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Branching processes in random environment with
immigration stopped at zero*

Elena Dyakonova! Doudou Lit Vladimir Vatutin® and Mei Zhang?

Abstract

A critical branching process with immigration which evolve in a ran-
dom environment is considered. Assuming that immigration is not allowed
when there are no individuals in the aboriginal population we investigate
the tail distribution of the so-called life period of the process, i.e., the
length of the time interval between the moment when the process is ini-
tiated by a positive number of particles and the moment when there are
no individuals in the population for the first time.

1 Introduction and statement of main results

We consider branching processes allowing immigration and evolving in a ran-
dom environment. In such a process individuals reproduce independently of
each other according to random offspring distributions which vary from one
generation to the other. In addition, immigrants arrive to each generation in-
dependently on the development of the population and according to the laws
varying at random from generation to generation. To give a formal defini-
tion let A = (A1, As) be the space of all pairs of probability measures on
Ny ={0,1,2,...}. Equipped with the component-wise metric of total variation
A becomes a Polish space. Let Q = {F, G} be a random vector with indepen-
dent components taking values in A, and let Q,, = {F,,,G,},n=1,2,..., be a
sequence of independent copies of Q. The infinite sequence £ = {Q1, Qa, ...} is
called a random environment.

A sequence of Ny-valued random variables Y = {Y,,, n € Ny} specified on
the respective probability space (2, F,P) is called a branching process with
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immigration in the random environment (BPIRE), if Y{ is independent of &
and, given &£ the process Y is a Markov chain with

L (Yn|Yn—l = Yn—1, &= (q17 q2, )) = E(gnl +...+ gnyn71 + nn) (1)

for every n € N := No\ {0}, yn—1 € Ng and q1 = (f1,91).92 = (f2,92) ,..- € Q,
where &,1,&,2,... are i.i.d. random variables with distribution f,, and inde-
pendent of the random variable 7, with distribution g,. In the language of
branching processes Y;,_1 is the (n — 1)th generation size of the population, f,
is the distribution of the number of children of an individual at generation n —1
and g, is the reproduction law of immigrants at generation n.

Along with the process Y we consider a branching process Z = {Z,,, n € Ny}
in the random environment & = {F, Fs, ...} which, given & is a Markov chain
with Zp =1 and, for n € N

ﬁ(Zn|Zn—l = Zn—lagl = (flu f27 )) = E(gnl +...+ gnzn,l)' (2)

It will be convenient to assume that if ¥,,_1 = y,_1 > 0 is the population
size of the (n — 1)th generation of Y then first &,1 + ... + &y, , individuals of
the nth generation are born and than 7, immigrants enter the population.

This agreement allows us to consider a modified version W = {W,,, n € Ny}
of the process Y specified as follows. Assume, without loss of generality that
Yy > 0. Let Wy =Yy and for n > 1,

0, i, =& +...+&w, , =0,
Tn+77na if T,, > 0.

W, = (3)
We call W as a branching process with immigration stopped at zero and evolving
in the random environment.

The aim of the present paper is to study the tail distribution of the random

variable
¢:=min{n>1:W, =0}

under the annealed approach. To formulate our main result we consider the
so-called associated random walk S = (Sp, Sy, ...). This random walk has initial
state Sp and increments X,, =5, — Sp,_1, n > 1, defined as

Xy, :=logm (F,)

which are i.i.d. copies of the logarithmic mean offspring number X := log m(F)
with

m(F) = jF({j}).
j=0
We suppose that X is a.s. finite.

With each pair of measures (F,G) we associate the respective probability
generation functions

Pl =Y FI)s)  Ge)=Y G,

Jj=0 Jj=0



We impose the following restrictions on the distributions of F' and G.
Hypothesis Al. The probability generating function F(s) is geometric
with probability 1, that is

q 1
Fls) = 1—ps 1+ m(F)(1—s) @)

with random p, g € (0,1) satisfying p + ¢ = 1 and

m(F) = P _ log(p/a) _ X
q
Hypothesis A2. There exist real numbers « € [0,1) and v,0 € (0, 1] such
that, with probability 1
1) the inequality F'(0) > & is valid;
2) the estimate
G(s) <s” (5)

holds for all s € [k7,1].
To formulate one more assumption we set

M, :== max(S1,...,S,), Ly :=min(Sp,S1,...,5),

and, given Sy = 0, introduce the right-continuous function U : R — [0, 00)
specified by the relation

U(x)::I{xZO}+iP(SnZ—:E,Mn<O), (6)

n=1

where I(A) is the indicator of the event A.
One may check (see, for instance, [2] and [3]) that for any oscillating random
walk

EU(@+X);X+2x>0=U(x), x>0. (7)

Hypothesis A3. The distribution of X is nonlattice, the sequence {S,,,n > 0}
satisfies the Doney-Spitzer condition

lim P (S, >0)=:pe(0,1), (8)

n—oo

and there exists € > 0 such that
-1
E (log" G'(1))" <o and E (U(X)log* G'(l))lJrs < 00, 9)

where log™ 2 = max (0, log x).
We now formulate our main result.

