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Abstract

We define a new family of multivariate stochastic processes over a finite time horizon that
we call Generalised Liouville Processes (GLPs). GLPs are Markov processes constructed by
splitting Lévy random bridges into non-overlapping subprocesses via time changes. We show
that the terminal values and the increments of GLPs have generalised multivariate Liouville
distributions, justifying their name. We provide various other properties of GLPs and some
examples.
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1 Introduction

Lévy random bridges (LRBs) — Lévy processes conditioned to have a fixed marginal law at a fixed
future date — have been applied to various problems in credit risk modelling, asset pricing and
insurance (see, for example, [2, 4, [5, 6, 14]). In [I5], the authors present a bivariate insurance
reserving model by splitting an LRB (in this case based on the 1/2-stable subordinator) in two.
The two subprocesses are transformed to span the same time horizon, and are used to model the
accumulation of insurance claims. In a similar fashion, the present authors constructed in [16]
two classes of multivariate process by splitting and transforming an LRB based on the gamma
process. The first class, Archimedean survival processes, provide a natural link between stochastic
processes and Archimedean copulas, and was applied to a copula interpolation problem. The
second, more general, class was the class of Liouville processes, so named because the finite
dimensional distributions of a Liouville process are multivariate Liouville distributions [ 10} 1T,
12]. This more general class was applied to the joint modelling of realised variance for two stock
indices.

We extend the splitting and transformation mechanism to a general LRB to create what we
call a generalised Liouville process (GLP). We show that the sum of coordinates of GLPs are one-
dimensional LRBs, and prove that the finite dimensional distributions of GLPs are generalised
multivariate Liouville distributions as defined in [I3]. We show that GLPs are Markov processes
and that there exists a measure change under which the law of an n-dimensional GLP is that of
a vector of n independent Lévy processes. We prove that any integrable GLP admits a canonical
semimartingale representation with respect to its natural filtration. We also show that GLPs are
multivariate harnesses. We prove that GLPs satisfy the weak Markov consistency condition, but
not necessarily the strong Markov consistency condition. Similarly, we introduce what we call
weak and strong semimartingale consistency properties, and show that GLPs have the former,
but not necessarily the latter. The class of GLPs contains as special cases: Archimedean survival
processes, Liouville processes, and the bivariate process based on the 1/2-stable subordinator.
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Throughout much of this work, we focus on processes taking continuous values. However,
although details are omitted, many results are straightforward to extend to processes on a lattice.
Indeed, later we provide examples of both a continuous and a discrete GLP. More specifically, we
consider what we call Brownian Liouville processes and Poisson Liouville processes, and present
some of their special characteristics.

2 Preliminaries

Throughout this work, for a vector x € R, we denote the sum of its coordinates by 1-x = . ;.
We work on a probability space (€2, F,P) equipped with a filtration {F;};>0. We fix a finite
time horizon ¢ € [0,T] for some T' < oo and assume {F;}o<i<r and all its sub-filtrations are
right-continuous and complete. Unless stated otherwise, every stochastic process is cadlag with
a state-space that is a continuous subspace of (R™, B(R")) for some n € N, where B(R") is the
Borel o-field.

Let {X:}:>0 be a Lévy process taking values in R, such that the law of X, is absolutely
continuous with respect to the Lebesgue measure for every ¢ € [0,7]. In this case the density
fi of X exists and satisfies the Chapman-Kolmogorov convolution identity f;(z fR fis(

y)fs(y)dy, for 0 < s <t < T and = € R. Having independent and stationary 1ncrements the
finite-dimensional law of {X;}o<i<r is given by

]P)(th - dl‘l, e , 6 dl‘m H ftz_tz 1 ZL‘i_l) dl‘i,

formeN,, 0<t; <...<t, <Tand zy,...,2, € R.

A Lévy bridge is a Lévy process conditioned to take some fixed value at a fixed future time.
Since Lévy processes are homogenous strong Markov processes, the definition of their bridges can
be formalised in terms of Doob h-transformations. See [9] for further details on the bridges of

Markov processes. Let {XEZT)}0<,5<T be a bridge of {X;}o<t<r to the value z € R at time T', where

0 < fr(z) < oo. The transition density of {X T}0<t<T is given by the following Doob h-transform
of the transition density of {X;}o<i<r:

z z h xXr
PO € dalX(5 =) = 30 fiale — ) ()

for 0 < s <t < T, where hy(x) = fr_s(z — ). Note that {h;}o<i<r defined as such is harmonic
with respect to {X;}o<t<r. Note also that P(0 < ht(XézT)) < oo)=1foral 0<t<T,so the
ratios of densities in ([I]) are almost surely well defined (this is discussed in the remark following
Proposition 1 of [9]). Similar ratios feature throughout this work and are likewise almost surely
well defined, and we may pass by them without further comment.

Lévy random bridges (LRBs) are an extension of Lévy bridges. Their interpretation in [14] is as
a bridge to an arbitrary random variable at time 7', rather than a fixed value. A process {L; }o<i<7
is an LRB with generating law v if it satisfies: (i) Ly has marginal law v, (ii) there exists a Lévy
process {X; to<i<r such that the density f; of X; exists for all ¢ € (0,77, (iii) v concentrates mass
where fr is positive and finite v-a.s., (iv) for all m € Ny, every 0 < t; < ... < t,, < T, every
(x1,...,2m) € R™ and v-a.e. z,

P(Ly <a1y..., Ly, <a@p|Lr =2) =P(Xy, <m1,..., Xy, < 2p|X7r = 2).

The finite-dimensional distribution of {L; }o<i<7 is given by

P(L,, € dzy,..., Ly, € Aoy, Ly € dz) = H( Frot (5 — 1) day)0y,, (d2; 2,), (2)

=1



where Jy(dz;y) = v(dz) and 9y(dz;y) = v(dz)fr_i(z — y)/fr(z) for t € (0,T). It follows that

LRBs are Markov processes with stationary increments, where the transition law of {L;}o<;<r is

P(Ly € dz|L, = y) = %7
P(L, € da|L, = y) = O(R: x)ft oz —y)d, (3)

75 (R; y)

for 0 < s < t. We note that the finite-dimensional distributions of LRBs with discrete state-spaces
have similar transition probabilities given in terms of probability mass functions (for details see
[14]). The extension of many later results to discrete processes follows from this.

