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Abstract

Let (Zn)n≥0 be a supercritical Galton-Watson process. Consider the Lotka-Nagaev estimator for the
offspring mean. In this paper, we establish self-normalized Cramér type moderate deviations and
Berry-Esseen’s bounds for the Lotka-Nagaev estimator. The results are believed to be optimal or near
optimal.
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1. Introduction

A Galton-Watson process can be described as follows

Z0 = 1, Zn+1 =
Zn∑

i=1

Xn,i, for n ≥ 0, (1.1)

where Xn,i is the offspring number of the i-th individual of the generation n. Moreover, the random
variables (Xn,i)i≥1 are independent of each other with common distribution law

P(Xn,i = k) = pk, k ∈ N, (1.2)

and are also independent of Zn.
An important task in statistical inference of Galton-Watson processes is to estimate the average

offspring number of an individual m, usually termed the offspring mean. Clearly, it holds

m = EZ1 = EXn,i =

∞∑

k=0

kpk.

Denote v the standard variance of Z1, that is

υ2 = E(Z1 −m)2. (1.3)

To avoid triviality, assume that v > 0. For estimation of the offspring mean m, the Lotka-Nagaev
[11, 12] estimator Zn+1/Zn plays an important role. For the Galton-Watson processes, Athreya [1]
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has established large deviations for the normalized Lotka-Nagaev estimator (see also Chu [4] for self-
normalized large deviations); Ney and Vidyashankar [14, 15] obtained sharp rate estimates for the
large deviation behavior of the Lotka-Nagaev estimator; Bercu and Touati [2] proved an exponential
inequalities for the Lotka-Nagaev estimator via self-normalized martingale method. The main pur-
pose of this paper is to establish self-normalized Cramér moderate deviations for the Lotka-Nagaev
estimator Zn+1/Zn for the Galton-Watson processes.

The paper is organized as follows. In Section 2, we present Cramér moderate deviations for the
self-normalized Lotka-Nagaev estimator, provided that (Zn)n≥0 or (Xn,i)1≤i≤Zn can be observed. In
Section 3, we present some applications of our results in statistics. The rest sections devote to the
proofs of theorems.

2. Main results

2.1. (Zk)k≥0 can be observed

Assume that the total populations (Zk)k≥0 of all generations can be observed. For any n0 ≥ 0, we
define

Mn0,n =

∑n0+n−1
k=n0

√
Zk(

Zk+1

Zk
−m)

√∑n0+n−1
k=n0

Zk(
Zk+1

Zk
−m)2

. (2.1)

We assume that the set of extinction of the process (Zk)k≥0 is negligible with respect to the annealed
law P. Then Mn0,n is well defined P-a.s. As (Zk)k=n0,...,n0+n can be observed, Mn0,n can be regarded as
a time type self-normalized process for the Lotka-Nagaev estimator Zk+1/Zk. The following theorem
gives a self-normalized Cramér moderate deviation result for the Galton-Watson processes.

Theorem 2.1. Assume that EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1].

[i] If ρ ∈ (0, 1), then for all x ∈ [0, o(
√
n)),

∣∣∣∣ ln
P(Mn0,n ≥ x)

1− Φ(x)

∣∣∣∣ ≤ Cρ

(
x2+ρ

nρ/2
+

(1 + x)1−ρ(2+ρ)/4

nρ(2−ρ)/8

)
, (2.2)

where Cρ depends only on the constants ρ, v and EZ2+ρ
1 .

[ii] If ρ = 1, then for all x ∈ [0, o(
√
n)),

∣∣∣∣ ln
P(Mn0,n ≥ x)

1− Φ(x)

∣∣∣∣ ≤ C

(
x3√
n
+

lnn√
n

+
(1 + x)1/4

n1/8

)
, (2.3)

where C depends only on the constants v and EZ3
1 .

In particular, the inequalities (2.2) and (2.3) together implies that

P(Mn0,n ≥ x)

1− Φ(x)
= 1 + o(1) (2.4)

uniformly for n0 ∈ N and for x ∈ [0, o(nρ/(4+2ρ))) as n → ∞. Moreover, the same inequalities remain

valid when
P(Mn0,n≥x)

1−Φ(x) is replaced by
P(Mn0,n≤−x)

Φ(−x) .
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Notice that Cρ and C do not depend on n0. Thus (2.4) holds uniformity in n0, which is of particular
interesting in applications. For instance, due to the uniformity, in (2.4) we can take n0 as a function
of n.

Equality (2.4) implies that P(Mn0,n ≤ x) → Φ(x) as n tends to ∞. Thus Theorem 2.1 implies
the central limit theory for Mn0,n. Moreover, equality (2.4) states that the relative error of normal
approximation for Mn0,n tends to zero uniformly for x ∈ [0, o(nρ/(4+2ρ))) as n → ∞.

Theorem 2.1 implies the following moderate deviation principle (MDP) result for the time type
self-normalized Lotka-Nagaev estimator.

Corollary 2.1. Assume the conditions of Theorem 2.1. Let (an)n≥1 be any sequence of real numbers
satisfying an → ∞ and an/

√
n → 0 as n → ∞. Then for each Borel set B,

− inf
x∈Bo

x2

2
≤ lim inf

n→∞
1

a2n
lnP

(
Mn0,n

an
∈ B

)
≤ lim sup

n→∞

1

a2n
lnP

(
Mn0,n

an
∈ B

)
≤ − inf

x∈B

x2

2
, (2.5)

where Bo and B denote the interior and the closure of B, respectively.

