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In [13], the authors constructed a sequence of stochastic fluid pro-
cesses and showed that it converges weakly to a Markov-modulated
Brownian motion (MMBM). Here, we construct a different sequence
of stochastic fluid processes and show that it converges strongly to
an MMBM. To the best of our knowledge, this is the first result on
strong convergence to a Markov-modulated Brownian motion.

We also prove that the rate of this almost sure convergence is
o(n−1/2 logn). When reduced to the special case of standard Brow-
nian motion, our convergence rate is an improvement over that ob-
tained by a different approximation in [9], which is o(n−1/2(logn)5/2).

1. Introduction. The family of flip-flop processes corresponds to a class of piecewise-
linear Markov processes that converges, in some sense, to a standard Brownian motion. Specif-
ically, for λ > 0, let = {ϕλ(t)}t≥0 be a Markov jump process with state space {+,−}, initial
distribution (1/2, 1/2) and intensity matrix[

−λ λ
λ −λ

]
.

Let r(+) =
√
λ, r(−) = −

√
λ and define

F λ(t) =

∫ t

0
r(ϕλ(s))ds, t ≥ 0.(1.1)

We call {(F λ(t), ϕλ(t))}t≥0 a flip-flop process. It can be shown (see, e.g., [18]) that Fλ =
{F λ(t)}t≥0 converges weakly to a standard Brownian motion B = {B(t)}t≥0 as λ → ∞. In
other words,

lim
λ→∞

E
[
h(Fλ)

]
= E [h(B)](1.2)

whenever h : C([0,∞)) 7→ R is a bounded Borel-measurable functional continuous with respect
to the topology of uniform convergence on compact intervals. Weak convergence implies that
the family of probability laws induced by {Fλ}λ>0 is tight, and that, for any 0 ≤ t1 < t2 <
· · · < tn <∞,

lim
λ→∞

(F λ(t1), F
λ(t2), . . . , F

λ(tn))
d
= (B(t1), B(t2), . . . , B(tn)).
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2 NGUYEN ET AL.

These two properties are also sufficient conditions for (1.2) to hold [4]. As weak convergence
is a statement regarding probability laws, the stochastic processes involved do not need to be
defined on a common probability space.

An alternative definition of the flip-flop process Fλ is as follows. For t > 0, let

Nλ(t) = #{s ∈ (0, t] : ϕλ(s−) 6= ϕλ(s)},

and Nλ(0) = 0. Then, {Nλ(t)}t≥0 is the Poisson process of intensity λ which counts the jumps
of {ϕλ(t)}t≥0, and we can rewrite (1.1) as

F λ(t) =
√
λ

∫ t

0
(−1)N

λ(s)ds, t ≥ 0.(1.3)

The process Fλ defined as in (1.3) was first considered in [6, 11], where a link between its
transition probabilities and the telegraph equation was developed. In this context, Fλ became
known as a telegraph process or uniform transport process, of which the weak convergence to
B was proved in [17] and [19].

Later on, it was proved in [10] that such a convergence also holds in a pathwise sense. More
precisely, the authors showed that there exists a common probability space in which the family
of flip-flop (or uniform transport) processes {Fλ}λ>0 and a standard Brownian motion B are
defined such that for any T > 0

lim
λ→∞

sup
0≤t≤T

∣∣∣F λ(t)−B(t)
∣∣∣ = 0 almost surely.(1.4)

Whenever (1.4) holds, we say that Fλ converges strongly to B as λ → ∞. By applying the
Bounded Convergence Theorem to (1.2), we trivially get that strong convergence implies weak
convergence. Strong convergence results also lead to stronger approximations for diffusions
and for solutions to stochastic differential equations (e.g. in [8] and [7], respectively). In [9],
the rate of strong convergence of Fλ to B was computed. The key step in [10, 9] consisted in
embedding certain values of Fλ into B using the Skorokhod embedding theorem.

In recent years, the study of flip-flop processes was generalised into different directions, most
of which are based on the following. Consider a process (R,J ) = {(R(t), J(t))}t≥0 where the
phase process J is a Markov jump process on a finite state space S, initial distribution p, and
intensity matrix Q, and the level process R is defined by

R(t) =

∫ ∞
0

µJ(s)ds+

∫ ∞
0

σJ(s)dB(s), t ≥ 0,(1.5)

with µi ∈ R and σi ≥ 0 for i ∈ S. If σi = 0 for all i ∈ S, the process (R,J ) is known
as a stochastic fluid process (SFP). If σi > 0 for all i ∈ S, then (R,J ) is called a Markov
modulated Brownian motion (MMBM). In [13], it is shown that there exists a family of SFPs
that converges weakly to any given MMBM. This result was later used to study MMBM with
two boundaries in [12], [14] and [1], Markov-modulated sticky Brownian motion in [15], and
MMBM with temporary change of regime at zero in [16].

In this paper, we construct a sequence of stochastic fluid processes which converges strongly
to an MMBM of any given parameters. More specifically, we prove the following result.
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Theorem 1.1. For any given p, Q, {µi}i∈S and {σi > 0}i∈S , there exists a probability
space (Ω,F ,P) on which live an MMBM (R,J ) = {(R(t), J(t))}t≥0 defined as in (1.5) and
a sequence of stochastic fluid models {(Rn,J n)}n≥0 = {(Rn(t), Jn(t))}t≥0, where J n has the
state space {+,−} × S, such that for all T ≥ 0

lim
n→∞

sup
0≤s≤T

|R(s)−Rn(s)| = 0 a.s.,(1.6)

lim
n→∞

π2(J
n(T )) = J(T ) a.s.,(1.7)

where π2 : {+,−} × S 7→ S denotes the second-coordinate projection.

