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Branching processes in random environment with

immigration stopped at zero∗

Elena Dyakonova†, Doudou Li‡, Vladimir Vatutin§ and Mei Zhang¶

Abstract

A critical branching process with immigration which evolve in a ran-

dom environment is considered. Assuming that immigration is not allowed

when there are no individuals in the aboriginal population we investigate

the tail distribution of the so-called life period of the process, i.e., the

length of the time interval between the moment when the process is ini-

tiated by a positive number of particles and the moment when there are

no individuals in the population for the first time.

1 Introduction and statement of main results

We consider branching processes allowing immigration and evolving in a ran-
dom environment. In such a process individuals reproduce independently of
each other according to random offspring distributions which vary from one
generation to the other. In addition, immigrants arrive to each generation in-
dependently on the development of the population and according to the laws
varying at random from generation to generation. To give a formal defini-
tion let ∆ = (∆1,∆2) be the space of all pairs of probability measures on
N0 = {0, 1, 2, . . .}. Equipped with the component-wise metric of total variation
∆ becomes a Polish space. Let Q = {F,G} be a random vector with indepen-
dent components taking values in ∆, and let Qn = {Fn, Gn}, n = 1, 2, . . . , be a
sequence of independent copies of Q. The infinite sequence E = {Q1,Q2, ...} is
called a random environment.

A sequence of N0-valued random variables Y = {Yn, n ∈ N0} specified on
the respective probability space (Ω,F ,P) is called a branching process with
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immigration in the random environment (BPIRE), if Y0 is independent of E
and, given E the process Y is a Markov chain with

L (Yn|Yn−1 = yn−1, E = (q1,q2, ...)) = L(ξn1 + . . .+ ξnyn−1
+ ηn) (1)

for every n ∈ N := N0\ {0}, yn−1 ∈ N0 and q1 = (f1, g1) ,q2 = (f2, g2) , ... ∈ Q,
where ξn1, ξn2, . . . are i.i.d. random variables with distribution fn and inde-
pendent of the random variable ηn with distribution gn. In the language of
branching processes Yn−1 is the (n− 1)th generation size of the population, fn
is the distribution of the number of children of an individual at generation n−1
and gn is the reproduction law of immigrants at generation n.

Along with the processY we consider a branching process Z = {Zn, n ∈ N0}
in the random environment E1 = {F1, F2, ...} which, given E1 is a Markov chain
with Z0 = 1 and, for n ∈ N

L (Zn|Zn−1 = zn−1, E1 = (f1, f2, ...)) = L(ξn1 + . . .+ ξnzn−1
). (2)

It will be convenient to assume that if Yn−1 = yn−1 > 0 is the population
size of the (n− 1)th generation of Y then first ξn1 + . . .+ ξnyn−1

individuals of
the nth generation are born and than ηn immigrants enter the population.

This agreement allows us to consider a modified version W = {Wn, n ∈ N0}
of the process Y specified as follows. Assume, without loss of generality that
Y0 > 0. Let W0 = Y0 and for n ≥ 1,

Wn :=

{

0, if Tn := ξn1 + . . .+ ξnWn−1
= 0,

Tn + ηn, if Tn > 0.
. (3)

We callW as a branching process with immigration stopped at zero and evolving
in the random environment.

The aim of the present paper is to study the tail distribution of the random
variable

ζ := min {n ≥ 1 : Wn = 0}

under the annealed approach. To formulate our main result we consider the
so-called associated random walk S = (S0, S1, ...). This random walk has initial
state S0 and increments Xn = Sn − Sn−1, n ≥ 1, defined as

Xn := logm (Fn)

which are i.i.d. copies of the logarithmic mean offspring number X := log m(F )
with

m(F ) :=

∞
∑

j=0

jF ({j}) .