Remark 2.1. From (2.2) and (2.3), it is easy to derive the following Berry-Esseen bound for the
self-normalized Lotka-Nagaev estimator:

∣∣∣P(Mn0,n ≤ x)−Φ(x)
∣∣∣ ≤ Cρ

nρ(2−ρ)/8
, (2.6)

where Cρ depends only on the constants ρ, v and EZ2+ρ
1 . When ρ > 1, by the self-normalized Berry-

Esseen bound for martingales in Fan and Shao [7], we can get a Berry-Esseen bound of order n− ρ
6+2ρ .

The last remark gives a self-normalized Berry-Esseen bound for the Lotka-Nagaev estimator, while
the next theorem presents a normalized Berry-Esseen bound for the Lotka-Nagaev estimator. Denote

Hn0,n =
1√
nv

n0+n−1∑

k=n0

√
Zk

(Zk+1

Zk
−m

)
.

Notice that the random variables (Xk,i)1≤i≤Zk
have the same distribution as Z1, and that (Xk,i)1≤i≤Zk

are independent of Zk. Then for the Galton-Watson processes, it holds

E[(Zk+1 −mZk)
2|Zk] = E[(

Zk∑

i=1

(Xk,i −m))2|Zk] = Zkυ
2.

It is easy to see that Hn0,n =
∑n0+n−1

k=n0

1√
nv2/Zk

(
Zk+1

Zk
−m

)
. Thus Hn0,n can be regarded as a normal-

ized process for the Lotka-Nagaev estimator Zk+1/Zk. We have the following normalized Berry-Esseen
bounds for the Galton-Watson processes.

Theorem 2.2. Assume the conditions of Theorem 2.1 are satisfied.

3



[i] If ρ ∈ (0, 1), then

sup
x∈R

∣∣∣P(Hn0,n ≤ x)− Φ(x)
∣∣∣ ≤ Cρ

nρ/2
, (2.7)

where Cρ depends only on ρ, v and EZ2+ρ
1 .

[ii] If ρ = 1, then

sup
x∈R

∣∣∣P(Hn0,n ≤ x)− Φ(x)
∣∣∣ ≤ C

lnn√
n
, (2.8)

where C depends only on v and EZ3
1 .

Moreover, the same inequalities remain valid when Hn0,n is replaced by −Hn0,n.

The convergence rates of (2.7) and (2.8) are same to the best possible convergence rates of the
Berry-Esseen bounds for martingales, see Theorem 2.1 of Fan [8] and its comment. Notice that Hn0,n

is a martingale with respect to the natural filtration.

2.2. (Xn,i)1≤i≤Zn can be observed for some n

Assume that the offspring numbers (Xn,i)1≤i≤Zn of each individual in some generation n can be
observed. Denote

Tn =
Zn (

Zn+1

Zn
−m)

√∑Zn
i=1(Xn,i − Zn+1

Zn
)2

the space type self-normalized process for the Lotka-Nagaev estimator Zn+1/Zn. The following theo-
rem gives a Cramér moderate deviation result for the space type self-normalized Lotka-Nagaev esti-
mator Tn.

Theorem 2.3. Assume that p0 = 0 and EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1]. Then

∣∣∣∣ ln
P(Tn ≥ x)

1− Φ(x)

∣∣∣∣ = O
(1 + x2+ρ

nρ/2

)
(2.9)

uniformly for x ∈ [0, o(
√
n)) as n → ∞. Moreover, the same equality remains valid when P(Tn≥x)

1−Φ(x) is

replaced by P(Tn≤−x)
Φ(−x) .

The condition p0 = 0 means that each individual has at least one offspring. Moreover, it also
implies that Zn → ∞ a.s. as n → ∞. Then by law of large numbers, we have Zn+1

Zn
tends to m a.s. as

n → ∞.
For the Galton-Watson processes, we refer to [1] for closely related results of Theorem 2.3, where

Athreya has established a precise large deviation rate for the Lotka-Nagaev estimator Zn+1/Zn.
Using the inequality |ex − 1| ≤ eC |x| valid for |x| ≤ C, from Theorem 2.3, we obtain the following

estimation for the relative error of normal approximation.
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Corollary 2.2. Assume the conditions of Theorem 2.3. Then

P
(
Tn ≥ x

)

1− Φ(x)
= 1 +O

(1 + x2+ρ

nρ/2

)
(2.10)

uniformly for x ∈ [0, O(nρ/(4+2ρ))) as n → ∞. In particular, it implies that

P
(
Tn ≥ x

)

1− Φ(x)
= 1 + o(1) (2.11)

uniformly for x ∈ [0, o(nρ/(4+2ρ))) as n → ∞. Moreover, the same equalities remain valid when Tn is
replaced by −Tn.

Inequality (2.11) implies that the relative error of normal approximation for Tn tends to zero
uniformly for x ∈ [0, o(nρ/(4+2ρ))). Clearly, the range of validity for (2.11) coincides with the self-
normalized Cramér moderate deviation result of Shao [17] for iid random variables.

By an argument similar to the proof of Corollary 2.1, Theorem 2.3 also implies the following
self-normalized MDP result.

Corollary 2.3. Assume the conditions of Theorem 2.3. Let (an)n≥1 be any sequence of real numbers
satisfying an → ∞ and an/

√
n → 0 as n → ∞. Then for each Borel set B,

− inf
x∈Bo

x2

2
≤ lim inf

n→∞
1

a2n
lnP

(
Tn

an
∈ B

)
≤ lim sup

n→∞

1

a2n
lnP

(
Tn

an
∈ B

)
≤ − inf

x∈B

x2

2
, (2.12)

where Bo and B denote the interior and the closure of B, respectively.

From Theorem 2.3, we get the following self-normalized Berry-Esseen bound for Tn.

Corollary 2.4. Assume the conditions of Theorem 2.3. Then

sup
x∈R

∣∣∣P(Tn ≤ x)− Φ(x)
∣∣∣ ≤ Cρ

nρ/2
, (2.13)

where Cρ does not depend on n.