In fact, Theorem 1.1 is a consequence of the following result which concerns the rate of the
strong convergence of {(Rn,J n)}n≥0 to (R,J ).

Theorem 1.2. Fix T ∈ [0, 1). In the probability space (Ω,F ,P) of Theorem 1.1,

(i) for each q > 0 there exists a constant α = α(q) > 0 such that

P

(
sup

0≤s≤T
|R(s)−Rn(s)| > αεn

)
= o(n−q) as n→∞,(1.8)

with εn := n−1/2 log(n), where o(g(n)) for g : N 7→ R+ denotes a function f : N 7→ R

such that limn→∞ f(n)/g(n) = 0;
(ii) furthermore, the process {π2(Jn(t))}t≥0 converges in an a.s. local uniform sense to
{J(t)}t≥0; that is,

(1.9) lim
ρ↓0

[
lim sup
n→∞

(
sup

s∈(T−ρ,T+ρ)
d (π2(J

n(s)), J(s))

)]
= 0 a.s.,

where d(·, ·) denotes the discrete metric in S.

The case T ∈ [0, 1) of Theorem 1.1 is a consequence of Theorem 1.2 and the Borel-Cantelli
lemma, with the case T ≥ 1 following by elementary time-scaling arguments.

Remark 1.3. The proof of Theorem 1.2 is inspired by the work of [9], where we replace
the use of the Skorokhod embedding theorem with a Poissionian observations argument. Our
approach yields tighter and simpler bounds, which ultimately enables us to obtain a faster rate
of convergence than the one of [9] (which was proportional to n−1/2(log(n))5/2) when reduced
to the case of the standard Brownian motion.

This paper is structured as follows. In Section 2 we construct (Ω,F ,P) and describe the
distributional characteristics of each stochastic fluid process (Rn,J n), for n ≥ 0. We compute
in Section 3 the rate of convergence of Rn to R, from which the proof of Theorem 1.2, and thus
that of Theorem 1.1, follows. Finally, in Section 4 we develop some implications of Theorem
1.1 regarding the downcrossing probabilities of R and Rn; in particular, we exhibit a new link
between the solutions of certain Riccati and quadratic matrix equations.
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2. Construction of {(Rn,J n)}n≥0. First, we construct the probability space
suitable to prove Theorems 1.1 and 1.2. Fix p, Q, {µi}i∈S and {σi > 0}i∈S of Theorem 1.1.
Let λ0 = 2 maxi∈S |Qii|, and consider a sequence {λn}n≥1 such that λn ≥ λn−1 for n ≥ 1 and
limn→∞ λn =∞. Let (Ω,F ,P) be a probability space that supports:

• a standard Brownian motion B = {B(t)}t≥0,
• a Poisson processM0 = {M0(t)}t≥0 of rate λ0/2,
• a sequence of Poisson processes {M̃n}n≥1, where M̃n has rate (λn − λn−1)/2,
• a discrete-time Markov chain X 0 = {X0(k)}k≥0 with state space S, initial distribution

p, and transition probability matrix P0 := I + (λ0/2)−1Q,

with B, M0, {M̃n}n≥1, and X 0 being independent of each other. All the elements stated
in Theorem 1.1 and of the whole manuscript will be constructed in (Ω,F ,P). To construct
(R,J ) on (Ω,F ,P), let

(2.1) J(t) = X0(M0(t)), t ≥ 0.

The uniformization method implies that J = {J(t)}t≥0 is a Markov jump process with initial
distribution p and intensity matrix Q. Let R = {R(t)}t≥0 be defined as on (1.5), so that
(R,J ) corresponds to a Markov-modulated Brownian motion.

Next, for each n ≥ 0, we construct the process (Rn,J n) as follows. Define the arrival process
Mn = {Mn(t)}t≥0 to be the superposition of {M0,M̃1,M̃2, . . . ,M̃n}. Then,Mn is itself a
Poisson process of intensity

λ0/2 +
n∑
`=1

(λ` − λ`−1)/2 = λn/2,

and its arrival epochs form a subset of the arrival epochs of Mn+m for any m ≥ 0. In other
words, {Mn}n≥0 is a sequence of Poisson process with nested time epochs whose new arrivals,
as n increases, are created independently of the existing ones. Let us emphasize that choosing
to have Poissonan observations with rates λn/2 allows a direct comparison of our construction
with the models of [9] and of [18] in the special case of flip-flop approximations to a standard
Brownian motion.

Intuitively, our aim is to construct (Rn,J n) in such a way that Rn visits the levels of R
inspected at the arrival epochs of the Poisson processMn. To that end, we employ the well-
known Wiener-Hopf factorisation for the Brownian motion with drift; see [5, Corollary 2.4.10]
for a proof.

Theorem 2.1 (Wiener-Hopf factorisation for BM). Let {Wt}t≥0 be a Brownian motion
with variance σ2 > 0, drift µ, and initial point W0 = 0. Let S be a stopping time and let
T ∼ exp(β), independent of {Wt}t≥0. Then,WS−min0≤t≤T WS+t and WS+T−min0≤t≤T WS+t

are independent and exponentially distributed with rates

ω =

√
µ2

σ4
+

2β

σ2
+

µ

σ2
and η =

√
µ2

σ4
+

2β

σ2
− µ

σ2
, respectively.

Theorem 2.1 implies that, restricted to an exponentially distributed time interval, we can
track both the value of the minimum over this period and that at the right endpoint of a
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Brownian motion with drift. Let {Tnk }k≥1 be the interarrival times of the process Mn, and
define θn0 := 0,

θnk :=

k∑
j=1

Tnj , k ≥ 0;(2.2)

thus {θnk}n≥0 are the arrival epochs ofMn. See Figure 1 for an illustration.

