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RATE OF CONVERGENCE FOR TRADITIONAL PÓLYA

URNS

SVANTE JANSON

Abstract. Consider a Pólya urn with balls of several colours, where
balls are drawn sequentially and each drawn ball immediately is replaced
together with a fixed number of balls of the same colour. It is well-known
that the proportions of balls of the different colours converge in distri-
bution to a Dirichlet distribution. We show that the rate of convergence
is Θ(1/n) in the minimal Lp metric for any p ∈ [1,∞], extending a re-
sult by Goldstein and Reinert; we further show the same rate for the
Lévy distance, while the rate for the Kolmogorov distance depends on
the parameters, i.e., on the initial composition of the urn. The method
used here differs from the one used by Goldstein and Reinert, and uses
direct calculations based on the known exact distributions.

1. Introduction

A (traditional) Pólya urn contains balls of several colours. At discrete
time steps, a ball is drawn at random from the urn, and it is replaced
together with a balls of the same colour, where a > 0 is some given constant.
These urn models were studied already in 1917 by Markov [10], but they
are named after George Pólya, who studied them in Eggenberger and Pólya
[2] (1923) and Pólya [12] (1930). (These early references studied the case
q = 2; the extension to general q is straightforward. See also e.g. [6, Chapter
4] and [9].)

Let q be the number of colours and let the vector Xn = (Xn,1, . . . ,Xn,q)
(n > 0) describe the numbers of balls of the different colours at time n. (We
assume that the colours are the integers 1, . . . , q.) The description above
thus means that the random vectors Xn evolve as a Markov chain, with
some given (deterministic) initial vector X0 = x0 = (x1, . . . , xq) and

P
(

Xn+1 = Xn + aei | Xn

)

=
Xn,i

|Xn|
, i = 1, . . . , q, (1.1)

where ei = (δij)
q
j=1 are the unit vectors and |Xn| :=

∑q
i=1 Xn,i. Note that

the total number of balls |Xn| = an+ |x0| is deterministic.
Although the formulation in the first paragraph above talks about ’the

number of balls’, thus implying that the numbers are integers, we see that no
such assumption is needed in the more formal definition using (1.1). Hence,
from now on, a and x1, . . . , xq may be arbitrary positive real numbers, and
thus the random vectors Xn ∈ R

q
>0. We assume that a and x1, . . . , xq are

strictly positive to avoid trivial complications; this implies that Xn,i > xi >
0 for all n > 0 and i ∈ [q] := {1, . . . , q}. In particular, |Xn| > 0, and the
transition probabilities are well defined by (1.1).
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One advantage of the extension to real values is that the model is homo-
geneous in the sense that if we multiply all Xn (including the initial values)
and a by the same positive real number, then (1.1) still holds, so we have
another Pólya urn. In particular, by replacing Xn by Xn/a, we may without
loss of generality assume that a = 1.

We define also the random vector Yn = (Yn,1. . . . , Yn,q), where Yn,i is the
number of the first n drawn balls that have colour i. Obviously,

Xn = x0 + aYn, (1.2)

so it is equivalent to study Xn and Yn.
It is easy to find the exact distribution of Yn and thus of Xn, see e.g.

[10; 2; 12; 6; 9] and (3.3) below, and from this it is easy to see that as
n → ∞, the fraction of balls of a given colour converges in distribution to a
Beta distribution [12]; more precisely

Xn,i

|Xn|

d
−→ Beta

(

xi/a,
∑

j 6=i

xj/a
)

. (1.3)

More generally, the vector Xn/|Xn| of proportions converges to a Dirichlet
distribution (see Section 2 for the definition):

Xn

|Xn|
d

−→ Dir(x0/a). (1.4)

It follows by (1.2) that the same holds for the proportions Yn/|Yn|.

Remark 1.1. In fact, it is easy to see thatXn/|Xn| is a martingale, and thus
Xn/|Xn| converges a.s. to a limit, which thus has the Dirichlet distribution
Dir(x0/a). It follows by (1.2) that the same holds for Yn/|Yn|. (The a.s.
convergence can also be seen in other ways, for example by de Finetti’s
theorem and the fact that the sequence of colours of the drawn balls is
exchangeable, see Remark 1.8, or by Martin boundary theory [1; 15].)

The purpose of the present paper is to study the rate of convergence of
the distributions in (1.3) and (1.4). For the Wasserstein metric dW, this was
done by Goldstein and Reinert [4], who proved, in the case q = 2, a bound
of the order O(1/n), with an explicit constant depending on a and x0.

The Wasserstein metric equals the minimal L1 metric ℓ1, and our main
result is the following, which extends the result by Goldstein and Reinert
[4] to ℓp for all p 6 ∞, and to all numbers of colours q > 2. See Section 2
for definitions and Sections 3–4 for proofs.

