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Abstract

Let (Zy)n>0 be a supercritical Galton-Watson process. Consider the Lotka-Nagaev estimator for the
offspring mean. In this paper, we establish self-normalized Cramér type moderate deviations and
Berry-Esseen’s bounds for the Lotka-Nagaev estimator. The results are believed to be optimal or near
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1. Introduction

A Galton-Watson process can be described as follows
Zn,
Zo=1, Znj=)Y Xni, forn>0, (1.1)
i=1
where X, ; is the offspring number of the i-th individual of the generation n. Moreover, the random
variables (X, ;)i>1 are independent of each other with common distribution law
P(X,,=k)=pr, keN, (1.2)

and are also independent of Z,,.
An important task in statistical inference of Galton-Watson processes is to estimate the average
offspring number of an individual m, usually termed the offspring mean. Clearly, it holds

oo
m=EZ =EX,; =Y kp.
k=0
Denote v the standard variance of Z, that is
v? =FE(Z, —m)>. (1.3)
To avoid triviality, assume that v > 0. For estimation of the offspring mean m, the Lotka-Nagaev

[11, 12] estimator Z,41/Z, plays an important role. For the Galton-Watson processes, Athreya [1]
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has established large deviations for the normalized Lotka-Nagaev estimator (see also Chu [4] for self-
normalized large deviations); Ney and Vidyashankar [14, 15] obtained sharp rate estimates for the
large deviation behavior of the Lotka-Nagaev estimator; Bercu and Touati [2] proved an exponential
inequalities for the Lotka-Nagaev estimator via self-normalized martingale method. The main pur-
pose of this paper is to establish self-normalized Cramér moderate deviations for the Lotka-Nagaev
estimator Z,1/Z, for the Galton-Watson processes.

The paper is organized as follows. In Section 2, we present Cramér moderate deviations for the
self-normalized Lotka-Nagaev estimator, provided that (Z,),>0 or (Xpi)i<i<z, can be observed. In
Section 3, we present some applications of our results in statistics. The rest sections devote to the
proofs of theorems.

2. Main results

2.1. (Zk)k>o0 can be observed

Assume that the total populations (Zj)r>0 of all generations can be observed. For any ng > 0, we
define

1 Z
ZZOTS VZi (75 —m)
Mugn no+n—1 Zk+1 9
Zk =ng _m)

We assume that the set of extinction of the process (Z)r>o is negligible with respect to the annealed
law P. Then M, ,, is well defined P-a.s. As (Zj)k=n,,...no+n can be observed, M, , can be regarded as
a time type self-normalized process for the Lotka-Nagaev estimator Zy1/Z. The following theorem
gives a self-normalized Cramér moderate deviation result for the Galton-Watson processes.

(2.1)

Theorem 2.1. Assume that EZ12+p < oo for some p € (0,1].
[i] If p € (0,1), then for all z € [0, o(y/n)),

g2 < (G + ) e
where C, depends only on the constants p,v and EZ2+p
[ii] If p =1, then for all x € [0, o(y/n)),
3 1/4
‘m% gC(%erTZJF%), (2.3)
where C' depends only on the constants v and IEZf’.
In particular, the inequalities (2.2) and (2.3) together implies that
% —1+o(1) (2.4)
uniformly for ng € N and for x € |0, o(np/(4+2p))) as n — 0o. Moreover, the same inequalities remain
valid when 7]?(114_%’("5:0) is replaced by 7(]\/["‘() ";) 2)



Notice that C), and C' do not depend on ng. Thus (2.4) holds uniformity in ng, which is of particular
interesting in applications. For instance, due to the uniformity, in (2.4) we can take ng as a function
of n.

Equality (2.4) implies that P(Mp,, < ) — ®(x) as n tends to co. Thus Theorem 2.1 implies
the central limit theory for My, ,,. Moreover, equality (2.4) states that the relative error of normal
approximation for M, , tends to zero uniformly for 2 € [0, o(n?/(4+2°))) as n — co.