Remark 2.1. Note that ({3) is also a Doob h-transform of the transition density of {Xi}o<i<r,
and {9:(R; X;) Yo<i<r is a positive (FX,P)-martingale, where FX = c({X,}: 0 <u < t).

Let X4,..., X, be random variables taking values in R with a joint density of the form
, (z ) [Ton e o
i=1 i=1
where ay, ..., a, > 0 are parameters, and the set of functions {¢, : a > 0} satisfies the convolution

property ¢q * ¢p = darp. In [13], this is referred to as a “Liouville density function”. Indeed,
according to the definition given in [13], (X7, ..., X, ) then has a Liouville distribution, although
we prefer to refer to this as the generalised Liouville distribution to distinguish it from the original
and special case that {¢,} are gamma densities (see [8, [10, [IT], 12]). The actual definition of the
generalised Liouville distribution given in [I3] replaces the functions {¢,} with measures, and so
it includes examples where the joint density may not exist. For our purposes, it is convenient to
relax () in a different way. We keep {¢,}, but replace the function p with a measure v:

Definition 2.2. Let Xi,..., X, be random wvariables taking values in R, v : B(R) — Ry be a
probability law, and A = {¢, : 0 < a < A < 00)} be a family of functions satisfying the convolution
property: Gq* Pp = Garp, fora+b < A. Then (X1 ..., X,) has a generalised multivariate Liouville
distribution if its joint probability law is of the form

P(Xl < d.Tl, c. -;anl c dl’nfl,ZXi € dZ)

=1

G, (2= D01 1332) (dz) ) da
S ) H% e )

forai,...,x, ER, Goy,.. . o, €A, a=(a1,...,a,)" €ER?, 1 -a<A.
Remark 2.3. Writing B+x={y:y—x € B}, for BCR and x € R, then (J) is equivalent to

]P(Xl c d.ﬁlfl, c. -;anl c d.ﬁl]nfl,Xn € B)

n

H (¢a¢ (:1:2) dxi) /EB+Zn_1 | Pa,, (qu—l.az(:zg;:} xz) v (dZ)

(a, () da;) / %" o) <Z @i + dxn> : (6)
2 x
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Furthermore, if v admits a density p, then (@) can be written in the form of a Liouville density:

P(X; €dry,..., Xp 1 € dzp1, Xn € day) = %ﬁ(%i(m)dxi).



3 (Generalised Liouville processes

To construct a GLP, we start with a “master” LRB {L;}o<t<u, for u,, € Ry and n > 2, where L,,,
has marginal law v. We assume that v has no continuous singular part and split {L; }o<t<y, into
n non-overlapping subprocesses.

Definition 3.1. For my,...,m, > 0 (n > 2), define the strictly increasing sequence {u;}"_,
by up = 0 and u; = w;—y +my; fori =1,....,n. Then a process {&,}o<t<1 is an n-dimensional
generalised Liouville Process (GLP) if

{Gt}ogtgl lgv {(Ltml - L07 sy Ltmi—f—ui_l - Lui_p DY Ltmn-l—unfl - Lunfl)T}

0<t<1’

for some LRB {L;}o<t<u, with generating law v. We say that the generating law of {&, }o<i<1 is
v and the activity parameter of {€,}o<i<i s m = (Mmy,...,m,)" .

We have restricted the definition of GLPs to the time horizon [0, 1] for convenience. It is

straightforward to generalise to an arbitrary closed time horizon. Each coordinate {flfi)}ogtsl of
{&,}o<t<1 is a subprocess of an LRB. Since subprocesses of LRBs are themselves LRBs (see [14]),
GLPs form a multivariate generalisation of LRBs. For the rest of the paper, we let {&,}o<:<1 be
an n-dimensional GLP with generating law v, and {L; }o<t<y, be the master process of {€,}o<i<1.
In addition, we denote the filtration generated by {£, }o<i<1 by {F& bocic1 C {Fi}oci<. Explicitly,
we have Ff = o({£,}: 0 < u <t).

Remark 3.2. The bivariate model of insurance claims based on the 1/2-stable subordinator pro-
posed in [15] is a GLP.

Remark 3.3. Liouville processes and Archimedean survival processes, as introduced in [16], form
a subclass of GLPs. In Definition[31, if the LRB {L;}o<t<u, is a gamma random bridge with unit
activity parameter, then we have a Liouville process. If we further fit m; =1 fori=1,...,n
then we have an Archimedean survival processes.

Proposition 3.4. The following hold for any GLP {&,}o<i<1:
1. The increments of {€,}o<i<1 have a generalised multivariate Liouwville distribution.
2. The terminal value &, has a generalised multivariate Liouville distribution.
Proof. See Appendix. O

In what follows, we define a family of unnormalised measures {6; }o<¢<1, such that

Oo(B;x) = v(

flml 1 z—x)

fl m
fort € [0,1), x € R and B € B(R). We also write @t(:c) = 6,(R; z). We define R; to be the sum

of coordinates of &;:
Y-t
i=1

Proposition 3.5. The GLP {£,}o<i<1 is a Markov process with the transition law given by

0,(B; x) v(dz), (7)

P (él) €da,.... " eds 16" eB ‘ £, = x) —

‘97 s)<B+Z -1 zlvxn_'_z -1 zz) =
@s<1 X) Hf(l s)ml( )dzza

i=1



and

P(€ € dy|€, =x) 1 9l1-y) Hf@ sy (9 — 7:) g, ®)

where x,y € R", 7(t) =1 —m,(1 —1)/(1- ), 0<s<t<l1,and B € B(R).
Proof. See Appendix. O

Remark 3.6. From Proposition [3.3, if the generating law v admits a density p, we get a neater
transition law to the terminal value, given by

P(éledz|€szx>:@<1 Xfl 1 Z Hf(l sml Zi )dzz

Remark 3.7. Our definition of GLPs is somewhat heuristic. A formal definition is possible
through a Doob h-transform, since {©;}o<i<1 is harmonic to a Lévy process {X; >0 taking values
in R™ with marginal density g;(x) = [[i—; fmit(xi). To see this, note that we can alternatively
write (8) as

ét(Y)
O,(x)
where ©,(x) = O,4(1-x), for 0 <t < 1. To see that {©,}o<ic1 is harmonic to {X}o<ic1, note that

/R gy~ 00u(y) dy = / Tseom =20y

dv(z)
/ flm(l t Z_]- y Hf(t s)m; z_xl)dyf1m<z)
av(z)

/ (s =1 %) 24 ©

for 0 < s <t <1, where [{3) follows fmm repeated use of the convolution property of { fi}o<t<1.m-

P& e dy|€ =x) =

Gi—s(y — x) dy,

Remark B.7 demonstrates that the laws of {&,}o<t<1 and {X;}o<i<1 are equivalent, which we
formalise by the corollary below.