Theorem 1.2. For any q > 2, any a > 0 and any initial values X0 = x0 ∈
R
q
>0, if W ∼ Dir

(

x0/a
)

, then for every p ∈ [1,∞] and all n > 1,

ℓp

(

Xn

|Xn|
,W

)

= Θ
( 1

n

)

, (1.5)

ℓp

(

Yn

n
,W

)

= Θ
( 1

n

)

. (1.6)

Corollary 1.3. For any q > 2, any a > 0 and any initial values X0 = x0 ∈
R
q
>0, if Wi ∼ Beta

(

xi/a, (|x0| − xi)/a
)

, then for every p ∈ [1,∞], every
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i ∈ [q] and all n > 1,

ℓp

(

Xn,i

|Xn|
,Wi

)

= Θ
( 1

n

)

, (1.7)

ℓp

(

Yn,i

n
,Wi

)

= Θ
( 1

n

)

, (1.8)

We prove Theorem 1.2 by induction on q. The main part of the proof is
the base case q = 2, which is proved in Section 3. The easy induction for
general q is done in Section 4.

The proof by Goldstein and Reinert [4] is based on Stein’s method, where
they develop a version for the Beta distribution. In contrast, the present
paper uses only direct calculations, based on the known exact distributions.

Since the ℓp metrics are monotone in p, it suffices to prove the lower
bounds for p = 1 and the upper bounds for p = ∞. Moreover, the lower
bounds in (1.5)–(1.8) are trivial, since Wi has a continuous distribution with
continuous density function, while Xn,i/|Xn| and Yn,i/n are discrete with
values spaced by a/(an+|x0|) and 1/n, respectively, see Section 3 for details.
Since |Xn| = an + |x0|, the upper bounds in (1.5) and (1.6) are for p = ∞
equivalent to, respectively,

ℓ∞
(

Xn, |Xn|W
)

= O(1), (1.9)

ℓ∞
(

Yn, nW
)

= O(1). (1.10)

Moreover, by (1.2), (1.9) is equivalent to ℓ∞
(

aYn, anW
)

= O(1) and thus
to (1.10). Hence the upper bounds in the two assertions (1.5) and (1.6) in
the theorem are equivalent.

For the one-dimensional variables Xn,i and Yn,i, we give also the corre-
sponding results for the Kolmogorov–Smirnov distance dKS and the Lévy
distance dL. The proofs are given in Section 5.

Theorem 1.4. With assumptions and notations as in Corollary 1.3, and

ρ := min
{xi
a
,
|x0| − xi

a
, 1
}

, (1.11)

we have

dKS

(

Xn,i

|Xn|
,Wi

)

= Θ
(

n−ρ
)

, (1.12)

dKS

(

Yn,i

n
,Wi

)

= Θ
(

n−ρ
)

. (1.13)

Theorem 1.5. With assumptions and notations as in Corollary 1.3,

dL

(

Xn,i

|Xn|
,Wi

)

= Θ
(

n−1
)

, (1.14)

dL

(

Yn,i

n
,Wi

)

= Θ
(

n−1
)

. (1.15)

Remark 1.6. Note that the rate for the Kolmogorov–Smirnov distance
differs from the other distances considered here, but only in the case when
one of the parameters α := xi/a and β := (|x0| − xi)/a of Wi ∼ Beta(α, β)
is less that 1. It follows from the proofs below that this difference can be
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attributed to the fact that the density (2.1) ofWi is unbounded in (precisely)
this case.

Remark 1.7. We do not attempt to find explicit values for the constant
C in the upper bounds above; although in principle it should be possible
by careful calculations in the proof. Note that the proof below treats the
cases xi < a, xi = a and xi > a separately, and the constants implicit
in the calculations might blow up as xi → a from above or below. We
conjecture that the constant C can be chosen uniformly for, say, all x0 with
a/2 6 xi 6 2a, but it is not obvious whether this follows from (some version
of) our method of proof or not, and we leave that as an open problem.

Remark 1.8. The present paper studies the rate of convergence of the
distribution of Xn/|Xn|. As said above, this sequence of random variables
converges a.s. to a limit W, and one might also ask about the a.s. rate of
convergence of the variables. In fact, the sequence of colors of the drawn balls
is exchangeable, which (as noted by [12]) follows from the simple formula for
the probability distribution of the sequence (see (3.3) and the comments after
it). Hence, de Finetti’s theorem shows that, conditioned on the a.s. limit
W, the sequence Yn is the sequence of partial sums of an i.i.d. sequence
of random unit vectors Zn, with the distribution P(Zn = ei) = Wi; in
particular, each coordinate is the sequence of sums of an i.i.d. Bernoulli
sequence. (See e.g. [7, Theorem 11.10].) Consequently, we have the same
rate of convergence for the trajectories Yn/n and Xn/|Xn| as for the strong
law of large number for i.i.d. Bernoulli sequences. Thus, by the central limit
theorem, the distance |Xn/|Xn| −W| is typically of order n−1/2, and more
precisely there is a law of iterated logarithm.

Note that the distributions thus converge faster that the trajectories. This
method with conditioning on the limit can be used to obtain an upper bound
for the distance in (1.6) (for p < ∞, at least), see [8, Lemma 2.1], but it

only yields a bound O(n−1/2), the ℓp rate of convergence of n−1Bi(n, q) to
the constant q, for q ∈ (0, 1).