0

0
θ01 θ02 θ03 θ04 θ05 θ06

θn1 θn2 θn3 θn4 θn5 θn6 θn7 θn8 θn9 θn10 θn11

Fig 1: Blue dots correspond to arrivals {θ0k}k≥0 of M0, red diamonds the arrivals {θnk}k≥0 of Mn,
black squares the jump epochs of J . As J is given by (2.1), its jump epochs form a subset of the
arrival times ofM0.

As {θnk}n≥0 contain all the arrival epochs of M0, Equation (2.1) implies that {J(t)}t≥0
remains constant on each interval [θnk , θ

n
k+1), k ≥ 0. Consequently, given J(θnk ) = i on [θnk , θ

n
k+1),

{R(t)}t≥0 behaves like a Brownian motion with drift µi and variance σ2i . Thus, by sequentially
using the Wiener-Hopf factorisation between arrival epochs of Mn, we can keep track of
{R(θnk )}k≥0 and of {minθnk≤t≤θ

n
k+1

R(t)}k≥0 = {min0≤t≤Tnk+1
R(θnk + t)}k≥0 in a simple manner,

which we explain in detail next.
For each k ≥ 0, define the random variables

Xn(k) := J(θnk ),

Lnk+1 := R(θnk )− min
0≤t≤Tnk+1

R(θnk + t),

Hn
k+1 := R(θnk+1)− min

0≤t≤Tnk+1

R(θnk + t).

By Theorem 4.4 in the Appendix, X n = {Xn(k)}k≥0 is a discrete-time Markov chain with tran-
sition probability matrix Pn := I+(λn/2)−1Q. The strong Markov property of {(R(t), J(t))}t≥0
and Theorem 2.1 imply that, conditioned on X n, {Lnk+1}k≥0 is a collection of independent ran-
dom variables. More specifically, given Xn

k = i, Lnk+1 is exponentially distributed with rate

ωni :=

√
µ2i
σ4i

+
λn
σ2i

+
µi
σ2i
.

Similarly, {Hn
k+1}k≥0 is a collection of conditionally independent random variables for which,

given Xn
k = i, Hn

k+1 is exponentially distributed with rate

ηni :=

√
µ2i
σ4i

+
λn
σ2i
− µi
σ2i
.
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Moreover, {Lnk+1}k≥0 is conditionally independent of {Hn
k+1}k≥0. Note that {Lnk+1}k≥0 and

{Hn
k+1}k≥0 completely describe {R(θnk )}k≥0 and {minθnk≤t≤θ

n
k+1

R(t)}k≥0, in the sense that for
all k ≥ 0,

R(θnk ) =

k∑
j=1

(
−Lnj +Hn

j

)
, and(2.3)

min
θnk≤t≤θ

n
k+1

R(t) =

k∑
j=1

(
−Lnj +Hn

j

)
− Lnk+1.(2.4)

For all k ≥ 1, if Xn(k − 1) = i, define

L̂nk := λ−1n ωni L
n
k and Ĥn

k := λ−1n ηni H
n
k .

Then, the collections {L̂nk}k≥1 and {Ĥn
k }k≥1 are i.i.d. random variables exponentially dis-

tributed with parameter λn. Let χ0
n := 0, and define for all k ≥ 1

χnk :=
k∑
j=1

(
L̂nj + Ĥn

j

)
.

Let J n = {Jn(t)}t≥0 be the process with state space {+,−} × S defined by

Jn(t) =

 (−, i) if t ∈ [χnk , χ
n
k + L̂nk+1) for some k ≥ 0 and Xn

k = i,

(+, i) if t ∈ [χnk + L̂nk+1, χ
n
k+1) for some k ≥ 0 and Xn

k = i.

Figure 2 shows a sample path of J n with S = {1, 2, 3}.
Jn(t)

t
0 χn1 χn2 χn3 χn4 χn5

(−, 3)
(−, 2)
(−, 1)
(+, 3)

(+, 2)

(+, 1)

Fig 2: A sample path of {Jn(t)} with S = {1, 2, 3}.

The process J n jumps alternately between {−}×S and {+}×S with intensity given by λn;
furthermore, changes in its second coordinate, which occur according to Pn, are only possible
at jumps instants from {+} × S to {−} × S. Thus, J n is a Markov jump process with state-
space {+,−} × S (ordered lexicographically), initial distribution (0,p) and intensity matrix
given by [

−λnI λnPn
λnI −λnI

]
=

[
−λnI 2Q+ λnI
λnI −λnI

]
.
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Note that the sequence of states in S visited by π2(J n) coincides with that of J , or more
precisely,

(2.5) π2(J
n(χnk)) = J(θnk ) for all k ≥ 0.

Also notice the jumps of π2(J n) can occur only at {χnk}k≥0 while the jumps of J can occur
only at {θnk}k≥0. In general, {χnk}k≥0 6= {θnk}k≥0; nevertheless,

E [θnk ] = E

 k∑
j=1

Tnj

 = kE [Tn1 ] =
2k

λn
,

E [χnk ] = E

 k∑
j=1

(
L̂nj + Ĥn

j

) = kE
[
L̂n1 + Ĥn

1

]
=

2k

λn
.

In words, the average jump times of π2(J n) coincide with the average jump times of J , so
that the process π2(J n) is indeed similar to J . A more precise and stronger version of this
statement is proven in Section 3.

In order to construct Rn, define rn : {+,−} × S 7→ R by

rn(+, i) := λn/ω
n
i , rn(−, i) := −λn/ηni .

Let

Rn(t) :=

∫ t

0
rn(Jn(s))ds, t ≥ 0.

