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Abstract

We define a new family of multivariate stochastic processes over a finite time horizon that
we call Generalised Liouville Processes (GLPs). GLPs are Markov processes constructed by
splitting Lévy random bridges into non-overlapping subprocesses via time changes. We show
that the terminal values and the increments of GLPs have generalised multivariate Liouville
distributions, justifying their name. We provide various other properties of GLPs and some
examples.
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1 Introduction

Lévy random bridges (LRBs) – Lévy processes conditioned to have a fixed marginal law at a fixed
future date – have been applied to various problems in credit risk modelling, asset pricing and
insurance (see, for example, [2, 4, 5, 6, 14]). In [15], the authors present a bivariate insurance
reserving model by splitting an LRB (in this case based on the 1/2-stable subordinator) in two.
The two subprocesses are transformed to span the same time horizon, and are used to model the
accumulation of insurance claims. In a similar fashion, the present authors constructed in [16]
two classes of multivariate process by splitting and transforming an LRB based on the gamma
process. The first class, Archimedean survival processes, provide a natural link between stochastic
processes and Archimedean copulas, and was applied to a copula interpolation problem. The
second, more general, class was the class of Liouville processes, so named because the finite
dimensional distributions of a Liouville process are multivariate Liouville distributions [8, 10, 11,
12]. This more general class was applied to the joint modelling of realised variance for two stock
indices.

We extend the splitting and transformation mechanism to a general LRB to create what we
call a generalised Liouville process (GLP). We show that the sum of coordinates of GLPs are one-
dimensional LRBs, and prove that the finite dimensional distributions of GLPs are generalised
multivariate Liouville distributions as defined in [13]. We show that GLPs are Markov processes
and that there exists a measure change under which the law of an n-dimensional GLP is that of
a vector of n independent Lévy processes. We prove that any integrable GLP admits a canonical
semimartingale representation with respect to its natural filtration. We also show that GLPs are
multivariate harnesses. We prove that GLPs satisfy the weak Markov consistency condition, but
not necessarily the strong Markov consistency condition. Similarly, we introduce what we call
weak and strong semimartingale consistency properties, and show that GLPs have the former,
but not necessarily the latter. The class of GLPs contains as special cases: Archimedean survival
processes, Liouville processes, and the bivariate process based on the 1/2-stable subordinator.

∗AHL Partners LLP, Man Group plc, London, EC4R 3AD, United Kingdom
†Department of Mathematics, University College London, WC1E 6BT, United Kingdom
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Throughout much of this work, we focus on processes taking continuous values. However,
although details are omitted, many results are straightforward to extend to processes on a lattice.
Indeed, later we provide examples of both a continuous and a discrete GLP. More specifically, we
consider what we call Brownian Liouville processes and Poisson Liouville processes, and present
some of their special characteristics.

2 Preliminaries

Throughout this work, for a vector x ∈ R
n, we denote the sum of its coordinates by 1 ·x =

∑
i xi.

We work on a probability space (Ω,F ,P) equipped with a filtration {Ft}t≥0. We fix a finite
time horizon t ∈ [0, T ] for some T < ∞ and assume {Ft}0≤t≤T and all its sub-filtrations are
right-continuous and complete. Unless stated otherwise, every stochastic process is càdlàg with
a state-space that is a continuous subspace of (Rn,B(Rn)) for some n ∈ N+, where B(Rn) is the
Borel σ-field.

Let {Xt}t≥0 be a Lévy process taking values in R, such that the law of Xt is absolutely
continuous with respect to the Lebesgue measure for every t ∈ [0, T ]. In this case the density
ft of Xt exists and satisfies the Chapman-Kolmogorov convolution identity ft(x) =

∫
R
ft−s(x −

y)fs(y) dy, for 0 < s < t ≤ T and x ∈ R. Having independent and stationary increments, the
finite-dimensional law of {Xt}0≤t≤T is given by

P(Xt1 ∈ dx1, . . . , Xtm ∈ dxm) =

m∏

i=1

fti−ti−1
(xi − xi−1) dxi,

for m ∈ N+, 0 < t1 < . . . < tm < T and x1, . . . , xn ∈ R.
A Lévy bridge is a Lévy process conditioned to take some fixed value at a fixed future time.

Since Lévy processes are homogenous strong Markov processes, the definition of their bridges can
be formalised in terms of Doob h-transformations. See [9] for further details on the bridges of

Markov processes. Let {X(z)
t,T }0≤t≤T be a bridge of {Xt}0≤t≤T to the value z ∈ R at time T , where

0 < fT (z) <∞. The transition density of {X(z)
t,T }0≤t<T is given by the following Doob h-transform

of the transition density of {Xt}0≤t<T :

P(X
(z)
t,T ∈ dx|X(z)

s,T = y) =
ht(x)

hs(y)
ft−s(x− y) dx, (1)

for 0 ≤ s < t < T , where ht(x) = fT−t(z − x). Note that {ht}0≤t<T defined as such is harmonic

with respect to {Xt}0≤t<T . Note also that P(0 < ht(X
(z)
t,T ) < ∞) = 1 for all 0 ≤ t < T , so the

ratios of densities in (1) are almost surely well defined (this is discussed in the remark following
Proposition 1 of [9]). Similar ratios feature throughout this work and are likewise almost surely
well defined, and we may pass by them without further comment.

Lévy random bridges (LRBs) are an extension of Lévy bridges. Their interpretation in [14] is as
a bridge to an arbitrary random variable at time T , rather than a fixed value. A process {Lt}0≤t≤T

is an LRB with generating law ν if it satisfies: (i) LT has marginal law ν, (ii) there exists a Lévy
process {Xt}0≤t≤T such that the density ft of Xt exists for all t ∈ (0, T ], (iii) ν concentrates mass
where fT is positive and finite ν-a.s., (iv) for all m ∈ N+, every 0 < t1 < . . . < tm < T , every
(x1, . . . , xm) ∈ R

m, and ν-a.e. z,

P(Lt1 ≤ x1, . . . , Ltm ≤ xm|LT = z) = P(Xt1 ≤ x1, . . . , Xtm ≤ xm|XT = z).

The finite-dimensional distribution of {Lt}0≤t≤T is given by

P(Lt1 ∈ dx1, . . . , Ltm ∈ dxm, LT ∈ dz) =
m∏

i=1

(fti−ti−1
(xi − xi−1) dxi)ϑtm(dz; xm), (2)
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where ϑ0(dz; y) = ν(dz) and ϑt(dz; y) = ν(dz)fT−t(z − y)/fT (z) for t ∈ (0, T ). It follows that
LRBs are Markov processes with stationary increments, where the transition law of {Lt}0≤t≤T is

P(LT ∈ dz|Ls = y) =
ϑs(dz; y)

ϑs(R; y)
,

P(Lt ∈ dx|Ls = y) =
ϑt(R; x)

ϑs(R; y)
ft−s(x− y) dx, (3)

for 0 ≤ s < t. We note that the finite-dimensional distributions of LRBs with discrete state-spaces
have similar transition probabilities given in terms of probability mass functions (for details see
[14]). The extension of many later results to discrete processes follows from this.

Remark 2.1. Note that (3) is also a Doob h-transform of the transition density of {Xt}0≤t<T ,
and {ϑt(R;Xt)}0≤t<T is a positive (FX

t ,P)-martingale, where FX
t = σ({Xu} : 0 ≤ u ≤ t).