Remark 1.9. Generalized versions of the urn model above, where we may
add to the urn also balls of colours other than the colour of the drawn one,
have a rich theory with, typically, quite different behaviour. See e.g. [5].
Such urns will not be studied in the present paper.

Remark 1.10. The initial motivation for this study was a paper by Kuntschik
and Neininger [8], where generalized Pólya urns (with other replacement
schemes) are considered; one step in the proof in [8] was a weaker version

of (1.8) with the bound O(n−1/2). I initially hoped that the sharper result
in Corollary 1.3 would lead to an improvement of the result in [8] for gen-
eralized Pólya urns, but it turns out that this is not the case; the estimate
found in [8] of the convergence rate is dominated by other terms in their
proof.

2. Notation and other preliminaries

2.1. General. For a vector x = (x1, . . . , xq) ∈ R
q, we define |x| :=

∑

i |xi|.
(This is mainly for convenience, in for exampe (1.1). When defining the
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metrics below, the Euclidean distance would be just as fine, within some
constant factors in the result.)

⌊x⌋ denotes the integer part of a real number x, and {x} := x − ⌊x⌋ the
fractional part.

FX(x) := P(X 6 x) denotes the distribution function of a real-valued
random variable X.

C and c denote various positive constants that may depend on the pa-
rameters q, a and x0, but not on n; they may change from one occurrence
to another.

For sequences an and bn of real numbers, with bn > 0, an = O(bn) means
|an| 6 Cbn, for some C. Similarly, an = Θ(bn) means cbn 6 |an| 6 Cbn.

2.2. Beta and Dirichlet distributions. Recall that the Beta distribution
Beta(α, β), where α, β > 0, has the density function

fα,β(x) = B(α, β)−1xα−1(1− x)β−1, (0 < x < 1) (2.1)

where the normalizing constant is given by the Beta function

B(α, β) :=
Γ(α)Γ(β)

Γ(α+ β)
. (2.2)

Recall also that if q > 2 and α1, . . . , αq > 0, then the Dirichlet distribution
Dir(α1, . . . , αq) is the distribution on the simplex

{

(x1, . . . , xq) ∈ R
q
>0 :

∑

i xi = 1
}

with density

Γ(α1 + · · · + αq)

Γ(α1) · · ·Γ(αq)
xα1

1 · · · x
αq

q dx1 · · · dxq−1. (2.3)

In the case q = 2, this is essentially the same as a Beta distribution; more
precisely W ∈ Dir(α, β) if and only if W = (V, 1−V ), with V ∈ Beta(α, β).
More generally, if (W1, . . . ,Wq) ∈ Dir(α1, . . . , αq), then Wi ∼ Beta(αi, α

′
i),

with α′
i :=

∑

j 6=i αj .
One well-known construction of Dirichlet distributed random variables is

that if V1, . . . , Vq are independent random variables with Vi ∼ Γ(αi), then
the vector of proportions

(V1, . . . , Vq)
∑

i Vi
∼ Dir(α1, . . . , αq), (2.4)

and this vector is independent of
∑q

i=1 Vi. If q > 2, then, letting V ′ :=
∑q

i=2 Vi,
(V1, . . . , Vq)

∑

i Vi
=

( V1

V1 + V ′
,

V ′

V1 + V ′

(V2, . . . , Vq)

V ′

)

, (2.5)

and it follows from (2.4) that if Z ∼ Beta(α1, α
′) and V ∼ Dir(α2, . . . , αq)

are independent, with α′ =
∑q

i=2 αi, then
(

Z, (1− Z)V
)

∼ Dir(α1, . . . , αq). (2.6)

2.3. Some probability metrics. A probability metric is a metric on a
suitable set of probability distributions in some space S; in this paper we only
consider S = R or Rq for some fixed q. (See e.g. [13] for a general theory and
many examples, including the ones below.) Although a probability metric
d(µ, ν) is formally defined for distributions µ and ν, we follow common
practice and write d(X,Y ) := d(L(X),L(Y )) when X and Y are random
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variables with distributions L(X) and L(Y ), and we state the definitions
below in this form.

In the present paper, we mainly study the minimal Lp distance ℓp for
1 6 p 6 ∞, defined by

ℓp(X,Y ) := inf
{

‖X ′ − Y ′‖p : X ′ d
= X, Y ′ d

= Y
}

, (2.7)

where ‖X ′ − Y ′‖p is the usual Lp distance, i.e., (E |X ′ − Y ′|p)1/p for p < ∞,
and the essential supremum of |X ′ −Y ′| if p = ∞, and the infimum is taken
ovar all couplings of X and Y , i.e., all pairs (X ′, Y ′) of random variables on
a common probability space with the same (marginal) distributions as X
and Y . (The infimum is actually attained, see [13, Corollary 5.3.2].) This
is a metric on the set of all probability distributions in R

q with finite pth
absolute moment.

The metric ℓ1 is also known as the Wasserstein distance and the Kan-
torovich distance; see [14] for a history.