The pair (Rn,J n) is indeed a stochastic fluid process. Moreover, from the construction of J n,
(2.3) and (2.4), it follows that for all k ≥ 0

Rn (χnk) =
k∑
j=1

(
−Lnj +Hn

j

)
= R(θnk ),(2.6)

Rn
(
χnk + L̂nk+1

)
=

k∑
j=1

(
−Lnj +Hn

j

)
− Lnk+1 = min

θnk≤t≤θ
n
k+1

R(t).(2.7)

This implies that the values at the inflection points of the level process Rn coincide with the
values of {R(θnk )}k≥0 and {minθnk≤t≤θ

n
k+1

R(t)}k≥0. In conclusion, the values of R at the arrival
epochs of Mn, and the minimum level attained between them, are embedded in Rn. Figure
3 illustrates the construction of the stochastic fluid process (Rn,J n) corresponding to the
Markov-modulated Brownian motion (R,J ).
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χn1 χn2 χn3 χn4θn1 θn2θ
n
3 θn4

R(t) Rn(t)

t t

Fig 3: (Left) A sample path of an MMBM (R,J ) with J being on S = {1, 2}: arrivals corresponding
to Mn occur at {θni }i≥0, and the minima of R attained between these arrivals are highlighted with
blue crosses. When J(t) = 1 (red), µ1 = 5 and σ2

1 = 4. When J(t) = 2 (blue), µ2 = −2 and σ2
2 = 1.

(Right) An associated sample path of a stochastic fluid process (Rn,J n): jumps from {+} × S to
{−}×S occur at {χn

i }i≥1. The values of Rn(χn
i ) match with those of R(θni ) for i = 1, . . . 4, respectively.

3. Proof of Theorem 1.2. As λn →∞, the partitions induced by {θnk}k≥0 and
{χnk}k≥0 become finer. Intuitively, this and (2.6) indicate that Rn approximates R as n→∞,
which is stated more precisely in Theorems 1.1 and 1.2. We devote this section to rigorously
prove Theorem 1.2, from which Theorem 1.1 follows as a corollary.

Let λn = 2n2; this makes our results and rates comparable to those of [9] and related papers.
Fix T ∈ [0, 1), q > 0 and w.l.o.g. consider n ≥ 2 throughout.

Proof of Part (i). In order to prove (1.8), notice that

P

(
sup

0≤s≤T
|R(s)−Rn(s)| > αεn

)
≤ P(An) + P(χnn2 < T ),(3.1)

where

An :=

{
sup

0≤s≤χn
n2

|R(s)−Rn(s)| > αεn

}
=

{
max

1≤k≤n2
sup

χnk−1≤s≤χ
n
k

|R(s)−Rn(s)| > αεn

}
,

where α is a constant to be determined later. We now show that each of the quantities P (An)
and P (χnn2 < T ) are o(n−q).

The triangle inequality implies that

An ⊆ Bn
1 ∪Bn

2 ∪Bn
3 ∪Bn

4 ,

where

Bn
1 :=

{
max

1≤k≤n2
sup

χnk−1≤s≤χ
n
k

|R(s)−R(χnk)| > αεn/4

}
,

Bn
2 :=

{
max

1≤k≤n2
|R(χnk)−R(k/n2)| > αεn/4

}
,
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Bn
3 :=

{
max

1≤k≤n2
|R(k/n2)−Rn(χnk)| > αεn/4

}
,

Bn
4 :=

{
max

1≤k≤n2
sup

χnk−1≤s≤χ
n
k

|Rn(χnk)−Rn(s)| > αεn/4

}
.

By (2.6), Bn
3 can be rewritten as

Bn
3 =

{
max

1≤k≤n2
|R(θnk )−R(k/n2)| > αεn/4

}
,

so that the events Bn
1 , B

n
2 and Bn

3 concern only the process R, not Rn.
Let {δn}n≥0 be any positive and decreasing sequence. Making a further partition, we obtain

An ⊆
(
(Bn

1 ∪Bn
2 ∪Bn

3 ) ∩
(
Cnχ ∪ Cnθ

)c) ∪ (Cnχ ∪ Cnθ ) ∪Bn
4 ,(3.2)

where

Cnχ :=

{
max

1≤k≤n2
|χnk − k/n2| > δn

}
, Cnθ :=

{
max

1≤k≤n2
|θnk − k/n2| > δn

}
.

On (Cnχ ∪ Cnθ )c, for all k = 1, . . . , n2 we have that

χnk , θ
n
k , χ

n
k+1 ∈ [k/n2 − δn, (k + 1)/n2 + δn].

Let x+ := max{x, 0} for x ∈ R. If there exists a, b ∈ [k/n2 − δn, (k + 1)/n2 + δn] such that
|R(a+)−R(b+)| > αεn/4 , then by the triangle inequality either |R([k/n2− δn]+)−R(a+)| >
αεn/8, or |R([k/n2 − δn]+)−R(b+)| > αεn/8. Therefore,

(Bn
1 ∪Bn

2 ∪Bn
3 ) ∩

(
Cnχ ∪ Cnθ

)c ⊆ Dn,(3.3)

where

Dn :=

{
max

1≤k≤n2
sup

a∈[k/n2−δn,(k+1)/n2+δn]

∣∣R ((k/n2 − δn)+
)
−R (a+)

∣∣ > αεn/8

}

=

{
max

1≤k≤n2
sup

s∈[0,n−2+2δn]

∣∣R ((k/n2 − δn + s)+
)
−R

(
(k/n2 − δn)+

)∣∣ > αεn/8

}
.