Clearly, the convergence rate for the Berry-Esseen bound of Corollary 2.4 is consistent with the
classical case of iid random variables (cf. Bentkus and Götze [3]), and therefore it is optimal under
the stated conditions.

Remark 2.2. Following the proof of Theorem 2.3, the results (2.9)-(2.13) remain true when Tn is
replaced by

T̃n =
Zn (Zn+1/Zn −m)√∑Zn

i=1(Xn,i −m)2
.

3. Applications

Cramér moderate deviations certainly have a lot of applications in statistics.
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3.1. p-value for hypothesis testing

Self-normalized Cramér moderate deviations can be applied to hypothesis testing of m for the
Galton-Watson processes. When (Zk)k=n0,...,n0+n can be observed, we can make use of Theorem 2.1 to

estimate p-value. Assume that EZ2+ρ
1 < ∞ for some 0 < ρ ≤ 1, and that m > 1. Let (zk)k=n0,...,n0+n

be an observation of (Zk)k=n0,...,n0+n. In order to estimate the offspring mean m, we can make use of
the Harris estimator [2] given by

m̂n =

∑n0+n−1
k=n0

Zk+1∑n0+n−1
k=n0

Zk

.

Then observation for the Harris estimator is

m̂n =

∑n0+n−1
k=n0

zk+1∑n0+n−1
k=n0

zk
.

By Theorem 2.1, it is easy to see that

P(Mn0,n ≥ x)

1− Φ (x)
= 1 + o(1) and

P(Mn0,n ≤ −x)

1− Φ (x)
= 1 + o(1) (3.1)

uniformly for x ∈ [0, o(nρ/(4+2ρ))). Notice that 1 − Φ (x) = Φ (−x) . Thus, by (3.1), the probability
P(Mn0,n > |m̃n|) is almost equal to 2Φ (−|m̃n|), where

m̃n =

∑n0+n−1
k=n0

√
zk(zk+1/zk − m̂n)√∑n0+n−1

k=n0
zk(zk+1/zk − m̂n)2

.

3.2. Construction of confidence intervals

3.2.1. The data (Zk)k≥0 can be observed

Cramér moderate deviations can be also applied to construction of confidence intervals of m. We
make use of Theorem 2.1 to construct confidence intervals.

Proposition 3.1. Assume that EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1]. Let κn ∈ (0, 1). Assume that

∣∣ lnκn
∣∣ = o

(
nρ/(2+ρ)

)
. (3.2)

Let

an0,n =
( n0+n−1∑

k=n0

√
Zk

)2
−
(
Φ−1(1− κn/2)

)2 n0+n−1∑

k=n0

Zk,

bn0,n = 2
(
Φ−1(1− κn/2)

)2 n0+n−1∑

k=n0

Zk+1 − 2
( n0+n−1∑

k=n0

Zk+1√
Zk

)( n0+n−1∑

k=n0

√
Zk

)
,

cn0,n =
( n0+n−1∑

k=n0

Zk+1√
Zk

)2
−
(
Φ−1(1− κn/2)

)2 n0+n−1∑

k=n0

Z2
k+1

Zk
.
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Then [An0,n, Bn0,n], with

An0,n =
−bn0,n −

√
b2n0,n − 4an0,ncn0,n

2an0,n

and

Bn0,n =
−bn0,n +

√
b2n0,n − 4an0,ncn0,n

2an0,n
,

is a 1− κn confidence interval for m, for n large enough.

Proof. Notice that 1− Φ (x) = Φ (−x) . Theorem 2.1 implies that

P(Mn0,n ≥ x)

1− Φ (x)
= 1 + o(1) and

P(Mn0,n ≤ −x)

1− Φ (x)
= 1 + o(1) (3.3)

uniformly for 0 ≤ x = o(nρ/(4+2ρ)), see (2.4). When κn satisfies the condition (3.2), the upper (κn/2)th
quantile of a standard normal distribution satisfies

Φ−1(1− κn/2) = O(
√

| lnκn|),

which is of order o
(
nρ/(4+2ρ)

)
. Then applying (3.3) to the last equality, we complete the proof of

Proposition 3.1. Notice that An0,n and Bn0,n are solutions of the following equation

∑n0+n−1
k=n0

√
Zk(Zk+1/Zk − x)

√∑n0+n−1
k=n0

Zk(Zk+1/Zk − x)2
= Φ−1(1− κn/2).

This completes the proof of Proposition 3.1. �

3.2.2. The data (Xn,i)1≤i≤Zn can be observed

When (Xn,i)1≤i≤Zn can be observed, we can make use of Corollary 2.2 to construct confidence
intervals.

Proposition 3.2. Assume that EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1]. Let κn ∈ (0, 1). Assume that

∣∣ lnκn
∣∣ = o

(
nρ/(2+ρ)

)
. (3.4)

Let

∆n =
Φ−1(1− κn/2)

Zn

√√√√
Zn∑

i=1

(Xn,i −
Zn+1

Zn
)2.

Then [An, Bn], with

An =
Zn+1

Zn
−∆n and Bn =

Zn+1

Zn
+∆n,

is a 1− κn confidence interval for m, for n large enough.
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Proof. Corollary 2.2 implies that

P(Tn ≥ x)

1− Φ (x)
= 1 + o(1) and

P(Tn ≤ −x)

1−Φ (x)
= 1 + o(1) (3.5)

uniformly for 0 ≤ x = o(nρ/(4+2ρ)). When κn satisfies the condition (3.2), the upper (κn/2)th quantile
of a standard normal distribution satisfies Φ−1(1−κn/2) = O(

√
| lnκn|), which is of order o

(
nρ/(4+2ρ)

)
.

Then applying (3.5) to the last equality, we complete the proof of Proposition 3.2. �

When the risk probability κn goes to 0, we have the following more general result.