For random variables X and Y in R, we consider also the Kolmogorov–
Smirnov distance

dKS(X,Y ) := sup
x∈R

|FX(x)− FY (x)| = sup
x∈R

|P (X ≤ x)− P (Y ≤ x)| (2.8)

and the Lévy distance

dL(X,Y ) := inf
{

ε > 0 : FX(x− ε)− ε 6 FY (x) 6 FX(x+ ε) + ε for all x
}

.
(2.9)

3. Proof of Theorem 1.2: q = 2
SJ

As explained in the introduction, we may without loss of generality assume
a = 1, and we shall do so throughout the proof. For convenience, we call
the two colours white and black, and we write x1 = α and x2 = β. We
thus assume a = 1 and x0 = (α, β), and note that then |Xn| = n + α + β.
Furthermore, W = (W1,W2) = (W1, 1−W1), whereW1 is a random variable
with the distribution Beta(α, β),

The parameters α and β are fixed throughout the section. Recall that C
and c denote various constants that may depend on α and β, but not on n.

Define, recalling that Yn,1 is the number of white balls drawn in the first
n draws,

pn,i := P(Yn,1 = i), (3.1)

Pn,k := P(Yn,1 6 k) =
k

∑

i=0

pn,i, (3.2)

The basis of the proof is the well-known exact formula [10; 2; 12; 6; 9]

pn,i =

(

n

i

)

α(α+ 1) · · · (α+ i− 1)β(β + 1) · · · (β + n− i− 1)

(α + β)(α + β + 1) · · · (α + β + n− 1)

=
n!

i! (n − i)!

Γ(α+ i)Γ(β + n− i)Γ(α + β)

Γ(α)Γ(β)Γ(α + β + n)

= B(α, β)−1Γ(i+ α)

Γ(i+ 1)

Γ(n− i+ β)

Γ(n − i+ 1)

Γ(n+ 1)

Γ(n+ α+ β)
(3.3)
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for i = 0, . . . , n. This formula is easily verified: if we draw i white balls in
the first n draws, then this can be done in

(n
i

)

ways, and it follows from the
definition (1.1) of the urn process that each of them has the same probability
given by the fraction on the first line of (3.3). The rest is simple calculations
with Gamma functions. For future use we note the special cases

pn,0 =
Γ(α+ β)

Γ(β)

Γ(n+ β)

Γ(n+ α+ β)
, (3.4)

pn,n =
Γ(α+ β)

Γ(α)

Γ(n+ α)

Γ(n+ α+ β)
. (3.5)

Recall that W1 ∼ Beta(α, β) has the density function fα,β given in (2.1)
and define

Qn,k := P(W1 6 k/n) =

∫ k/n

0
fα,β(x) dx (3.6)

and

Rn,k := Pn,k −Qn,k = P(Yn,1 6 k)− P(W1 6 k/n). (3.7)

We also define ∆Pn,k := Pn,k − Pn,k−1 = pn,k, ∆Qn,k := Qn,k − Qn,k−1

and ∆Rn,k := Rn,k −Rn,k−1.

Lemma 3.1. (i) If 1 6 k 6 3n/4, then

|∆Rn,k| 6 Ckα−2/nα. (3.8)

If further α = 1, this can be improved to

|∆Rn,k| 6 Cn−2. (3.9)

(ii) If n/4 6 k 6 n, then

|∆Rn,k| 6 C(n− k + 1)β−2/nβ. (3.10)

If further β = 1, this can be improved to

|∆Rn,k| 6 Cn−2. (3.11)

Proof. We recall the standard formula (an easy consequence of Stirling’s
formula, see also [11, 5.11.13]),

Γ(x+ a)

Γ(x+ b)
= xa−b

(

1 +O
(1

x

))

(3.12)

for, say, fixed a, b > 0 and x > 1.
Using (3.12) in (3.3), we find, for 1 6 k < n,

pn,k = B(α, β)−1kα−1(n− k)β−1n1−α−β
(

1 +O
(1

k

)

+O
( 1

n− k

)

+O
( 1

n

))

= n−1fα,β

(k

n

)(

1 +O
(1

k

)

+O
( 1

n− k

))

. (3.13)

Furthermore, if 2 6 k < n, then, for x ∈ ((k − 1)/n, k/n],

fα,β(x)

fα,β(k/n)
=

(nx

k

)α−1(n− nx

n− k

)β−1
= 1 +O

(1

k

)

+O
( 1

n− k

)

. (3.14)
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and hence

∆Qn,k =

∫ k/n

(k−1)/n
fα,β(x) dx = n−1fα,β

(k

n

)(

1 +O
(1

k

)

+O
( 1

n− k

))

.

(3.15)
Moreover, for k = 1, we have, crudely,

∆Qn,1 =

∫ 1/n

0
fα,β(x) dx 6 C

∫ 1/n

0
xα−1 dx = Cn−α = n−1fα,β

( 1

n

)

O(1),

(3.16)
and thus (3.15) holds also for k = 1.

