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ABSTRACT. A classical result for the simple symmetric random walk with 2n steps is that
the number of steps above the origin, the time of the last visit to the origin, and the time
of the maximum height all have exactly the same distribution and converge when scaled
to the arcsine law. Motivated by applications in genomics, we study the distributions
of these statistics for the non-Markovian random walk generated from the ascents and
descents of a uniform random permutation and a Mallows(q) permutation and show that
they have the same asymptotic distributions as for the simple random walk. We also
give an unexpected conjecture, along with numerical evidence and a partial proof in
special cases, for the result that the number of steps above the origin by step 2n for the
uniform permutation generated walk has exactly the same discrete arcsine distribution
as for the simple random walk, even though the other statistics for these walks have very
different laws. We also give explicit error bounds to the limit theorems using Stein’s
method for the arcsine distribution, as well as functional central limit theorems and a
strong embedding of the Mallows(g) permutation which is of independent interest.
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1. INTRODUCTION

The arcsine distribution appears surprisingly in the study of random walks and Brownian
motion. Let B := (By; t > 0) be one-dimensional Brownian motion starting at 0. Let

e G:=sup{0 < s<1:Bs;=0} be the last exit time of B from zero before time 1,

o GMax — inf{O < s <1:Bs=maxyg] Bu} be the first time at which B achieves
its maximum on [0, 1],

o I':= fol 1¢B,>0)ds be the occupation time of B above zero before time 1.

In [45, 46], Lévy proved the celebrated result that G, G™** and I" are all arcsine distributed

with density

f(:n):; for 0 <z < 1. (1.1)

m/z(l — z)
For a random walk S,, :== >}, X}, with increments (X; k > 1) starting at Sy := 0, the
counterparts of G, G™* and I are given by
e GG, = max{0 < k <n:Sp =0} the index at which the walk last hits zero before
time n,
o G = min{0 < k < n:S; = maxp<k<n Sk} the index at which the walk first
attains its maximum value before time n,
1


http://arxiv.org/abs/2001.08857v1

2 ARCSINE LAWS FOR RANDOM WALKS

o Iy, := >0 ISy > 0] the number of times that the walk is strictly positive up to
time n, and N, :== Y p_; I[Sk—1 > 0, Sk > 0] the number of edges which lie above
zero up to time n.

The discrete analog of Lévy’s arcsine law was established by Andersen [2], where the
limiting distribution (1.1) was computed by Erdés and Kac [27], and Chung and Feller
[18]. Feller [29] gave the following refined treatment:

(1) If the increments (Xx; & > 1) of the walk are exchangeable with continuous dis-
tribution, then

r, @ gmos,

(74) For a simple random walk with P(X; = +1) = 1/2, Na, @ Gay, which follows the

discrete arcsine law given by

1 2K\ [2n — 2k
a2n’2k'_2ﬁ<k><n—k> for k € {0,...,n}. (1.2)

In the Brownian scaling limit, the above identities imply that I’ @) Gmex @ G. The fact

that G € 6™ also follows from Lévy’s identity (|B:|; t > 0) @ (sups<; Bs — By; t > 0).

See Williams [68], Karatzas and Shreve [41], Rogers and Williams [55, Section 53], Pitman
and Yor [54] for various proofs of Lévy’s arcsine law. The arcsine law has further been
generalized in several different ways, e.g. Dynkin [25], Getoor and Sharpe [31], and Bertoin
and Doney [8] to Lévy processes; Barlow, Pitman and Yor [4], and Bingham and Doney [13]
to multidimensional Brownian motion; Akahori [1] and Takdcs [61] to Brownian motion
with drift; Watanabe [67] and Kasahara and Yano [42] to one-dimensional diffusions. See
also Pitman [51] for a survey of arcsine laws arising from random discrete structures.

In this paper we are concerned with the limiting distribution of the Lévy statistics G,
G Ty, and N, of a random walk generated from a class of random permutations. Our
motivation comes from a statistical problem in genomics.