We suppose that X is a.s. finite.
With each pair of measures (F,G) we associate the respective probability

generation functions

F (s) :=

∞
∑

j=0

F ({j}) sj , G(s) :=

∞
∑

j=0

G ({j}) sj .
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We impose the following restrictions on the distributions of F and G.
Hypothesis A1. The probability generating function F (s) is geometric

with probability 1, that is

F (s) =
q

1− ps
=

1

1 +m(F )(1 − s)
(4)

with random p, q ∈ (0, 1) satisfying p+ q = 1 and

m(F ) =
p

q
= elog(p/q) = eX .

Hypothesis A2. There exist real numbers κ ∈ [0, 1) and γ, σ ∈ (0, 1] such
that, with probability 1

1) the inequality F (0) ≥ κ is valid;
2) the estimate

G(s) ≤ sγ (5)

holds for all s ∈ [κσ, 1].
To formulate one more assumption we set

Mn := max (S1, ..., Sn) , Ln := min (S0, S1, ..., Sn) ,

and, given S0 = 0, introduce the right-continuous function U : R → [0,∞)
specified by the relation

U(x) := I {x ≥ 0}+

∞
∑

n=1

P (Sn ≥ −x,Mn < 0) , (6)

where I(A) is the indicator of the event A.
One may check (see, for instance, [2] and [3]) that for any oscillating random

walk
E [U(x+X);X + x ≥ 0] = U(x), x ≥ 0. (7)

Hypothesis A3. The distribution ofX is nonlattice, the sequence {Sn, n ≥ 0}
satisfies the Doney-Spitzer condition

lim
n→∞

P (Sn > 0) =: ρ ∈ (0, 1), (8)

and there exists ε > 0 such that

E
(

log+ G′(1)
)ρ−1+ε

< ∞ and E
(

U(X) log+ G′(1)
)1+ε

< ∞, (9)

where log+ x = max (0, logx).
We now formulate our main result.

Theorem 1 Let Hypotheses A1 - A3 be satisfied. Then there exists a function
l(n) slowly varying at infinity such that

P (ζ > n) ∼
l(n)

n1−ρ

as n → ∞.
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It is convenient to describe the range of possible values of the parameter κ
by examples.

Let

A := {0 < α < 1; |β| < 1}∪{1 < α < 2; |β| ≤ 1}∪{α = 1, β = 0}∪{α = 2, β = 0}

be a subset in R
2. For (α, β) ∈ A and a random variableX we writeX ∈ D (α, β)

if the distribution of X belongs to the domain of attraction of a stable law with
characteristic function

Gα,β(t) := exp

{

−c|t|α
(

1− iβ
t

|t|
tan

πα

2

)}

, c > 0, (10)

and, in addition, E [X ] = 0 if this moment exists. If Xn
d
= X ∈ D (α, β) then

the parameter ρ in (8) is given by the formula (see, for instance, [17])

ρ =

{

1
2 , if α = 1,
1
2 + 1

πα arctan
(

β tan πα
2

)

, otherwise.
(11)

Note that if E [X ] = 0 and VarX ∈ (0,∞) then the central limit theorem
implies ρ = 1/2.

Example 1 If Hypothesis A1 is valid and

X = logm(F ) = log(p/q) ∈ D (α, β)

with α ∈ (0, 2) then

P (log(p/q) > x) ∼
1

xαl1(x)
as x → ∞, (12)

where l1(x) is a function slowly varying at infinity. Therefore,

P

(

log
q

1− q
< −x

)

∼
1

xαl1(x)

as x → ∞ implying

P

(

F (0) = q <
e−x

1 + e−x

)

∼
1

xαl1(x)
.

As a result, P (F (0) < y) > 0 for any y > 0.
Thus, if α ∈ (0, 2) then point 1) of Hypothesis A2 reduces to the trivial

inequality F (0) ≥ κ = 0. Moreover, given κ = 0 point 2) of Hypothesis A2
implies G (0) = 0 which, in turn, leads to the inequality

G(s) =

∞
∑

j=1

G ({j}) sj ≤ s

for all s ∈ [0, 1]. The last means that at least one immigrant enters W each
time when it is allowed by (3).
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The case E
[

X2
]

< ∞ is less restrictive and allows for κ > 0, i.e., for the
absence of immigrants in some generations of W (even they are allowed).