Combining (3.13) and (3.15) we thus obtain, for 1 6 k < n,

∆Rn,k = ∆Pn,k −∆Qn,k = n−1fα,β

(k

n

)(

O
(1

k

)

+O
( 1

n− k

))

. (3.17)

If we further assume 1 6 k 6 3n/4, then fα,β(k/n) 6 C(k/n)α−1, and (3.8)
follows. Similar calculations, or interchanging the colours and using (3.8),
yield (3.10) for n/4 6 k 6 n.

Assume now α = 1. Then (3.3) simplifies to, using (3.12), for k 6 3n/4,

pn,k = β
Γ(n − k + β)

Γ(n − k + 1)

Γ(n+ 1)

Γ(n+ 1 + β)
= β(n− k)β−1n−β

(

1+O
( 1

n

))

. (3.18)

Similarly, still for k 6 3n/4, (3.15) simplifies to,

∆Qn,k =

∫ k/n

(k−1)/n
β(1− x)β−1 dx = β(n − k)β−1n−β

(

1 +O
( 1

n

))

(3.19)

and we obtain

∆Rn,k = pn,k −∆Qn,k = β(n− k)β−1n−βO
( 1

n

)

= O
(

n−2
)

, (3.20)

showing (3.9). The proof of (3.11) is similar, or by interchanging the colours.
�

Lemma 3.2. (i) If 0 6 k 6 n/2, then

|Rn,k| 6 C(k + 1)α−1n−α. (3.21)

(ii) If n/2 6 k 6 n, then

|Rn,k| 6 C(n− k + 1)β−1n−β. (3.22)

(iii) If 1 6 k 6 n− 1, then

|Rn,k| 6 Cn−1fα,β(k/n). (3.23)

Proof. Consider first (i), so k 6 n/2. First note that, by (3.4) and (3.12),
since Qn,0 = 0,

Rn,0 = Pn,0 = pn,0 = O
(

n−α
)

, (3.24)

so (3.21) holds for k = 0.
We now use Lemma 3.1. If α > 1, we have by (3.8), for 1 6 k 6 n/2,

Rn,k = Rn,0 +
k

∑

i=1

∆Rn,i = O
(

n−α + n−α
k

∑

i=1

iα−2
)

= O
(

n−αkα−1
)

, (3.25)

yielding (3.21) in this case.
If α = 1, we obtain (3.21) in the same way, now using (3.9).
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If α < 1, (3.8) yields for 0 6 k 6 ⌊n/2⌋ the preliminary result

Rn,k = Rn,⌊n/2⌋ −

⌊n/2⌋
∑

i=k+1

∆Rn,i = Rn,⌊n/2⌋ +O
(

n−α

⌊n/2⌋
∑

i=k+1

iα−2
)

= Rn,⌊n/2⌋ +O
(

n−α(k + 1)α−1
)

. (3.26)

It thus remains only to show the case k = ⌊n/2⌋; we postpone this.
Now turn to (ii). If β > 1, we obtain in the same way from (3.10) and

(3.11), noting that Rn,n = 1− 1 = 0 by the definition (3.7), for ⌊n/2⌋ 6 k 6

n,

Rn,k = −
n
∑

i=k+1

∆Rn,i = O
(

n−β(n− k + 1)β−1
)

. (3.27)

If β < 1, we obtain instead, for ⌊n/2⌋ 6 k 6 n,

Rn,k = Rn,⌊n/2⌋+

k
∑

i=⌊n/2⌋+1

∆Rn,i = Rn,⌊n/2⌋+O
(

n−β(n−k+1)β−1
)

. (3.28)

We have thus shown, for 0 6 k 6 ⌊n/2⌋,

Rn,k =

{

O
(

n−α(k + 1)α−1
)

, α > 1,

Rn,⌊n/2⌋ +O
(

n−α(k + 1)α−1
)

, α < 1,
(3.29)

and for ⌊n/2⌋ 6 k 6 n,

Rn,k =

{

O
(

n−β(n− k + 1)β−1
)

, β > 1,

Rn,⌊n/2⌋ +O
(

n−β(n− k + 1)β−1
)

, β < 1.
(3.30)

This proves (3.21) and (3.22) when α > 1 and β > 1.
Now suppose that α < 1 and β > 1. Then (3.30) yields Rn,⌊n/2⌋ =

O
(

n−1
)

, and (3.29) shows that (3.21) holds in this case too.

Similarly, if α > 1 and β < 1, then (3.29) yields Rn,⌊n/2⌋ = O
(

n−1
)

and
(3.22) follows from (3.30).

