2) = b. We first define two

distributions H∗
1 and H∗

2 for the following three cases with 1− b > a in mind.

(a) If a > 1/n, define H∗
1 = H∗

2 = G0,1, that is, the distribution function of U[0, 1].

(b) If 1− b > 1/n > a, define

H∗
1 = G0,na and H∗

2 =
na− p

1− p
G0,na +

1− na

1− p
Gna,1.
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By E[X] = 1/2, we have

p =
b− 1/2

b− a
= 1−

1/2 − a

b− a
6 1− 2(

1

2
− a) = 2a < na,

where the inequality follows from b−a 6 1/2. Hence, H∗
2 is a distribution with positive density

function. It is obvious that µ(H∗
1 ) = na/2 > a and thus µ(H∗

2 ) 6 b as p µ(H∗
1 )+(1−p)µ(H∗

2 ) =

1/2 and pa+ (1− p)b = 1/2.

(c) If 1− b < 1/n, then we have n = 3 as b− a 6 1/2 and a 6 1− b. Define

H∗
1 =

3b− 2

p
G0,3b−2 +

p+ 2− 3b

p
G3b−2,3a and H∗

2 =
3a− p

1− p
G3b−2,3a +

1− 3a

1− p
G3a,1.

Note that p = b−1/2
b−a > 2(b− 1/2) > 3b− 2 and p < 3a. Hence, we have both H∗

1 and H∗
2 are

distribution functions with positive densities. It is easy to calculate that

µ(H∗
1 ) =

3a+ 3b

2
− 1 +

3a

p
−

9ab

2p
.

Note that

2p(µ(H∗
1 )− a) = p(3b+ a− 2) + 3a(2− 3b)

> (3b− 2)(3b + a− 2)− 2(b− a)3a(3b − 2)

= (3b− 2)(3b + a− 2 + 2(b− a)3a)

sgn
= 3b− 2 + a+ 2(b− a)3a > 0,

where the first inequality follows from p > 3b− 2 and 2(b− a) 6 1, A
sgn
= B represents that A

and B have the same sign, and the
sgn
= is due to 1 − b < 1/n and n = 3 by the observations

at the beginning of (c). Hence, we have µ(H∗
1 ) > a and similarly µ(H∗

2 ) 6 b.

In each of the above three cases, we have G0,1 = pH∗
1 + (1− p)H∗

2 , H
∗
1 has a decreasing density on

[0, na] with µ(H∗
1 ) > a, and H∗

2 has an increasing density on [1− n(1− b), 1] with µ(H∗
2 ) 6 b.

On the other hand, let H0
1 = G0,p and H0

2 = Gp,1. Then it is obvious that G0,1 = pH0
1 +

(1 − p)H0
2 , µ(H

0
1 ) 6 a and µ(H0

2 ) > b. Hence, we can find some α ∈ [0, 1] such that αµ(H∗
1 ) +

(1 − α)µ(H0
1 ) = a. Then the distribution H1 := αH∗

1 + (1 − α)H0
1 is supported in [0, na] with

decreasing density and µ(H1) = a. By Theorem 3.2 of Wang and Wang (2016), G is n-CM, that

is, δna ∈ Dn(G, . . . , G). Similarly, we have H2 = αH∗
2 + (1− α)H0

2 is supported in [1− n(1− b), 1]
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with an increasing density and µ(H2) = b, which implies that H2 is also n-CM. That is, δnb ∈

Dn(H2, . . . ,H2). By Lemma 2.2, we have

Tn(F ) = pδna + (1− p)δnb ∈ Dn(pH1 + (1− p)H2, . . . , pH1 + (1− p)H2) = Dn(U[0, 1], . . . ,U[0, 1]).

Thus, we complete the proof.

Now we are ready to show our main result in dimension n > 3. It turns out that for standard

uniform distributions, the two sets Dn(F1, . . . , Fn) and C(F1 ⊕ · · · ⊕ Fn) in Lemma 2.1 coincide.

The following theorem is, to the best of our knowledge, the first analytical characterization of Dn

for continuous marginal distributions.

Theorem 4.2. For n > 3, we have DU
n = CU

n .