Theorem 2.1 implies the following moderate deviation principle (MDP) result for the time type

self-normalized Lotka-Nagaev estimator.

Corollary 2.1. Assume the conditions of Theorem 2.1. Let (an)n>1 be any sequence of real numbers
satisfying a, — oo and a,//n — 0 as n — co. Then for each Borel set B,

2 1 M, 1 Mg §
—inf T < liminf—21n]P’<—°’ € B> < limsup—zln]P’<—°’ € B> < — inf x—, (2.5)

z€B° 2 n—oo Gy (079 n—oo Qp G, z€B
where B® and B denote the interior and the closure of B, respectively.

Remark 2.1. From (2.2) and (2.3), it is easy to derive the following Berry-Esseen bound for the
self-normalized Lotka-Nagaev estimator:

P(Myyn < ) —@(x)] < Cp

where C, depends only on the constants p,v and EZ12+p. When p > 1, by the self-normalized Berry-

Esseen bound for martingales in Fan and Shao [7], we can get a Berry-Esseen bound of order n" 5%,

The last remark gives a self-normalized Berry-Esseen bound for the Lotka-Nagaev estimator, while
the next theorem presents a normalized Berry-Esseen bound for the Lotka-Nagaev estimator. Denote

1 no+n—1 A
H, = E MZ(’““— )
no,n \/ﬁ’l) = k Zk m
=no

Notice that the random variables (X} ;)1<i<z, have the same distribution as Z;, and that (Xj;)1<i<z,
are independent of Zp. Then for the Galton-Watson processes, it holds

Zy,

E[(Zky1 — mZk)?|Zk] = B[O (Xki —m))?| 2] = Zpv”.
=1

It is easy to see that H,,, ,, = ZZSLZ_I ﬁ <Z§:1 — m). Thus H,, , can be regarded as a normal-
nv k

ized process for the Lotka-Nagaev estimator Zy1/Z;. We have the following normalized Berry-Esseen
bounds for the Galton-Watson processes.

Theorem 2.2. Assume the conditions of Theorem 2.1 are satisfied.



[i] If p € (0,1), then

sup |P(Hpyn < ) — ®(2)| < i, (2.7)
z€R 7 nP/?
where C, depends only on p,v and E212+p.
[ii] If p =1, then
1
sup |P(Hpyn < z) — @(2)| < o2 (2.8)

zeR - B \/ﬁ ’
where C depends only on v and EZ;.
Moreover, the same inequalities remain valid when Hy, , is replaced by —Hpy, p.

The convergence rates of (2.7) and (2.8) are same to the best possible convergence rates of the
Berry-Esseen bounds for martingales, see Theorem 2.1 of Fan [8] and its comment. Notice that Hy,
is a martingale with respect to the natural filtration.

2.2. (Xn,i)i<i<z, can be observed for some n

Assume that the offspring numbers (X, ;)1<i<z, of each individual in some generation n can be
observed. Denote

Zn
Zn (T —m)

In = Z" Z
\/Ziznl (Xn,i - Zl )2

the space type self-normalized process for the Lotka-Nagaev estimator Z,,11/Z,. The following theo-
rem gives a Cramér moderate deviation result for the space type self-normalized Lotka-Nagaev esti-
mator Tj,.

Theorem 2.3. Assume that pg = 0 and E212+p < oo for some p € (0,1]. Then

> 24p
n 2 Z0)| (71 Rk ) (2.9)
1— q)(ﬂj‘) np/2
uniformly for x € [0, o(y/n)) as n — oo. Moreover, the same equality remains valid when ]P;(Tgax)) 18

replaced by 7P(g?_§g;)x)

The condition pg = 0 means that each individual has at least one offspring. Moreover, it also
implies that Z, — oo a.s. as n — oo. Then by law of large numbers, we have Z”ZL—:l tends to m a.s. as
n — oo.

For the Galton-Watson processes, we refer to [1] for closely related results of Theorem 2.3, where
Athreya has established a precise large deviation rate for the Lotka-Nagaev estimator Z,,1/Z,.