1.1. Motivation from genomics. Understanding the relationship between genes is an
important goal of systems biology. Systematically measuring the co-expression relation-
ships between genes requires appropriate measures of the statistical association between
bivariate data. Since gene expression data routinely require normalization, rank correla-
tions such as Spearman rank correlation have been commonly used. Compared to many
other measures, although some information may be lost in the process of converting numer-
ical values to ranks, rank correlations are usually advantageous in terms of being invariant
to monotonic transformation, and also robust and less sensitive to outliers. In genomics
studies, however, these correlation-based and other kinds of global measures have a prac-
tical limitation — they measure a stationary dependent relationship between genes across
all samples. It is very likely that the patterns of gene association may change or only exist
in a subset of the samples, especially when the samples are pooled from heterogeneous
biological conditions. In response to this consideration, several recent efforts have consid-
ered statistics that are based on counting local patterns of gene expression ranks to take
into account the potentially diverse nature of gene interactions. For instance, denoting the
expression profiles for genes X and Y over n conditions (or n samples) by x = (z1,...,2y,)
and y = (y1,...,yn) respectively, the following statistic, denoted by Wa, was introduced
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in [65] to consider and aggregate possible local interactions:

Wy = Z (I[¢(xllvvx1k) :(b(yiu"'7yik)]+1[¢(xi17"'7‘Tik) :¢(_yi17“’7_yik)])7

1< < <ip<n

where I]-] denotes the indicator function and ¢ is the rank function that returns the
indices of elements in a vector after they have been sorted in an increasing order (for
example, ¢(0.5,1.5,0.2) = (3,1,2)). The statistic W5 aggregates the interactions across
all subsamples of size k < n; indeed, W5 is equal to the total number of increasing and
decreasing subsequences of length k in a suitably permuted sequence. To see this, suppose
o is a permutation that sorts the elements of y in a decreasing order. Let z = o(x) =
(#1,...,2n) be that permutation applied to x; then W5 can then be rewritten as

Wa = Z (Tziy <o < zi] + 1z > - > 2,]).

1<y < <ip<n

Several variants of W5 have been studied to detect different types of dependent patterns
between x and y (see, for example, [65] and [66]).
One variant, for example, is to have & = 2 and consider only increasing patterns in
z to assess a negative dependent relationship between x and y. Denoted by W*, this
variant can be simply expressed as W* = >, . - I[z;; < 2;,]. If a more specific
negative dependent structure is concerned, say gene Y is an active repressor of gene X
when the expression level of gene Y is above a certain value, then we would expect a
negative dependent relationship between x and y, but with that dependence happening
only locally among some vector elements. More specifically, this situation suggests that for
a condition/sample, the expression of gene X is expected to be low when the expression
of gene Y is sufficiently high, or equivalently, this dependence presents between a pair of
elements (with each from x and y respectively) only when the associated element in y is
above a certain value. To detect this type of dependent relationship, naturally we may
consider the following family of statistics
m
Wy = Tz <zipa), 1<m<n-—L (1.3)
i=1
Note that the elements in y are ordered in a decreasing order. Thus in this situation
that gene Y is an active repressor of gene X when the expression of gene Y is above
certain level, there should exist a change point mg such that W, is significantly high
(in comparison to the null case that x and y are independent) when m < mg and the
significance would become gradually weakened or disappear as m grows from mg to n. For
a mathematical convenience, considering W is equivalent to consider
m
T =Y 21z > 2]—-1), 1<m<n-—1 (1.4)
i=1
As argued above, exploring the properties of this process-level statistic would be useful
to understand a “local” negative relationship between x and y that happens only among
a subset of vector elements, as well as for detecting when such relationships would likely
occur. To the best of our knowledge, the family of statistics (Tp,; 1 < m < n — 1) has
not been theoretically studied in the literature. This statistic provides a motivation for
studying the related problem of the permutation generated random walk.
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1.2. Permutation generated random walk. Let 7 := (7, ..., 7+1) be a permutation
of [n+1]:={1,... ,n+1}. Let

X, = { +1 lf T < Tht1,

-1 if T > Ty,

and denote by S, :=>"}_; X, So := 0, the corresponding walk generated by . That is,
the walk moves to the right at time k if the permutation has a rise at position k, and the
walk moves to the left at time & if the permutation has a descent at position k. An obvious
candidate for 7 is the uniform permutation of [n + 1]. This random walk model was first
studied by Oshanin and Voituriez [50] in the physics literature, and also appeared in the
study of the zigzag diagrams by Gnedin and Olshanski [33].

In this article, we consider a more general family of random permutations proposed
by Mallows [48], which includes the uniform random permutation. For 0 < ¢ < 1, the
one-parameter model

qinv(ﬂ)

Py(m) = 7 for m a permutation of [n], (1.5)
n,q

is referred to as the Mallows(q) permutation of [n], where inv(7m) = #{(i,j) € [n] : i <
j and m; > 7;} is the number of inversions of 7 and where

J

Zng = ¢ =1[>d " =0-9[[0-¢)
™ j=1 j=1

=1

is known as the g-factorial. For ¢ = 1, the Mallows(1) permutation is the uniform permu-
tation of [n]. There have been a line of works on this random permutation model; see, for
example, Diaconis [22], Gnedin and Olshanski [34], Starr [59], Basu and Bhatnagar [6],
Gladkich and Peled [32], and Tang [62].