Corollary 3.8. Suppose that {&,}1>0 is a Lévy process under measure P with IF’(ﬁt € dx) =
gi(x)dx. Then {©,(R;) ' }o<i<1 is a Radon-Nikodym density process that defines the measure
change

dP

aP|

= 04(R)7 ", 0<t<1), (10)

and {&, }o<t<1 is a P-GLP with generating law v and activity parameter m.
Proof. See Appendix. O

Remark 3.9. Let vy(B) = P(R; € B|F%) for 0 < s <t <1 and B € B(R). Given &,
the increment &, — &, has a generalised multivariate Liouville distribution with generating law
vst(B + Rs) for B € B(R) and parameter vector m(t — s).

Proposition 3.10. Given &,, the process {€,}o<i<1 is a vector of independent Lévy bridges.

Proof. For all s € [0,1) the transition probabilities to &, (s < ¢t < 1) can be computed from (§)
by first substituting v with the Dirac measure d;., in (), yielding

]P)(ﬁt c dy | 61 _ Z,Fsg) _ H fmi(tfs)(yz gs )fml(l t) ( yz) dyz,

i=1 fmz'(1—8)<zi - §Z))
for almost every z € R". Conditional on §; = z, we see that the transition laws of the coordinates
of {€,}o<i<1 are independent, and that each is the transition law of a Lévy bridge. O

bt



Using the Markov property of {&,}o<i<1, we can also provide the conditional laws of the
coordinates ft(l) given F& = cr({&(f)} 10 < u<s)or given F¢, for s < t.

Proposition 3.11. The coordinates of {&€,}o<t<1 have the following transition laws:
1. The marginally conditioned case:

v (z,)

P(fti) € dyz“fgi) = sz) = f(tfs)mz’ (yz - sz) dy;,

where

2. The fully conditioned case:

@gn (Xv yl)

(i) e _ o) = o Ndu
P (6" € dui 6= x) = 57 fom i~ 41)

where

0) [ fima-st—sm (P = 1-x+ (y — 7))
o () = | L (),

for0<s<t<l1.

Proof. See Appendix. O
Proposition 3.12. The process {R;}o<i<1 s an LRB with generating law v and the transition
law
Os(dr; 1 - x)
P =x)=———~ 11
(Rl € dr | Es X) @s(]- . X) ) ( )
O (r
P(R, € dr[€, =x) = ﬁ(')x)f(t—s)Lm(T —1-x)dr. (12)
Proof. See Appendix. O

The next statement is a key result for defining stochastic integrals of integrable LRBs, and
hence integrable GLPs.

Proposition 3.13. If E(|R;|) < oo for all t € [0,1], then {R:}o<t<1 admits the canonical semi-
martingale representation

"E(R, | F¢) — R,
Rt:/ ( ll i ds + M;, (13)
; _

for 0 <t <1, where {M;}o<i<1 is an (ff,IP’)-martmgale with initial state My = 0.
Proof. From Proposition BI12, {R;}o<:t<1 is an LRB. Hence, if E(|R;|) < oo for all ¢ € (0, 1], then

E(R|€,=%) = 1 x+ T E(Ri|&=x), s€[0,1) (14)



We shall use (Id) to prove that {M,}o<i<1 given in (I3) is an Fe-martingale. Since {&,}o<i<i is
Markov,

E(M, — M| F&) = E(R, — R, | F§) — /t Bl &) “BU &) g,

1—u
1t t— "E(1|€,)
=1 s (Rl|5) _/sﬁdu
| 1—u uU—Ss
+/S l_u(il'fsJFmE(RﬂEs))du

for 0 < s < ¢ < 1. Given E(|Ry|) < o0, E (fot(|E(R1|§s) ~R,))/(1 —s)ds) <ocofor0<t<1

remains to be shown:
t
( E(R |€,) )<E( CE(R [€,)] )+E</ \Rslds)
1—s 1—s 0o 1—s
t
0 1—3 0 1—s

< 00,

since {E(Ry | FF)}o<i<1 is a martingale. Hence, E(|M,]) < oo for 0 < ¢ < 1. Finally, My = 0 since
Ry =0. O

Remark 3.14. Let ay = (1 —t)7! and 5, = E(R; |€,). Then
th = O (6t — Rt) dt + th,

for 0 <t < 1. In this form, the dynamics of LRBs resemble those of an Ornstein-Uhlenbeck
process, with an increasing mean-reversion rate {au}o<i<1 and a state-dependent reversion level
{Bi}o<i<1- We can write

b1 —
Rt:/ (1 ) E(Ry | &, d3+/—dMs, for0<s<t<l.
0

The following two propositions are motivated by [18]. We first recall that a measurable process
{H:}t>0 is called a harness, if for all t > 0, E(|H;|) < oo and for all 0 < a < b < ¢ < d,

Hc_Hb Hd_Ha
E\ ——|Hoa | = —,
< c—> H’d) d—a

where Hoq = 0({Ht h<a, {Ht }1>4a)-
Proposition 3.15. IfE(1-&,) < oo fort €0, 1], then {&,}o<i<1 and {R:}o<i<1 are harnesses.
Proof. See Appendix. O

Proposition 3.16. Let ¢ be a C*-function. If E(|Rs|) < oo for all t € (0,1], then the stochastic
process {Z; bo<i<1 defined by

5, _ E(R1]&)
1—1t

Rt/t o(u) du+/0 o(u) dR,, 0<t<1),

is an (FE,P)-martingale.