Using the inequality |e* — 1| < e“|z| valid for |z| < C, from Theorem 2.3, we obtain the following
estimation for the relative error of normal approximation.



Corollary 2.2. Assume the conditions of Theorem 2.3. Then

P(T, > z) 14 2?tP
—F =1 — 2.1
—o@ o( P2 ) (2.10)
uniformly for x € [0, O(nP/4+20))) as n — oco. In particular, it implies that
]P’(Tn > x)
—= =1 1 2.11
ey = Lol (2.11)

uniformly for x € [0, o(n?/(42))) as n — co. Moreover, the same equalities remain valid when T}, is
replaced by —

Inequality (2.11) implies that the relative error of normal approximation for 7T, tends to zero
uniformly for = € [0, o(n/(4+2))). Clearly, the range of validity for (2.11) coincides with the self-
normalized Cramér moderate deviation result of Shao [17] for iid random variables.

By an argument similar to the proof of Corollary 2.1, Theorem 2.3 also implies the following
self-normalized MDP result.

Corollary 2.3. Assume the conditions of Theorem 2.3. Let (an)n>1 be any sequence of real numbers

satisfying a, — 0o and an/v/n — 0 as n — oo. Then for each Borel set B,

2 1 T 2
~inf < <liminf — 111]P’<— € B) < hmsup—Zln]P’<a— € B) < - inﬁ%, (2.12)

zeBe 2 n—00 CL2 (079 n—00 n r€eB

where B® and B denote the interior and the closure of B, respectively.
From Theorem 2.3, we get the following self-normalized Berry-Esseen bound for T;,.

Corollary 2.4. Assume the conditions of Theorem 2.3. Then

sup |P(T,, < x) — ®(x)| < Co

sup < (2.13)

where C, does not depend on n.

Clearly, the convergence rate for the Berry-Esseen bound of Corollary 2.4 is consistent with the
classical case of iid random variables (cf. Bentkus and Goétze [3]), and therefore it is optimal under
the stated conditions.

Remark 2.2. Following the proof of Theorem 2.3, the results (2.9)-(2.13) remain true when T, is

replaced by 2,z /Z )
= n n+1 -

S

3. Applications

Cramér moderate deviations certainly have a lot of applications in statistics.



3.1. p-value for hypothesis testing

Self-normalized Cramér moderate deviations can be applied to hypothesis testing of m for the
Galton-Watson processes. When (Zj;)k=n,,... no+n can be observed, we can make use of Theorem 2.1 to
estimate p-value. Assume that EZ1+p < oo for some 0 < p < 1, and that m > 1. Let (2x)k=nq,... no+n
be an observation of (Zj)k=n,....ng+n- In order to estimate the offspring mean m, we can make use of
the Harris estimator [2] given by

no+n—1
~ Zk ng k41
My = Zno—l—n IZ
k=ng

Then observation for the Harris estimator is

~ EZ“TJJ* Zk+1
DY AP
By Theorem 2.1, it is easy to see that
— = =1 1 d Lt =1 1 3.1

uniformly for z € [0, 0(n?/(*+20))). Notice that 1 — ® (z) = ® (—x). Thus, by (3.1), the probability
P(Myyn > |Myl|) is almost equal to 2@ (—|my,|), where

_ e Va2 — )

\/ZZOJZZL 2k (2h11/ 2K — Mip)?

3.2. Construction of confidence intervals

3.2.1. The data (Zy)k>0 can be observed
Cramér moderate deviations can be also applied to construction of confidence intervals of m. We
make use of Theorem 2.1 to construct confidence intervals.