Question 1.1. For a random walk generated from the Mallows(q) permutation of [n + 1],
what are the limit distributions of G,,/n, Gi**/n, I';,/n, or Ny /n?

For a Mallows(p) permutation of [n + 1], the increments (X; 1 < k < n) are not indepen-
dent or even exchangeable. Moreover, the associated walk (Sy; 0 < k < n) is not Markov,
and as a result, the Andersen-Feller machine does not apply. Indeed, when ¢ = 1, this
random walk has a tendency to change directions more often than a simple symmetric ran-
dom walk, thus tends to cross the origin more frequently. Note that the distribution of the
walk (Sg; 0 < k < n) is completely determined by the up-down sequence, or equivalently,
by the descent set D(w) = {k € [n] : mp > 741} of the permutation 7. The number of
permutations given the up-down sequence can be expressed either as a determinant, or as
a sum of multinomial coefficients; see MacMahon [47, Vol I], Niven [49], de Bruijn [20],
Carlitz [15], Stanley [57], and Viennot [64]. In particular, the number of permutations
with a fixed number of descents is known as the FEulerian number. See also Stanley [58,
Section 7.23], Borodin, Diaconis and Fulman [14, Section 5], and Chatterjee and Diaconis
[17] for the descent theory of permutations. None of these results give a simple expres-
sion for the limiting distributions of G, /n, G2**/n, I',,/n and N, /n of a random walk
generated from the uniform permutation.
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2. MAIN RESULTS

To answer Question 1.1, we prove a functional central limit theorem for the walk generated
from the Mallows(gq) permutation. Though for each n > 0 the associated walk (Sg; 0 < k <
n) is not Markov, the scaling limit is Brownian motion with drift. As a consequence, we
derive the limiting distributions of the Lévy statistics, which can be regarded as generalized
arcsine laws. In the sequel, let (S;; 0 < ¢t < n) be the linear interpolation of the walk
(Sk; 0 < k <n). That is,

Sp=81+ X —j+1)(5 —Sj-1) forj—1<t<j

See Billingsley [11, Chapter 2| for background on the weak convergence in the space C|0, 1].
The result is stated as follows.

Theorem 2.1. Fiz 0 < ¢ <1, and let (Sk; 0 < k < n) be a random walk generated from
the Mallows(q) permutation of [n+ 1]. Let

_1-q _ 49(1 — g+ ¢?)
w=—— and J.—\/(1+q)2(1+q+q2). (2.1)

Then as n — o0,

Snt (d)

—0<t1 B:0<t<1 2.2
(WO_t_)—mwMo_ <1), (2.2)
(d)

where —> denotes the weak convergence in C[0,1] equipped with the sup-norm topology.

Remark 2.2. Given the above theorem, it is a direct consequence (see Remark (3 2))

that by letting v = p/o, Gp/n — @, G, G I Gmax I'y/n D1 and N n/m D1 as
n — oo with

[

v

P(G € du) _ ez (2.3)
du T/ u(l —u) u W\/u —u) '
and
PG € du)  P(T € du)
du B du

= 71 e_é 72 ve 2(12 = v

Cru(l — ) " (1 —u) V)
— %uue_uzTutI)(—V\/l —u) — 2020 (vy/u)®(—vV1 — u), (2.4)

where ®(x) = \/ﬂ [* . exp(—y*/2)dy is the cumulative distribution function of the stan-
dard normal dlstrlbutlon

The proof of Theorem 2.1 will be given in Section 3, which makes use of Gnedin-Olshanski’s
construction of the Mallows(q) permutation. By letting ¢ = 1, we get the scaling limit of
a random walk generated from the uniform permutation, which has recently been proved
by Tarrago [63, Proposition 9.1] in the framework of zigzag graphs. For this case, we have
the following corollary.
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Corollary 2.3. Let (Sg; 0 < k < n) be a random walk generated from the uniform
permutation of [n+ 1]. Then as n — oo,

Snt >(d)<1 >
“E0<t<1) > (—=Bi0<t<1), 2.5

d
where Q denotes the weak convergence in C[0,1] equipped with the sup-norm topology.
Consequently, as n — oo, the random wvariables Gy /n, G2 /n and I'y,/n converge in
distribution to the arcsine law given by the density (1.1).