Let X1, . . . , Xn be random variables taking values in R with a joint density of the form

p

(
n∑

i=1

xi

)
n∏

i=1

φai(xi), (4)

where a1, . . . , an > 0 are parameters, and the set of functions {φa : a > 0} satisfies the convolution
property φa ∗ φb = φa+b. In [13], this is referred to as a “Liouville density function”. Indeed,
according to the definition given in [13], (X1, . . . , Xn) then has a Liouville distribution, although
we prefer to refer to this as the generalised Liouville distribution to distinguish it from the original
and special case that {φa} are gamma densities (see [8, 10, 11, 12]). The actual definition of the
generalised Liouville distribution given in [13] replaces the functions {φa} with measures, and so
it includes examples where the joint density may not exist. For our purposes, it is convenient to
relax (4) in a different way. We keep {φa}, but replace the function p with a measure ν:

Definition 2.2. Let X1, . . . , Xn be random variables taking values in R, ν : B(R) → R+ be a
probability law, and A = {φa : 0 < a ≤ A <∞)} be a family of functions satisfying the convolution
property: φa∗φb = φa+b, for a+b ≤ A. Then (X1 . . . , Xn) has a generalised multivariate Liouville
distribution if its joint probability law is of the form

P(X1 ∈ dx1, . . . , Xn−1 ∈ dxn−1,
n∑

i=1

Xi ∈ dz)

=
φan(z −

∑n−1
i=1 xi)ν (dz)

φ1·a(z)

n∏

i=2

φai(xi) dxi, (5)

for x1, . . . , xn ∈ R, φa1 , . . . , φan ∈ A, a = (a1, . . . , an)
⊤ ∈ R

n
+, 1 · a ≤ A.

Remark 2.3. Writing B + x = {y : y − x ∈ B}, for B ⊂ R and x ∈ R, then (5) is equivalent to

P (X1 ∈ dx1, . . . , Xn−1 ∈ dxn−1, Xn ∈ B)

=

n∏

i=2

(φai(xi) dxi)

∫

z∈B+
∑n−1

i=1 xi

φan(z −
∑n−1

i=1 xi)

φ1·a(z)
ν (dz)

=

n∏

i=2

(φai(xi) dxi)

∫

xn∈B

φan(xn)

φ1·a(
∑

i xi)
ν

(
n−1∑

i=1

xi + dxn

)
. (6)

Furthermore, if ν admits a density p, then (6) can be written in the form of a Liouville density:

P (X1 ∈ dx1, . . . , Xn−1 ∈ dxn−1, Xn ∈ dxn) =
p (
∑

i xi)

φ1·a(
∑

i xi)

n∏

i=1

(φai(xi) dxi) .
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3 Generalised Liouville processes

To construct a GLP, we start with a “master” LRB {Lt}0≤t≤un
for un ∈ R+ and n ≥ 2, where Lun

has marginal law ν. We assume that ν has no continuous singular part and split {Lt}0≤t≤un
into

n non-overlapping subprocesses.

Definition 3.1. For m1, . . . , mn > 0 (n ≥ 2), define the strictly increasing sequence {ui}ni=1

by u0 = 0 and ui = ui−1 + mi for i = 1, . . . , n. Then a process {ξt}0≤t≤1 is an n-dimensional
generalised Liouville Process (GLP) if

{ξt}0≤t≤1
law
=
{(
Ltm1 − L0, . . . , Ltmi+ui−1

− Lui−1
, . . . , Ltmn+un−1 − Lun−1

)⊤}

0≤t≤1
,

for some LRB {Lt}0≤t≤un
with generating law ν. We say that the generating law of {ξt}0≤t≤1 is

ν and the activity parameter of {ξt}0≤t≤1 is m = (m1, . . . , mn)
⊤.

We have restricted the definition of GLPs to the time horizon [0, 1] for convenience. It is

straightforward to generalise to an arbitrary closed time horizon. Each coordinate {ξ(i)t }0≤t≤1 of
{ξt}0≤t≤1 is a subprocess of an LRB. Since subprocesses of LRBs are themselves LRBs (see [14]),
GLPs form a multivariate generalisation of LRBs. For the rest of the paper, we let {ξt}0≤t≤1 be
an n-dimensional GLP with generating law ν, and {Lt}0≤t≤un

be the master process of {ξt}0≤t≤1.
In addition, we denote the filtration generated by {ξt}0≤t≤1 by {Fξ

t }0≤t≤1 ⊂ {Ft}0≤t≤1. Explicitly,
we have Fξ

t = σ({ξu} : 0 ≤ u ≤ t).

Remark 3.2. The bivariate model of insurance claims based on the 1/2-stable subordinator pro-
posed in [15] is a GLP.

Remark 3.3. Liouville processes and Archimedean survival processes, as introduced in [16], form
a subclass of GLPs. In Definition 3.1, if the LRB {Lt}0≤t≤un

is a gamma random bridge with unit
activity parameter, then we have a Liouville process. If we further fix mi = 1 for i = 1, . . . , n,
then we have an Archimedean survival processes.

Proposition 3.4. The following hold for any GLP {ξt}0≤t≤1:

1. The increments of {ξt}0≤t≤1 have a generalised multivariate Liouville distribution.

2. The terminal value ξ1 has a generalised multivariate Liouville distribution.

Proof. See Appendix.

In what follows, we define a family of unnormalised measures {θt}0≤t<1, such that

θ0(B; x) = ν(B),

θt(B; x) =

∫

B

f1·m(1−t)(z − x)

f1·m(z)
ν(dz), (7)

for t ∈ [0, 1), x ∈ R and B ∈ B(R). We also write Θt(x) = θt(R; x). We define Rt to be the sum
of coordinates of ξt:

Rt =

n∑

i=1

ξ
(i)
t = 1 · ξt.

Proposition 3.5. The GLP {ξt}0≤t≤1 is a Markov process with the transition law given by

P

(
ξ
(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B

∣∣∣ ξs = x
)
=

θτ(s)(B +
∑n−1

i=1 zi; xn +
∑n−1

i=1 zi)

Θs(1 · x)

n−1∏

i=1

f(1−s)mi
(zi − xi) dzi,
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and

P (ξt ∈ dy | ξs = x) =
Θt(1 · y)
Θs(1 · x)

n∏

i=1

f(t−s)mi
(yi − xi) dyi, (8)

where x,y ∈ R
n, τ(t) = 1−mn(1− t)/(1 ·m), 0 ≤ s < t < 1, and B ∈ B(R).

Proof. See Appendix.

Remark 3.6. From Proposition 3.5, if the generating law ν admits a density p, we get a neater
transition law to the terminal value, given by

P (ξ1 ∈ dz | ξs = x) =
p(1 · z)

Θs(1 · x)f1·m(1 · z)

n∏

i=1

f(1−s)mi
(zi − xi) dzi.

Remark 3.7. Our definition of GLPs is somewhat heuristic. A formal definition is possible
through a Doob h-transform, since {Θt}0≤t<1 is harmonic to a Lévy process {Xt}t≥0 taking values
in R

n with marginal density gt(x) =
∏n

i=1 fmit(xi). To see this, note that we can alternatively
write (8) as

P (ξt ∈ dy | ξs = x) =
Θ̃t(y)

Θ̃s(x)
gt−s(y − x) dy,

where Θ̃t(x) = Θt(1 · x), for 0 ≤ t < 1. To see that {Θ̃t}0≤t<1 is harmonic to {X}0≤t<1, note that
∫

Rn

gt−s(y− x)Θ̃t(y) dy =

∫

Rn

n∏

i=1

f(t−s)mi
(yi − xi)Θ̃t(y) dy

=

∫

R

∫

Rn

f1·m(1−t)(z − 1 · y)
n∏

i=1

f(t−s)mi
(yi − xi) dy

dν(z)

f1·m(z)

=

∫

R

f1·m(1−s)(z − 1 · x) dν(z)

f1·m(z)
(9)

= Θ̃s(x)

for 0 ≤ s < t < 1, where (9) follows from repeated use of the convolution property of {ft}0≤t≤1·m.

Remark 3.7 demonstrates that the laws of {ξt}0≤t<1 and {Xt}0≤t<1 are equivalent, which we
formalise by the corollary below.

Corollary 3.8. Suppose that {ξt}t≥0 is a Lévy process under measure P̃ with P̃(ξt ∈ dx) =
gt(x) dx. Then {Θt(Rt)

−1}0≤t<1 is a Radon-Nikodym density process that defines the measure
change

dP̃

dP

∣∣∣∣∣
Fξ

t

= Θt(Rt)
−1, (0 ≤ t < 1), (10)

and {ξt}0≤t<1 is a P-GLP with generating law ν and activity parameter m.