Example 2 Let

F (s) =







1
1+63(1−s) with probability 1

2 ,

63
64−s with probability 1

2

and the probability generating function of immigrants be deterministic:

G(s) =
2

3
s2 +

1

3
with probability 1.

Clearly, E [logm(F )] = 0, Var [logm(F )] ∈ (0,∞). It is not difficult to see that

F (0) ≥ 1/64 and G(s) ≤ s1/3 for all s ∈
[

8−1, 1
]

=
[

64−1/2, 1
]

.

Thus, the conditions of Theorem 1 fulfill with κ = 1/64, γ = 1/3 and σ = 1/2.

We note that Zubkov [18] considered a problem similar to ours for a branch-
ing process with immigration {Yc(n), n ≥ 0} evolving in a constant environment.
He assumed that G (0) > 0 and investigated the distribution of the so-called life
period ζc of such a process initiated at time N and defined as

Yc(N − 1) = 0, min
N≤k<N+ζc

Yc(k) > 0, Yc(N + ζc) = 0.

The same problem for other models of branching processes with immigration
evolving in a constant environment was analysed, for instance, in [4], [11], [14]
and [16].

Various properties of BPIRE were investigated by several authors (see, for
instance, [1], [7], [9],[10],[13], [15]). However, asymptotic properties of the life
periods of BPIRE were not considered up to now.

2 Auxiliary statements

Given the environment E = {(Fn, Gn), n ∈ N}, we construct the i.i.d. sequence
of pairs of generating functions

Fn(s) :=

∞
∑

j=0

Fn ({j}) s
j , Gn(s) :=

∞
∑

j=0

Gn ({j}) s
j s ∈ [0, 1],

and use below the convolutions of the generating functions F1, ..., Fn specified
for 0 ≤ i ≤ n− 1 by the equalities

Fi,n(s) := Fi+1(Fi+2(. . . (Fn(s)) . . .)),

Fn,i(s) := Fn(Fn−1(. . . (Fi+1(s)) . . .)) and Fn,n(s) := s.
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The evolution of the BPIRE defined by (3) may be now described for n ≥ 1
by the relation

E[sWn |E ,Wn−1] = (Fn(0))
Wn−1 +

(

(Fn(s))
Wn−1 − (Fn(0))

Wn−1

)

Gn(s)

= (Fn(0))
Wn−1(1−Gn(s)) + (Fn(s))

Wn−1Gn(s) . (13)

We assume for convenience that W0 = Y0 > 0 has the (random) probability
generating function

N(0; s) :=
G0(s)−G0(0)

1−G0(0)

where G0(s)
d
= G(s). Other classes of the initial distribution may be considered

in a similar way.
Setting

N(n; s) := E[sWn |E ], n ≥ 1

we have by (13)

N(n; s) = E
[

(Fn(0))
Wn−1(1−Gn(s)) + (Fn(s))

Wn−1Gn(s)|E
]

= N(n− 1;Fn(0))(1−Gn(s)) +N(n− 1;Fn(s))Gn(s) (14)

= N(n− 1;Fn(0))(1−Gn(s)) +N(n− 2;Fn−1(0))(1 −Gn−1(Fn(s)))Gn(s)

+N(n− 2;Fn−1(Fn(s)))Gn−1(Fn(s))Gn(s),

where for n = 1 one should take into account only the first two equalities.
Assuming

∏n
j=n+1 = 1 we obtain by induction

N(n; s) =

n−1
∑

k=0

N(n− k − 1;Fn−k(0))(1 −Gn−k(Fn−k,n(s)))

n
∏

j=n−k+1

Gj(Fj,n(s))

+N(0;F0,n(s))
n
∏

j=1

Gj(Fj,n(s)).

Note that according to (14)

N(n; 0) = N(n− 1;Fn(0)), n ≥ 1.

Besides,
EN(n; 0) = P (Wn = 0) = P (ζ ≤ n) .