Proof. As DU
n ⊆ CU

n , it suffices to show CU
n ⊆ DU

n , that is, for any distribution function F ,

F 4cx U[0, 1] implies DU
n (1/n). Here and throughout the proof, we use the notation DU

n (x) =

Dn(U[0, x], . . . ,U[0, x]) for x ∈ R. For a distribution F , denote

WF (t) = E[(X − t)+]−
(1− t)2

2
, t ∈ [0, 1],

where X is a random variable having the distribution function F . We first consider the special case

that F is a distribution function of a discrete random variable (a1, p1; . . . ; am, pm) with 0 6 a1 <

· · · < am 6 1 and Gx,y is the distribution function of U[x, y], x < y. By Lemma 4.1, we know the

result holds for m = 2. Next, we show it holds for general m > 2 by induction.

For general m > 2, by F 4cx G0,1, we have for WF (t) 6 0 for t ∈ [0, 1], that is, for k = 2, . . . ,m,

we have

(ak − t)pk + · · ·+ (am − t)pm 6
(1− t)2

2
, ak−1 6 t 6 ak. (4.2)

Next, we consider two cases.

(a) If there exists t ∈ [ak−1, ak) such that the equality of (4.2) holds, then p1 + · · · + pk−1 = t. To

see this, denote ℓ1(t) := (ak−t)pk+ · · ·+(am−t)pm, and ℓ2(t) = (1− t)2/2, t ∈ [ak−1, ak]. Note

that ℓ1 is a linear function which lies below the decreasing quadratic curveℓ2. Thus, ℓ1 and

the quadratic curve ℓ2 are tangent at the point t and the tangent point t satisfies the equation

t− 1 = −pk − · · · − pm, that is, p1 + · · · + pk−1 = t. Let X1 and X2 be two random variables

satisfying P(X1 = ai) = pi/t, i = 1, . . . , k − 1, and P(X2 = ai) = pi/(1 − t), i = k, . . . ,m.
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Denote by F1 and F2 the distributions of X1 and X2, respectively. It is easy to verify that

F = tF1 + (1 − t)F2, F1 4cx G0,t and F2 4cx Gt,1. Then by induction, we have F1 ∈ DU
n (t/n)

and F2 ∈ Dn(U[t/n, 1/n], . . . ,U[t/n, 1/n]). That is, there exist X11, . . . ,X1n ∼ U[0, t/n] and

X21, . . . ,X2n ∼ U[t/n, 1/n] such that

X11 + · · · +X1n ∼ F1 and X21 + · · ·+X2n ∼ F2.

Without loss of generality, assume that X11, . . . ,X1n are independent of X21, . . . ,X2n. Let A be

a random event independent of X11, . . . ,X1n, X21, . . . ,X2n such that P(A) = p1+· · ·+pk−1 = t.

Define

Yi = X1i1A +X2i1Ac , i = 1, . . . , n.

It is obvious that Yi ∼ U[0, 1], i = 1, . . . , n, and Y1 + · · · + Yn ∼ F . This means F ∈

DU
n (1/n, . . . , 1/n).

(b) If the inequality of (4.2) is strict for every t ∈ (0, 1), define two functions G and H as

G = λδa1 + (1− λ)δam and H =
F − θG

1− θ
,

where δa denote the degenerated distribution at point a,

λ =
am − 1/2

am − a1
and θ = min

{

p1
λ
,

pm
1− λ

}

< 1.

It is easy to verify that G and H are two distribution functions satisfying F = θG+ (1− θ)H.

We also assert that H 4cx F . To see it, let X ∼ F, Y ∼ G, and Z ∼ H. Then for any convex

function φ, we have

φ(X) 6
am −X

am − a1
φ(a1) +

X − a1
am − a1

φ(am), a.s.,

It then follows that

E[φ(X)] 6
am − E[X]

am − a1
φ(a1) +

E[X]− a1
am − a1

φ(am) = λφ(a1) + (1− λ)φ(am) = E[φ(Y )],

Also, note that F = θG + (1 − θ)H which implies E[φ(X)] = θE[φ(Y )] + (1 − θ)E[φ(Z)].

Combined with E[φ(X)] 6 E[φ(Y )], we have E[φ(Z)] 6 E[φ(X)], that is, H 4cx F . This

implies H 4cx U[0, 1] and note that the support of distribution H has at most m − 1 points.