Proof. See Appendix.

Remark 3.9. Let νst(B) = P(Rt ∈ B | Fξ
s ) for 0 ≤ s < t ≤ 1 and B ∈ B(R). Given ξs,

the increment ξt − ξs has a generalised multivariate Liouville distribution with generating law
νst(B +Rs) for B ∈ B(R) and parameter vector m(t− s).

Proposition 3.10. Given ξ1, the process {ξt}0≤t≤1 is a vector of independent Lévy bridges.

Proof. For all s ∈ [0, 1) the transition probabilities to ξt (s < t < 1) can be computed from (8)
by first substituting ν with the Dirac measure δ1·z in (7), yielding

P(ξt ∈ dy | ξ1 = z,Fξ
s ) =

n∏

i=1

fmi(t−s)(yi − ξ
(i)
s )fmi(1−t)(zi − yi)

fmi(1−s)(zi − ξ
(i)
s )

dyi,

for almost every z ∈ R
n. Conditional on ξ1 = z, we see that the transition laws of the coordinates

of {ξt}0≤t≤1 are independent, and that each is the transition law of a Lévy bridge.
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Using the Markov property of {ξt}0≤t≤1, we can also provide the conditional laws of the

coordinates ξ
(i)
t given F ξ(i)

s = σ({ξ(i)u } : 0 ≤ u ≤ s) or given Fξ
s , for s < t.

Proposition 3.11. The coordinates of {ξt}0≤t<1 have the following transition laws:

1. The marginally conditioned case:

P(ξ
(i)
t ∈ dyi|ξ(i)s = xi) =

Ψ
(i)
t (yi)

Ψ
(i)
s (xi)

f(t−s)mi
(yi − xi) dyi,

where

Ψ
(i)
t (x) =

∫

R

f1·m−tmi
(r − x)

f1·m(r)
ν(dr).

2. The fully conditioned case:

P

(
ξ
(i)
t ∈ dyi

∣∣∣ ξs = x
)
=

Θ
(i)
t (x, yi)

Θs(1 · x) f(t−s)mi
(yi − xi) dyi,

where

Θ
(i)
t (x, y) =

∫

R

f1·m(1−s)+(t−s)mi
(r − 1 · x+ (y − xi))

f1·m(r)
ν(dr),

for 0 ≤ s < t < 1.

Proof. See Appendix.

Proposition 3.12. The process {Rt}0≤t≤1 is an LRB with generating law ν and the transition
law

P(R1 ∈ dr | ξs = x) =
θs(dr; 1 · x)
Θs(1 · x) , (11)

P(Rt ∈ dr | ξs = x) =
Θt(r)

Θs(1 · x)f(t−s)1·m(r − 1 · x)dr. (12)

Proof. See Appendix.

The next statement is a key result for defining stochastic integrals of integrable LRBs, and
hence integrable GLPs.

Proposition 3.13. If E(|Rt|) < ∞ for all t ∈ [0, 1], then {Rt}0≤t<1 admits the canonical semi-
martingale representation

Rt =

∫ t

0

E(R1 | Fξ
s )−Rs

1− s
ds +Mt, (13)

for 0 ≤ t < 1, where {Mt}0≤t<1 is an (Fξ
t ,P)-martingale with initial state M0 = 0.

Proof. From Proposition 3.12, {Rt}0≤t≤1 is an LRB. Hence, if E(|Rt|) <∞ for all t ∈ (0, 1], then

E(Rt | ξs = x) =
1− t

1− s
1 · x+

t− s

1− s
E(R1 | ξs = x), s ∈ [0, t). (14)

6



We shall use (14) to prove that {Mt}0≤t<1 given in (13) is an Fξ
t -martingale. Since {ξt}0≤t≤1 is

Markov,

E(Mt −Ms | Fξ
s ) = E(Rt − Rs | Fξ

s )−
∫ t

s

E(R1 | ξs)− E(Ru | ξs)
1− u

du

=
1− t

1− s
1 · ξs +

t− s

1− s
E(R1 | ξs)− Rs −

∫ t

s

E(R1 | ξs)
1− u

du

+

∫ t

s

1

1− u

(
1− u

1− s
1 · ξs +

u− s

1− s
E(R1 | ξs)

)
du

= 0,

for 0 ≤ s < t ≤ 1. Given E(|Rt|) < ∞, E
(∫ t

0
(|E(R1 | ξs)− Rs|)/(1− s)ds

)
< ∞ for 0 ≤ t < 1

remains to be shown:

E

(∫ t

0

|E(R1 | ξs)−Rs|
1− s

ds

)
≤ E

(∫ t

0

|E(R1 | ξs)|
1− s

ds

)
+ E

(∫ t

0

|Rs|
1− s

ds

)

=

∫ t

0

E

( |E(R1 | ξs)|
1− s

)
ds +

∫ t

0

E

( |Rs|
1− s

)
ds

<∞,

since {E(R1 | Fξ
t )}0≤t<1 is a martingale. Hence, E(|Mt|) <∞ for 0 ≤ t < 1. Finally, M0 = 0 since

R0 = 0.

Remark 3.14. Let αt = (1− t)−1 and βt = E(R1 | ξt). Then

dRt = αt (βt − Rt) dt + dMt,

for 0 ≤ t < 1. In this form, the dynamics of LRBs resemble those of an Ornstein-Uhlenbeck
process, with an increasing mean-reversion rate {αt}0≤t<1 and a state-dependent reversion level
{βt}0≤t<1. We can write

Rt =

∫ t

0

1− t

(1− s)2
E(R1 | ξs)ds+

∫ t

0

1− t

1− s
dMs, for 0 ≤ s < t < 1.

The following two propositions are motivated by [18]. We first recall that a measurable process
{Ht}t≥0 is called a harness, if for all t ≥ 0, E(|Ht|) <∞ and for all 0 ≤ a < b < c < d,

E

(
Hc −Hb

c− b

∣∣∣∣Ha,d

)
=
Hd −Ha

d− a
,

where Ha,d = σ({Ht}t≤a, {Ht}t≥d).

Proposition 3.15. If E(1 · ξt) <∞ for t ∈ [0, 1], then {ξt}0≤t≤1 and {Rt}0≤t≤1 are harnesses.

Proof. See Appendix.

Proposition 3.16. Let ϕ be a C1-function. If E(|Rt|) < ∞ for all t ∈ (0, 1], then the stochastic
process {Zt}0≤t<1 defined by

Zt =
E(R1 | ξt)− Rt

1− t

∫ 1

t

ϕ(u) du+

∫ t

0

ϕ(u) dRu, (0 ≤ t < 1),

is an (Fξ
t ,P)-martingale.

7



Proof. We have

E

(∫ 1

t

ϕ(u)dRu

∣∣∣∣F
ξ
t

)
= ϕ(1)E(R1 | Fξ

t )− ϕ(t)Rt −
∫ 1

t

E(Ru | Fξ
t ) dϕ(u)

=
E(R1 | ξt)− Rt

1− t

∫ 1

t

ϕ(u)du,

from the integration by parts formula, (14) and the Markov property of {ξt}0≤t≤1. Hence, Zt =

E(
∫ 1

0
ϕ(u) dRu | Fξ

t ), which is an (Fξ
t ,P)-martingale.

Similar to Proposition 3.13, we have the following result (we omit the proof to avoid repetition):

Proposition 3.17. If E(|ξt|) < ∞ for all t ∈ (0, 1], then {ξt}0≤t<1 admits the canonical semi-
martingale representation

ξt =

∫ t

0

E(ξ1 | Fξ
s )− ξs

1− s
ds+Mt, (0 ≤ t < 1), (15)

where {Mt}0≤t<1 is an (Fξ
t ,P)-martingale.