Hence, setting s = Fn+1(0), taking the expectation with respect to the
environment and using the independency of the elements of the environment we
get

E [N(n+ 1; 0)] =

n−1
∑

k=0

E [N(n− k; 0)]E



(1−Gn−k(Fn−k,n+1(0)))

n
∏

j=n−k+1

Gj(Fj,n+1(0))





+E



N(0;F0,n+1(0))

n
∏

j=1

Gj(Fj,n+1(0))



 . (15)
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Denoting for n ≥ 0

Rn := 1−E [N(n; 0)] = E [1−N(n; 0)] = P (ζ > n) ,

H∗
n := E

[

1−G0(F0,n+1(0))

1−G0(0)

n
∏

i=1

Gi(Fi,n+1(0))

]

,

dn := E

[

n
∏

i=1

Gi (Fi,n+1(0))

]

= E

[

n
∏

i=1

Gi (Fi,0(0))

]

,

observing that

Hn : = E

[

(1 −G0(F0,n+1(0)))

n
∏

i=1

Gi (Fi,n+1(0))

]

= E

[

n
∏

i=1

Gi (Fi,n+1(0))

]

−E

[

n+1
∏

i=1

Gi (Fi,n+2(0))

]

= dn − dn+1,

and using the equality

E



(1−Gn−k(Fn−k,n+1(0)))

n
∏

j=n−k+1

Gj(Fj,n+1(0))



 = E



(1−G0(F0,k+1(0)))

k
∏

j=1

Gj(Fj,k+1(0))





we rewrite (15) as a renewal type equation

Rn+1 =
n−1
∑

k=0

HkRn−k +H∗
n, n ≥ 0. (16)

Let

R(s) :=

∞
∑

n=1

Rns
n.

Lemma 1

R(s) =
sH∗(s) + sR1

(1− s)D (s)
(17)

where

D (s) :=

∞
∑

n=0

dns
n and H∗(s) :=

∞
∑

n=1

H∗
ns

n.

Proof. Set

H(s) :=

∞
∑

n=0

Hns
n.

Clearly,

sH(s) =
∞
∑

n=0

(dn − dn+1)s
n+1 = sD (s)−D(s) + 1.

7



Multiplying (16) by sn+1 and summing over n from 1 to ∞ we get

R(s)− sR1 = sH(s)R(s) + sH∗(s)

or

R(s) =
sH∗(s) + sR1

1− sH(s)
=

s (H∗(s) +R1)

(1− s)D (s)
.

The lemma is proved.
Denote for 0 ≤ i ≤ n

An := eSn , Bi,n :=

n
∑

k=i

eSk , Bn := B0,n,

and introduce the function

Cn(s) :=

n
∏

i=1

Fi,0(s).

Lemma 2 Under Hypothesis A1

Cn := Cn(0) =
1

Bn
.

Proof. Hypothesis A1 implies

Fi(s) =
qi

1− pis
=

1

1 + eXi (1− s)
(18)

for all i = 1, 2, . . .. Using these equalities it is not difficult to check by induction
that, for n ≥ 1

Fn,0(s) = 1−
An

(1− s)
−1

+B1,n

=
(1− s)

−1
+ B1,n−1

(1− s)
−1

+B1,n

,

where B1,0 = 0 by definition. Therefore,

Cn(s) =

n
∏

i=1

(1− s)−1 +B1,i−1

(1− s)
−1

+B1,i

=
(1− s)−1

(1− s)
−1

+B1,n

. (19)

Setting s = 0 in (19) we prove the lemma.
To go further we need more notation. Let E = {Q1,Q2, ...} be a ran-

dom environment and let Fn, n ≥ 1, be the σ-field of events generated by the
random pairs Q1 = {F1, G1},Q2 = {F2, G2}, ...,Qn = {Fn, Gn} and the se-
quence W0,W1, ...,Wn. These σ-fields form a filtration F. Now the increments
{Xn, n ≥ 1} of the random walk S are measurable with respect to the σ-field Fn.
Using the martingale property (7) of U we introduce a sequence of probability

measures
{

P+
(n), n ≥ 1

}

on the σ-field Fn by means of the density

dP+
(n) := U(Sn)I {Ln ≥ 0} dP.