Thus, by (3.2) and (3.3),

P(An) ≤ P(Dn) + P(Cnχ) + P(Cnθ ) + P(Bn
4 ).(3.4)

In the following, we show that with an appropiate choice of α and {δn}n≥1, each summand
in the RHS of (3.4) is an o(n−q) function. For the remainder of the section, Kj , for j ∈ N,
denote generic constants that are used to simplify bounds and are not dependent on q or n.
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Bounding P (Bn
4 ). Let ωnmin := min

i∈S
ωni , η

n
min := min

i∈S
ηni , κn := ωnmin ∧ ηnmin. Then,

P(Bn
4 ) ≤

∑
1≤k≤n2

P

(
sup

χnk−1≤s≤χ
n
k

|Rn(χnk)−Rn(s)| > αεn/4

)
≤

∑
1≤k≤n2

P (Hn
k > αεn/4) + P (Lnk > αεn/4)

≤ n2
(
e−ω

n
minαεn/4 + e−η

n
minαεn/4

)
≤ n2

(
2e−κn(αεn/4)

)
.

By definition,

κn := min
i∈S

{(√
µ2i
σ4i

+
2n2

σ2i
+
µi
σ2i

)
∧

(√
µ2i
σ4i

+
2n2

σ2i
− µi
σ2i

)}
= O(n),

where the notation O(g(n)), for g : N 7→ R+, denotes a function f : N 7→ R such that
lim supn→∞ |f(n)|/g(n) ≤M for some M ∈ R. Then, there exists n1 such that κn > n1/2 for
all n ≥ n1, and so for n ≥ n1

P(Bn
4 ) ≤ n2

(
2e−κn(α/4)n

−1/2 log(n)
)
≤ n2

(
2e−(α/4) log(n)

)
= K1n

2−α/4,

Choose α to be larger than α1 := 8q + 8. Then, P(Bn
4 ) is an O(n−2q) function and thus, it is

an o(n−q) function.
Bounding P (Cnχ) and P (Cnθ ). Let {pn}n be a sequence taking values in N. By Doob’s

Lp-maximal inequality, we have

P(Cnχ) ≤
E[(χnn2 − 1)2pn ]

(δn)2pn
.(3.5)

Since χnn2 is a convolution of 2n2 exponential r.v.s of rate 2n2, χnn2 ∼ Erlang(2n2, 2n2), so that
(3.5) and Lemma 4.5 (in the Appendix) imply that

P(Cnχ) ≤ (δn)−2pn
(2pn)!

√
2n2

(2n2)2pn

√
2n2

2pn+1 − 1√
2n2 − 1

≤ K2
(δn)−2pn(2pn)!

n2pn−1

≤ K2n

(
2pn
δnn

)2pn

.(3.6)

Similarly, since θnn2 ∼ Erlang(n2, n2), we have for n ≥ 2

P(Cnθ ) ≤ K3n

(
2pn
δnn

)2pn

.(3.7)

Set

δn := 2pnn
(q+1/2)/pn−1, n ≥ 1.(3.8)
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With this choice of {δn}, both (3.6) and the RHS of (3.7) are proportional to n−2q, so that
P(Cnχ) and P(Cnθ ) are o(n−q) functions.

Bounding P (Dn). Set pn := blog(n)c; one can verify that with this choice of {pn}, the
sequence {δn} is a O(n−1 log(n)) function. Define δ′n := 2δn + n−2 and let n2 ≥ n1 be such
that α1εn/8− µmaxδ

′
n > 0 for all n ≥ n2. Then, for any α ≥ α1, we have αεn/8− µmaxδ

′
n > 0

for all n ≥ n2. Thus,

P(Dn) ≤
n2∑
k=1

P

(
sup

0≤s≤δ′n

∣∣R ((k/n2 − δn)+
)
−R

(
(k/n2 − δn + s)+

)∣∣ > αεn/8

)

≤
n2∑
k=1

∑
i∈S

P

(
sup

0≤s≤δ′n

∣∣R ((k/n2 − δn)+
)
−R

(
(k/n2 − δn + s)+

)∣∣ > αεn/8

∣∣∣∣∣ Gi,k,n
)
,

where Gi,k,n := {J
(
k/n2 − δn

)
= i}. By strong Markov property, we can rewrite the above

RHS to obtain

P(Dn) = n2
∑
i∈S

P

(
sup

0≤s≤δ′n
|R(s)| > αεn/8

∣∣∣∣∣ J(0) = i

)

≤ n2m

[
2√
2π

√
σmaxδ′n

αεn/8− µmaxδ′n
exp

(
−(αεn/8− µmaxδ

′
n)2

2σmaxδ′n

)]

≤ K4n
2 exp

(
−(αεn/8− µmaxδ

′
n)2

2σmaxδ′n

)
, n ≥ n2,(3.9)

where the first inequality follows from Lemma 4.6 (in the Appendix).
Let n3 ≥ n2 be such that εn ≤ 1 and δ′n ≤ 3δn for all n ≥ n3. Then

P(Dn) ≤ K4n
2 exp

(
−(αεn/8)2 + (µmaxδ

′
n)2 − 2(αεn/8)(µmaxδ

′
n)

2σmaxδ′n

)
≤ K4n

2 exp

(
−(αεn/8)2 − 2(αεn/8)(µmaxδ

′
n)

2σmaxδ′n

)
≤ K4n

2 exp

(
−(αεn/8)2

2σmaxδ′n
+
αµmax

8σmax

)
≤ K5n

2 exp

(
−(αεn/8)2

6σmaxδn

)
= K5n

2 exp

(
− α2n−1(log(n))2

K6blog(n)cn(q+1/2)/blog(n)c−1

)
≤ K5n

2 exp

(
− α2 log(n)

K6n(q+1/2)/blog(n)c

)
, n ≥ n3.(3.10)

Let γ(q) = supn≥n3
K6n

(q+1/2)/blog(n)c, which is finite since n(q+1/2)/blog(n)c converges to eq+1/2.
If α > α2 :=

√
(2q + 2)γ(q), by (3.10) we have

P(Dn) ≤ K5n
2 exp

(
−(2q + 2)γ(q) log(n)

K6n(q+1/2)/blog(n)c

)
≤ K5n

2 exp (−(2q + 2) log(n))

= K5n
−2q, n ≥ n3,
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which implies P(Dn) is an o(n−q) function. Thus, all four terms in the LHS of (3.4) are o(n−q)
functions, and so is P(An).