It remains to consider the case α < 1 and β < 1. In this case we sum
Rn,k over all k and obtain by (3.29) and (3.30), recalling Rn,n = 0,

n−1
∑

k=0

Rn,k = nRn,⌊n/2⌋ +O
(

n−α

⌊n/2⌋
∑

k=0

(k + 1)α−1
)

+O
(

n−β
n−1
∑

k=⌊n/2⌋+1

(n− k)β−1
)

= nRn⌊n/2⌋ +O(1). (3.31)
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On the other hand, by (3.7),

n−1
∑

k=0

Rn,k =

n−1
∑

k=0

(

P(Yn,1 6 k)− P(nW1 6 k)
)

=

n−1
∑

k=0

(

P(nW1 > k)− P(Yn,1 > k)
)

=

∞
∑

k=0

P(⌈nW1⌉ > k)−

∞
∑

k=0

P(Yn,1 > k)

= E⌈nW1⌉ − EYn,1 = nEW1 +O(1) − EYn,1. (3.32)

However, EW1 = α/(α + β) and by (1.2), since Xn/|Xn| is a martingale
and |Xn| = n+ α+ β,

EYn,1 = EXn,1 − α = (n+ α+ β)
α

α+ β
− α = n

α

α+ β
= nEW1. (3.33)

Hence, (3.31)–(3.32) yield nRn,⌊n/2⌋ + O(1) = O(1), and thus Rn,⌊n/2⌋ =

O
(

n−1
)

also in this case. The proof of (3.21) and (3.22) in this case is now
completed by (3.29) and (3.30) as in the cases above.

This completes the proof of (i) and (ii). Finally, (iii) follows from (3.21),
(3.22) and (2.1). �

Lemma 3.3. There exists an integer K such that for all integers k and
n > 1,

Qn,k−K 6 Pn,k 6 Qn,k+K. (3.34)

Proof. For any integer L > 1, if L 6 k 6 n− 2L, then by (2.1),

Qn,k+L −Qn,k =

∫ k/n+L/n

k/n
fα,β(x) dx >

L

n
cfα,β

(k

n

)

. (3.35)

It follows by (3.35) and Lemma 3.2(iii) that if L is chosen large enough,
then, for all n and L 6 k 6 n− 2L,

Qn,k+L −Qn,k > Rn,k = Pn,k −Qn,k, (3.36)

and thus
Pn,k 6 Qn,k+L. (3.37)

Furthermore, using (3.37) for k = L (assuming n > 3L), we see that if
0 6 k < L, then

Pn,k 6 Pn,L 6 Qn,2L 6 Qn,k+2L. (3.38)

Moreover, if k > n− 2L, then trivially

Pn,k 6 1 = Qn,n = Qn,k+2L. (3.39)

We conclude that if n > 3L, then for any k > 0,

Pn,k 6 Qn,k+2L. (3.40)

Moreover, this is trivially true also if k < 0; thus (3.40) holds for all k ∈ Z

when n > 3L.
In the same way we see that if L was chosen large enough, also Qn,k −

Qn,k−L > −Rn,k whenever 2L 6 k 6 n − L, and it follows that Pn,k >

Qn,k−2L for all k ∈ Z when n > 3L.
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This proves (3.34) with K = 3L for all n > 1, since the case n < 3L is
trivial. �

Proof of upper bounds in Theorem 1.2 for q = 2. We use the monotone cou-
pling of Yn,1 and nW1. Since nW1 has a continuous distribution, while Yn,1

is discrete, this coupling can be constructed as follows. Define t0 < · · · <
tn = n such that P(nW1 6 tk) = Pn,k = P(Yn,1 6 k), and define the function
g : (0, n] → {0, . . . , n} by g(t) = k if t ∈ (tk−1, tk] (with t−1 := 0). Then
P
(

g(nW1) 6 k
)

= P(nW1 6 tk) = P(Yn,1 6 k) for k = 0, . . . , n, and thus
Y ∗
n,1 := g(nW1) has the same distribution as Yn,1.
By (3.6) and Lemma 3.3,

P(nW1 6 k −K) = Qn,k−K 6 Pn,k = P(nW1 6 tk)

6 Qn,k+K = P(nW1 6 k +K), (3.41)

and thus k − K 6 tk 6 k + K for every k. Hence, if Y ∗
n,1 = k, so nW1 ∈

(tk−1, tk], then nW1 6 tk 6 k +K = Y ∗
n,1 +K, and similarly nW1 > tk−1 >

k−1−K = Y ∗
n,1−K−1. Consequently, almost surely, |nW1−Y ∗

n,1| 6 K+1,
which yields the desired coupling of nW1 and Yn,1. We have thus shown

ℓ∞
(

Yn,1, nW1

)

6 ‖Y ∗
n,1 − nW1‖L∞

6 K1 := K + 1. (3.42)

Since Y = (Yn,1, n− Yn,1) and W = (W1, 1−W1), this coupling also shows
ℓ∞(Y, nW) 6 K1, i.e., (1.10). As said in the introduction, this is by (1.2)
equivalent to (1.9), and the upper bounds in (1.5)–(1.6) follow. �

For the proof of the lower bounds, we record a simple general fact.