Proof. We have

e ([ etwar,

ff) — VB 7 — el ~ [ (| ) dolu)
CE(R|€) - R /
= o(u)du,

1—-1

from the integration by parts formula, (I4)) and the Markov property of {&,}o<:<1. Hence, Z; =
I[E(fo1 o(u) dR, | F§), which is an (F&,P)-martingale. O

Similar to Proposition .13 we have the following result (we omit the proof to avoid repetition):

Proposition 3.17. If E(|&,|) < oo for allt € (0,1], then {&, }o<t<1 admits the canonical semi-
martingale representation

tE 1 ‘Fsg ~ Ss
gt:/o <5‘1_i Sgs+ M,  (0<t<1), (15)

where {M,}Yo<ic1 is an (FF,P)-martingale.

In [I7], it is shown that Archimedean survival processes satisfy the weak Markov consistency
condition, but not necessarily the strong Markov consistency condition. Motivated by this, Propo-
sition [3.I8 below provides a generalised version of this result for GLPs. First, we recall the weak
and strong Markov consistency conditions. Let {X;};>¢ be an n-dimensional real-valued Markov

process and FX = o({X,} : 0 < u < t). Also, for each coordinate process {Xt(i)}tzo, i=1,...,n,
write X = o({X{"} : 0 < u < t) € FX. The process {X,}i=o satisfies the weak Markov
consistency condition if

]P(Xt(“ c B’}“;X(”> :]P(Xt(“ c B’Xs(i)), (16)

for every i = 1,...,n and every B € B(R). Further, {X;};>( satisfies the strong Markov consis-
tency condition if

P(xeB|F)=P(x"eB|X0), (17)
for every i = 1,...,n and every B € B(R).

Proposition 3.18. Any GLP {&,}o<i<1 is weak Markov consistent, but not necessarily strong
Markov consistent.

Proof. Each coordinate {f,fi)}ogtgl of the GLP {§,}o<i<1 is an LRB, since every subprocess of
an LRB is an LRB (see [14]). Thus, (I0) is satisfied for every i = 1,...,n, every B € B(R)

and all 0 < s <t < 1. However, (I]) does not necessarily hold since P (fti) — fsi) e dy ’ f§> =
P (fti) - §§i) € dy ’ > §§j)) is only equal to PP (fti) - §§i) € dy §§i)> if both > fﬁj) and §§i) are

independent from the increment §f@ — §§i) for all 0 < s <t < 1. In such a case the coordinates of
{&,}o<t<1 are independent Lévy processes. O

In the same spirit, we shall introduce weak and strong semimartingale consistency conditions.
Definition [3.19 below goes beyond a Markov setting, but in the context of GLPs, it offers links to
Markov consistency.

Definition 3.19. Let {S;}i>0 be an (F2,P)-semimartingale, where F¥ = a({S,} : 0 < u < t).
Let {St(l)}tzo be a coordinate of {8} =0, and FS" = cr({Sz(f)} 0<u<t), fori=1,...,n.



1. If {St(i)}tzo admits a decomposition St( = ag) + m ) where {at o is a cadlag {F;

S(l)}
adapted process with bounded variation and {mt )}tzo s an (fts ,P)-local martingale, then

{St}i>0 is weakly semimartingale consistent with respect to {St(i)}tzo. If this holds for every
i=1,...,n, then {St}i>0 satisfies the weak semimartingale consistency condition.

2. Let {Si}i>0 be decomposed as S; = A; + My, where {A;}i>0 is a cadlag {F7}-adapted
process with bounded variation and {M};>o is an (FP,P)-local martingale, with coordi-
nates {A }t> and {M( }t>0, respectively. Given that S = AV + MY if {Agi)}tzo is
{.7:5()} adapted and {M }t>0 is an (F5", ) local martingale, then {S;}i>0 is strongly
semimartingale consistent with respect to {St }tZO- If this holds for everyi =1,...,n, then
{S:}>0 satisfies the strong semimartingale consistency condition.

Proposition 3.20. Any GLP {&,}o<t<1, where E(|€,]) < oo for allt € (0,1], is weak semimartin-
gale consistent, but not necessarily strong semimartingale consistent.

Proof. Let E(|€,]) < oo for all ¢t € (0,1] and define oy = (1 —¢)~! for ¢t < 1. Following similar
steps to the proof of Proposition B.I3] each coordinate of {&, }o<;<1 admits a decomposition é}@ =

(Z) (@)
agz) _ / a (E (552) ¢ Z) . §§2)> dS,
0

+m,;’, where
which is {]__5(1')} adapted, and {mgi)}0<t<1 is an (Eg(i),P)—martingale, for i = 1,...,n. Hence,

{Et}0<t<1 is weak semimartingale consistent. From Proposition B.17] we also know that fti) =

A —|—Mt(),where
AP = [ o, (B (] 75) - ) as
0

which is {FF}- adapted and { M }0<t<1 is an (FE,P)-martingale. Since {&,}o<i<1 is Markov and

usmg Proposition [3 we know that E(§1 | €,) is not necessarlly equal to (§1i |§ti ). Hence

{A }0<t<1 is not necessarlly {.7-"5 }-adapted. Also, {M }0<t<1 is not necessarily an (.Ef P)-

martingale. 0

We used Proposition to prove Proposition B.20F we shall note another link between semi-
martingale consistency and Markov consistency. From [1], if a Markov process {X;}:>o satisfies
the weak Markov consistency with respect to its marginal {Xt(i)}tzo, then {X;}>0 is also strongly
Markov consistent with respect to {Xt(i)}tzo if and only if {FX"},2¢ is P-immersed in {FX};=0.
Here, P-immersion means that if {Xt(i)}tzo is an (FX”, P)-local martingale, then it is an (FX,P)-
local martingale. As an opposite direction to P-immersion, we prove a result that links strong
martingale consistency and strong Markov consistency.

Proposition 3.21. Let {S;}i>0 be a Markov (FS,P)-martingale, satisfying weak Markov con-
sistency. Then, {Si}i>o is strong semimartingale consistent if and only if it is strong Markov
consistent.