In [17], it is shown that Archimedean survival processes satisfy the weak Markov consistency
condition, but not necessarily the strong Markov consistency condition. Motivated by this, Propo-
sition 3.18 below provides a generalised version of this result for GLPs. First, we recall the weak
and strong Markov consistency conditions. Let {Xt}t≥0 be an n-dimensional real-valued Markov

process and FX

t = σ({Xu} : 0 ≤ u ≤ t). Also, for each coordinate process {X(i)
t }t≥0, i = 1, . . . , n,

write FX(i)

t = σ({X(i)
u } : 0 ≤ u ≤ t) ⊂ FX

t . The process {Xt}t≥0 satisfies the weak Markov
consistency condition if

P

(
X

(i)
t ∈ B

∣∣∣FX(i)

s

)
= P

(
X

(i)
t ∈ B

∣∣∣X(i)
s

)
, (16)

for every i = 1, . . . , n and every B ∈ B(R). Further, {Xt}t≥0 satisfies the strong Markov consis-
tency condition if

P

(
X

(i)
t ∈ B

∣∣∣FX

s

)
= P

(
X

(i)
t ∈ B

∣∣∣X(i)
s

)
, (17)

for every i = 1, . . . , n and every B ∈ B(R).

Proposition 3.18. Any GLP {ξt}0≤t≤1 is weak Markov consistent, but not necessarily strong
Markov consistent.

Proof. Each coordinate {ξ(i)t }0≤t≤1 of the GLP {ξt}0≤t≤1 is an LRB, since every subprocess of
an LRB is an LRB (see [14]). Thus, (16) is satisfied for every i = 1, . . . , n, every B ∈ B(R)
and all 0 ≤ s < t ≤ 1. However, (17) does not necessarily hold since P

(
ξ
(i)
t − ξ

(i)
s ∈ dy

∣∣∣Fξ
s

)
=

P

(
ξ
(i)
t − ξ

(i)
s ∈ dy

∣∣∣
∑

j ξ
(j)
s

)
is only equal to P

(
ξ
(i)
t − ξ

(i)
s ∈ dy

∣∣∣ ξ(i)s

)
if both

∑
j ξ

(j)
s and ξ

(i)
s are

independent from the increment ξ
(i)
t − ξ

(i)
s for all 0 ≤ s < t ≤ 1. In such a case the coordinates of

{ξt}0≤t≤1 are independent Lévy processes.

In the same spirit, we shall introduce weak and strong semimartingale consistency conditions.
Definition 3.19 below goes beyond a Markov setting, but in the context of GLPs, it offers links to
Markov consistency.

Definition 3.19. Let {St}t≥0 be an (FS
t ,P)-semimartingale, where FS

t = σ({Su} : 0 ≤ u ≤ t).

Let {S(i)
t }t≥0 be a coordinate of {St}t≥0, and FS(i)

t = σ({S(i)
u } : 0 ≤ u ≤ t), for i = 1, . . . , n.

8



1. If {S(i)
t }t≥0 admits a decomposition S

(i)
t = a

(i)
t + m

(i)
t , where {a(i)t }t≥0 is a càdlàg {FS(i)

t }-
adapted process with bounded variation and {m(i)

t }t≥0 is an (FS(i)

t ,P)-local martingale, then

{St}t≥0 is weakly semimartingale consistent with respect to {S(i)
t }t≥0. If this holds for every

i = 1, . . . , n, then {St}t≥0 satisfies the weak semimartingale consistency condition.

2. Let {St}t≥0 be decomposed as St = At + M t, where {At}t≥0 is a càdlàg {FS
t }-adapted

process with bounded variation and {M t}t≥0 is an (FS
t ,P)-local martingale, with coordi-

nates {A(i)
t }t≥0 and {M (i)

t }t≥0, respectively. Given that S
(i)
t = A

(i)
t +M

(i)
t , if {A(i)

t }t≥0 is

{FS(i)

t }-adapted and {M (i)
t }t≥0 is an (FS(i)

t ,P)-local martingale, then {St}t≥0 is strongly

semimartingale consistent with respect to {S(i)
t }t≥0. If this holds for every i = 1, . . . , n, then

{St}t≥0 satisfies the strong semimartingale consistency condition.

Proposition 3.20. Any GLP {ξt}0≤t<1, where E(|ξt|) <∞ for all t ∈ (0, 1], is weak semimartin-
gale consistent, but not necessarily strong semimartingale consistent.

Proof. Let E(|ξt|) < ∞ for all t ∈ (0, 1] and define αt = (1 − t)−1 for t < 1. Following similar

steps to the proof of Proposition 3.13, each coordinate of {ξt}0≤t<1 admits a decomposition ξ
(i)
t =

a
(i)
t +m

(i)
t , where

a
(i)
t =

∫ t

0

αs

(
E

(
ξ
(i)
1

∣∣∣F ξ(i)

s

)
− ξ(i)s

)
ds,

which is {F ξ(i)

t }-adapted, and {m(i)
t }0≤t<1 is an (F ξ(i)

t ,P)-martingale, for i = 1, . . . , n. Hence,

{ξt}0≤t<1 is weak semimartingale consistent. From Proposition 3.17, we also know that ξ
(i)
t =

A
(i)
t +M

(i)
t , where

A
(i)
t =

∫ t

0

αs

(
E

(
ξ
(i)
1

∣∣∣Fξ
s

)
− ξ(i)s

)
ds,

which is {Fξ
t }-adapted, and {M (i)

t }0≤t<1 is an (Fξ
t ,P)-martingale. Since {ξt}0≤t≤1 is Markov and

using Proposition 3.18, we know that E(ξ
(i)
1 | ξt) is not necessarily equal to E(ξ

(i)
1 | ξ(i)t ). Hence,

{A(i)
t }0≤t<1 is not necessarily {F ξ(i)

t }-adapted. Also, {M (i)
t }0≤t<1 is not necessarily an (F ξ(i)

t ,P)-
martingale.

We used Proposition 3.18 to prove Proposition 3.20; we shall note another link between semi-
martingale consistency and Markov consistency. From [1], if a Markov process {Xt}t≥0 satisfies

the weak Markov consistency with respect to its marginal {X(i)
t }t≥0, then {Xt}t≥0 is also strongly

Markov consistent with respect to {X(i)
t }t≥0 if and only if {FX(i)

t }t≥0 is P-immersed in {FX

t }t≥0.

Here, P-immersion means that if {X(i)
t }t≥0 is an (FX(i)

t ,P)-local martingale, then it is an (FX

t ,P)-
local martingale. As an opposite direction to P-immersion, we prove a result that links strong
martingale consistency and strong Markov consistency.

Proposition 3.21. Let {St}t≥0 be a Markov (FS
t ,P)-martingale, satisfying weak Markov con-

sistency. Then, {St}t≥0 is strong semimartingale consistent if and only if it is strong Markov
consistent.

Proof. Since {St}t≥0 is an (FS
t ,P)-martingale, we have E(S

(i)
t | FS

u ) = S
(i)
u for 0 ≤ u < t. Then, if

{St}t≥0 is strong martingale consistent, we have E(S
(i)
t | FS

u ) = E(S
(i)
t | FS(i)

u ) = S
(i)
u . Thus, given

that {St}t≥0 is Markovian satisfying weak Markov consistency,

E(S
(i)
t | FS

u ) =

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣FS
u

)
=

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣Su

)

= E(S
(i)
t | FS(i)

u ) =

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣FS(i)

u

)
=

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣S(i)
u

)
.
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For the opposite direction, if {St}t≥0 is strong Markov consistent, then since {St}t≥0 is an (FS
t ,P)-

martingale satisfying weak Markov consistency,

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣FS
u

)
= E(S

(i)
t | FS

u ) = S(i)
u

=

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣S(i)
u

)
=

∫

R

xP
(
S
(i)
t ∈ dx

∣∣∣FS(i)

u

)
= E(S

(i)
t | FS(i)

u ).

Hence, {S(i)
t }t≥0 is also an (FS(i)

t ,P)- martingale, and the statement follows.

4 Examples

We shall now study two examples of GLPs in more detail: Brownian Liouville processes and
Poisson Liouville processes.