Lemma 3.4. If W is a continuous random variable, then {nW}
d

−→ U(0, 1)
as n → ∞. In particular,

P
(

1
4 < {nW} < 3

4

)

→ 1
2 as n → ∞. (3.43)

Proof. As is well-known, by considering the Fourier transform on T = R/Z,

{nW}
d

−→ U(0, 1) is equivalent to

E e2πim{nW} → 0 as n → ∞ (3.44)

for every m ∈ Z \ {0}. We have

E e2πim{nW} = E e2πimnW = ϕ(2πmn), (3.45)

where ϕ is the characteristic function of W , thus (3.44) follows by the
Riemann-Lebesgue lemma. �

Proof of lower bounds in Theorem 1.2 and Corollary 1.3. (This proof holds
for any q > 2.) Note that W1 is a continuous random variable while Yn,1 is
integer-valued. Hence, in any coupling of Yn,1 and W1,

P
(

|Yn,1 − nW1| >
1
4

)

> P
(

1
4 < {nW1} < 3

4

)

> c, (3.46)

for some c > 0 and all n > 1, since the last probability in (3.46) is strictly
positive for every n and converges to 1

2 as n → ∞ by Lemma 3.4. It follows
that ℓp(Yn,1, nW1) > ℓ1(Yn,1, nW1) > c/4. The lower bound in (1.8) follows.
The proof of the lower bound in (1.7) is similar, and the lower bounds in
(1.5) and (1.6) follow trivially from these. �
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4. Proof of Theorem 1.2: q > 2

We show here how the general case of Theorem 1.2 follows from the case
q = 2 shown in Section 3. Recall that the lower bounds already are proved
for general q in (3.46). Hence, it suffices to show the upper bounds.

Proof of upper bounds in Theorem 1.2 for q > 2. We may still assume a = 1
for simplicity. We focus on the version (1.10); this implies (1.9) and (1.5)–
(1.6) as said in the introduction.

We use induction on q. Thus, let q > 2, and assume that (1.10) holds
when the number of colours is q − 1, and when it is 2.

We call the first colour white, and all other colours dark. It is then obvious
from the definition of the urn, in words or by (1.1), that if we are colour-
blind and only notice whether balls are white or dark, we obtain another
Pólya urn, with two colours. Formally, we define X′

n := (Xn,2, . . . ,Xn,q)
and X ′

n := |X′
n|, and then (Xn,1,X

′
n) is a Pólya urn with initial state x′

0 =
(x1, x

′) where x′ :=
∑

j 6=1 xj , and the same a = 1.

Let also Y′
n := (Yn,2, . . . , Yn,q) = X′

n − x′
0 and Y ′

n := |Y′
n|, the number of

times in the n first draws that a dark ball is drawn. Then, it follows from
the case q = 2 of (1.10) applied to the urn with white and dark balls that if
Z ∼ Beta(x1, x

′), then, for each n > 1,

ℓ∞
(

Yn,1, nZ
)

6 C. (4.1)

In other words, there exists a random variable Z∗ ∼ Beta(x1, x
′) such that

a.s.
∣

∣Yn,1 − nZ∗
∣

∣ 6 C, i.e.,

Yn,1 = nZ∗ +OL∞
(1), (4.2)

where as in the rest of this proof OL∞
(1) denotes a random variable that

is a.s. bounded by some constant C. (These random variables, and other
variables in the proof such as Z∗, may depend on n, but the bound C does
not.) Note also that Yn,1 + Y ′

n = |Yn| = n, and thus

Y ′
n = n− Yn,1 = n(1− Z∗) +OL∞

(1). (4.3)

Moreover, it also follows from the definition that, conditioned on Y ′
n = m,

the vector X′
n is distributed as the m:th stage of a Pólya urn with q − 1

colours and initial state X′
0. Consequently, using the induction hypothesis

on this urn, if W′ ∼ Dir(x2, . . . , xq), then ℓ∞
(

(Y′
n | Y ′

n = m),mW′
)

6 C.
This means that for every m ∈ {0, . . . , n} there exists a random vector W∗

m

defined on the event {Y ′
n = m} such that

(

W∗
m | Y ′

n = m
) d
= W′ (4.4)

and, if Y ′
n = m, then a.s.

|Y′
n −mW∗

m| 6 C. (4.5)

Define the random vector W∗ on our probability space Ω by W∗ := W∗
Y ′
n

,

i.e., W∗ = W∗
m when Y ′

n = m. Then (4.4) means that W∗ d
= W′ ∼

Dir(x2, . . . , xq), and that W∗ is independent of Y ′
n, while (4.5) means that

|Y′
n − Y ′

nW
∗| 6 C, or equivalently

Y′
n = Y ′

nW
∗ +OL∞

(1). (4.6)
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Note also that since W∗ is independent of Y ′
n, and thus of Yn,1, we may

assume that Z∗ in (4.2)–(4.3) is chosen to be independent of W∗.
Combining (4.6) and (4.2)–(4.3), we obtain, recalling that the Dirichlet

distribution is supported on a bounded set,

Yn =
(

Y1,n,Y
′
n

)

=
(

Y1,n, Y
′
nW

∗
)

+OL∞
(1)

=
(

nZ∗, n(1− Z∗)W∗
)

+OL∞
(1) = n

(

Z∗, (1 − Z∗)W∗
)