Proposition 3.3. Assume that EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1]. Let κn ∈ (0, 1) such that kn → 0.

Assume that

∣∣ lnκn
∣∣ = o

(√
n
)
. (3.6)

Let

∆n =

√
2| ln(κn/2)|

Zn

√√√√
Zn∑

i=1

(Xn,i −
Zn+1

Zn
)2.

Then [An, Bn], with

An =
Zn+1

Zn
−∆n and Bn =

Zn+1

Zn
+∆n,

is a 1− κn confidence interval for m, for n large enough.

Proof. By Theorem 2.3, we have

P(Tn ≥ x)

1− Φ (x)
= exp

{
θC

1 + x2+ρ

nρ/2

}
and

P(Tn ≤ −x)

1−Φ (x)
= exp

{
θC

1 + x2+ρ

nρ/2

}
(3.7)

uniformly for 0 ≤ x = o(
√
n), where θ ∈ [−1, 1]. Notice that

1− Φ (xn) ∼
1

xn
√
2π

e−x2
n/2 = exp

{
− x2n

2

(
1 +

2

x2n
ln(xn

√
2π)
)}

, xn → ∞.

Since kn → 0, the last line implies that the upper (κn/2)th quantile of the distribution

1−
(
1− Φ (x)

)
exp

{
θC

1 + x2+ρ

nρ/2

}

converges to
√

2| ln(κn/2)|, which is of order o
(√

n
)
as n → ∞. Then applying (3.7) to Tn, we complete

the proof of Proposition 3.3. �
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3.2.3. The parameter υ2 is known

When υ2 is known, we can apply normalized Berry-Esseen bounds (cf. Theorem 2.2) to construct
confidence intervals.

Proposition 3.4. Assume that EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1]. Let κn ∈ (0, 1). Assume that
∣∣ lnκn

∣∣ = o
(
log n

)
. (3.8)

Then [An, Bn], with

An =

∑n0+n
k=n0

Zk+1/
√
Zk −

√
nvΦ−1(1− κn/2)∑n0+n

k=n0

√
Zk

and

Bn =

∑n0+n
k=n0

Zk+1/
√
Zk +

√
nvΦ−1(1− κn/2)∑n0+n

k=n0

√
Zk

,

is a 1− κn confidence interval for m, for n large enough.

Proof. Theorem 2.2 implies that

P(Hn0,n ≥ x)

1− Φ (x)
= 1 + o(1) and

P(Hn0,n ≤ −x)

1− Φ (x)
= 1 + o(1) (3.9)

uniformly for 0 ≤ x = o(
√
log n). The upper (κn/2)th quantile of a standard normal distribution

satisfies
Φ−1(1− κn/2) = O(

√
| lnκn|),

which, by (3.8), is of order o(
√
log n). Proposition 3.4 follows from applying (3.9) to Hn0,n. �

3.3. An infectious disease model

An infectious disease model (Zn)n≥0 may be described as follows:

Z0 = 1, Zn+1 = Zn +

Zn∑

i=1

Yn,i, for n ≥ 0, (3.10)

where Zn stands for the total population of patients with infectious disease at time n, and Yn,i is
the number of patients infected by the i-th individual of Zn in a unit time (for instance, one day).
Moreover, we assume that the random variables (Yn,i)i≥1 are iid random variables with common
distribution law

P(Yn,i = k) = pk, k ∈ N, (3.11)

and are also independent to Zn. Denote by r the average number of patients infected by an individual
patient in a unite time, that is

r = EYn,i =

∞∑

k=0

k pk.

Denote by v the standard variance of Yn,i, n, i ≥ 1, then v is also the standard variance of Z1, that is

v2 = E(Z1 −m)2.

To avid triviality, assume that v > 0. We are interested in the estimation of r.

9



Proposition 3.5. Assume that EZ2+ρ
1 < ∞ for some ρ ∈ (0, 1]. Let κn ∈ (0, 1). Assume that

∣∣ lnκn
∣∣ = o

(
nρ/(2+ρ)

)
. (3.12)

Let An0,n and Bn0,n be defined in Proposition 3.1. Then [An0,n − 1, Bn0,n − 1] is a 1− κn confidence
interval for r, for n large enough.

Proof. It is easy to see that (3.10) can be rewritten in the form of (1.1), with Xn,i = 1 + Yn,i. Thus,
we have m = 1 + r. Then Proposition 3.5 follows by Proposition 3.1. �

4. Proof of Theorem 2.1

In the proof of Theorem 2.1, we will make use of the following lemma (cf. Corollary 2.3 of Fan et
al. [9]), which gives self-normalized Cramér moderate deviations for martingales.

Lemma 4.1. Let (ηk,Fk)k=1,...,n be a finite sequence of martingale differences. Assume that there
exist a constant ρ ∈ (0, 1] and numbers γn > 0 and δn ≥ 0 satisfying γn, δn → 0 such that for all
1 ≤ i ≤ n,

E[|ηk|2+ρ|Fk−1] ≤ γρnE[η
2
k|Fk−1] (4.1)

and ∥∥∥
n∑

k=1

E[η2k|Fk−1]− 1
∥∥∥
∞

≤ δ2n a.s. (4.2)

Denote

Vn =

∑n
k=1 ηk√∑n
k=1 η

2
k

and

γ̂n(x, ρ) =
γ
ρ(2−ρ)/4
n

1 + xρ(2+ρ)/4
.