Proof. Since {S;}s>0 is an (F7,P)-martingale, we have E(S" | F3) = S for 0 < w < t. Then, if
{S:}i>0 is strong martingale consistent, we have E(S | FS) = E(SY | FS™) = S5 Thus, given
that {S;}:>0 is Markovian satisfying weak Markov consistency,

E(SY | F5) :/:ﬂp (5,5“ c dx)ff) :/:ﬂp (St(“ e dx)su>
R

—E(SY | F5V) = /ﬂ» (s edx)ff“)) :/ﬂ» (s de’S}f’).
R R



For the opposite direction, if {S;}+>¢ is strong Markov consistent, then since {S;};¢ is an (F?,P)-
martingale satisfying weak Markov consistency,

/:c]P’ (St(i) € dz ) ff) — E(SV | FS) = 5O
R
= /RxIP’ (St(i) c dx)S}j)) — /Rxp (St(i) c dx‘]__&gu)) :E(St(i) |J—_-5(i)).

Hence, {St(i)}tzo is also an (F5“,P)- martingale, and the statement follows. O

4 Examples

We shall now study two examples of GLPs in more detail: Brownian Liouville processes and
Poisson Liouville processes.

4.1 Brownian Liouville processes

As a subclass of GLPs, let us consider what we call Brownian Liouville processes (BLPs). In
Definition Bl we let {L;}o<t<u, be a Brownian random bridge given by

t t
Li=——Lim ——Wim |, 1
=T m +U(Wt 1-mW1 ) (18)

where 0 > 0 and {W;}o<i<u, is a standard Brownian motion independent of the random variable
L1m. For a background of the anticipative orthogonal representation given in (I8) for a Brow-
nian random bridge, we refer the reader to [3] and [6]. We also note that the Gaussian process
{W; = $=Wim}o<i<1m in [I8) is a Brownian bridge starting and ending at zero. The following
proposition is analogous to [16, Proposition 3.10] for Archimedean survival processes. We denote
the Hadamard (i.e. element-wise) product of vectors x,y € R™ by x oy. We say {f;}o<t<1 is a
standard Brownian bridge if (a) it is a Brownian bridge, (b) 8y = 81 = 0, and (c) Var(8;) = (1—t).

Proposition 4.1. If {&,}o<i<1 is a BLP with the master process ({I8), then it admits the indepen-
dent Brownian bridge representation.:

¢, :t(iRl +o—z> +oymo B, (19)
1-m
where /m = (/my,...,/mn) ", {B;} is a vector of independent standard Brownian bridges and
the random vector Z. = (Zy, ..., Z,)" is multivariate Gaussian with
m;m;

COV(ZZ‘, ZJ) = (SZ]TTLZ —

1-m’

Proof. For the proof, we use W; and W (t) interchangeably. We have

fti) = L<mit - ui71> - L(Uzel)

m;t ; m;
_ ¢ 10 N ) i .
= TRt oymiBl) + ot (W(ul) W (us-1) = =W (1 m)) ,

since Ry = L1.m, and where

VB = W (mgt + wisy) — W wimy) — t(W (u;) — W(uiy)).

10



So {@(i)}ogtgl is a standard Brownian bridge, and is independent of W (u;)—W (u;—1) and W (1-m).
It is straightforward to verify the independence by noting that they are jointly Gaussian with nil
covariation. Thus we can write

i m; i
ft):t<1 Rl‘i‘O'ZZ')‘i‘O'\/miﬁt(),

-m

where Z; is given by

W(1-m), (20)
and Ry, Z; and {Bt(i)}ogtgl are mutually independent. Furthermore, {Bt(l)}ogtgl,. . {Bt(n)}OStSI
are mutually independent, since they are jointly Gaussian with nil covariation. O

Proposition [A]] provides an anticipative orthogonal representation for BLPs, whereas ([IH)
provides a non-anticipative semimartingale representation when {&,}o<i<1 is a BLP.

Remark 4.2. Note that 1-Z = 0 from (20), and so its covariance matriz is singular. Also, using
(Z9) from Proposition[{.1, {R:}o<i<1 admits the anticipative representation

Ro=1-& =11 (%RlJraZ) +ol-(VmoB,)
= tR, +ov1-mp,,
where {Bt}ogtgl is a standard Brownian bridge.

Proposition 4.3. Let mo(dx) = P(¢, € dx) and m(dx) = P(¢, € dz| FF). Also let {B,}o<i<1 be
a vector of standard (FE,P)-Brownian motions. Then, if E(|€,]) < oo, the multivariate measure-
valued process {m }o<i<1 satisfies

t
m(dx) = mo(dx) +/ ms(dz)o] (cv/mo dBy),
0
for 0 <t <1, where each coordinate of {o}o<t<1 is given by

o _ 29 -EEE)
! o’m;(1 —t)

Proof. See Appendix. O

Remark 4.4. Note that1-B, =1 (0/mo By) gives the non-anticipative semimartingale repre-
sentation for {Ri}o<t<1, which is

"E(R,|&,) - R - 0
— S S 'BZ
R, /0 - ds—l—aiE:l vm; By,

which provides the explicit example of the (F&,P)-martingale in (I3).

4.2 Poisson Liouville processes

Our second example are Poisson Liouville processes (PLPs), which are counting processes. Accord-
ingly, in Definition B, we let {L;}o<t<u, be a Poisson random bridge with P(L,, = i) = v({i}),
for i € Ny.

Proposition 4.5. Let {\?}o<i<1 be the intensity process of the Li-norm process {Ri}o<i<i- If
E(R;) < oo, then

_ E(u]€)— Ry
R_

- : for 0 <t <1. (21)

11



Proof. Since {R,}o<i<1 is a counting process, we have A* = lim,_,oE(Rys, — Ry | FF)/h. Since
{R.}o<i<1 is a Markov process with respect to {FF}o<i<1, using (), we have

a0 h h

 (1—t—h WE(R,|€,) R
1 S T i St 1 74
hl—%((l—t)h ST Taon

- S (v (1))

 E(R:1]§) . h
Tt _}L%<Rt(1—t)h)’

which yields the result. O

Remark 4.6. When {&,}o<i<1 is a PLP, Proposition[{.5 provides an alternative proof for Propo-
sition [3.13, since {Ri}o<i<1 i a counting process.