Finally, let n4 ≥ n3 be such that δn < 1− T for all n ≥ n4. Then,

P
(
χnn2 < T

)
≤ P

(
Cnχ
)
for all n ≥ n4,

meaning that (3.1) is an o(n−q) function. The proof of (1.8) is now complete.
Proof of Part (ii). Now, let {ρ`}`≥1 be a sequence with ρ` ↓ 0, and define

E` :=
∞⋂
j=1

∞⋃
n=j

{π2(Jn(s)) 6= J(s) for some s ∈ (T − ρ`, T + ρ`)} .

Proving (1.9) is equivalent to showing that P(∩∞`=1E
`) = 0, which in turn is equivalent to

proving that lim
`→∞

P(E`) = 0.
Define β0 := 0, βn0 := 0 for n ≥ 0. For k ≥ 0, let

βk+1 := inf
{
s > βk : J(s−) 6= J(s)

}
,

βnk+1 := inf
{
s > βnk : π2(J(s−)) 6= π2(J(s))

}
, n ≥ 0.

For any a, b ∈ R, define M0[a, b] := M(b+) −M(a+); recall that M0 is a Poisson process of
rate λ0/2 defined in Section 2. Then,

E` ⊆
{
M0[T − 2ρ`, T + 2ρ`] > 0

}
∪
({
M0[T − 2ρ`, T + 2ρ`] = 0

}
∩ E`

)
.(3.11)

Note that P(M0[T − 2ρ`, T + 2ρ`] > 0) ≤ 1 − e−(λ0/2)4ρ` → 0 as ` → ∞. Thus, in order to
prove that lim

`→∞
P(E`) = 0, it is sufficient to show that

lim
`→∞

P
(
{M0[T − 2ρ`, T + 2ρ`] = 0} ∩ E`

)
= 0,(3.12)

which we do next. A path inspection reveals that

{M0[T − 2ρ`, T + 2ρ`] = 0} ∩ E`

⊆

⋃
k≥0
{βk < T − 2ρ` < T + 2ρ` < βk+1}

 ∩ E`
=
⋃
k≥0

∞⋂
j=1

∞⋃
n=j

{
{βk < T − 2ρ` < T + 2ρ` < βk+1, T − ρ` < βnk } ∪
{βk < T − 2ρ` < T + 2ρ` < βk+1, β

n
k+1 < T + ρ`}

}

⊆
⋃
k≥0

∞⋂
j=1

∞⋃
n=j

(
{|βk − βnk | > ρ`, βk < T − 2ρ`} ∪ {|βk+1 − βnk+1| > ρ`, β

n
k+1 < T + ρ`}

)

⊆

 ∞⋂
j=1

∞⋃
n=j

{
max

k:θnk<T−2ρ`
|χnk − θnk | > ρ`

} ∪
 ∞⋂
j=1

∞⋃
n=j

{
max

k:χnk<T+ρ`
|χnk − θnk | > ρ`

}
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⊆

 ∞⋂
j=1

∞⋃
n=j

{
max

1≤k≤n2
|χnk − θnk | > ρ`

} ∪
 ∞⋂
j=1

∞⋃
n=j

{θnn2 < T − 2ρ`}

 ∪
 ∞⋂
j=1

∞⋃
n=j

{χnn2 < T + ρ`}

 .

(3.13)

Since {δn}n≥1 is a sequence such that δn ↓ 0, then for each ` ≥ 1,

P

 ∞⋂
j=1

∞⋃
n=j

{ max
1≤k≤n2

|χnk − θnk | > ρ`}

 ≤ P
 ∞⋂
j=1

∞⋃
n=j

{ max
1≤k≤n2

|χnk − θnk | > 2δn}

 = 0,

where the last equality follows from the fact that

P

(
max

1≤k≤n2
|χnk − θnk | > 2δn

)
≤ P(Cnχ ∪ Cnθ ) = o(n−q),

and applying Borel-Cantelli (choosing, say, q = 2). Similar arguments follow for the two other
events in (3.13). Thus, lim

`→∞
P(E`) = 0 and so (1.9) follows.

4. An application: First passage probabilities. Theorem 1.1 implies
that some first passage properties of (R,J ) can be analysed as the limiting first passage
properties of (Rn,J n) as n→∞. In particular, for any Borel set A ⊂ R define

τA := inf {s ≥ 0 : R(s) ∈ A} ,
τnA := inf {s ≥ 0 : Rn(s) ∈ A} , n ≥ 0.

Then, Theorem 1.1 implies that for any open set A and j ∈ S,

τA = lim
n→∞

τnA a.s.,

and on the event {τA <∞},

{J(τA) = j} =
∞⋃
i=0

∞⋂
n=i

{π2(Jn(τA)) = j} a.s..

In the case A takes the form (−∞,−x), for x ≥ 0, we have the following.

Proposition 4.1. For x ≥ 0 and n ≥ 0 define

τx := τ(−∞,−x) and τnx := τn(−∞,−x).