[i] If ρ ∈ (0, 1), then for all 0 ≤ x = o(γ−1
n ),

∣∣∣∣ ln
P(Vn ≥ x)

1− Φ (x)

∣∣∣∣ ≤ Cρ

(
x2+ργρn + x2δ2n + (1 + x)

(
δn + γ̂n(x, ρ)

))
. (4.3)

[ii] If ρ = 1, then for all 0 ≤ x = o(γ−1
n ),

∣∣∣∣ ln
P(Vn ≥ x)

1− Φ (x)

∣∣∣∣ ≤ C

(
x3γn + x2δ2n + (1 + x)

(
δn + γn| ln γn|+ γ̂n(x, 1)

))
. (4.4)

Now, we are in position to prove Theorem 2.1. Denote

ξ̂k+1 =
√

Zk(Zk+1/Zk −m),
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Fn0 = {∅,Ω} and Fk+1 = σ{Zi : n0 ≤ i ≤ k+1} for all k ≥ n0. Notice that Xk,i is independent of Zk.
Then it is easy to verify that

E[ξ̂k+1|Fk] = Z
−1/2
k E[Zk+1 −mZk|Fk] = Z

−1/2
k

Zk∑

i=1

E[Xk,i −m|Fk]

= Z
−1/2
k

Zk∑

i=1

E[Xk,i −m]

= 0. (4.5)

Thus (ξ̂k,Fk)k=n0+1,...,n0+n is a finite sequence of martingale differences. Notice that Xk,i −m, i ≥ 1,
are centered and independent random variables. Thus, the following equalities hold

n0+n−1∑

k=n0

E[ξ̂2k+1|Fk] =

n0+n−1∑

k=n0

Z−1
k E[(Zk+1 −mZk)

2|Fk] =

n0+n−1∑

k=n0

Z−1
k E[(

Zk∑

i=1

(Xk,i −m))2|Fk]

=

n0+n−1∑

k=n0

Z−1
k ZkE[(Xk,i −m)2]

= nv2. (4.6)

Moreover, it is easy to see that

E[|ξ̂k+1|2+ρ|Fk] = Z
−1−ρ/2
k E[|Zk+1 −mZk|2+ρ|Fk]

= Z
−1−ρ/2
k E[|

Zk∑

i=1

(Xk,i −m)|2+ρ|Fk]. (4.7)

By Rosenthal’s inequality, we have

E[|
Zk∑

i=1

(Xk,i −m)|2+ρ|Fk] ≤ C ′
ρ

(( Zk∑

i=1

E(Xk,i −m)2
)1+ρ/2

+

Zk∑

i=1

E|Xk,i −m|2+ρ

)

≤ C ′
ρ

(
Z

1+ρ/2
k v2+ρ + ZkE|Z1 −m|2+ρ

)
.

Since the set of extinction of the process (Zk)k≥0 is negligible with respect to the annealed law P, we
have Zk ≥ 1 for any k. From (4.7), by the last inequality and the fact Zk ≥ 1, we deduce that

E[|ξ̂k+1|2+ρ|Fk] ≤ C ′
ρ(v

ρ + E|Z1 −m|2+ρ/v2)v2

= C ′
ρ(v

ρ + E|Z1 −m|2+ρ/v2)E[ξ̂2k+1|Fk]

= Cρ(v
ρ + EZ2+ρ

1 /v2)E[ξ̂2k+1|Fk]. (4.8)

Let ηk = ξ̂n0+k/
√
nv and Fk = Fn0+k. Then (ηk,Fk)k=1,...,n is a martingale difference sequences and

satisfies the conditions (4.1) and (4.2) with δn = 0 and γn = (Cρ(v
ρ + EZ2+ρ

1 /v2))1/ρ/
√
nv. Clearly,

it holds

Mn0,n =

∑n
k=1 ηk√∑n
k=1 η

2
k

.

11



Applying Lemma 4.1 to (ηk,Fk)k=1,...,n, we obtain the desired inequalities. �

5. Proof of Corollary 2.1

We first show that for any Borel set B ⊂ R,

lim sup
n→∞

1

a2n
lnP

(
Mn0,n

an
∈ B

)
≤ − inf

x∈B

x2

2
. (5.1)

When B = ∅, the last inequality is obvious, with − infx∈∅
x2

2 = −∞. Thus, we may assume that
B 6= ∅. Let x0 = infx∈B |x|. Clearly, we have x0 ≥ infx∈B |x|. Then, by Theorem 2.1, it follows that
for an = o(

√
n),

P

(
Mn0,n

an
∈ B

)
≤ P

(
|Mn0,n| ≥ anx0

)

≤ 2
(
1− Φ (anx0)

)
exp

{
Cρ

(
(anx0)

2+ρ

nρ/2
+

lnn√
n

+
(1 + anx0)

1−ρ(2+ρ)/4

nρ(2−ρ)/8

)}
.

Using the following inequalities

1√
2π(1 + x)

e−x2/2 ≤ 1− Φ(x) ≤ 1√
π(1 + x)

e−x2/2, x ≥ 0, (5.2)

and the fact that an → ∞ and an/
√
n → 0, we obtain

lim sup
n→∞

1

a2n
lnP

(
Mn0,n

an
∈ B

)
≤ −x20

2
≤ − inf

x∈B

x2

2
,

which gives (5.1).
Next, we prove that

lim inf
n→∞

1

a2n
lnP

(
Mn0,n

an
∈ B

)
≥ − inf

x∈Bo

x2

2
. (5.3)

When Bo = ∅, the last inequality is obvious, with − infx∈∅
x2

2 = −∞. Thus, we may assume that
Bo 6= ∅. Since Bo is an open set, for any given small ε1 > 0, there exists an x0 ∈ Bo, such that

0 <
x20
2

≤ inf
x∈Bo

x2

2
+ ε1.