Now that the limiting process has been established, we can ask the following question.

Question 2.4. For a random walk generated from the Mallows(q) permutation of [n + 1],
find error bounds between G, /n, G™**/n, I'y;/n, N,/n and their corresponding limits
(2.3)-(2.4).

While we cannot answer these questions directly, we were able to prove partial and related
results. To state these, we need some notations. For two random variables X and Y, we
define the Wasserstein distance as
dw(X,Y):= sup [Eh(X)—Er(Y)],
heLip(1)

where Lip(1) := {h : |h(x) — h(y)| < |z — y|} is the class of Lipschitz-continuous functions
with Lipschitz constant 1. For m > 1, let BC™! be the class of bounded functions
that have m bounded and continuous derivatives and whose m™ derivative is Lipschitz
continuous. Let ||| be the sup-norm of g, and if the k" derivative of h exists, let

dh dFh(z)  d*h(y)| 1
— d |h = — .
|, il | daF dy* ||z -y

Hly = \

The following results hold true for a simple random walk. However, we have strong
numerical evidence that they are also true for the permutation generated random walk;
see Conjecture 2.6 below.

Theorem 2.5. Let (Sk; 0 < k < 2n) be a simple symmetric random walk. Then

P(Nap = 2k) = agp0n,  for k€ {0,...,n}. (2.6)
Moreover, let Z be an arcsine distributed random variable; then
Nop 21 8
e g .
dw<2n’Z>_2n+n2 27)
Furthermore, for any h € BC*!,
Nop, 4lhla + |hl21 | |hl2a
=" _ < ) ) . .
‘Eh< ™ > Eh(Z)‘ < 5in + a2 (2.8)

Identity (2.6) can be found in [29], the bound (2.7) was proved by [35], and the proof of
(2.8) is deferred to Section 4.

Conjecture 2.6. For a uniform random permutation generated random walk of length
2n + 1, the probability that there are 2k edges above the origin equals cwop o1, which is the
same as that of a simple random walk (see (1.2)).
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For a walk generated from a permutation of [n + 1], call it a positive walk if N,, = n,
and a negative walk if N,, = 0. In [7], Bernardi, Duplantier and Nadeau proved that the
number of positive walks b,, generated from permutations of [n] is n!! (n — 2)!!' if n is odd,
and [(n — 1)!1)2 if n is even. Computer enumerations suggest that Cok,2n+1, the number of
walks generated from permutations of [2n + 1] with 2k edges above the origin, satisfies

2n+1
Cok 21 = < o >b2kb2n—2k+1- (2.9)

Note that, for the special cases k = 0 and k = n, the formula (2.9) agrees with the known
results in [7]. The formula (2.9) suggests a bijection between the set of walks generated
from permutations of [2n + 1] with 2k positive edges and the set of pairs of positive walks
generated from permutations of [2k] and [2n — 2k + 1] respectively. A naive idea is to
break the walk into positive and negative excursions, and exclude the final visit to the
origin before crossing the other side of the origin in each excursion [2, 9]. However, this
approach does not work since not all pairs of positive walks are obtainable. For example,
for n = 3, the pair (1,2,3) and (7,6,5,4) cannot be obtained. If Conjecture 2.6 holds, we
get the arcsine law as the limiting distribution of Ny, /2n with error bounds.

While we are not able to say much about G,,, G;}** and I';, with respect to a random
walk generated from the uniform permutation for finite n, we can prove that the limiting
distributions of these Lévy statistics are still arcsine; this is a consequence of the fact that
the scaled random walks converge to Brownian motion.

Classical results of Skorokhod [56], and Komlés, Major and Tusnddy [43, 44| provide
strong embeddings of a random walk with independent increments into Brownian motion.
In view of Theorem 2.1, it is also interesting to understand the strong embedding of a
random walk generated from the Mallows(q) permutation. We have the following result.

Theorem 2.7. Fiz 0 < ¢ <1, and let (Sk; 0 < k < n) be a random walk generated from
the Mallows(q) permutation of [n+ 1]. Let u and o be defined by (2.1), and let

2 2q

P oirg

Then there exist universal constants ng,c1,ca > 0 such that for any € € (0,1) and n > ng,
we can construct (S¢; 0 <t < n) and (By; 0 <t < n) on the same probability space such
that

1 e
—(Sy — ut) — By| > cln%(log n)%ﬁ

~ (2.11)

P<SUP >§Lﬁ6+").
0<t<n B*n¢ logn
In fact, a much more general result, namely a strong embedding for m-dependent random
walks, will be proved in Section 5.