Using inductive hypothesis, we have H ∈ DU
n (1/n).
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On the other hand, if am − a1 6 1
2 , we know G 4cx U[0, 1], G ∈ DU

n (1/n, . . . , 1/n). Then

F = θG + (1 − θ)H ∈ DU
n (1/n). Otherwise, if am − a1 > 1

2 , then G 64cx U[0, 1], that is,

WG(t0) > 0 for some t0 ∈ (0, 1). Define a function

α(t) = −
WG(t)

WF (t)
, t ∈ (0, 1)

which is continuous function satisfying α(0+) = α(1−) = −1 as WF (t) = WG(t) = −t2/2

for t ∈ [0, a1] and WF (t) = WG(t) = −(1− t)2/2 for t ∈ [am, 1]. Hence, we have α(t) takes

its maximum value at some t ∈ (0, 1) and the maximum value is positive. Without loss of

generality, assume α0 = α(t1) > 0 is its maximum value. Then we have

WG(t) + α0WF (t) 6 0 for all t ∈ [0, 1] and WG(t1) + α0WF (t1) = 0. (4.3)

Define a distribution F0 := (G + α0F )/(1 + α0). Then by (4.3), we have F0 4cx U[0, 1] and

WF0
(t1) = 0. By Case (a), we have F0 ∈ DU

n (1/n).

Note that G = (1 + α0)F0 − α0F and F = θG + (1 − θ)H, which implies F = (1 + α0)θF0 −

α0θF + (1− θ)H, that is,

F =
(θ + α0θ)F0 + (1− θ)H

1 + α0θ
.

Then by Lemma 2.2, we have F ∈ DU
n (1/n).

If F is a general distribution function such that F 4cx U[0, 1], then Supp(F ) ⊂ [0, 1] and it has no

mass on 0 and 1. For any n ∈ N, define Fn as the distribution function of Xn

Xn =

n
∑

k=1

E

[

X

∣

∣

∣

∣

k − 1

n
6 X <

k

n

]

1{k−1

n
6X< k

n
}

where X is a random variable having distribution function F . Then Fn converges to F in weak

convergence as n → ∞, and Fn 4cx U[0, 1]. By the above proof for discrete disitributions with

finite support, we have Fn ∈ DU
n (1/n) for each n ∈ N. Then by Lemma 2.2, we have F ∈ DU

n (1/n).

Thus, we complete the proof.

For any random variable X ∼ F with mean 0, we have Fa 4cx F for any a ∈ [0, 1], where Fa is

the distribution of aX. Hence, we immediately get the following corollary. Note that this corollary,

although looks simple, does not seem to allow for an elementary proof without using Theorem 4.2.

Corollary 4.3. For n > 3, if F ∈ Dn(U[−1, 1], . . . ,U[−1, 1]), then so is Fa for all a ∈ [0, 1].
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5 An application

In risk management, often one needs to optimize a statistical functional, mapping F to R (such

as a risk measure), over the set of Dn(F1, . . . , Fn), and this type of problem is called risk aggregation

with dependence uncertainty (see e.g. Embrechts et al. (2013) and Bernard et al. (2014)). These

problems are typically quite difficult to solve in general, as the set Dn(F1, . . . , Fn) is a complicated

object. For uniform marginal distributions, using results in this paper (in particular, Theorem 4.2),

we are able to translate many optimization problems on DU
n to CU

n for n > 3, which is a convenient

object to work with.

We study an application of the problem of minimizing or maximizing for a given interval A,

the value of P(S ∈ A) where S is the sum of n standard uniform random variables. A special case of

the problem concerns bounds on P(S 6 x) for x ∈ R, i.e., bounds on F (x) for F ∈ DU
n , is studied by

Rüschendorf (1982). Using Theorem 4.2, we are able to solve the problem of P(S ∈ A) completely.

Proposition 5.1. For n > 3, and 0 6 a 6 a+ b 6 n, we have

min
FS∈DU

n

P(S ∈ (a, a+ b)) =

(

2b

n
− 1

)

+

, (5.1)

and

max
FS∈DU

n

P(S ∈ [a, a+ b]) = min

{

2(a+ b)

n
,
2(n − a)

n
, 1

}

, (5.2)

where FS stands for the cdf of S.

Proof. As Theorem 4.2 gives DU
n = CU

n , it suffices to look at the optimization problems for CU
n . For

0 6 u 6 v 6 n, let Au,v be the sigma field generated by {U 6 u} and {U 6 v}. S = E[U |Au,v] is

tri-atomically distributed with distribution measure

u

n
δu/2 +

v − u

n
δ(u+v)/2 +

n− v

n
δ(n+v)/2. (5.3)

Note that FS 4cx FU because S is a conditional expectation of U , and thus FS ∈ CU
n = DU

n .