Proposition 3.1. Assume that EZl2+p < 0o for some p € (0,1]. Let ky, € (0,1). Assume that

|Inky| = o(np/(2+p)). (3.2)
Let
no+n—1 no+n—1
Angn = ( Z \/_> 1_"€n/2 2 Z Zka
k=no k=mno
2n0+n—1 no+n— 1Zk . no+n—1
b = 207 1 =m0/2)* Y Zen—2( D ¢i)( > V7).
k=no k=no k=no

no+n—1 no+n—1 72

Zk+1)\? _
Cnon = (g;o \/ZL:) — (@ 1(1—/-;”/2)) Z Zl

k=ng



Then [Ang ns Bngnl, with

Ano,n

and

Bno,n

is a 1 — K, confidence interval for m, for n large enough.
Proof. Notice that 1 — ® () = ® (—z). Theorem 2.1 implies that

P(Mpy.pn > )
1—®(z)

]P)(Mno,n < _517)

=1+0(1) and -3 @)

= 1+0(1) (3.3)

uniformly for 0 < z = o(n?/(4+2P)) see (2.4). When &, satisfies the condition (3.2), the upper (,/2)th
quantile of a standard normal distribution satisfies

q)_l(l - K/n/Z) = O(\/ |1H/€n|),

which is of order o(np/ (4+2p)). Then applying (3.3) to the last equality, we complete the proof of
Proposition 3.1. Notice that A, , and B, , are solutions of the following equation

SRt T (Zsr | 2 — )
VIR 2 Z [ 2 — )

This completes the proof of Proposition 3.1. O

=311 - k,/2).

3.2.2. The data (Xy)1<i<z, can be observed
When (X, ;)1<i<z, can be observed, we can make use of Corollary 2.2 to construct confidence
intervals.

Proposition 3.2. Assume that EZl2+p < oo for some p € (0,1]. Let ky, € (0,1). Assume that

|Ink,| = o(np/(2+p)). (3.4)
Let
(1 =k /2) | & Zi1 sy

i=1
Then [An, By, with

Zn, Zn,
A, = Zzl — A, and B,= Zzl + A,

1s a 1 — Kk, confidence interval for m, for n large enough.



Proof. Corollary 2.2 implies that

P(T,, > z)
1—®(x)

P(T, < —x)
+o(1) and -3 (@) +0(1) (3.5)
uniformly for 0 < x = o(n?/(**2)). When &, satisfies the condition (3.2), the upper (k,/2)th quantile
of a standard normal distribution satisfies 1 (1—k, /2) = O(y/|In k,|), which is of order o(np/ (4+2p)).
Then applying (3.5) to the last equality, we complete the proof of Proposition 3.2. O
When the risk probability %, goes to 0, we have the following more general result.

Proposition 3.3. Assume that EZ12+’) < oo for some p € (0,1]. Let ky, € (0,1) such that k, — 0.
Assume that

|Inkp| = o(V/n). (3.6)
Let

A, = MWJ in:(Xn,z - Zns1 )2

Zy, £ Zy,

Then [An, By, with

Zn Zn
An:Z—:l—An and B, = Z:1+An,

is a 1 — K, confidence interval for m, for n large enough.
Proof. By Theorem 2.3, we have

P(T,, > z)

1+ x2+p} an P(T, < —x)
1—®(z)

= exp {HC’ o

uniformly for 0 < z = o(y/n), where 6 € [—1, 1]. Notice that

1 25 x2 2
1—(I>(xn)~xn\/%e n/ :exp{—7(l+gln(:ﬂn\/2ﬂ))}, Ty — 00.

Since k,, — 0, the last line implies that the upper (k,/2)th quantile of the distribution

1= (1-0 (@) exp e 0T

converges to /2| In(k,/2)|, which is of order o(y/n) as n — co. Then applying (3.7) to T,,, we complete
the proof of Proposition 3.3. O



3.2.3. The parameter v* is known
When v? is known, we can apply normalized Berry-Esseen bounds (cf. Theorem 2.2) to construct
confidence intervals.

Proposition 3.4. Assume that EZ2+p < 0o for some p € (0,1]. Let ky, € (0,1). Assume that

!111 /in‘ = o(logn). (3.8)
Then [Ay, By, with
> e Zie1 /N 2y — \/77v<1>_1(1 — kn/2)

2 VZ

A, =

and
S v Zit /N2y + ﬁv@‘l(l — n/2)
+ )
Y hiny VZ
1s a 1 — Kk, confidence interval for m, for n large enough.