Also note that there is a substantial literature studying the relations between random
permutations and Brownian motion. Classical results were surveyed in Arratia, Barbour
and Tavaré [3], and Pitman [52]. See also Janson [40], Hoffman, Rizzolo and Slivken
[36, 37], and Bassino, Bouvel, Féray, Gerin and Pierrot [5] for recent progress on the
Brownian limit of pattern-avoiding permutations.
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3. PROOF OF THEOREM 2.1

In this section, we prove Theorem 2.1. To establish the result, we first show that the
Mallows(q) permutation can be constructed from one-dependent increments, then calculate
its moments and use an invariance principle.

3.1. Mallows(q) permutations. Gnedin and Olshanski [34] provide a nice construction
of the Mallows(q) permutation, which is implicit in the original work of Mallows [48].
This representation of the Mallows(q) permutation plays an important role in the proof
of Theorem 2.1.

For n > 0 and 0 < ¢ < 1, let G, be a truncated geometric random variable on [n]
whose probability distribution is given by

k—1 1—
P(Gyn =k) = %qn@ for k € [n]. (3.1)
Since P(Gyn = k) — n~lif ¢ — 1, we can extend the definition of Ggn to ¢ =1, which is
just the uniform distribution on [n]. The Mallows(gq) permutation 7 of [n] is constructed
as follows. Let (Yj; k € [n]) be a sequence of independent random variables, where Y}, is

distributed as G 11_k. Set
® T == Yi,
e for k > 2, let my := ¢ (Y)) where 9 is the increasing bijection from [n — k + 1] to
[’I’L] \ {7'('1,71'2, T 77Tk:—1}‘
That is, pick m according to G, and remove 7y from [n]. Then pick 7y as the Qf]f‘n_l
smallest element of [n] \ {71}, and remove 7o from [n] \ {71}, and so on. As immediate
consequence of this construction, we have that for the increments (Xj; k € [n]) of a random
walk generated from the Mallows(gq) permutation of [n + 1],
o for each k, P(X}, = 1) = P(Ggnt1-k < Ggn—k) = 1/(1 + ¢) which is independent
of k and n; thus, EX}, = (1 — ¢)/(1+ ¢) and Var X}, = 4¢/(1 + q)?;

e the sequence of increments (Xx; k € [n]), though not independent, is two-block
factor hence one-dependent; see de Valk [21] for background.

Such construction is also used by Gnedin and Olshanski [34] to construct a random per-
mutation of positive integers, called the infinite g-shuffle. The latter is further extended
by Pitman and Tang [53] to p-shifted permutations as an instance of regenerative per-
mutations, and used by Holroyd, Hutchcroft and Levy [38] to construction symmetric
k-dependent g-coloring of positive integers.

If 7 is a uniform permutation of [n], the central limit theorem of the number of descents
#D(m) is well known; that is,

1 ny @ 1
= (#0m - 3) 5 SN0,

where N (0,1) is standard normal distributed. See Chatterjee and Diaconis [17, Section
3] for a survey of six different approaches to prove this fact. The central limit theorem of
the number of descents of the Mallows(q) permutation is known and is as follows.

Lemma 3.1 (Borodin, Diaconis and Fulman, Proposition 5.2 [14]). Fiz 0 < ¢ < 1, let
7 be the Mallows(q) permutation of [n], and let #D(w) be the number of descents of .
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Then
_ (n—1)q _ (=gq+Pn—1+3¢-¢°
E#D(m) = B and Var#D(m) =q T EEYs) (3.2)
Moreover,
1 ng \ (@ q(1 =g +4¢*)
ﬁ(ﬁm(ﬂ) - 1—+Q> _>N<0’ (1+q)2(1+q+q2)>' 33

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since the increments of a permutation generated random walk are
1-dependent, the functional CLT is an immediate consequence of [12, Theorem 5.1] and
the moments in Lemma 3.1. O

3.2. Lévy statistics of Brownian motion with drift. Let B!"” := ut + 0 B; be Brow-
nian motion with drift y and variance 0. For pu = 0, the Lévy statistics G, G™® and T
are all arcsine distributed. The following remark gives a summary of the distributions of
these Lévy statistics of Brownian motion with drift.

Remark 3.2. Let G, G™* and I be the Lévy statistics defined for (B}"?; ¢ > 0). Then
by letting v :== u/o,

(¢) the distribution of G is given by (2.3),

(7i) G™** has the same distribution as I', with the distribution given by (2.4).