Theorem 1 Let Hypotheses A1 - A3 be satisfied. Then there exists a function
l(n) slowly varying at infinity such that

l(n)

nt-r

P((>n)~

as n — 0.



It is convenient to describe the range of possible values of the parameter x
by examples.
Let

A={0<a<l;|fl<}U{l<a<2|f <1}U{a=1,8=0lU{a=28=0)

be a subset in R?. For («, ) € A and a random variable X we write X € D (a, 3)
if the distribution of X belongs to the domain of attraction of a stable law with
characteristic function

t TQ

Gap(t) :==exp {—c|t| o <1 - iﬂm tan 7) } , ¢>0, (10)

and, in addition, E [X] = 0 if this moment exists. If X, 2XeD (v, B) then
the parameter p in (8) is given by the formula (see, for instance, [17])

_ [ pif a=1, (11)
P= 5+ % arctan (ﬁ tan %) , otherwise.

Note that if E[X] = 0 and VarX € (0,00) then the central limit theorem
implies p = 1/2.

Example 1 If Hypothesis A1 is valid and
X = logm(F) = log(p/q) € D (, §)
with « € (0,2) then

P (log(p/q) > ) ~ as x — oo, (12)

xl ()

where 11 (x) is a function slowly varying at infinity. Therefore,

q 1
Pl — ~—
(Og 1—q " I) xly ()

as x — oo implying

e " 1
( (0)=a< 1+ e‘w) xly ()

As a result, P (F(0) <y) >0 for any y > 0.

Thus, if a € (0,2) then point 1) of Hypothesis A2 reduces to the trivial
inequality F(0) > k = 0. Moreover, given k = 0 point 2) of Hypothesis A2
implies G (0) = 0 which, in turn, leads to the inequality

Gs) =D G({js' <5

for all s € [0,1]. The last means that at least one immigrant enters W each
time when it is allowed by ({3).



The case E [XQ} < o0 is less restrictive and allows for « > 0, i.e., for the
absence of immigrants in some generations of W (even they are allowed).

Example 2 Let

#(175) with probability 3,
F(S) =
63
64—s

with probability %

and the probability generating function of immigrants be deterministic:

2 1
G(s) = 532 + 3 with probability 1.

Clearly, E [logm(F)] = 0, Var [logm(F)] € (0,00). It is not difficult to see that
F(0) > 1/64 and G(s) < s/* for all s € [871,1] = {64*1/2, 1} .
Thus, the conditions of Theorem [ fulfill with k =1/64, v =1/3 and o = 1/2.

We note that Zubkov [I8] considered a problem similar to ours for a branch-
ing process with immigration {Y.(n),n > 0} evolving in a constant environment.
He assumed that G (0) > 0 and investigated the distribution of the so-called life
period (. of such a process initiated at time N and defined as

Y. (N —-1) = i Yo (k Y.(N = 0.

o ) 0, y min (k) > 0,Ye(N +¢)=0
The same problem for other models of branching processes with immigration
evolving in a constant environment was analysed, for instance, in [], [11], [14]

and [16].

Various properties of BPIRE were investigated by several authors (see, for

instance, [1, [7], [9],[10],[13], [I5]). However, asymptotic properties of the life
periods of BPIRE were not considered up to now.

2 Auxiliary statements

Given the environment € = {(F,, G,),n € N}, we construct the i.i.d. sequence
of pairs of generating functions

Fuls)= 3B Guls) = Gul{iDs seo,1)

Jj=0 j=0
and use below the convolutions of the generating functions Fi, ..., F;, specified
for 0 <i <n —1 by the equalities
Fin(s) = Fit(Fipa(e.. (Fa(s))-.)),
F,.(s) := E,(Fro1(o.. (Fig1(8))...)) and Fy ,(s) := s.



The evolution of the BPIRE defined by (B may be now described for n > 1
by the relation

E[s"" €, Wao1] = (Fn(0)"" 1 + (Fu(s))" 1 = (Fa(0))"V1) Gu(s)
= (Fn(o))wnfl(l —Gn(s)) + (Fn(s))wnflGn(S) . (13)
We assume for convenience that Wy = Yy > 0 has the (random) probability
generating function
Go(s) — Go(0)

N(0;s) := 1= Gol0)

where Go(s) La (s). Other classes of the initial distribution may be considered
in a similar way.