Proof. Theorem 2.2 implies that

B, =

]P)(Hno n 2 l‘) ]P)(Hno n < _33)
—_ " = = 1 1 _— = 1 1 .
1= ® () +o0(1) and -3 () +o(1) (3.9)
uniformly for 0 < x = o(y/logn). The upper (k,/2)th quantile of a standard normal distribution
satisfies
Y1 — ky/2) = O(/|Inky)|),
which, by (3.8), is of order o(y/logn). Proposition 3.4 follows from applying (3.9) to Hy, p. O

3.3. An infectious disease model
An infectious disease model (Z,,),>0 may be described as follows:

Zo=1, Zni1= 2y +§:x”, for n > 0, (3.10)

where Z,, stands for the total population of patients with infectious disease at time n, and Y, ; is
the number of patients infected by the i-th individual of Z,, in a unit time (for instance, one day).
Moreover, we assume that the random variables (Y),;);>1 are iid random variables with common
distribution law

P(Y,:=k)=pr, keN, (3.11)

and are also independent to Z,,. Denote by r the average number of patients infected by an individual
patient in a unite time, that is

o
r=EY,;=> kp
k=0
Denote by v the standard variance of Y,, ;,n,% > 1, then v is also the standard variance of Z1, that is

= E(Z, —m)>.

To avid triviality, assume that v > 0. We are interested in the estimation of r.



Proposition 3.5. Assume that EZl2+p < oo for some p € (0,1]. Let ky, € (0,1). Assume that
|In k| = o(np/(2+p)). (3.12)

Let Ayyn and By, be defined in Proposition 3.1. Then [Apyn — 1, Bpyn — 1] is a 1 — K, confidence
interval for r, for n large enough.

Proof. 1t is easy to see that (3.10) can be rewritten in the form of (1.1), with X,,; = 1 +Y,, ;. Thus,
we have m = 1+ r. Then Proposition 3.5 follows by Proposition 3.1. O

4. Proof of Theorem 2.1

In the proof of Theorem 2.1, we will make use of the following lemma (cf. Corollary 2.3 of Fan et
al. [9]), which gives self-normalized Cramér moderate deviations for martingales.

Lemma 4.1. Let (g, Fi)k=1,...n be a finite sequence of martingale differences. Assume that there

exist a constant p € (0,1] and numbers v, > 0 and 6, > 0 satisfying Vn,0n, — 0 such that for all
1<1<n,

El|n|**?| Fre-1] < VB | Fr-1] (4.1)
and .
H ZE[nz\fk_l] - 1H <& as (4.2)
k=1 o
Denote n
Vv, = D ket Tk
\/ 22:1 771%
and
71@(2—;))/4
An(z, p) =

BRI

[i] If p € (0,1), then for all 0 < x = o(y; 1),

n

'l P(V,, > x)
"T70 ()

< o2+ 204 (1+-0) (5,4 3n(e) ). (13)

[ii] If p=1, then for all 0 < z = o(7; 1),

P(V, > z)

itz

< C'(m?”yn + 2202 + (1 + ) <5n + Yol In Y| + Fn (2, 1))) (4.4)

Now, we are in position to prove Theorem 2.1. Denote

ki1 =V Zk(Zis1/Zx — m),

10



Tno = {0,Q} and §y11 = 0{Z; : no < i < k+ 1} for all kK > ng. Notice that X}, ; is independent of Zj.
Then it is easy to verify that

Zy;
B3] = 2 ElZin - mZuldil = 2, Y ElXp — mISi
=1

Zy,
—1/2
= Z,'?3 ElXy, —
i=1
= 0. (4.5)
Thus (ék,gk)k:no+17___7no+n is a finite sequence of martingale differences. Notice that X} ; —m,i > 1,

are centered and independent random variables. Thus, the following equalities hold

no+n—1 no+n—1 no+n—1

N7 EGLS] = Y. Zi'El(Zk —mZ) S = Y. Z'El( Zxk,z-—m»?\sk]
k=no k=no k=ng
no+n—1

= > Z;'ZE[(Xk; —m)?