Part (i) can be derived by Girsanov’s change of variables, see Iafrate and Orsingher [39,

Theorem 2.1] for details. For part (ii), the fact that G™?* DT for BH follows from a

path transform of Embrechts, Rogers and Yor [26, (1.b)]. The density formula (2.4) can
be read from Akahori [1, Theorem 1.1(i)], see also Takécs [61], and Doney and Yor [24]
for various proofs.

4. PROOF OF THEOREM 2.5

4.1. Stein’s method for the arcsine distribution. It is well known that for a simple
symmetric walk, Go, and Ns, are discrete arcsine distributed, thus converging to the
arcsine distribution. To apply Stein’s method for arcsine approximation we first need a
characterising operator.

Lemma 4.1. A random variable Z is arcsine distributed if and only if
E[Z(l - 2)f(Z)+(1)2 — Z)f(Z)] =0
for all functions f in a ‘rich enough’ family of test functions.

To apply Stein’s method, we proceed as follows. Let Z be an arcsine distributed random
variable. Then for any h € Lip(1) or h € BC*!, assume we have a function f that solves

r(1—z)f (z) + (1/2 — 2)f(x) = h(z) — Eh(Z). (4.1)
Now, replacing « by W in (4.1) and taking expectation, this yields an expression for Eh(W)—
Eh(Z) in terms of just W and f. Our goal is therefore to bound the expectation of the
left hand side of (4.1) by utilising properties of f. Extending the work of Débler [23],

Goldstein and Reinert [35] developed Stein’s method for the beta distribution (of which
arcsine is special case) and gave an explicit Wasserstein bound between the discrete and
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the continuous arcsine distributions. We will use the framework from Gan, Rollin and
Ross [30] to calculate error bounds for the class of test functions BC*!.

4.2. Proof of Theorem 2.5. To simplify the notation, let
Wy, = Nap/2n

be the fraction of positive edges of a random walk generated from the uniform permutation.
Let Ay f(z) == f(z +y) — f(z). We will use the following known facts for the discrete
arcsine distribution. For any function f € BC™1![0,1],

E[an <1 — W+ %)Al/nf<wn - %) + (% - Wn> f(Wn)} =0,  (4.2)

Moreover,

1 3 1
EW, = - EW?==24+ —. 4.
W, 5 and EW} 3 + ™ (4.3)
The identity (4.2) can be read from Dobler [23]. The moments are easily derived by

plugging in f(x) = 0 and f(z) = x; see Goldstein and Reinert [35].

Proof of Theorem 2.5. The distribution (2.6) of Na, can be found in Feller [29]. The
bound (2.7) follows from the fact that Ny, is discrete arcsine distributed, together with
Theorem 1.2 of Goldstein and Reinert [35].

We prove the bound (2.8) using the generator method. Recall the Stein equation (4.1)
for the arcsine distribution. First set f = ¢/, we are therefore required to bound the
absolute value of

Eh(W,) — Eh(Z) = E [Wn(l — W) g (W) — (% _ Wn> g/(Wn)] .

Applying (4.2) with f being replaced by ¢’, we obtain

ER(W,)~Eh(Z) = E [Wn(l = Wn)g" (Wn) = nWy, (1 —Wnt i) Bind (W" - %ﬂ

2n
1 1% 1
=E|W,(1-W)|d" W,) —nAi,¢ W, — = — A G W, == ].
[ ( )<9 (Wn) —n 1/n9< n>> 5 1/n9< n)]
The second term in the expectation is bounded by
W, / 1 EWn lgl2 _ gl

n W, — = < Zn H2 1J12 )

‘E[Q Al/"g< " n>”_ 2 n 4n’ (44)

and the first term is bounded by

Wh
E [an(l —w,) / § (W) — g"(:z:)d:z:]

W, —1
’ W
< [B|aWa(1 - Walglaa [ 1|Wn—x|d:c]
%n_; lglaa (1 1
= |glo.1nE Wn(l—Wn)/O 8d8] - 912’1 <E+ﬁ>’ (4.5)
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where the last equality follows from (4.3). Combining (4.4), (4.5) with Theorem 5 of Gan,
Rollin and Ross [30] (for relating the bounds on derivatives g with derivatives of h) yields
the desired bound. O

2

Remark 4.2. The above bound is essentially sharp. Take h(z) = %, Eh(W,,) —Eh(Z) =

_16%7 and the above bound gives |[Eh(W,,) — Eh(Z)| < 16% + 64an‘

5. PROOF OF THEOREM 2.7

In this section, we prove Theorem 2.7. To this end, we prove a general result for strong
embeddings of a random walk with finitely dependent increments.