+OL∞
(1).
(4.7)

Since Z∗ ∼ Beta(x1, x
′) and W∗ ∼ Dir(x2, . . . , xq), with Z∗ and W∗ in-

dependent, W :=
(

Z∗, (1 − Z∗)W∗
)

∼ Dir(x1, . . . , xq) by (2.6). Conse-

quently, (4.7) shows that ℓ∞
(

Yn, nW
)

6 ‖Yn − nW‖L∞
= O(1) with

W ∼ Dir(x1, . . . , xq), which completes the induction.
This completes the proof of Theorem 1.2. �

Proof of Corollary 1.3. The upper bounds follow by Theorem 1.2, and the
lower bounds are already proved above by (3.46) and the corresponding
argument for Xn,i. �

5. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. We may assume a = 1, and by symmetry, it suffices
to consider i = 1. Furthermore, by regarding the colours as white or dark
as in Section 4, it suffices to consider q = 2. Let, as in Section 3, α := x1
and β := |x0| − x1, so (1.11) becomes

ρ = min{α, β, 1}. (5.1)

For simplicity, we consider only (1.13). Similar arguments yield (1.12);
note that by (1.2),

dKS

(

Xn,1

|Xn|
,W1

)

= dKS

(

Yn,1 + x1
n+ |x0|

,W1

)

= dKS

(

Yn,1 + x1
n

,
n+ |x0|

n
W1

)

= dKS

(

Yn,1

n
,
(

1 +
|x0|

n

)

W1 −
x1
n

)

. (5.2)

Since Yn,1 is integer-valued, we have, for x ∈ [k/n, (k+1)/n) with integer
k, recalling the definitions (3.2), (3.6), (3.7),

P(Yn,1/n 6 x)− P(W1 6 x) = P(Yn,1 6 k)− P(W1 6 x)

= Rn,k −

∫ x

k/n
fα,β(x) dx. (5.3)

The integral in (5.3) is less than ∆Qn,k+1, and thus, recalling also (2.8),

dKS

(

Yn,1/n,W1

)

6 sup
k

|Rn,k|+ sup
k

|∆Qn,k|. (5.4)

Furthermore, by taking x = k/n in (5.3),

sup
k

|Rn,k| 6 dKS

(

Yn,1/n,W1

)

(5.5)

and by instead letting x ր (k + 1)/n,

sup
k

|Rn,k −∆Qn,k+1| 6 dKS

(

Yn,1/n,W1

)

. (5.6)
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Hence, combining (5.5) and (5.6),

sup
k

|∆Qn,k+1| 6 2dKS

(

Yn,1/n,W1

)

. (5.7)

It follows from (3.6) and (2.1) that

∆Qn,1 > cn−α, (5.8)

∆Qn,n > cn−β, (5.9)

∆Qn,⌊(n+1)/2⌋ > c/n. (5.10)

Consequently, (5.7) yields the lower bound, using (5.1),

dKS

(

Yn,1/n,W1

)

> cmax
(

n−α, n−β, n−1
)

= cn−ρ. (5.11)

For an upper bound, we similarly have, see (3.15)–(3.16),

max
k

∆Qn,k 6 C max
16k6n−1

n−1fα,β

(k

n

)

6 Cn−ρ. (5.12)

Furthermore, Lemma 3.2 yields

max
k

|Rn,k| 6 Cn−min{α,β,1} = Cn−ρ. (5.13)

Consequently, the upper bound in (1.13) follows from (5.4). �

Proof of Theorem 1.5. We use the same simplifying assumptions and nota-
tions as in the proof of Theorem 1.4. Again, we consider only Yn,1/n; the
proof for Xn,1/|Xn| is similar. Lemma 3.3 implies that

dL

(

Yn,1

n
,W1

)

6
K

n
. (5.14)

Conversely, suppose that dL
(

Yn,1/n,W1

)

< 1
4n. Take any δ such that

dL
(

Yn,1/n,W1

)

< δ < 1
4n, and let w0 := ⌊n/2⌋/n. Then, by (2.9) and the

fact that Yn,1 takes only integer values,

FW1

(

w0 +
3

4n

)

6 FYn,1/n

(

w0 +
3

4n
+ δ

)

+ δ = FYn,1/n

(

w0 +
1

4n
− δ

)

+ δ

6 FW1

(

w0 +
1

4n

)

+ 2δ. (5.15)

We have W1 ∼ Beta
(

α, β
)

for some α, β > 0, and thus (2.1) yields

FW1

(

w0 +
3

4n

)

− FW1

(

w0 +
1

4n

)

=

∫ w0+
3

4n

w0+
1

4n

fα,β(x) dx >
c

n
. (5.16)

Together, (5.15) and (5.16) yield 2δ > c/n. Hence, if dL
(

Yn,1/n,W1

)

< 1
4n,

then dL
(

Yn,1/n,W1

)

> c
2n, and thus, in any case,

dL

(

Yn,1

n
,W1

)

>
min{1/4, c/2}

n
. (5.17)

This together with (5.14) completes the proof. �
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