k=ng

= mt (4.6)
Moreover, it is easy to see that

Ele 1”13 = 2, PR Ziyr — mZi7 5]

Zy,
2 PRI (X — m) S (4.7)
=1

By Rosenthal’s inequality, we have

\Z Xii —m)| >3]

IN

! < 2 1+p/2 < 2+p
c <ZE(XM —m) ) +3 EXy —ml
i=1 i=1
< G < 2, + 24817, - m\2+p>'

Since the set of extinction of the process (Zg)i>0 is negligible with respect to the annealed law P, we
have Zj, > 1 for any k. From (4.7), by the last inequality and the fact Z; > 1, we deduce that

E[léks1>*?18k] < Ch(v° +E[Zy — m|*T /o)
= Cp(v* +E|Z) — m|**? VP E[E 1 [S4]
= C,(v* +EZP 0BG |8k (4.8)
Let n, = én0+k/\/ﬁv and Fi = §no+k. Then (ng, Fi)k=1,..n is a martingale difference sequences and
satisfies the conditions (4.1) and (4.2) with ¢, = 0 and v, = (C,(v* + EZ:1P Jv2))Ve /\/nv. Clearly,

it holds N
My = D ket Tk

n — - 5 .
\/ > k=1 i

11



Applying Lemma 4.1 to (ng, Fi)k=1,...n, We obtain the desired inequalities
5. Proof of Corollary 2.1

We first show that for any Borel set B C R,

1 Mo n 2
limsup—Zln]P’<$ € B> < —inf . (5.1)
n—oo Oy anp, z€B 2

When B = (), the last inequality is obvious, with —inf ¢y %

—o00. Thus, we may assume that
B # 0. Let zy = infyep |z|. Clearly, we have xo > inf _p|x|. Then, by Theorem 2.1, it follows that
for a, = o(v/n),

Mn n
]P’<TO’ € B> < ]P’(]Mno,n\ > anx0>
(anzo)?t?  Inn (14 apzo)'—PEHe)/4
< 2(1- @ (aa0) ) exp {CP<W Vi T e -
Using the following inequalities
;e_mz/z <1—-9(z) < ;e_mz/2 x>0 (5.2)
V2r(l+ ) - V(1 + ) T '
and the fact that a,, — oo and a,,/v/n — 0, we obtain
1 Mn n 2 2
limsup - InP{ —>* ¢ B| < % < - inﬁx—,
n—o00 CL% an 2 z€B 2

which gives (5.1).

Next, we prove that

1 My 2
1iminf—21n19>< on o B> > inf 2 (5.3)
n—oo a2 an z€Be 2

. _ . . . 2
When B° = (), the last inequality is obvious, with —inf,cp %

—00. Thus, we may assume that
B° # (). Since B° is an open set, for any given small £; > 0, there exists an zy € B°, such that

2 2

X X
0< 0 < inf 2 gy,
5 S M. T

Again by the fact that B¢ is an open set, for zp € B? and all small enough 9 € (0,|z¢|], it holds
(xo — €2, 20 + 2] C B°. Without loss of generality, we may assume that zo > 0. Clearly, we have

ng,n

P(T S B> > P<Mn0,n € (an(z0 — £2), an(wo + 62)]>

]P’<Mno,n > ap(xo — 52)> - ]P’<Mno,n > ap(xo + 62)>. (5.4)

12



Again by Theorem 2.1, it is easy to see that for a,, — oo and a,, = o(y/n),

. P(Mno,n > an(xo + 52))
lim

=0.
n—o0 ]P(Mno,n 2 an(xO - 52))

From (5.4), by the last line and Theorem 2.1, it holds for all n large enough and a,, = o(y/n),