5.1. Strong embeddings of m-dependent walks. Let (X;;1 < i < n) be a se-
quence of m-dependent random variables. That is, (Xi,...,X;) are independent of
(Xj4mt1s---,Xy) for each j € [n —m — 1]. Let (S;; 0 < k < n) be a random walk
with increments X;, and (S;; 0 < ¢t < n) be the linear interpolation of (Si; 0 < k < n).
Assume that the random variables X; are centered and scaled such that

EX; =0forallie€ [n] and Var(S,)=n.

Let (B;; t > 0) be one-dimensional Brownian motion starting at 0. The idea of strong
embedding is to couple (S¢; 0 <t < n) and (B;; 0 <t <n) in such a way that

IP’< sup |S; — By > bn> = Pn, (5.1)
0<t<n
for some b, = o(n%) and p, = o(1) as n — oo.

The study of such embeddings dates back to Skorokhod [56]. When X’s are independent
and identically distributed, Strassen [60] obtained (5.1) with b,, = O(n% (log n)% (log log n)%)
Csorg6 and Révész [19] used a novel approach to prove that under the additional condi-
tions EX? = 0 and EX? < oo, we get b, = O(n%+€) for any ¢ > 0. Komlds, Major
and Tusnady [43, 44] further obtained b, = O(logn) under a finite moment generating
function assumption. See also [10, 16] for recent developments.

We use the argument of Csorg6é and Révész [19] to obtain the following result for m-
dependent random variables.

Theorem 5.1. Let (Si; 0 < t < n) be the linear interpolation of partial sums of m-

dependent random variables. Assume that 1 < m < n%, EX; = 0 for each i € [n], and
Var S, = n+ O(1). Further assume that |X;| < B for each i € [n], where § > 0 is a
constant. Let

n:= max |Var(Sjr —S;) — k| (5.2)

For any ¢ € (0,1), if n < n®, then there exist universal constants ng,c1,co > 0 such that
for any n > ng, we can define (Sg; 0 <t < n) and (By; 0 <t < n) on the same probability

space with
46
mig) < co(m*B° +m)
mf32nf logn

(SIS

IP’( sup |S; — By| > can' T (logn) (5.3)

0<t<n

If m and (3 are constants and Var(S;j;x — S;) matches k up to constant, from Theorem
5.1, we get (5.1) with b, = O(n%(logn)%) and p, = O(1/(n®logn)) for any € € (0,1).
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Proof of Theorem 2.7. We apply Theorem 5.1 with m = 1, and a suitable choice of 3
and 7. By centering and scaling, we consider the walk (S;; 0 <t < n) with increments
X, = 1(X; — p). It is easy to see that

o1
[ Xil < —max(l —p, 1+ p) = 6.

According to the result in Section 3.1,

1

]P)(Xk = Xk+l = 1) = ]P)(gq,n-i-l—k < gq,n—k < gqm—k—l) = (1 + Q)(l +q+ q2) .

Elementary computation shows that for k¥ < n, Var S,; = k +n, which leads to the desired
result. O

5.2. Proof of Theorem 5.1. The proof of Theorem 5.1 boils down to a series of lemmas.
We use C and c to denote positive constants which may differ in expressions. Let

1, (5.4)

where [z] is the least integer greater than or equal to . We divide the interval [0, n] into
d subintervals by points [jn/d],j € [d], each with length [ = [n/d] or I = [n/d] — 1. The
following results hold for both values of I.

1—¢

d:=[n"2

Lemma 5.2. Under the assumptions in Theorem 5.1, we have

3mB2>1 and 1>6mlogn (5.5)
for sufficiently large n.
Proof. Note that

n=VarS, =Y Y  EX;X; <n(@m+1)8%andm > 1,
i=1 j:|j—i|<m

which implies 3m/3% > 1. The second bound follows from the fact that m < n2 and
1+e
d

l~n"2.

Given two probability measures p and v on R, define the Wasserstein-2 distance by

s, (1, v) Q&“ﬁ Jloy dmy>>,

where T'(u, V) is the space of all probability measures on R? with y and v as marginals.

In the next two lemmas, N (u,0?) denotes a normal random variable with mean p and

variance o2.