8



This and Kolmogorov’s extension theorem show that, on a suitable probability
space there exists a probability measure P+ on the σ-field F such that (see [2]
and [3] for more detail)

P+|Fn = P+
(n), n ≥ 1.

We now formulate two known statements dealing with conditioning {Ln ≥ 0}.

Lemma 3 (see Lemma 2.5 in [2] or Lemma 5.2 in [8]) Let the condition (8)
hold and let ξ1, ξ2, . . . be a sequence of uniformly bounded random variables
adapted to the filtration F such that the limit

ξ∞ := lim
n→∞

ξn (20)

exists P+ - a.s. Then

lim
n→∞

E[ξn |Ln ≥ 0] = E+ [ξ∞] . (21)

Let
τ(n) := min {i ≥ 0 : Si = Ln} .

Lemma 4 (see Lemma 2.2 in [2]) Let u(x), x ≥ 0, be a nonnegative, nonin-
creasing function with

∫∞

0
u(x)dx < ∞. If the condition (8) holds then, for

every ε > 0, there exists a positive number m = m(ε) such that for all n ≥ m

n
∑

k=m

E [u(−Sk); τ(k) = k]P (Ln−k ≥ 0) ≤ εP (Ln ≥ 0) .

3 Proof of the main result

It is known (see, for instance, [12] or [5], Theorem 8.9.12) that if Hypothesis
A3 is valid then there exists a slowly varying function l2(n) such that

P (Ln ≥ 0) ∼
l2(n)

n1−ρ
, n → ∞. (22)

We now prove an important statement describing the asymptotic behavior
of dn as n → ∞. To this aim we introduce the reflected random walk

S̃0 = 0, S̃k = X̃1 + ...+ X̃k, k ≥ 1,

where X̃k = −Xk and supply in the sequel the relevant variables and measures
by the upper symbol ˜ .

Note that X̃k ∈ D (α,−β) and

lim
n→∞

P
(

S̃n > 0
)

= lim
n→∞

P (Sn < 0) = 1− ρ.

Hence it follows that

P
(

L̃n ≥ 0
)

∼
l3(n)

nρ
, n → ∞, (23)

for a slowly varying function l3(n).
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Lemma 5 If Hypotheses A1-A3 are satisfied then there exists a constant θ > 0
such that

dn ∼ θP
(

L̃n ≥ 0
)

∼ θ
l3(n)

nρ
, n → ∞. (24)

Proof. According to Lemma 2

Cn =
1

Bn
=

1

1 + e−S̃1 + ...+ e−S̃n

=:
1

B̃n

.

We set
τ̃ (n) := min

{

i ≥ 0 : S̃i = L̃n

}

and write

dn =
n
∑

k=0

E

[

n
∏

i=1

Gi (Fi,0(0)) ; τ̃ (n) = k

]

.

Recalling point 1) of Hypothesis A2 we conclude that, for any i ≥ 1

F σ
i,0(0) = F σ

i,i−1(Fi−1,0(0)) ≥ F σ
i,i−1(0) ≥ κσ.

This estimate, point 2) of Hypothesis A2 and Lemma 2 imply

E

[

n
∏

i=1

Gi (Fi,0(0)) ; τ̃(n) = k

]

≤ E

[

n
∏

i=1

Gi

(

F σ
i,0(0)

)

; τ̃(n) = k

]

≤ E

[(

n
∏

i=1

F σ
i,0(0)

)γ

; τ̃ (n) = k

]

= E





1
(

B̃n

)σγ ; τ̃ (n) = k



 .

Further,

E





1
(

B̃n

)σγ ; τ̃ (n) = k



 ≤ E
[

eσγS̃k ; τ̃ (n) = k
]

= E
[

eσγS̃k ; τ̃ (k) = k
]

P
(

L̃n−k ≥ 0
)

.