My n 1
]P’<$ € B> > §]P’<Mn0m > an(xo — 52)>

an

1 (aniﬂo)?-i-p Inn (1 + an$0)1—p(2+p)/4

Using (5.2) and the fact that a,, — oo and a,//n — 0, after some calculations, we get

1 M, 1
liminf—lnp<ﬂ € B> > —§(x0 — )2

n— o0 CL% (079

Letting €2 — 0, we deduce that

1 M z2 . z2
liminf—21nIP’ —mh e B} > —29 > _ inf — — 1.
n—oo  az an x€Be 2

Since that £; can be arbitrarily small, we get (5.3). Combining (5.1) and (5.3) together, we complete
the proof of Corollary 2.1. O
6. Proof of Theorem 2.2

In the proof of Theorem 2.2, we will make use of the following lemma (cf. Theorem 2.1 of Fan [8]),
which gives exact Berry-Esseen’s bounds for martingales.

Lemma 6.1. Assume the conditions of Lemma 4.1.

[i] If p € (0,1), then

sup [P(3_ i < ) = ® (2) | < Gy (1 +n). (6.1)
re k=1
[ii] If p =1, then

sug IP’(Z e <) — d(x) ‘ <C <7n| log vn| + 5n). (6.2)

Recall the martingale differences (1, Fi)r=1,..n defined in the proof of Theorem 2.1. Then 7
satisfies the conditions (4.1) and (4.2) with 6, = 0 and vy, = (C,(v” + EZ12+p/112))1/p/\/ﬁfu. Clearly, it
holds Hyy o = Yy M- Applying Lemma 6.1 to (1, Fi)k=1,...n, we obtain the desired inequalities. O

13



7. Proof of Theorem 2.3

Define the generating function of Z,, as f,(s) = Es?", |s| < 1. We have the following lemma, see
Athreya [1].
Lemma 7.1. If p1 > 0 then
lim f"—(j) = qusk, (7.1)
k=1

where (qi, k > 1) is defined via the generating function Q(s) = > .po; qxs®,0 < s < 1, the unique
solution of the functional equation

Q(f(s)) =p1Q(s),  where f(s)=> p;js’, 0<s<1,
j=1

subject to
Q(0) =0, Q1) = oo, Q(s) < oo for0<s<1.

Lemma 7.2. It holds
P(Z,<n) < Cjexp{—nco}. (7.2)

Proof. When p; > 0, using Markov’s inequality and Lemma 7.1, we have for sy = Héi € (0,1),

n—1
> P(Zn=k)(x) < P(Zy<n)=P(si > s5) < 55" fuls0)
k=1
< C(2)'QUso)
= Crexp{—nc}, (7.3)

where C1 = CQ(sp) and ¢p = In(so/p1). Notice that s9 € (p1,1), thus ¢ > 0. Recall that py = 0.
When p; = 0, we have Z,, > 2", and (7.2) holds obviously for all n large enought.

In the proof of Theorem 2.3, we need the following technical lemma of Jing, Shao and Wang [10],
which gives a self-normalized Cramér moderate deviation result for iid random variables.

Lemma 7.3. Let (Y;)i>1 be a sequence of iid and centered random variables. Assume that E|Y1[>TP <
oo for some p € (0,1]. Let S, =Y. Y; and V.2 =S | Y2, Then

P(S,/Vy > ) oo Lt x2te

n 1—®(x) |~ 7 ne

(7.4)

uniformly for 0 < x = o(y/n) as n — oo.
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7.1. Proof of the theorem

Now, we are in a position to prove Theorem 2.3. Recalling that Z,, is the number of individuals of
the BPRE in generation n, and X, ;, 1 <17 < Z,, is the number of the offspring of the ith individual
in generation n. Denote

VP =S (Xui—m)?,  X(n)= % ¥, = % (7.5)
i=1 n
Then we have
Zn ~ Zn ~
S XKni = Xm)? = 3 (Xni—m) + (m—X(n))
=1 i=1
= V(n)2 — Zp(m — X(n))z. (7.6)

By (7.6), it is easy to see that T}, can be rewritten as follows:

Eizznl(Xmi —m) .
VV()? = Z,(m — X(n))?