Again by the fact that Bo is an open set, for x0 ∈ Bo and all small enough ε2 ∈ (0, |x0|], it holds
(x0 − ε2, x0 + ε2] ⊂ Bo. Without loss of generality, we may assume that x0 > 0. Clearly, we have

P

(
Mn0,n

an
∈ B

)
≥ P

(
Mn0,n ∈ (an(x0 − ε2), an(x0 + ε2)]

)

= P

(
Mn0,n ≥ an(x0 − ε2)

)
− P

(
Mn0,n ≥ an(x0 + ε2)

)
. (5.4)
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Again by Theorem 2.1, it is easy to see that for an → ∞ and an = o(
√
n),

lim
n→∞

P
(
Mn0,n ≥ an(x0 + ε2)

)

P
(
Mn0,n ≥ an(x0 − ε2)

) = 0.

From (5.4), by the last line and Theorem 2.1, it holds for all n large enough and an = o(
√
n),

P

(
Mn0,n

an
∈ B

)
≥ 1

2
P

(
Mn0,n ≥ an(x0 − ε2)

)

≥ 1

2

(
1− Φ (an(x0 − ε2))

)
exp

{
− Cρ

(
(anx0)

2+ρ

nρ/2
+

lnn√
n

+
(1 + anx0)

1−ρ(2+ρ)/4

nρ(2−ρ)/8

)}
.

Using (5.2) and the fact that an → ∞ and an/
√
n → 0, after some calculations, we get

lim inf
n→∞

1

a2n
lnP

(
Mn0,n

an
∈ B

)
≥ −1

2
(x0 − ε2)

2.

Letting ε2 → 0, we deduce that

lim inf
n→∞

1

a2n
lnP

(
Mn0,n

an
∈ B

)
≥ −x20

2
≥ − inf

x∈Bo

x2

2
− ε1.

Since that ε1 can be arbitrarily small, we get (5.3). Combining (5.1) and (5.3) together, we complete
the proof of Corollary 2.1. �

6. Proof of Theorem 2.2

In the proof of Theorem 2.2, we will make use of the following lemma (cf. Theorem 2.1 of Fan [8]),
which gives exact Berry-Esseen’s bounds for martingales.

Lemma 6.1. Assume the conditions of Lemma 4.1.

[i] If ρ ∈ (0, 1), then

sup
x∈R

∣∣∣P(
n∑

k=1

ηk ≤ x)− Φ (x)
∣∣∣ ≤ Cρ

(
γρn + δn

)
. (6.1)

[ii] If ρ = 1, then

sup
x∈R

∣∣∣P(
n∑

k=1

ηk ≤ x)− Φ (x)
∣∣∣ ≤ C

(
γn| log γn|+ δn

)
. (6.2)

Recall the martingale differences (ηk,Fk)k=1,...,n defined in the proof of Theorem 2.1. Then ηk
satisfies the conditions (4.1) and (4.2) with δn = 0 and γn = (Cρ(v

ρ +EZ2+ρ
1 /v2))1/ρ/

√
nv. Clearly, it

holds Hn0,n =
∑n

k=1 ηk. Applying Lemma 6.1 to (ηk,Fk)k=1,...,n, we obtain the desired inequalities. �
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7. Proof of Theorem 2.3

Define the generating function of Zn as fn(s) = EsZn, |s| ≤ 1. We have the following lemma, see
Athreya [1].

Lemma 7.1. If p1 > 0 then

lim
n→∞

fn(s)

pn1
=

∞∑

k=1

qks
k, (7.1)

where (qk, k ≥ 1) is defined via the generating function Q(s) =
∑∞

k=1 qks
k, 0 ≤ s < 1, the unique

solution of the functional equation

Q(f(s)) = p1Q(s), where f(s) =

∞∑

j=1

pjs
j, 0 ≤ s < 1,

subject to
Q(0) = 0, Q(1) = ∞, Q(s) < ∞ for 0 ≤ s < 1.

Lemma 7.2. It holds

P(Zn ≤ n) ≤ C1 exp{−nc0}. (7.2)

Proof. When p1 > 0, using Markov’s inequality and Lemma 7.1, we have for s0 =
1+p1
2 ∈ (0, 1),

n−1∑

k=1

P(Zn = k)Ik(x) ≤ P(Zn ≤ n) = P(sZn
0 ≥ sn0 ) ≤ s−n

0 fn(s0)

≤ C(
p1
s0

)nQ(s0)

= C1 exp{−nc0}, (7.3)

where C1 = CQ(s0) and c0 = ln(s0/p1). Notice that s0 ∈ (p1, 1), thus c0 > 0. Recall that p0 = 0.
When p1 = 0, we have Zn ≥ 2n, and (7.2) holds obviously for all n large enought.

In the proof of Theorem 2.3, we need the following technical lemma of Jing, Shao and Wang [10],
which gives a self-normalized Cramér moderate deviation result for iid random variables.

Lemma 7.3. Let (Yi)i≥1 be a sequence of iid and centered random variables. Assume that E|Y1|2+ρ <
∞ for some ρ ∈ (0, 1]. Let Sn =

∑n
i=1 Yi and V 2

n =
∑n

i=1 Y
2
i . Then

∣∣∣∣ ln
P(Sn/Vn ≥ x)

1− Φ(x)

∣∣∣∣ ≤ Cρ
1 + x2+ρ

nρ/2
(7.4)

uniformly for 0 ≤ x = o(
√
n) as n → ∞.
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7.1. Proof of the theorem

Now, we are in a position to prove Theorem 2.3. Recalling that Zn is the number of individuals of
the BPRE in generation n, and Xn,i, 1 ≤ i ≤ Zn, is the number of the offspring of the ith individual
in generation n. Denote

V (n)2 =

Zn∑

i=1

(Xn,i −m)2, X̄(n) =
Zn+1

Zn
, Ȳn =

Zn+1

n
. (7.5)

Then we have

Zn∑

i=1

(Xn,i − X̄(n))2 =

Zn∑

i=1

(
(Xn,i −m) + (m− X̄(n)

)2

= V (n)2 − Zn(m− X̄(n))2. (7.6)

By (7.6), it is easy to see that Tn can be rewritten as follows:

Tn =

∑Zn
i=1(Xn,i −m)√

V (n)2 − Zn(m− X̄(n))2
.