4.1 Brownian Liouville processes

As a subclass of GLPs, let us consider what we call Brownian Liouville processes (BLPs). In
Definition 3.1, we let {Lt}0≤t≤un

be a Brownian random bridge given by

Lt =
t

1 ·mL1·m + σ

(
Wt −

t

1 ·mW1·m

)
, (18)

where σ > 0 and {Wt}0≤t≤un
is a standard Brownian motion independent of the random variable

L1·m. For a background of the anticipative orthogonal representation given in (18) for a Brow-
nian random bridge, we refer the reader to [3] and [6]. We also note that the Gaussian process
{Wt − t

1·m
W1·m}0≤t≤1·m in (18) is a Brownian bridge starting and ending at zero. The following

proposition is analogous to [16, Proposition 3.10] for Archimedean survival processes. We denote
the Hadamard (i.e. element-wise) product of vectors x,y ∈ R

n by x ◦ y. We say {βt}0≤t≤1 is a
standard Brownian bridge if (a) it is a Brownian bridge, (b) β0 = β1 = 0, and (c) Var(βt) = (1−t)2.

Proposition 4.1. If {ξt}0≤t≤1 is a BLP with the master process (18), then it admits the indepen-
dent Brownian bridge representation:

ξt = t
( m

1 ·mR1 + σZ
)
+ σ

√
m ◦ βt, (19)

where
√
m = (

√
m1, . . . ,

√
mn)

⊤, {βt} is a vector of independent standard Brownian bridges and
the random vector Z = (Z1, . . . , Zn)

⊤ is multivariate Gaussian with

Cov(Zi, Zj) = δijmi −
mimj

1 ·m .

Proof. For the proof, we use Wt and W (t) interchangeably. We have

ξ
(i)
t = L(mit− ui−1)− L(ui−1)

=
mit

1 ·mL(1 ·m) + σ

(
W (mit+ ui−1)−W (ui−1)−

mit

1 ·mW (1 ·m)

)

=
mit

1 ·mR1 + σ
√
miβ

(i)
t + σt

(
W (ui)−W (ui−1)−

mi

1 ·mW (1 ·m)
)
,

since R1 = L1·m, and where

√
miβ

(i)
t =W (mit + ui−1)−W (ui−1)− t(W (ui)−W (ui−1)).

10



So {β(i)
t }0≤t≤1 is a standard Brownian bridge, and is independent ofW (ui)−W (ui−1) andW (1·m).

It is straightforward to verify the independence by noting that they are jointly Gaussian with nil
covariation. Thus we can write

ξ
(i)
t = t

( mi

1 ·mR1 + σZi

)
+ σ

√
miβ

(i)
t ,

where Zi is given by

Zi = W (ui)−W (ui−1)−
mi

1 ·mW (1 ·m), (20)

and R1, Zi and {β(i)
t }0≤t≤1 are mutually independent. Furthermore, {β(1)

t }0≤t≤1,. . . , {β(n)
t }0≤t≤1

are mutually independent, since they are jointly Gaussian with nil covariation.

Proposition 4.1 provides an anticipative orthogonal representation for BLPs, whereas (15)
provides a non-anticipative semimartingale representation when {ξt}0≤t≤1 is a BLP.

Remark 4.2. Note that 1 ·Z = 0 from (20), and so its covariance matrix is singular. Also, using
(19) from Proposition 4.1, {Rt}0≤t≤1 admits the anticipative representation

Rt = 1 · ξt = t1 ·
( m

1 ·mR1 + σZ
)
+ σ1 · (

√
m ◦ βt)

= tR1 + σ
√
1 ·mβ̃t,

where {β̃t}0≤t≤1 is a standard Brownian bridge.

Proposition 4.3. Let π0(dx) = P(ξ1 ∈ dx) and πt(dx) = P(ξ1 ∈ dx | Fξ
t ). Also let {Bt}0≤t<1 be

a vector of standard (Fξ
t ,P)-Brownian motions. Then, if E(|ξ1|) <∞, the multivariate measure-

valued process {πt}0≤t<1 satisfies

πt(dx) = π0(dx) +

∫ t

0

πs(dx)σ
⊤
s

(
σ
√
m ◦ dBs

)
,

for 0 ≤ t < 1, where each coordinate of {σt}0≤t<1 is given by

σ
(i)
t =

x(i) − E(ξ
(i)
1 | ξt)

σ2mi(1− t)
.

Proof. See Appendix.

Remark 4.4. Note that 1 · B̃t = 1 · (σ√m ◦Bt) gives the non-anticipative semimartingale repre-
sentation for {Rt}0≤t<1, which is

Rt =

∫ t

0

E(R1 | ξs)− Rs

1− s
ds+ σ

n∑

i=1

√
miB

(i)
t ,

which provides the explicit example of the (Fξ
t ,P)-martingale in (13).

4.2 Poisson Liouville processes

Our second example are Poisson Liouville processes (PLPs), which are counting processes. Accord-
ingly, in Definition 3.1, we let {Lt}0≤t≤un

be a Poisson random bridge with P(Lun
= i) = ν({i}),

for i ∈ N0.

Proposition 4.5. Let {λRt }0≤t≤1 be the intensity process of the L1-norm process {Rt}0≤t≤1. If
E(R1) <∞, then

λRt =
E(R1 | ξt)− Rt

1− t
, for 0 ≤ t < 1. (21)

11



Proof. Since {Rt}0≤t≤1 is a counting process, we have λRt = limh→0E(Rt+h − Rt | Fξ
t )/h. Since

{Rt}0≤t≤1 is a Markov process with respect to {Fξ
t }0≤t≤1, using (14), we have

λRt = lim
h→0

(
E(Rt+h | ξt)

h
− Rt

h

)

= lim
h→0

(
1− t− h

(1− t)h
1 · ξt +

hE(R1 | ξt)
(1− t)h

− Rt

h

)

=
E(R1 | ξt)
(1− t)

+ lim
h→0

(
Rt

(
1− t− h

(1− t)h
− 1

h

))

=
E(R1 | ξt)
1− t

− lim
h→0

(
Rt

h

(1− t)h

)
,

which yields the result.

Remark 4.6. When {ξt}0≤t≤1 is a PLP, Proposition 4.5 provides an alternative proof for Propo-
sition 3.13, since {Rt}0≤t≤1 is a counting process.

Proposition 4.7. Let {λ(i)t }0≤t≤1 be the intensity process of the coordinate {ξ(i)t }0≤t≤1. If E(R1) <
∞, then

λ
(i)
t =

mi

1 ·mλRt , for 0 ≤ t < 1.

Proof. Fix 0 ≤ s < t < 1. From Remark 3.9, we know that given ξs the increment ξt − ξs has
a generalised multivariate Liouville distribution with generating law ν∗({i}) = νst({i + Rs}), for
i ∈ N0 and parameter vector m(t− s). We define

µst =

∞∑

i=0

i ν∗({i}) =
∞∑

i=Rs

i νst({i})− Rs = E(Rt | ξs)−Rs

=
t− s

1− s
(E(R1 |Rs)−Rs) ,

where the last equality comes from (14). Then from [8] (Theorem 6.3) and [13], we have

E(ξ
(i)
t | ξs) =

mi

1 ·mµst + ξ(i)s .

Since {ξ(i)t }0≤t≤1 is a counting process, we have λ
(i)
t = limh→0 E[ξ

(i)
t+h − ξ

(i)
t | Fξ

t ]/h. Thus,

λ
(i)
t =

mi

1 ·m lim
h→0

µt,t+h

h

=
mi

1 ·m
E(R1 |Rt)−Rt

1− t
.

The result then follows from (21).

Remark 4.8. Note that λRt =
∑

i λ
(i)
t .

If we let {Pt}0≤t≤1 denote a Poisson process, and define ∆ by ∆i = Pti−Pti−1
for some partition

0 = t0 < t1 < · · · < tn, we have

P(∆ = x |Ptn = k) =




k!

n∏

i=1

pxi

i

xi!
, for x ∈ N

n
0 with 1 · x = k,

0, otherwise,
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where pi = (ti − ti−1)/tn. In other words, given Ptn , ∆ has a multinomial distribution. Let
{ξt}0≤t≤1 be a Poisson Liouville process with generating law ν({k}) = A(k), k ∈ N0. Then

P(ξ1 = x) = A(1 · x)(1 · x)!
n∏

i=1

pxi

i

xi!
.