Lemma 5.3. Under the assumptions in Theorem 5.1, we have for n sufficiently large,
dw, (Si—m, N(0,02)) < Cm?23, (5.6)

where o2 :== Var S;_,.
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Proof. Specializing Fang [28, Corollary 2.3] to sums of m-dependent and bounded vari-
ables, we get

Ay, (S1—m> N(0,07)) = o dw, (07 S1-m, N(0, 1))

3 4\ 3
< oC | Im? <§> + (lm?’(g) > < Om?p33,

where we used 3mA3? > 1 in (5.5), and 02 > | —m —n > cl for sufficiently large n from
1+e

z and € € (0,1). O

mgn%,ngna,lwn
Lemma 5.4. There exists a coupling of (St; 0 <t < n) and (By; 0 <t < n) such that
with

¢j = (Stjnsd) = S1G-vn/d1) = Bjnja) = Bri—vm/a)s
the sequence (ey,...,eq) are 1-dependent, and

Ee? <Cm*B% +n), foradllj e [n]

Proof. We use 3mf? > 1 below implicitly to absorb a few terms into Cm*g5. With o2
defined in Lemma 5.3, we have

dy, (N (0,0%), N(0,1)) < /[l = 0% < Vm + 1.
Combining (5.6), the above bound and the m-dependence, we can couple S [jn/d]-m —
St(—1yn/d) and Bpjp a1 — Bi(j—1)n/a) for each j € [d] independently with
E[(Stjn/d1—m — Sii—1nsd]) — Bijnsa) — Bi—1ynsa))l” < C(m*B° +n).
By the m-dependence assumption, we can generate Xi,...,X, from their conditional
distribution given (S[jn/a1—m — S[(j=1)n/d); J € [d]), thus obtaining (S;; 0 <t < n), and
generate (By;0 <t < n) given (Byj,/q); j € [d]). Since
E(Stjn/a) — Stjnja)—m)* < Cm*B2,

we have

E(e) < C(m*8° +n)

Finally, the 1-dependence of (eq,...,e4) follows from the m-dependence assumption. [

Lemma 5.5. Let T} = 2?21 ei, j € [d]. For each b > 0, we have
P(m%( T;| > b> < O(m*B% 4 n)d/v?.
j€

Proof. Define

89 Z 2) Z
Tj = €, Tj = €;.
i=1,3,5,... i=2,4,6,...

i<j i<j

By Lemma 5.4, Tj(l) is a sum of independent random variables with zero mean and finite
second moments. By Kolmogorov’s maximal inequality,

o bY o Cm*s° +n)d
(s 71> 5) < S
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The same bound holds for Tj(2). The lemma is proved by observing that
m; b @) b
P max |T;| > b | <P max |T;7| > = | + P max |T:7| > = ).
jEld] 1<j<d J 2 1<j<d’J 2

Lemma 5.6. For any 0 < b < 413, we have

b2
P =S/l >b) <2 — .
<1;1€f%;]<\5] 3/l > > < exp( 481m52>
Proof. We first prove a concentration inequality for S;, then use the union bound. Let

h(0) = Ee?Si, with h(0) = 1. Let S = 8 — 3 i1 jesi<m Xi- Using EX; = 0, | X;| < 6,
the m-dependence and the inequality

we have for 6 > 0,

J - ()
STEX|IS; — 5185 4 "7

.
Il
—

0
2
< <m + %)91ﬁ2E695j(1 + C@mHNBY < 601mB2h(0),
for #(2m + 1)3 < 1. This implies that log h(6) < 3lm/3%62, and
0b/217 08 b
. < e~ i < _
P(S; >b/2) <e Ee”7 < exp( 481m52>’

by choosing § = b/(12lm/3?) provided that b < 4/3. The same bound holds for —S;.
Consequently,

]P’<max|5j — S/l > b) < ]P’< max |S;| > b/2> + P(|S;| > b/2)
g€l JEl-1]

b2

Lemma 5.7. For each b > 0, we have

2
IP’( sup |B; —tB/l| > b> <2,
0<t<l
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Proof. We have, by symmetry, a reflection argument for Brownian bridge and a normal
tail bound,

]P’< sup |B; —tB/l| > b) < 2IP’< sup (By —tB;/l) > b)

0<t<li 0<t<li

v2

<AP(B; > b) < 2e” 7

Now we proceed to proving Theorem 5.1.

Proof of Theorem 5.1. Let

b = (96/mB2logn)/2.
It satisfies b < 413 in Lemma 5.6 since m < [/(6logn) by (5.5). Note that if supg<;<,, | St —
By| > 3b, then either max;cig |Tj| > b, or the fluctuation of either S; or By within each
subinterval is larger than b. By the union bound and Lemmas 5.5-5.7, we have

) < C(m*° + )

P - B b .
< sup |9 >3 mf32nslogn

0<t<n

This proves the theorem. O
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