Proposition 4.7. Let {)\,ﬁi’}ogtg be the intensity process of the coordinate {ft(i)}ogtgl. IfE(Ry) <
oo, then
my

)\gl)zl_m)\f, foro<t<1.

Proof. Fix 0 < s <t < 1. From Remark 3.9, we know that given &, the increment &, — &, has
a generalised multivariate Liouville distribution with generating law v*({i}) = va({i + Rs}), for
i € Ny and parameter vector m(t — s). We define

po = 300 (i) = Y ivallih) - R =E(Ri|€,) - R,
=0 1=Rs
— 0 (E(Ry R - Ry),

where the last equality comes from (I4]). Then from [8] (Theorem 6.3) and [13], we have

st +€§ )
-m

E(" €)=

Since {ft(i)}ogtgl is a counting process, we have A\ = limy_,q E[&t(i)h — &9 78 /h. Thus,

)\gi) _ m; lim [t t+h
1 - mrs0 h

m; E(Rl | Rt) - Rt
1-m 1—1¢ ’

The result then follows from (21]). O

Remark 4.8. Note that A = 3. A",

If we let { P, }o<t<1 denote a Poisson process, and define A by A; = P, — P,,_, for some partition
0=ty <t; <---<t,, we have
M2, for x € Ny with 1-x = &,
P(A=x|P, =k)= gl

0, otherwise,

12



where p; = (t; — t;_1)/t,. In other words, given P, , A has a multinomial distribution. Let
{&,}o<t<1 be a Poisson Liouville process with generating law v({k}) = A(k), k € Ny. Then

P(&, = x) = A(1-x)(1 - x HZZZ

Write G, for the probability generating function of v:

G,(2)=> 2 A(k).
k=0
Let T® be the time of the first jump of the ith marginal process. If §§ )< 1, then we set T =
Proposition 4.9. The random times {TW;i =1,...,n} satisfy the following:

]P’(T(i) ) =G, (1 — spi)

P(T® =
]P’(T(Z) >80 =1,. (1 szsz> ,
P(T® = 0o;i=1,. A(0),
for s €10,1] and s € [0, 1]".
Proof. See Appendix. O

G, is increasing (and invertible) on [0, 1]. Write ¢(z) = G, (1 —x), and note that v is invertible
on [0,1]. If u; € [0,%(p;)], then we have

p (Tu) - M) — .

Di

It follows that the conditioned random variable 1 (p,7®)|{T® < 1} is uniformly distributed.

Furthermore
-1 )
g (T(i) e 1”) =¥ (Zw‘l(w‘)> |
pi :
The form of the joint survival function of T = {T®;i = 1,..., n} resembles that of an Archimedean

copula. However, the fact that P(T® > 1) > 0 means that it is not an Archimedean copula.

5 Conclusion

We introduced generalised Liouville processes: a broad and tractable class of multivariate stochas-
tic processes. The class of GLPs generalises some processes that have already been studied. We
detailed various properties of GLPs and provided some new examples.

Acknowledgements
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A  Proofs

A.1 Proposition 3.4

Proof. Since v has no continuous singular part, v(dz) = Z;’i_oo ¢i0,,(2) dz+p(z) dz, where ¢; € Ry

is a point mass of v located at z; € R, and p: R — R is the density of the continuous part of v.
Then from (), the joint density of an LRB {L:}o<i<u, is given by

P(Ly, € day, ..., Ly, € dog, Ly, € dz,,)

H[ft —tpy (; D e oo Ci0z (70) + pn)

= @j-1) day] ,
=1 " ' fun(l‘n)
where zo = 0, for all £ € N, all partitions 0 =ty < t; < -+ < t,_1 < t, = uy, all x, € R,
and all (21,...,2;) =x € R*. Let o € R} be the vector of time increments a; = t; —t;_y, and

a=1-a = u,. The Jacobian of the transformation y; = x1,y2 = o — 1, ... Yy = Tp — Tp_1 IS
unity, and it follows that

P(Ly, — Ly, € dyn, ..., Lu, — Ly, € dyy)

- Z;‘i—oo €i0z (D5 yi) + (i, i)
U Jolt1) dai fo(im 1) |

From [13], we know that (Ly, — Ly, . . ., Ly, — Ly, _,, Lu, — Lt,) " has a generalised multivariate Liou-
ville distribution. Fix k; > 1 and the partitions 0 = ¢} < ¢} < --- < t}'ﬂ =1,fort=1,...,n. Define
the non-overlapping increments {A;;} by A;; = §(Z') — §t(f) Jforj=1,....kjandi=1,...,n. The
j—1
distribution of the k; x - - - x k,-element vector A= (Arr, .o Aigyy oo Ay oo, Apg, )T charac-
terises the finite-dimensional distributions of the GLP {§,}o<i<1. It follows from the Kolmogorov
extension theorem that the distribution of A characterises the law of {£,}o<i<1. Note that A
contains non-overlapping increments of {L,} such that 1- A = L, . Hence, A has a generalised
multivariate Liouville distribution. O

A.2 Proposition

Proof. We compute the transition probabilities of {&,}o<i<1 directly. We begin by transitioning
to& fort <1. Forallk>2 all0<t; <---<tp<1landall xq,...,x; € R" we have

]P)(Etk € ka | €t1 = X1y Etk71 = Xk;—l)
P(§, € dxy,....§, € dxy)
P(Etl € Xm, c. ’£tk—1 € kafl)
S PE, €dxy, L€y, € dxg | Ry = 2)p(d2)
[ P(E, €dxy, ... &, | €dxp| Ry = 2)v(dz)
B o P&y — &y € —xo+dxy, . &, — &, | € —Xp T dxg | Ry = 2)p(dz)
SO P&, — & € —xo+dxi,. ., &, — &, , € —Xpo +dxpr | Ry = 2)r(d2)
foo {Hzn 1 H?zl fmi(tj—tj—l ('r(l) - x§21> dl’;z)} fl'm(l—tk)<z -1 Xk)f:(iz(i)
1T, Hf 11fml 1 gl) 5?1) dxg»i)} fima—t, p(z—1- Xk)f:,(iz(l)
i=1 fmi(tk—tk—l)<x/(i‘2) o 'rl(cl—1> dxl(;)} fl-m(l—tk)<z -1 Xk)fl.m(z)

oo Frmn (2 = 1 xpn) 252

@tk 1 Xk (4)
m dx,.”,
@tk 1 1 Xk 1 H f ’L(tk tr— 1 l‘k 1) xk

(22)