Write Gν for the probability generating function of ν:

Gν(z) =

∞∑

k=0

zkA(k).

Let T (i) be the time of the first jump of the ith marginal process. If ξ
(i)
1 < 1, then we set T (i) = ∞.

Proposition 4.9. The random times {T (i); i = 1, . . . , n} satisfy the following:

P(T (i) > s) = Gν(1− spi),

P(T (i) = ∞) = Gν(1− pi),

P(T (i) > si; i = 1, . . . , n) = Gν

(
1−

n∑

i=1

pisi

)
,

P(T (i) = ∞; i = 1, . . . , n) = A(0),

for s ∈ [0, 1] and s ∈ [0, 1]n.

Proof. See Appendix.

Gν is increasing (and invertible) on [0, 1]. Write ψ(x) = Gν(1−x), and note that ψ is invertible
on [0, 1]. If ui ∈ [0, ψ(pi)], then we have

P

(
T (i) >

ψ−1(ui)

pi

)
= ui.

It follows that the conditioned random variable ψ(piT
(i)) | {T (i) < 1} is uniformly distributed.

Furthermore

P

(
T (i) >

ψ−1(ui)

pi
; i = 1, . . . , n

)
= ψ

(
∑

i

ψ−1(ui)

)
.

The form of the joint survival function ofT = {T (i); i = 1, . . . , n} resembles that of an Archimedean
copula. However, the fact that P(T (i) ≥ 1) > 0 means that it is not an Archimedean copula.

5 Conclusion

We introduced generalised Liouville processes: a broad and tractable class of multivariate stochas-
tic processes. The class of GLPs generalises some processes that have already been studied. We
detailed various properties of GLPs and provided some new examples.
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A Proofs

A.1 Proposition 3.4

Proof. Since ν has no continuous singular part, ν(dz) =
∑∞

j=−∞ ciδzi(z) dz+p(z) dz, where ci ∈ R+

is a point mass of ν located at zi ∈ R, and p : R → R+ is the density of the continuous part of ν.
Then from (2), the joint density of an LRB {Lt}0≤t≤un

is given by

P(Lt1 ∈ dx1, . . . , Ltk ∈ dxk, Lun
∈ dxn)

=

n∏

i=1

[fti−ti−1
(xi − xi−1) dxi]

∑∞
j=−∞ ciδzi(xn) + p(xn)

fun
(xn)

,

where x0 = 0, for all k ∈ N+, all partitions 0 = t0 < t1 < · · · < tn−1 < tn = un, all xn ∈ R,
and all (x1, . . . , xk)

⊤ = x ∈ R
k. Let α ∈ R

n
+ be the vector of time increments αi = ti − ti−1, and

α = 1 · α = un. The Jacobian of the transformation y1 = x1, y2 = x2 − x1, . . . yn = xn − xn−1 is
unity, and it follows that

P(Lt1 − Lt0 ∈ dy1, . . . , Lun
− Ltk ∈ dyn)

=
n∏

i=1

fαi
(yi) dyi

∑∞
j=−∞ ciδzi(

∑n
i=1 yi) + p(

∑n
i=1 yi)

fα(
∑n

i=1 yi)
.

From [13], we know that (Lt1−Lt0 , . . . , Ltk−Ltk−1
, Lun

−Ltk)
⊤ has a generalised multivariate Liou-

ville distribution. Fix ki ≥ 1 and the partitions 0 = ti0 < ti1 < · · · < tiki = 1, for i = 1, . . . , n. Define

the non-overlapping increments {∆ij} by ∆ij = ξ
(i)

tij
− ξ

(i)

tij−1
, for j = 1, . . . , ki and i = 1, . . . , n. The

distribution of the k1 × · · · × kn-element vector ∆ = (∆11, . . . ,∆1k1 , . . . ,∆n1, . . . ,∆nkn)
⊤ charac-

terises the finite-dimensional distributions of the GLP {ξt}0≤t≤1. It follows from the Kolmogorov
extension theorem that the distribution of ∆ characterises the law of {ξt}0≤t≤1. Note that ∆

contains non-overlapping increments of {Lt} such that 1 ·∆ = Lun
. Hence, ∆ has a generalised

multivariate Liouville distribution.

A.2 Proposition 3.5

Proof. We compute the transition probabilities of {ξt}0≤t≤1 directly. We begin by transitioning
to ξt for t < 1. For all k ≥ 2, all 0 < t1 < · · · < tk < 1 and all x1, . . . ,xk ∈ R

n, we have

P(ξtk
∈ dxk | ξt1 = x1, . . . , ξtk−1

= xk−1)

=
P(ξt1 ∈ dx1, . . . , ξtk ∈ dxk)

P(ξt1 ∈ dx1, . . . , ξtk−1
∈ dxk−1)

=

∫∞

−∞
P(ξt1 ∈ dx1, . . . , ξtk ∈ dxk |R1 = z)ν(dz)

∫∞

−∞
P(ξt1 ∈ dx1, . . . , ξtk−1

∈ dxk−1 |R1 = z)ν(dz)

=

∫∞

−∞
P(ξt1 − ξt0 ∈ −x0 + dx1, . . . , ξtk

− ξtk−1
∈ −xk−1 + dxk |R1 = z)ν(dz)

∫∞

−∞
P(ξt1 − ξ0 ∈ −x0 + dx1, . . . , ξtk−1

− ξtk−2
∈ −xk−2 + dxk−1 |R1 = z)ν(dz)

(22)

=

∫∞

−∞

{∏n
i=1

∏k
j=1 fmi(tj−tj−1)(x

(i)
j − x

(i)
j−1) dx

(i)
j

}
f1·m(1−tk)(z − 1 · xk)

ν(dz)
f1·m(z)

∫∞

−∞

{∏n
i=1

∏k−1
j=1 fmi(tj−tj−1)(x

(i)
j − x

(i)
j−1) dx

(i)
j

}
f1·m(1−tk−1)(z − 1 · xk)

ν(dz)
f1·m(z)

(23)

=

∫∞

−∞

{∏n
i=1 fmi(tk−tk−1)(x

(i)
k − x

(i)
k−1) dx

(i)
k

}
f1·m(1−tk)(z − 1 · xk)

ν(dz)
f1·m(z)

∫∞

−∞
f1·m(1−tk−1)(z − 1 · xk−1)

ν(dz)
f1·m(z)

=
Θtk(1 · xk)

Θtk−1
(1 · xk−1)

n∏

i=1

fmi(tk−tk−1)(x
(i)
k − x

(i)
k−1) dx

(i)
k ,
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where t0 = 0, x0 = 0 and x
(i)
j is the ith coordinate of xj. We provide some remarks on the step

(22) to (23). Note that in (22) all the increments of type ξt − ξs are vectors of non-overlapping
increments of the master LRB {Lt}0≤t≤1·m. Given R1 = L1·m, {Lt}0≤t≤1·m is a Lévy bridge, and so
its law is invariant to a reordering of its non-overlapping increments. This is a direct result of the
so-called cyclical exchangeability property of Lévy bridges (see, for example, [7]). The integrands
in (23) can then be recognised as Lévy bridge transition probabilities.