Setting
N(n;s) :=E[s""|£], n>1
we have by ([I3))
N(n;s) = E [(Fn Pt (1 = Gu(s) + (Fu(s ))W’HG (5)I€]
= N(n— (0))( = Gu(s)) + N(n =1, Fo(s))Gn(s ) (14)
= N(n—=1LF,0))(1-Gals)) + N(n 2 Fo1(0)(1 = Gaa (Fa(s)))Gn(s)
+N(n—2 Fn1(Fu(s)))Gno1 (Fu(s))Ga(s),

where for n = 1 one should take into account only the first two equalities.
Assuming []7_, ,, = 1 we obtain by induction

N(nis) = 3N —k—LF0)(1 - GuiFuin®) [[ G(F
k=0 j=n—k+1

N(0; Fon() [ [ Gj(Fjn(9))
i=1

Note that according to (14
N(n;0) = N(n—1;F,(0)), n > 1.

Besides,
EN(n;0) =P (W, =0)=P((<n).

Hence, setting s = F,41(0), taking the expectation with respect to the
environment and using the independency of the elements of the environment we
get,

E[N(n+1;0)] ZE (n—k0]E | (1= Gni(Fnrni1(0)) H G;(Fj.ny1(0))
j=n—k+1

+E [ N(0; Fo,n4+1(0)) | | Gi(Fjn+1(0)) | - (15)

—.

j=1



Denoting forn >0

Ry:=  1-E[N(n;0)] [1 —N(n;0)] =P (C>n)
. 1 —Go(Fon &

Hn = E 10—6(30 +1 1:[ zn+1 1 )

o= E|[[Gi(Finn(0)| =E|[] G (Fz'.,o(o))] :

H, E (1 - GO(FO n+1( ))) HGl (Fz n+1(0))‘|
i=1
n n+1
= E|[[GiEnnO)| -E|[]Gi (Fi,n+2<0>>] = dn — dny,

and using the equality

k

E (1= Go(Fok41(0)) [ [ G) (Fjrs1(0)

(1 = Gk (Fa—kn+1(0))) H G (Fjnt1(0 ))] =E

j=n—k+1

we rewrite ([]) as a renewal type equation

n—1
Rpy1 = HpRy i+ Hy, n>0. (16)
k=0
Let -
s) = Z Ry,s
n=1
Lemma 1 " (s) R
SH*(s) + sRy
= - \7 T 1
R(s) =500 (17)
where
Z dps" and H*( ZH* ”.
Proof. Set -
)= Z Hps™.
n=0
Clearly,
sH(s) =Y (dn — dpy1)s" ™ = sD (s) — D(s) + 1.
n=0



Multiplying ([6) by s"*! and summing over n from 1 to oo we get
R(s) — sR1 = sH(s)R(s) + sH"(s)

o _ sH*(s)+sR1  s(H*(s) + Ri)
RO =)~ U=9D0)

The lemma is proved.
Denote for 0 < <n

A, = en, B, = Zes’“, B,, := By n,
and introduce the function
Ch(s) := H Fio(s).
Lemma 2 Under Hypothesis Al

1
C,:=0C,0) = —.
0) =3
Proof. Hypothesis Al implies

@G 1
S l—pis 14eXi(1-s)

Fi(s) (18)

for alli =1,2,.... Using these equalities it is not difficult to check by induction
that, for n > 1

Ap 1—8) '+ B
Fn-,O(S) =1- 1 = ( S) —1+ - 1’
(1 — S) =+ Bl,n (1 — S) + Bl,n

where By g = 0 by definition. Therefore,

(=) '+ B (1-s) "
o) = 11;[1 (1-s) "' +Bi; (1-s)"'+Bi, 1

Setting s = 0 in ([[9) we prove the lemma.

To go further we need more notation. Let & = {Q1,Qa2,...} be a ran-
dom environment and let F,,,n > 1, be the o-field of events generated by the
random pairs Q1 = {F1,G1}, Q2 = {F>,G2},...,Q, = {F,,G,} and the se-
quence Wy, Wr, ..., W,,. These o-fields form a filtration §. Now the increments
{X,,n > 1} of the random walk S are measurable with respect to the o-field F,,.
Using the martingale property (7)) of U we introduce a sequence of probability

measures {Pa), n > 1} on the o-field F,, by means of the density
dP’

(n

) o= U(Sp)I {Ly, > 0} dP.



This and Kolmogorov’s extension theorem show that, on a suitable probability
space there exists a probability measure P* on the o-field § such that (see [2]
and [3] for more detail)

PHF, =P, n>1.

We now formulate two known statements dealing with conditioning {L,, > 0}.

Lemma 3 (see Lemma 2.5 in [2] or Lemma 5.2 in [§]) Let the condition (8)

hold and let &1,&2,... be a sequence of uniformly bounded random wvariables
adapted to the filtration § such that the limit
oo 1= nlggo &n (20)

ezists PT - a.s. Then
lim E[¢, | L, >0 =E"[(.]. (21)
n—r00

Let
7(n) :=min{i >0:S5; = L,}.