Notice that Xn,i, 1 ≤ i ≤ Zn, have the same distribution as Z1, and that Zn is independent of ξn. By
the total probability formula and the independence of Zn and (Xn,i)i≥1, we obtain, for all x ≥ 0,

P

(
Tn ≥ x

)
= P

(
Zn∑

i=1

(Xn,i −m) ≥ x
√
V (n)2 − Zn(m− X̄(n))2

)

=

∞∑

k=1

P(Zn = k)P

(
k∑

i=1

(Xn,i −m) ≥ x
√

V 2
k − k(m− Ȳk)2

)

=
∞∑

k=1

P(Zn = k)P

(
k∑

i=1

(Xn,i −m) ≥ x
√

V 2
k − k(m− Ȳk)2

)

=:
∞∑

k=1

P(Zn = k)Ik(x). (7.7)

By Lemma 7.1, we have

n−1∑

k=1

P(Zn = k)Ik(x) ≤ P(Zn ≤ n) ≤ C1 exp{−nc0}, (7.8)
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For k ≥ n, the tail probability Ik(x) can be divided into two parts: for all x ≥ 0,

Ik(x) = P

( k∑

i=1

(Xn,i −m) ≥ x
√

V 2
k − k(m− Ȳk)2, k(m− Ȳk)

2 < V 2
k (1 + xρ)/kρ/2

)

+ P

( k∑

i=1

(Xn,i −m) ≥ x
√

V 2
k − k(m− Ȳk)2, k(m− Ȳk)

2 ≥ V 2
k (1 + xρ)/kρ/2

)

≤ P

( k∑

i=1

(Xn,i −m) ≥ xVk

√
1− (1 + xρ)/kρ/2

)
+ P

(
k(m− Ȳk)

2 ≥ V 2
k (1 + xρ)/kρ/2

)

=: Ik,1(x) + Ik,2(x). (7.9)

We first give an estimation for Ik,1(x). Notice that (Xn,i−m)i≥1 are conditional independent with
respect to ξn. When k ≥ n, by self-normalized moderate deviations for centered random variables
(Xn,i −m)i≥1 (cf. Lemma 7.3), we have, for all 0 ≤ x = o(

√
n),

∣∣∣∣∣ ln
Ik,1(x)

1− Φ
(
x
√

1− (1 + xρ)/kρ/2
)
∣∣∣∣∣ ≤ C2

1 + x2+ρ

kρ/2
≤ C2

1 + x2+ρ

nρ/2
.

Using (5.2), we deduce that, for all x ≥ 0 and 0 ≤ ε ≤ 1,

1− Φ
(
x
√
1− ε

)

1− Φ (x)
= 1 +

∫ x
x
√
1−ε

1√
2π
e−t2/2dt

1− Φ (x)
≤ 1 +

1√
2π
e−x2(1−ε)/2xε

1√
2π(1+x)

e−x2/2

≤ 1 + C(1 + x2)εex
2ε/2

≤ exp
{
C(1 + x2)ε

}
. (7.10)

Using the last inequality, we get, for all k ≥ n and all 0 ≤ x = o(
√
n),

Ik,1(x) ≤
(
1− Φ(x

√
1− (1 + xρ)/kρ/2 )

)
exp

{
C2

1 + x2+ρ

nρ/2

}

≤
(
1− Φ(x)

)
exp

{
C2

1 + x2+ρ

nρ/2
+C(1 + x2)

1 + xρ

kρ/2

}

≤
(
1− Φ(x)

)
exp

{
C3

1 + x2+ρ

nρ/2

}
, (7.11)

which gives an estimation for Ik,1(x).
Next we give an estimation for Ik,2(x). Notice that

k(m− Ȳk)
2 =

1

k

( k∑

i=1

(Xn,i −m)

)2

.
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Thus, we have

Ik,2(x) = P

(( k∑

i=1

(Xn,i −m)
)2

≥ k1−ρ/2V 2
k (1 + xρ)

)

= P

(∣∣∣
k∑

i=1

(Xn,i −m)
∣∣∣ ≥ Vk

√
k1−ρ/2(1 + xρ)

)
.

Applying (7.4) to the centered random variables (±(Xn,i − m))i≥1, we obtain, for all k ≥ n and all
0 ≤ x = o(

√
n),

Ik,2(x) ≤ 2
(
1− Φ(

√
k1−ρ/2(1 + xρ) )

)
exp

{
C
1 + (

√
k1−ρ/2(1 + xρ) )2+ρ

√
k

}

≤ 2 exp

{
− 1

4
k1−ρ/2(1 + xρ)

}
,

where the last line follows by (5.2). Again by (5.2), we have, for all k ≥ n and all 0 ≤ x = o(
√
n),

Ik,2(x) ≤ 2 exp

{
− 1

4
n1−ρ/2(1 + xρ)

}

≤ C
1 + x

n

(
1− Φ(x)

)
, (7.12)

which gives an estimation for Ik,2(x).
Combining (7.9), (7.11) and (7.12) together, we get, for all k ≥ n and all 0 ≤ x = o(

√
n),

Ik(x) ≤
(
1−Φ(x)

)
exp

{
C4

1 + x2+ρ

nρ/2

}
. (7.13)

Returning to (7.7), using the last inequality and (7.8), we deduce that, for all 0 ≤ x = o(
√
n),

P

(
Tn ≥ x

)
≤

n−1∑

k=1

P(Zn = k)Ik(x) +

∞∑

k=n

P(Zn = k)Ik(x)