Using Lemma 4 with u(x) = e−σγx we conclude that, for any ε > 0 there exists
m = m (ε) such that

n
∑

k=m

E

[

n
∏

i=1

Gi (Fi,0(0)) ; τ̃ (n) = k

]

≤
n
∑

k=m

E
[

eσγS̃k ; τ̃(k) = k
]

P
(

L̃n−k ≥ 0
)

≤ εP
(

L̃n ≥ 0
)

. (25)
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We now consider fixed k ≤ m and write

E

[

n
∏

i=1

Gi (Fi,0(0)) ; τ̃ (n) = k

]

= E





k
∏

i=1

Gi (Fi,0(0))

n
∏

j=k+1

Gj (Fj,k(Fk,0(0))) ; τ̃ (n) = k





= E

[

k
∏

i=1

Gi (Fi,0(0))Θ (n− k;Fk,0(0)) ; τ̃(k) = k

]

,

where

Θ (n; s) := E





n
∏

j=1

Gj (Fj,0(s)) ; L̃n ≥ 0



 .

Using the arguments applied to establish Lemma 2.7 in [2], one may check
that, under the conditions of Theorem 1

∞
∑

j=1

(1−Gj (Fj,0(s))) ≤

∞
∑

j=1

G′
j(1) (1− Fj,0(s))

≤

∞
∑

j=1

G′
j(1) (1− Fj,0(0)) ≤

∞
∑

j=1

G′
j(1)e

−S̃j < ∞ P̃+ − a.s.

Hence it follows that,

ξn(s) :=

n
∏

j=1

Gj (Fj,0(s)) → ξ∞(s) :=

∞
∏

j=1

Gj (Fj,0(s)) > 0

P̃+−a.s. Since ξn(s) → ξ∞(s) P̃+−a.s. as n → ∞, it follows from Lemma 3
that, for each s ∈ [0, 1)

Θ (n; s) ∼ Ẽ+ [ξ∞(s)]P
(

L̃n ≥ 0
)

, n → ∞.

Applying the dominated convergence theorem gives on account of (23) and
properties of slowly varying functions

lim
n→∞

E





k
∏

i=1

Gi (Fi,0(0))
Θ (n− k;Fk,0(0))

P
(

L̃n ≥ 0
) ; τ̃ (k) = k





= E





k
∏

i=1

Gi (Fi,0(0)) Ẽ
+





∞
∏

j=0

Ĝj

(

F̂j,0(Fk,0(0))
)



 ; τ̃ (k) = k



 , (26)

where Ĝj , F̂j,0 are independent copies of Gj , Fj,0.
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Combining (26) with (25) we get

lim
n→∞

1

P
(

L̃n ≥ 0
)E

[

n−1
∏

i=0

Gi (Fi,n(0))

]

= θ,

where

θ :=

∞
∑

k=0

E





k
∏

i=1

Gi (Fi,0(0)) Ẽ
+





∞
∏

j=0

Ĝj

(

F̂j,0(Fk,0(0))
)



 ; τ̃(k) = k



 .

This proves Lemma 5.
Proof of Theorem 1. We know that

dn ∼ θ
l3(n)

nρ

as n → ∞. This and a Tauberian theorem (see [6], Chapter XIII.5, Theorem 5)
imply

D(s) =
∞
∑

n=1

dns
n ∼ θΓ (1− ρ)

l3 (1/(1− s))

(1− s)1−ρ .

Thus,

R(s) =
s (H∗(s) +R1)

(1− s)D (s)
∼

H∗(1) +R1

θΓ (1− ρ) l3 (1/(1− s)) (1− s)
ρ

as s ↑ 1. Since the sequence {Rn, n ≥ 1} is monotone decreasing, it follows that
(see [6], Chapter XIII.5, Theorem 5)

Rn ∼
H∗(1) +R1

θΓ (ρ) Γ (1− ρ)

nρ−1

l3 (n)
as n → ∞.

Theorem 1 is proved.
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