Then, for all j ∈ S,

{τx <∞, J(τx) = j} = {τnx <∞, π2(Jn(τnx )) = j}.(4.1)

Proof. Fix x ≥ 0 and n ≥ 0. Let

N := sup{k ≥ 0 : τx ≥ θnk}.
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This implies that τx ∈ [θnN , θ
0
N+1) on {N < ∞}, and since J is constant between the epochs

{θnk}k≥0, then J(θnN ) = J(τx). Similarly, if we define

Nn := sup{k ≥ 0 : τnx ≥ χnk},

then π2(Jn(χnNn)) = π2(J
n(τnx )) on {Nn <∞}. Equations (2.6) and (2.7) imply that Nn = N ,

and since J(θnk ) = π2(J
n(χnk)) for all k ≥ 0 (see (2.5)), then

J(τx) = J(θnN ) = π2(J
n(χnNn)) = π2(J

n(τnx )) on {N <∞},

and (4.1) follows.

The following result describes one central first passage distributional property of our con-
struction.

Theorem 4.2. For n ≥ 0, let Un denote the infinitesimal generator associated to the
process {π2(Jn(τnx ))}x≥0. Then, Un is a solution to the quadratic matrix equation

X2 + 2∆µ∆−2σ X + 2∆−2σ Q = 0(4.2)

where ∆µ = diag{µi : i ∈ S}, ∆σ = diag{σi : i ∈ S}. Furthermore Un corresponds to the
infinitesimal generator associated to {J(τx)}x≥0.

Proof. Let Ψn be the p× p-dimensional matrix defined by

(Ψn)ij = P (τn0 <∞, Jn(τ0) = (−, j) | Rn(0) = 0, Jn(0) = (+, i)) , i, j ∈ S.

Define ∆rn+
= diag{rn(+, i) : i ∈ S}, ∆rn−

= diag{|rn(−, i)| : i ∈ S}, and[
T++ T+−
T−+ T−−

]
:=

[
−λnI 2Q+ λnI
λnI −λnI

]
.

It is known [3] that Ψnis the minimal nonnegative solution to the Riccati matrix equation

∆−1rn+
T++Ψn + Ψn∆−1rn−

T−− + Ψn∆−1rn−
T−+Ψn + ∆−1rn+

T+− = 0,(4.3)

and that

P(τn0 <∞, Jn(τx) = (−, j) | Rn(0) = 0, Jn(0) = (−, i)) = e>i e
Unxej ,

where

Un = ∆−1rn−
(T−− + T−+Ψn) = λn∆−1rn−

(Ψn − I),(4.4)

with ei being the ith unit column vector.
Premultiplying (4.3) by ∆−1rn−

and commuting ∆−1rn−
with ∆−1rn+

give

−λn∆−1rn+
∆−1rn−

Ψn − λn∆−1rn−
Ψn∆−1rn−

+ λn∆−1rn−
Ψn∆−1rn−

Ψn + ∆−1rn+
∆−1rn−

(2Q+ λnI) = 0,

which leads to (∆−1rn−
−∆−1rn+

)Un+λ−1n U2
n + 2∆−1rn+

∆−1rn−
Q = 0. As ∆−1rn−

−∆−1rn+
= 2λ−1n ∆µ∆−2σ and

∆−1rn+
∆−1rn−

= λ−1n ∆−2σ , we obtain

U2
n + 2∆µ∆−2σ Un + 2∆−2σ Q = 0.(4.5)

That Un is also the infinitesimal generator of {J(τx)}x≥0 follows from Proposition 4.1.
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Remark 4.3. Theorem 4.2 provides a novel understanding of the classic quadratic matrix
equation associated to the down-crossing records of an MMBM (see [2]). Indeed, to compute
the infinitesimal generator solution of (4.2) (which is unique by [13]), we can instead compute
the minimal nonnegative solution to the Riccati matrix equation (4.3), say Ψn. The solution
of (4.2) is then given by Un as defined in (4.4). A comparable result is that of [13], where
the authors construct a sequence of matrices {U∗n}n≥0 that is shown to converge to U . One
advantage of our construction is that each element of the sequence {Un} obtained through
Theorem 4.2 is identical to U .

Acknowledgements. Both authors are affiliated with Australian Research Council
(ARC) Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS).

Appendix. The following are some standalone results used in Sections 2 and 3.

Theorem 4.4. Let A = {A(t)}t≥0 be a Poisson process of parameter λa > 0, and X =
{X(n)}n≥0 an independent discrete-time Markov chain with state space S and transition prob-
ability matrix P . Define the Markov jump process J = {J(t)}t≥0 be

J(t) = X(A(t)), t ≥ 0.

Let B = {B(t)}t≥0 be an independent Poisson process of parameter λb > 0. Define C to be the
superposition of the Poisson processes A and B, and denote by {τk}k≥0 the arrival times of C.
If we let

Y (n) = J(τn), n ≥ 0,

then the process Y = {Y (n)}n≥0 is a Markov chain with transition probability matrix given by

(4.6)
λa

λa + λb
P +

λb
λa + λb

I.

Proof. First, we show that Y is a Markov process. Let i ∈ S and k ≥ 1. Then,

P (Y (k) = i | Y (0), Y (1), . . . , Y (k − 1))

= P(J(τk) = i | J(τ0), J(τ1), . . . , J(τk−1))

= P(J(τk) = i | J(τk−1)) (Strong Markov property of J )
= P(Y (k) = i | Y (k − 1)),

so that the Markov property holds.
Next, let C∗ be the marked Poisson process with arrivals corresponding to the superposition

of A, arrivals which we mark with an a, and B, arrivals which we mark with a b. The kth
arrival of C∗ occurs at τk carrying a mark, say mk ∈ {a, b}. Then,

P(Y (k) = j | Y (k − 1) = i)

= P(Y (k) = j,mk = a | Y (k − 1) = i) + P(Y (k) = j,mk = b | Y (k − 1) = i)

= P(Y (k) = j | Y (k − 1) = i,mk = a)P(mk = a | Y (k − 1) = i)

+ P(Y (k) = j | Y (k − 1) = i,mk = b)P(mk = b | Y (k − 1) = i).
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The event {mk = a} is clearly independent from {Y (k − 1) = i}: the mark of a given Poisson
arrival is independent of the history of the previous arrivals. Thus,

P(mk = a | Y (k − 1) = i) = P(mk = a) =
λa

λa + λb
.