(23)

oo

-1
U

G
=

o)
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where ;5 = 0, xg = 0 and xy) is the ith coordinate of x;. We provide some remarks on the step
22) to 23)). Note that in ([22]) all the increments of type &, — &, are vectors of non-overlapping
increments of the master LRB {L; }o<t<1.m- Given Ry = L1.m, {L+}o<t<1.m is a Lévy bridge, and so
its law is invariant to a reordering of its non-overlapping increments. This is a direct result of the
so-called cyclical exchangeability property of Lévy bridges (see, for example, [7]). The integrands
in ([23) can then be recognised as Lévy bridge transition probabilities.

We now consider transitioning to &;. Forall k > 1,all 0 <t <--- <t <1, all xq,...,x; €
R™ all y1,...,yx—1 € R and all B € B(R), we have

Pe) e dy,....&" 7 e dy, 1, &Y € BIE, =x1,..., &, = %)

P(et) e dyr, ..., " € dy,1,6" € B,&, € dxi,.... &, € dxy)

P&, € dxy,..., &, | €dx)
P edyy,.. Y €dyot, R € B+ Y1 win &, € dxa,. L 6, € dxy)
P&, € dxy,...,§, | €dx)
fZijLZ?:_ll " IP’(ES) edyy,..., %nil) € dyn-1,&, €dxy,..., &, €dxp| R = z)r(dz)

o P&y, €dxy, . &, | € dxy | Ry = 2)v(d2)
n—1 1) n n—1 v(dz
szBJrE 1 Yi {Hizl fmi(l_tk)(yi - x/(c )dyl} fmn(l_tk) (Z - x/(c ) - Zizl yl) f1(m(23)

- 24)
00 v(dz (
f f1~m(1—tk_1 (Z -1 Xk_l)fl.(m()z)
T(tk <B + Zz 1 y“xk + Zz 1 yl) dus
- T i =)
where again ¢, = 0 and (24]) follows from similar arguments to (23)). O

A.3 Corollary 3.8

Proof. The process {R:}o<i<1 is a Lévy process under f", where fD(Rt € dz) = fiam)(x)dz. To
show EF (|©,(R;)|) < oo, use the Chapman-Kolmogorov convolution and the non-negativity of f:

[ (=m0 [ =2

fl-m(z)
f1~m( )
R flm(z)y(dZ)
=v(R) =1.

Since R is a o-finite measure space (with respect to Lebesgue measure), and f is measurable, we

can use Fubini’s theorem and write
/ (/ fl-m(l—t)(z_'r)ft(Lm)(T) dr) v(dz) :/ (/
R \JR R \JR
= E" (|04(Ry)]) -

f1~m(z)
Also, since {Oy(R;)}o<t<1 is harmonic, {O,(R;)}o<iy is an (FF, P)-martingale. Explicitly, we have

& (e | 75) = [ LomocCo R (R )

[ [ B R i )y s

fl-m(lfs ( - Rs) v(dz
—00 fl-m<z) <d )
= @s<Rs)7

Jima-1(z =) fram)(r)
fim(2)

y(dz)) dr
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for 0 < s <t < 1. Since Oy(Ry) = 1 and O;(R;) > 0, {O(R:) }o<t<1 is a Radon-Nikodym density
process. We continue by verifying that under P the transition law of {£,}o<i<1 is that of a GLP
with generating law v and parameter vector m

P (&, € dx|FE) = E(lie,cax) | FE)

1 ~

( P(@t(Rt)l{ﬁtde} | Es)
(Re) T i
= @s(Rts Hft 9mo) (@i — D) day. (25)

i=1

Comparing equations (25) and (8) completes the proof. O

A.4 Proposition 3.11]
Proof. Fix 0 < s <t < 1. Then,

fR (&SZ) € dylaggn € dxz|R1 — T)P(Rl € dT)

P& € dy,le? = ;) = (26)
t [ PED € day|Ry = r)P(R; € dr)
The numerator of (26]) is
/ P(&” € dy;, & € duy|Ry = r)P(R; € dr)
R
= fmﬁ(l’z)dxzf(tfs)mz (yz - xz) dyz fl.mimit(r — yl) V(d’f’), (27>
R fl-m(r)
and the denominator is
[ B0 € dnlRy = (R € ar) = fs(odns [ Lmml Ty
R R Jrm(7)

Dividing (27) by (28) concludes the first part.
For the second part, write £ for the vector &, excluding its ith coordinate. Using the Markov
property of {&, }o<i<1, we have

¢ e dy;, € € day, €90 € dX)

| P (¢
P (& € dy | FE) = ‘ . (29)
P (g;’ € du;, €% € dx)
The numerator of (29) is given by
/P (fti) c dy@-,éﬁi) S dll?i,fs@i e dx? | R, = 7’) P(R, € dr) =
R
[T (27) dg] fonsesy (0 — ) s
7j=1
m(1—s)+m;(t—s)\T" — T‘L: Tj+ i — Ly
X/fl (1—s)+mi(t—s) (T = D51 T + (¥ ) J(dr), (30)
fl-m<r>
and the denominator is given by
P (¢, € dx) = [[[fms(a:) da) om0t = 20t ©8) )y (31)
i=1 —00 fl-m(r)
Equation (31)) follows from the stationary increments property of LRBs and (). Dividing (B0) by
(B1)) concludes the second part. O
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A.5 Proposition [3.12

Proof. Since {€,}o<i<1 is a Markov process with respect to {F&}Yocic1, {Ri}to<i<t is a Markov
process with respect to {F&}o<i<1. We first verify (L), the &,-conditional law of R;. For s = 0,
trivially the law of Ry is v. For 0 < s < 1, using (31I), we have