We now consider transitioning to ξ1. For all k ≥ 1, all 0 < t1 < · · · < tk < 1, all x1, . . . ,xk ∈
R

n, all y1, . . . , yk−1 ∈ R and all B ∈ B(R), we have

P(ξ
(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, ξ

(n)
1 ∈ B | ξt1 = x1, . . . , ξtk = xk)

=
P(ξ

(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, ξ

(n)
1 ∈ B, ξt1 ∈ dx1, . . . , ξtk ∈ dxk)

P(ξt1 ∈ dx1, . . . , ξtk−1
∈ dxk)

=
P(ξ

(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, R1 ∈ B +

∑n−1
i=1 yi, ξt1 ∈ dx1, . . . , ξtk ∈ dxk)

P(ξt1 ∈ dx1, . . . , ξtk−1
∈ dxk)

=

∫
z∈B+

∑n−1
i=1 yi

P(ξ
(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, ξt1 ∈ dx1, . . . , ξtk

∈ dxk |R1 = z)ν(dz)
∫∞

−∞
P(ξt1 ∈ dx1, . . . , ξtk−1

∈ dxk |R1 = z)ν(dz)

=

∫
z∈B+

∑n−1
i=1 yi

{∏n−1
i=1 fmi(1−tk)(yi − x

(i)
k ) dyi

}
fmn(1−tk)

(
z − x

(n)
k −

∑n−1
i=1 yi

)
ν(dz)

f1·m(z)
∫∞

−∞
f1·m(1−tk−1)(z − 1 · xk−1)

ν(dz)
f1·m(z)

(24)

=
θτ(tk)

(
B +

∑n−1
i=1 yi; x

(n)
k +

∑n−1
i=1 yi

)

Θtk−1
(1 · xk−1)

n−1∏

i=1

fmi(1−tk)(yi − x
(i)
k ) dyi,

where again t0 = 0 and (24) follows from similar arguments to (23).

A.3 Corollary 3.8

Proof. The process {Rt}0≤t≤1 is a Lévy process under P̃, where P̃(Rt ∈ dx) = ft(1·m)(x) dx. To

show E
P̃ (|Θt(Rt)|) <∞, use the Chapman-Kolmogorov convolution and the non-negativity of f :

∫

R

(∫

R

∣∣∣∣
f1·m(1−t)(z − r)ft(1·m)(r)

f1·m(z)

∣∣∣∣ dr
)
ν(dz) =

∫

R

∫

R

f1·m(1−t)(z − r)ft(1·m)(r)dr
ν(dz)

f1·m(z)

=

∫

R

f1·m(z)

f1·m(z)
ν(dz)

= ν(R) = 1.

Since R is a σ-finite measure space (with respect to Lebesgue measure), and f is measurable, we
can use Fubini’s theorem and write
∫

R

(∫

R

∣∣∣∣
f1·m(1−t)(z − r)ft(1·m)(r)

f1·m(z)

∣∣∣∣ dr
)
ν(dz) =

∫

R

(∫

R

∣∣∣∣
f1·m(1−t)(z − r)ft(1·m)(r)

f1·m(z)

∣∣∣∣ ν(dz)
)
dr

= E
P̃ (|Θt(Rt)|) .

Also, since {Θt(Rt)}0≤t<1 is harmonic, {Θt(Rt)}0≤t<1 is an (Fξ
t , P̃)-martingale. Explicitly, we have

E
P̃
(
Θt(Rt)

∣∣Fξ
s

)
= E

P̃

(∫ ∞

−∞

f1·m(1−t)(z −Rs − (Rt − Rs))

f1·m(z)
ν(dz)

∣∣∣∣ ξs

)

=

∫ ∞

−∞

∫ ∞

−∞

f1·m(1−t)(z − Rs − y)f1·m(t−s)(y) dy
ν(dz)

f1·m(z)

=

∫ ∞

−∞

f1·m(1−s)(z −Rs)

f1·m(z)
ν(dz)

= Θs(Rs),

15



for 0 ≤ s < t < 1. Since Θ0(R0) = 1 and Θt(Rt) > 0, {Θt(Rt)}0≤t<1 is a Radon-Nikodym density
process. We continue by verifying that under P the transition law of {ξt}0≤t<1 is that of a GLP
with generating law ν and parameter vector m:

P
(
ξt ∈ dx | Fξ

s

)
= E(1{ξt∈dx} | Fξ

s )

=
1

Θs(Rs)
E
P̃(Θt(Rt)1{ξt∈dx} | ξs)

=
Θt(Rt)

Θs(Rs)

n∏

i=1

f(t−s)(mi)(xi − ξ(i)s ) dxi. (25)

Comparing equations (25) and (8) completes the proof.

A.4 Proposition 3.11

Proof. Fix 0 ≤ s < t < 1. Then,

P(ξ
(i)
t ∈ dyi|ξ(i)s = xi) =

∫
R
P(ξ

(i)
t ∈ dyi, ξ

(i)
s ∈ dxi|R1 = r)P(R1 ∈ dr)

∫
R
P(ξ

(i)
s ∈ dxi|R1 = r)P(R1 ∈ dr)

. (26)

The numerator of (26) is
∫

R

P(ξ
(i)
t ∈ dyi, ξ

(i)
s ∈ dxi|R1 = r)P(R1 ∈ dr)

= fmis(xi)dxif(t−s)mi
(yi − xi) dyi

∫

R

f1·m−mit(r − yi)

f1·m(r)
ν(dr), (27)

and the denominator is
∫

R

P(ξ(i)s ∈ dxi|R1 = r)P(R1 ∈ dr) = fmis(xi)dxi

∫

R

f1·m−mis(r − xi)

f1·m(r)
ν(dr). (28)

Dividing (27) by (28) concludes the first part.
For the second part, write ξ⊘i

t for the vector ξt excluding its ith coordinate. Using the Markov
property of {ξt}0≤t≤1, we have

P

(
ξ
(i)
t ∈ dyi | Fξ

s

)
=

P

(
ξ
(i)
t ∈ dyi, ξ

(i)
s ∈ dxi, ξ

⊘i
s ∈ dx

)

P

(
ξ
(i)
s ∈ dxi, ξ

⊘i
s ∈ dx

) , (29)

The numerator of (29) is given by

∫

R

P

(
ξ
(i)
t ∈ dyi, ξ

(i)
s ∈ dxi, ξ

⊘i
s ∈ dx⊘i

∣∣∣R1 = r
)
P(R1 ∈ dr) =

n∏

j=1

[fmjs(xj) dxj]fmi(t−s)(yi − xi) dyi

×
∫

R

f1·m(1−s)+mi(t−s)(r −
∑n

j=1 xj + (yi − xi))

f1·m(r)
ν(dr), (30)

and the denominator is given by

P (ξs ∈ dx) =

n∏

i=1

[fmis(xi) dxi]

∫ ∞

−∞

f1·m(1−s)(r −
∑n

i=1 xi)

f1·m(r)
ν(dr). (31)

Equation (31) follows from the stationary increments property of LRBs and (2). Dividing (30) by
(31) concludes the second part.
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A.5 Proposition 3.12

Proof. Since {ξt}0≤t≤1 is a Markov process with respect to {Fξ
t }0≤t≤1, {Rt}0≤t≤1 is a Markov

process with respect to {Fξ
t }0≤t≤1. We first verify (11), the ξs-conditional law of R1. For s = 0,

trivially the law of R1 is ν. For 0 < s < 1, using (31), we have

P(R1 ∈ dr | ξs = x) =
P(ξs ∈ dx |R1 = r) ν(dz)

P (ξs ∈ dx)

=
f1·m(1−s)(r − 1 · x) ν(dr)

f1·m(r)∫
R
f1·m(1−s)(r − 1 · x) ν(dr)

f1·m(r)

,

as required. Next, we verify (12), the ξs-conditional law of Rt for 0 ≤ s < t < 1. The process

{Rt}0≤t≤1 is a P̃-Lévy process with P̃(Rt ∈ dr) = f(1·m)t(r) dr, where P̃ is given by (10). Using
Corollary 3.8 (or [14](Proposition 3.7)), we have {Rt}0≤t<1 a P-LRB, where

P (Rt ∈ dr | ξs = x) = Θs(r)
−1

E
P̃
(
Θt(r)1{Rt∈dr} |Rs = 1 · x

)

= Θs(r)
−1

∫

R

f1·m(1−t)(z − r)

f1·m(z)
ν(dz)f(t−s)1·m(r − 1 · x) dr,

as required.