Similarly,

P(mk = b | Y (k − 1) = i) = P(mk = b) =
λb

λa + λb
.

Next, since J only (possibly) jumps at arrival times marked with a, then

P(Y (k) = j | Y (k − 1) = i,mk = b) = δij ,

where δij denotes the Kronecker delta. Finally, since J is piecewise constant between the
arrival times {τk}k, then

{Y (k − 1) = i} = {J(τk−1) = i} = {J(τ−k ) = i}.

This implies that

P(Y (k) = j | Y (k − 1) = i,mk = a) = P(J(τk) = j | J(τ−k ) = i,mk = a) = pij .

Consequently,

P(Y (k) = j | Y (k − 1) = i) = pij
λa

λa + λb
+ δij

λa
λa + λb

and the proof is complete.

Lemma 4.5. For a ∈ N+\{1} and b > 0, let Y ∼ Erlang(a, b). Then

E
[
(Y − E[Y ])k

]
≤ k!
√
a

bj

√
a
k+1 − 1√
a− 1

for k ∈ N+.(4.7)

Proof. W.l.o.g. suppose that b = 1. Equation (4.7) can be rewritten as

E
[
(Y − E[Y ])k

]
≤ k!

k∑
j=1

√
a
j
.(4.8)

We use induction to prove that (4.8) holds. First, since E[Y − E[Y ]] = 0 < 1!
√
a, the case

k = 1 holds trivially. Now, suppose (4.7) holds for all k ∈ {1, 2, . . . , k0} for some k0 ≥ 1. By
[20, third formula on p.704],

E
[
(Y − E[Y ])k0+1

]
= k0!a

k0−1∑
i=0

E
[
(Y − E[Y ])i

]
i!

= k0!a

[
1 +

k0−1∑
i=2

E[(Y − E[Y ])i]

i!

]
.(4.9)
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Using the induction hypothesis on the RHS of (4.9), we get

E[(Y − E[Y ])k0+1] ≤ k0!a

1 +

k0−1∑
i=2

i∑
j=1

√
a
j

 ≤ k0!a k0−1∑
i=1

i∑
j=1

√
a
j

= k0!a

k0−1∑
j=1

k0−1∑
i=j

√
a
j

= k0!a

k0−1∑
j=1

(k0 − j)
√
a
j

≤ (k0 + 1)!a

k0−1∑
j=1

√
a
j ≤ (k0 + 1)!

k0+1∑
j=1

√
a
j
,

which proves (4.8) and thus (4.7).

Lemma 4.6. Let (R,J ) = {(R(t), J(t))}t≥0 be a Markov-modulated Brownian motion
defined as in (1.5). Then, for any i ∈ S, t > 0 and a > µmaxt,

P

(
sup
0≤s≤t

|R(s)| > a

∣∣∣∣ J(0) = i

)
≤ 2√

2π

√
σmaxt

a− µmaxt
exp

(
−(a− µmaxt)

2

2σmaxt

)
,(4.10)

where µmax := maxi∈S |µi| and σmax := maxi∈S σi.

Proof. Let {W (t)}t≥0 be a standard Brownian motion, independent from (R,J ). A stan-
dard bound for the Brownian motion gives us for b > 0

P

(
sup
0≤s≤t

|W (s)| > b

)
= 2

∫ ∞
b

1√
2πt

e−x
2/2tdx

≤ 2

∫ ∞
b

x/t√
2πt

e−x
2/2tdx

≤ 2√
2π

(√
t

b

)
e−b

2/2t.

Note that R is identically distributed to {W (Iσt ) + Iµt }t≥0, where Iσt :=
∫ t
0 σJ(s)ds and Iµt :=∫ t

0 µJ(s)ds. This implies that

P

(
sup
0≤s≤t

|R(s)| > a

∣∣∣∣ J(0) = i

)
= P

(
sup
0≤s≤t

|W (Iσs ) + Iµs | > a

∣∣∣∣ J(0) = i

)
≤ P

(
sup
0≤s≤t

|W (Iσs )| > a− sup
0≤s≤t

|Iµs |
∣∣∣∣ J(0) = i

)
= E

(
P

(
sup
0≤s≤t

|W (Iσs )| > a− sup
0≤s≤t

|Iµs |
∣∣∣∣ J(0) = i, {Iσs }0≤s≤t, {Iµs }0≤s≤t

) ∣∣∣∣ J(0) = i

)

≤ E

 2√
2π


√

sup0≤s≤t |Iσs |

a− sup0≤s≤t |I
µ
s |

 exp

(
−

(a− sup0≤s≤t |I
µ
s |)2

2 sup0≤s≤t |Iσs |

) ∣∣∣∣∣∣ J(0) = i


≤ E

(
2√
2π

√
σmaxt

a− µmaxt
exp

(
−(a− µmaxt)

2

2σmaxt

) ∣∣∣∣ J(0) = i

)
=

2√
2π

√
σmaxt

a− µmaxt
exp

(
−(a− µmaxt)

2

2σmaxt

)
,
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which completes the proof.
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