≤ C1 exp{−C0n}+
∞∑

k=n

P(Zn = k)
(
1− Φ(x)

)
exp

{
C4

1 + x2+ρ

nρ/2

}

≤ C1 exp{−C0n}+
∞∑

k=1

P(Zn = k)
(
1− Φ(x)

)
exp

{
C4

1 + x2+ρ

nρ/2

}

= C1 exp{−C0n}+
(
1− Φ(x)

)
exp

{
C4

1 + x2+ρ

nρ/2

}

≤
(
1− Φ(x)

)
exp

{
C5

1 + x2+ρ

nρ/2

}
, (7.14)

where the last line follows by (5.2).
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Next, we consider the lower bound of P
(
Tn ≥ x

)
. For Ik(x), we have the following estimation: for

all k ≥ n and all 0 ≤ x = o(
√
n),

Ik(x) = P

( k∑

i=1

(Xn,i −m) ≥ x
√
V 2
k − k(m− Ȳk)2

)

≥ P

( k∑

i=1

(Xn,i −m) ≥ xVk

)
. (7.15)

When k ≥ n, by self-normalized moderate deviations for iid random variables (cf. Lemma 7.3), we
have, for all 0 ≤ x = o(

√
n),

Ik(x) ≥
(
1− Φ(x)

)
exp

{
− C6

1 + x2+ρ

nρ/2

}
.

Returning to (7.7), we deduce that, for all 0 ≤ x = o(
√
n),

P

(
Tn ≥ x

)
≥

∞∑

k=n

P(Zn = k)Ik(x)

≥
(
1− Φ(x)

)
exp

{
− C6

1 + x2+ρ

nρ/2

} ∞∑

k=n

P(Zn = k)

≥
(
1− Φ(x)

)
exp

{
− C6

1 + x2+ρ

nρ/2

}(
1− P(Zn ≤ n)

)
.

Using Lemma 7.2, we get, for all 0 ≤ x = o(
√
n),

P

(
Tn ≥ x

)
≥

(
1− Φ(x)

)
exp

{
− C6

1 + x2+ρ

nρ/2

}(
1− C1e

−C0n
)

≥
(
1− Φ(x)

)
exp

{
− C9

1 + x2+ρ

nρ/2

}
. (7.16)

Combining (7.14) and (7.16) together, we obtain the desired inequality.

Applying (2.9) to
(
m − Xn,k

)
k≥1

, we find that (2.9) remains valid when P(Tn≥x)
1−Φ(x) is replaced by

P(Tn≤−x)
Φ(−x) . This completes the proof of Theorem 2.3. �

8. Proof of Corollary 2.4

Clearly, it holds

sup
x∈R

∣∣∣P
(
Tn ≤ x

)
− Φ (x)

∣∣∣

≤ sup
x>nρ/(8+4ρ)

∣∣∣P
(
Tn ≤ x

)
− Φ (x)

∣∣∣+ sup
0≤x≤nρ/(8+4ρ)

∣∣∣P
(
Tn ≤ x

)
− Φ (x)

∣∣∣

+ sup
−nρ/(8+4ρ)≤x≤0

∣∣∣P
(
Tn ≤ x

)
− Φ (x)

∣∣∣+ sup
x<−nρ/(8+4ρ)

∣∣∣P
(
Tn ≤ x

)
− Φ (x)

∣∣∣

=: TH1 + TH2 + TH3 + TH4. (8.1)
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By Theorem 2.3 and (5.2), it is easy to see that

TH1 = sup
x>nρ/(8+4ρ)

∣∣∣P
(
Tn > x

)
−
(
1− Φ (x)

)∣∣∣

≤ sup
x>nρ/(8+4ρ)

P
(
Tn > x

)
+ sup

x>nρ/(8+4ρ)

(
1− Φ (x)

)

≤ P
(
Tn > nρ/(8+4ρ)

)
+
(
1− Φ(nρ/(8+4ρ))

)

≤
(
1− Φ(nρ/(8+4ρ))

)
eC + exp

{
− 1

2
(nρ/(8+4ρ))2

}

≤ C1

nρ/2

and

TH4 ≤ sup
x<−nρ/(8+4ρ)

P
(
Tn ≤ x

)
+ sup

x<−nρ/(8+4ρ)

Φ (x)

≤ P
(
Tn ≤ −nρ/(8+4ρ)

)
+Φ(−nρ/(8+4ρ))

≤ Φ(−nρ/(8+4ρ))eC + exp
{
− 1

2
(nρ/(8+4ρ))2

}

≤ C2

nρ/2
.

By Theorem 2.3 and the inequality |ex − 1| ≤ |x|e|x|, we have

TH2 = sup
0≤x≤nρ/(8+4ρ)

∣∣∣P
(
Tn > x

)
−
(
1− Φ (x)

)∣∣∣

≤ sup
0≤x≤nρ/(8+4ρ)

(
1− Φ(x)

)∣∣∣eC(1+x2+ρ)/nρ/2 − 1
∣∣∣

≤ C

nρ/2
sup

0≤x≤nρ/(8+4ρ)

(
1− Φ(x)

)
(1 + x2+ρ)eC(1+x2+ρ)/nρ/2

≤ C3

nρ/2

and, similarly,

TH3 = sup
−n1/8≤x≤0

∣∣∣P
(
Tn ≤ x

)
− Φ (x)

∣∣∣

≤ sup
−n1/8≤x≤0

Φ(x)
∣∣∣eC(1+|x|3)(lnn)/

√
n − 1

∣∣∣

≤ C4

nρ/2
.

Applying the bounds of TH1, TH2, TH3 and TH4 to (8.1), we obtain the desired inequality. This
completes the proof of Corollary 2.4. �
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