A.6 Proposition 3.15

Proof. Conditional on ξd (0 < d ≤ 1), the coordinates of {ξt}t≤d are (independent) Lévy bridges,
and {Rt}t≤d is a Lévy bridge. Thus, it is sufficient to prove that an integrable Lévy bridge is a
harness. Let {Xt}0≤t≤1 be a Lévy process such that Xt has a density ft for t ∈ (0, 1]. We shall
show that the conditional process, and Lévy bridge, {Xt|X1 = k} is a harness. The conditions of
the proposition allow us to assume that {Xt|X1 = k} is integrable. We start by computing the
following:

P

[
ny⋂

i=1

Xti ∈ dyi

∣∣∣∣∣

(
nx⋂

i=1

Xai = xi

)
∩
(

nz⋂

i=1

Xdi = zi

)
∩ (X1 = k)

]
, (32)

for any nx, ny, nz ∈ N+, any 0 = a0 < a1 < · · · < anx
= a < t1 < · · · < tny

< d = d1 < · · · <
dnz

< 1, any (x1, . . . , xnx
) ∈ R

nx , any (y1, . . . , ynx
) ∈ R

ny , and any (z1, . . . , znz
) ∈ R

nz . Following
the Bayes rule, the numerator is

I1 = P

[(
ny⋂

i=1

Xti ∈ dyi

)
∩
(

nx⋂

i=1

Xai ∈ dxi

)
∩
(

nz⋂

i=1

Xdi ∈ dzi

)
∩ (X1 ∈ dk)

]

=

(
nx∏

i=1

fai−ai−1
(xi − xi−1)dxi

)

×
(
ft1−a(y1 − xa)dy1

ny∏

i=2

fti−ti−1
(yi − yi−1) dyi

)

×
(
fd−tn(z1 − yny

)dz1

nz∏

i=2

fdi−di−1
(zi − zi−1)dzi

)
f1−dnz

(k − znz
) dk,
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and the denominator is

I2 = P

[(
nx⋂

i=1

Xai ∈ dxi

)
∩
(

nz⋂

i=1

Xdi ∈ dzi

)
∩ (X1 ∈ dk)

]

=

(
nx∏

i=1

fai−ai−1
(xi − xi−1)dxi

)

×
(
fd−a(z1 − xnx

)dz1

nz∏

i=2

fdi−di−1
(zi − zi−1)dzi

)
f1−dnz

(k − znz
) dk.

So (32) is equal to

I1
I2

=

ny∏

i=2

(
fti−ti−1

(yi − yi−1) dyi
) ft1−a(y1 − xa)fd−tn(z1 − ytny

)dy1

fd−a(z1 − xnx
)

.

It follows from the Kolgomorov Extension Theorem that {Xt|HX
a,d}a≤t≤d is a Lévy bridge between

Xa and Xd. Define {ηt}0≤t≤d−a by ηt = Xa+t − Xa. Then {ηt|HX
a,d} is Lévy bridge from 0 to

Xd −Xa, and

E[ηt|HX
a,d] =

t

d− a
(Xd −Xa),

which yields the result.

A.7 Proposition 4.3

Proof. Define the mapping H : R× R× [0, 1)× R+ → R+ as follows:

H(z, y, t,m) = exp

{
zy − tz2/2

m2(1− t)

}
.

Since the Brownian bridges {β(i)
t }0≤t≤1, i = 1, . . . , n, in (19) are mutually independent and

{ξt}0≤t≤1 is Markov, we have

P(ξ1 ∈ dx | Fξ
t )

law
=

∏n
i=1H

(
x(i), ξ

(i)
t , t, σ

√
mi

)
P(ξ1 ∈ dx)

∫
Rn

∏n
i=1H

(
x(i), ξ

(i)
t , t, σ

√
mi

)
P(ξ1 ∈ dx)

=
exp

{∑n
i

x(i)ξ
(i)
t −t(x(i))2/2

σ2mi(1−t)

}
P(ξ1 ∈ dx)

∫
Rn exp

{∑n
i

x(i)ξ
(i)
t −t(x(i))2/2

σ2mi(1−t)

}
P(ξ1 ∈ dx)

. (33)

If we define the numerator of (33) as the function

g
(
(ξ

(i)
t )i=1,...,n, t; dx

)
= exp

{
n∑

i

x(i)ξ
(i)
t − t(x(i))2/2

σ2mi(1− t)

}
P(ξ1 ∈ dx), (34)

and apply Itô’s formula to (34), we get

dg =
∂g

∂t
dt +

n∑

i=1

∂g

∂ξ
(i)
t

dξ
(i)
t +

1

2

n∑

i=1

∂2g

∂(ξ
(i)
t )2

d
〈
ξ
(i)
t

〉
+

n∑

i 6=j

∂2g

∂ξ
(i)
t ∂ξ

(j)
t

d
〈
ξ
(i)
t , ξ

(j)
t

〉
,

= g
(
(ξ

(i)
t )i=1,...,n, t; dx

)( n∑

i=1

x(i)ξ
(i)
t

(σ2mi(1− t)2
dt+

n∑

i=1

x(i)

σ2mi(1− t)
dξ

(i)
t

)
,

18



where the covariation brackets
〈
ξ
(i)
t , ξ

(j)
t

〉
for i 6= j disappear since the {β(i)

t }0≤t≤1, i = 1, . . . , n,

are mutually independent. Let G
(
(ξ

(i)
t )i=1,...,n, t

)
=
∫
Rn g

(
(ξ

(i)
t )i=1,...,n, t; dx

)
; then, using Fubini’s

theorem,

dG
(
(ξ

(i)
t )i=1,...,n, t

)
= G

(
(ξ

(i)
t )i=1,...,n, t

)( n∑

i=1

E(ξ
(i)
1 | ξt)ξ

(i)
t

σ2mi(1− t)2
+

n∑

i=1

E(ξ
(i)
1 | ξt)

σ2mi(1− t)
dξ

(i)
t

)
,

The statement follows by applying Itô’s formula to the ratio (33), where we get

dφt(dx) = φt(dx)

(
n∑

i=1

x(i) − E(ξ
(i)
1 | ξt)

σ2mi(1− t)

(
dξ

(i)
t − E(ξ

(i)
1 | ξt)− ξ

(i)
t

(1− t)

))

, φt(dx)

(
n∑

i=1

σ
(i)
t dB̃

(i)
t

)
.

Writing B̃t = (B̃
(1)
t , . . . , B̃

(n)
t )⊤, define {Bt}0≤t<1 by B̃t = σ

√
m ◦Bt. That is, B

(i)
t = B̃

(i)
t /σ

√
mi.

For each i ∈ {1, . . . , n}, {ξ(i)t }0≤t≤1 is an LRB, and so following similar steps to the proof of

Proposition 3.13, we can show that {B(i)
t }0≤t<1 is continuous with quadratic variation t and is

an (Fξ
t ,P)-martingale. Then, from Lévy’s characterisation, {Bt}0≤t<1 is a vector of standard

(Fξ
t ,P)-Brownian motions.

A.8 Proposition 4.9

Proof. Let {ξ(i)t : i = 1, . . . , n}0≤t≤1 be the coordinates of the Poisson Liouville process {ξt}0≤t≤1.
The survival function of T (i) is

P(T (i) > s) = P(ξ(i)s = 0)

= E
(
P
(
ξ(i)s = 0

∣∣1 · ξ1

))

= E
(
(1− spi)

1·ξ1
)

= Gν(1− spi).

For s ∈ [0, 1]n, the joint survival function of T is

P(T (i) > si; i = 1, . . . , n) = P(ξ(i)si
= 0; i = 1, . . . , n)

= E
(
P(ξ(i)si

= 0; i = 1, . . . , n | ξ1)
)

= E

(
n∏

i=1

P(ξ(i)si
= 0 | ξ(i)1 )

)

= E

(
n∏

i=1

(1− si)
ξ
(i)
1

)

= E



(

n∑

i=1

pi(1− si)

)1·ξ1



= Gν

(
n∑

i=1

pi(1− si)

)

= Gν

(
1−

n∑

i=1

pisi

)
,

which gives the statement.
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