We first verify the following inequality (indeed, it is Theorem 1 of Rüschendorf (1982)). For

any S which is the sum of n standard uniform random variables and x ∈ R, we have

P(S 6 x) 6 2x/n and P(S > x) 6 2(n − x)/n. (5.4)
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Equation (5.4) can be shown using the equivalent condition of convex order (see Theorem 3.A.5 of

Shaked and Shanthikumar (2007)). Using FS 4cx FU ,

F−1
S (α)α >

∫ α

0
F−1
S (t) dt >

∫ α

0
F−1
U (t) dt =

nα2

2
, α ∈ (0, 1).

Therefore, F−1
S (α) > nα

2 , α ∈ (0, 1), and equivalently FS(x) 6 2x/n, x ∈ R. The other inequality

in (5.4) is symmetric by noting that n− S is still the sum of n standard uniform random variables

and P(S > x) = P(n− S 6 n− x).

We now analyze the problem of the minimum in (5.1).

(i) Suppose b 6 n/2. Since (n + u)/2 − u/2 = n/2 > b, we can find u ∈ [0, n] such that u/2 6 a

and (n + u)/2 > b+ a. By letting S = E[U |Au,u] and using (5.3), we have P(S = u/2) = u/n

and P(S = (n+ u)/2) = (n − u)/n. In this case, P(S ∈ (a, a+ b)) = 0; thus (5.1) holds.

(ii) Suppose b > n/2, which implies a < n/2 and a+ b > n/2. Let S be given by E[U |Au,v] where

u = 2a and v = 2(a + b) − n. Note that P(S ∈ (a, a + b)) = v−u
n = 2b

n − 1. This shows the

“6” direction of (5.1). On the other hand, by (5.4), for any S which is the sum of n standard

uniform random variables, P(S 6 a) 6 2a/n and P(S > a+ b) 6 2(n− a− b)/n. Thus,

P(S ∈ (a, a+ b)) > 1−
2a

n
−

2(n− a− b)

n
=

2b

n
− 1.

This shows the “>” direction of (5.1).

Next, we analyze the problem of the maximum in (5.2).

(i) If a + b > n/2 and a < n/2, then n/2 ∈ [a, a + b]. Taking S = E[U ] = n/2 gives P(S ∈

[a, a+ b]) = 1; thus (5.2) holds.

(ii) Suppose a + b 6 n/2. By (5.4), for any S which is the sum of n standard uniform random

variables, P(S ∈ [a, a+b]) 6 P(S 6 a+b) 6 2(a+b)/n. To see that such a bound is attainable,

take S = E[U |Au,u] where u = 2(a+ b). Then, by (5.3), we have

P(S ∈ [a, a+ b]) > P(S = a+ b) = P
(

S =
u

2

)

=
u

n
=

2(a+ b)

n
.

Therefore, (5.2) holds.

(iii) Suppose a > n/2. Similar to the above case, by (5.4), for any S which is the sum of n standard

uniform random variables, P(S ∈ [a, a + b]) 6 P(S > a) 6 2(n − a)/n. To see that such a

23



bound is attainable, take S = E[U |Au,u] where u = 2a− n. Then, by (5.3), we have

π(S ∈ [a, a+ b]) > P(S = a) = P

(

S =
n+ u

2

)

=
n− u

n
=

2(n− a)

n
.

Therefore, (5.2) holds.

Remark 5.1. Based on the proof of Proposition 5.1, we can identify some minimizing distributions

for (5.1) and some maximizing distributions for (5.2). For 0 6 u 6 v 6 n, write the distribution

Fu,v =
u

n
δu/2 +

v − u

n
δ(u+v)/2 +

n− v

n
δ(n+v)/2. (5.5)

There are a few cases. For the minimum in (5.1):

1. If b 6 n/2, then Fu,u attains (5.1) for u ∈ [2a+ 2b− 2n, 2a].

2. If b > n/2, then Fu,v attains (5.1) where u = 2a and v = 2(a+ b)− n.

For the maximum in (5.2):

1. If a+ b > n/2 and a < n/2, then δn/2 attains (5.2).

2. If a+ b 6 n/2, then Fu,u attains (5.2) where u = 2(a+ b).

3. If a > n/2, then Fu,u attains (5.2) where u = 2a− n.
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