P(R, € dr|€, =x) = P(€, epdél lzl ;7)“) v(dz)
v(dr)

_ fl.m(l—s) (T -1 X) f1.m(r)
= v(dr)
fR fl-m(l—s) (T -1 X) fl(m(z")

as required. Next, we verify (IZ), the &,-conditional law of R; for 0 < s < ¢t < 1. The process
{R:}o<i<1 is a P-Lévy process with P(R; € dr) = f1.m)(r) dr, where P is given by (I0). Using
Corollary B.8 (or [14](Proposition 3.7)), we have {R;}o<t<1 a P-LRB, where

P (R, € dr| &, =x) = O.(r) " EF (6:(r)Limear) | Re = 1-X)

1 fl-m(lft) (Z - T)
R f1m(2)

as required. O

= @s(r) V(dz)f(t—s)l-m(r -1 X) d?",

A.6 Proposition [3.15

Proof. Conditional on &, (0 < d < 1), the coordinates of {£, }1<q are (independent) Lévy bridges,
and {R;}i<q is a Lévy bridge. Thus, it is sufficient to prove that an integrable Lévy bridge is a
harness. Let {X;}o<t<1 be a Lévy process such that X; has a density f; for ¢ € (0,1]. We shall
show that the conditional process, and Lévy bridge, {X;|X; = k} is a harness. The conditions of
the proposition allow us to assume that {X;|X; = k} is integrable. We start by computing the

following;:
P [ﬂ X;, € dy; (ﬂ X, = x) N (ﬂ Xy = z> N(X, = k:)] , (32)
i=1

=1 =1

for any ng,ny,n. € Ny, any 0 = ap < a1 < -+ < a,, =a <ty < <ty <d=d <<
d,, <1,any (z1,...,2,,) € R™ any (y1,...,yn,) € R™, and any (z1,...,2,.) € R". Following
the Bayes rule, the numerator is

L =P [(ﬁ Xy, € dy¢> N <ﬁ X, € d:cl-> N <ﬁ Xy, € dzi> N(X; € dk:)]

i=1 i=1 i=1

Ny
X <ft1—a(y1 - %)dyl H fti—ti_l (?/z - yi—l) d?/i)
i=2

X (fdtn(zl — Y, )dz [ [ it (zi — Zz‘l)dzz) fiea,. (k= z,.) dk,
=2

17



and the denominator is

(ﬂ X, € d:zc,) N (ﬂ Xy € dzi> N(X, € dk:)]
=1 i=1
= <H fai_ai—l(xi - xi—l)d$i>

=1

X (fda( — T, dlefd —d;_ 1 — Zi— 1)dzz> flfdnz (k _an>dk-

I, =P

So (B2) is equal to

I, & Jr—a(tn — 24) far, (21 — W, )y
[—1:1_[ ftl i1 \Yi — Yi 1)d?/z‘) - - .

faa(z1 — 0,)

It follows from the Kolgomorov Extension Theorem that {Xt\Hgfd}agtSd is a Lévy bridge between
X, and Xy. Define {n;}o<i<a—a by m = Xare — Xo. Then {n,|H,} is Lévy bridge from 0 to

X;— X,, and
t
E Xl= — (X;— X,
[7715|Ha,d] d—a( d )7

which yields the result. O

A.7 Proposition 4.3

Proof. Define the mapping H : R x R x [0,1) x R, — R as follows:
2y — 222
m2(1—t) )

Since the Brownian bridges {ﬁt(i)}ogtg, i = 1,...,n, in (I9) are mutually independent and
{&,}o<t<1 is Markov, we have

H(z,y,t,m) = exp{

H?:l H (‘T(l)7 5252)7 tu 0/ mz) P(£1 S dX)
Jen I H (ﬂi) &t U\/mi> P(&, € dx)
n 2@ e® (@
exp { ) ES e 2L P(E, € dx)

- n 2@ _y(2())2 /2 :
fRn exp {Z %} P, € dx)

P(¢, € dx | F8 ™

(33)

If we define the numerator of (33)) as the function

. "W _(20)2 /2
9 (&)1t dx) = exp {Z - azmi@(f t)) / } P(€, € dx), (34)

and apply [to’s formula to (34]), we get

n n 2 ) n 2 . )
ori+ Y o + 53 8%2d<ff”>+z—£%d<ff% 7).

6(5“)  0¢ as

=g (( (Z))z‘:1 ,,,,, ny b dX) (Z o2 1 i dt+ Z i dfg”) ’
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where the covariation brackets < S), (j)> for i # j disappear since the {ﬁt(i)}ogtgh 1=1,...,n,

----------

are mutually independent. Let G (( ) )iz1

theorem,

IO I U (z eI S BEIE) o).
=1

The statement follows by applying 1t6’s formula to the ratio (33]), where we get

nop) (4) , i) 0)
du(dx) = ¢u(dx) <Z Sl <d§t@_E<£l< le) ¢ ))

1=

dx) (Z crgi)df?gi)> .
i=1

Writing B, = (Bgl), e B(" ) define {B;}o<t<1 by B, = oyv/mo B;. That is, B /aw/
For each ¢ € {1,...,n}, {ft to<t<1 is an LRB, and so following similar steps to the proof of

Proposmon [3.13] we can show that {Bt(i)}ogta is continuous with quadratic variation ¢ and is
(]:t, P)-martingale. Then, from Lévy’s characterisation, {B;}o<;<1 is a vector of standard
(.Ff, P)-Brownian motions. O

A.8 Proposition

Proof. Let {§t(i) 11 =1,...,n}o<t<1 be the coordinates of the Poisson Liouville process {&, }o<t<i-
The survival function of T is

P(T® > 5) =P = 0)
=E(P (& =0[1-¢&))
=K ((1 — spl-)l'gl)
=G, (1 — spy).

For s € [0, 1]", the joint survival function of T is

P(T® >si;i:1,...,n):P(§§? =0;i=1,...,n)
=E(PEY) =0yi=1,....n|&))

-E ﬁP(&SR =0 f§“>>
=E ﬁ(l — S@')gii)>

n 1§
pzl—s )
i=1

Gy|1- ipzsz>,

which gives the statement. O
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