Lemma 4 (see Lemma 2.2 in [2]) Let u(x),x > 0, be a nonnegative, nonin-
creasing function with fooo u(z)dx < oo. If the condition (8) holds then, for
every € > 0, there exists a positive number m = m(g) such that for alln > m

i E [u(=Sk);7(k) = k]| P (L,—, > 0) <eP (L, >0).

k=m

3 Proof of the main result

It is known (see, for instance, [I2] or [5], Theorem 8.9.12) that if Hypothesis
A3 is valid then there exists a slowly varying function l3(n) such that

l2(n)
nt—r’

P(L,>0)~ n — 0. (22)

We now prove an important statement describing the asymptotic behavior
of d,, as n — 0o. To this aim we introduce the reflected random walk

S’QZO, §k=X1+...+X;€, k>1,

where X; = — X}, and supply in the sequel the relevant variables and measures
by the upper symbol ~ .
Note that X € D (a, —f3) and

lim P(§n>0): lim P (S, <0)=1-p.

n—oo n—r00

Hence it follows that

P (in > o) ~ ZBT(LZ‘), n — o, (23)

for a slowly varying function l3(n).



Lemma 5 If Hypotheses A1-A3 are satisfied then there exists a constant 6 > 0
such that
l3(n)

dnweP(ano)fve 2 oo, (24)

n

Proof. According to Lemma

R N S |
"T B, 14eSi4..4+eS5 B,
We set - -
7(n) := min {z >0:8; = Ln}
and write
4o =S B [ Gi (Fio(0)): 7n) = k] -
k=0 i=1

Recalling point 1) of Hypothesis A2 we conclude that, for any i > 1

Fi(,ro(o) = Ffifl(Fifl-,O(O)) > F'(,Tifl(o) > k7.

2

This estimate, point 2) of Hypothesis A2 and Lemma [2 imply

B[] (Fo0):7m = k| < B|[] G, (F{,’o(O));?(n)—k]
Tem o) a2 — k| — L )=
SE (EEO(O)> 7T(n)_k =E (BH)UV7 ()_k
Further,
E %;%(n)zk <E | #(n) = k| =E |75 7#(k) = k| P (Lo > 0).
o 7=~ =4 (29

Using Lemma [ with u(z) = e~77* we conclude that, for any & > 0 there exists
m = m () such that

10



We now consider fixed k& < m and write

E HGi (Fi,o(()));%(n)_k]
k
=E HGz H G (Fjn(Fro(0):7(n) =k
=1 j=k+1
=E HGz (FZO(O))@(TL—IC FkO(O)) (k) =k ,

where

O (n;s) :=E H G, (Fjo(s));Ln >0

j=1

Using the arguments applied to establish Lemma 2.7 in [2], one may check
that, under the conditions of Theorem [

<3G (1 - Fio0) <Y Gi(1)e S <00 P —aus,
Hence it follows that,

&n(s) == [ G (Fjo(s)) = &xols H >0

j=1

Pt—a.s. Since &,(s) — £xo(s) PT—as. as n — oo, it follows from Lemma [3]
that, for each s € [0,1)

O (n;5) ~ET [€0(s)]| P (in > O) , N — 0.

Applying the dominated convergence theorem gives on account of (23] and
properties of slowly varying functions

, k O (n— k; F0(0) _
im G, (Fio : ;T(k) =
lim E ];[1 (F,0(0)) P(inzo) (k) =k
k %)
~E |[J6 (roonE | [] 6 i (Bro(Fro0))) | 17(k) = k|, (26)

where éj, Fj70 are independent copies of G;, Fj .

11



Combining (26]) with (28) we get

1 n—1
lim ———E G (Fin(0))] =0,
”%“P(Enzo) ]1) ( ,())]
where
(o'} k 00
0:=> E|[[G:i (Fo0)E" |T]G; (Fj,O(Fk,O(O))) ;T(k) =k
k=0 i=1 j=0

This proves Lemma
Proof of Theorem [I. We know that

I3(n)

dyp ~ 6

as n — 00. This and a Tauberian theorem (see [6], Chapter XIII.5, Theorem 5)
imply
- Iy (1/(1 —5))
D(s) = dps™ ~0I' (1 — p) ————.
(s) n; e TR

Thus,
s(H*(s) + Ry) N H*(1) + Ry
(=)D (s) ~ 0 (L—p)ls(1/(1—5)) (1)
as s T 1. Since the sequence {R,,,n > 1} is monotone decreasing, it follows that
(see [6], Chapter XIIL.5, Theorem 5)

R(s) =

H*(1) + Ry nPl

T T = s ()

as n — o0.

Theorem [ is proved.
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