T, =

Notice that X, ;, 1 <i < Z,, have the same distribution as Z1, and that Z,, is independent of §,. By
the total probability formula and the independence of Z,, and (X, ;);>1, we obtain, for all > 0,

]P’(Tn > 3:) = %(an —m) > :E\/V(TL)2 — Zp(m — X(n))2>

i=1

1=1

P(
o) k
= Z]P’(Zn = k‘)IP’(Z(Xm —m) > x\/VkQ —k(m — Yk)2>
k=1
2.

k
P(Z, = k‘)IP’(Z(Xm —m) > 3:\/1/162 — k(m — Yk)2>

k=1 =1
=1 Y P(Zy = k)I(x). (7.7)
k=1
By Lemma 7.1, we have
n—1
> P(Zy = k) Ii(z) <P(Z, < n) < Crexp{-nco}, (7.8)
k=1
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For k > n, the tail probability I;(z) can be divided into two parts: for all x > 0,

k
Ii(z) = P(Z(Xn,i —m) 2 e[V~ k(m — V), k(m — Vi) < V2(L+ xﬂ)/kw)
=1

k
(00— m) 2 0V~ K — T K= Ya)? 2 V(14 a0) 1)
=1

(2

< P<§:(Xn,i —m) > aViy/1- (1+ :nﬂ)/k:ﬂ/2> + IP’(’f(m = Vi) 2 V(1 + ”"p)/km)

1
= Ip1(z) + I 2(z). (7.9)

We first give an estimation for I, ; (). Notice that (X, ; —m);>1 are conditional independent with
respect to &,. When k& > n, by self-normalized moderate deviations for centered random variables
(Xpn,i —m);>1 (cf. Lemma 7.3), we have, for all 0 < z = o(y/n),

I Ij 1 () 1+ z2tr 14 z2tr
1—®(ay/1— (Ltar) kel )|~ ° ko2 2T
Using (5.2), we deduce that, for all z >0 and 0 <e <1,
1-® (2T —¢) Joi= \/%e_tzﬂdt #e—ﬂ(l—a)/%g
o - T item St
! v \/g(l—l—x)e
< 14001 +a?)ee s/
< exp{O(1+a7)e . (7.10

Using the last inequality, we get, for all £ > n and all 0 < z = o(y/n),

1+ z2tr
< — - /2 -
Ipa(x) < (1 <I>(3:\/1 (1+xr)/kP )) exp {02 o }
1+ x2te o 1+ P
< (1 - <I>(x)> exp {CQW + C(1 4 z%) o/ }
14 z2tr
< (1—<I>(x)> eXp{C'gW}, (7.11)
which gives an estimation for Iy ;(x).
Next we give an estimation for Ij, »(x). Notice that
1/ 2
e '
k(m = Y)? = - <;(Xm m)>
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Thus, we have

Ik72(az) =
1

(‘ k ( ,-—m)‘ zvm/kl—p/2(1+xp)>.
=1

1=

~

]P’((Zk:(Xn,i - m))2 > kl—p/2vk2(1 " xp)>
P X,

Applying (7.4) to the centered random variables (£(X,; —m));>1, we obtain, for all £ > n and all

0 <z =o(vn),

Ipa(z) < 2(1 — ®(\/k1P/2(1 + zP) )) exp {Cl + (W k1=P/2(1 4 P) )2+p}

Vk
< 2exp{ - ik‘l_p/z(l —l—xp)},

where the last line follows by (5.2). Again by (5.2), we have, for all k > n and all 0 < z = o(y/n),

Iio(x) < 2exp{—in1_p/2(l+x”)}

< C1+x

(1 - @(m)), (7.12)

which gives an estimation for Iy o(x).
Combining (7.9), (7.11) and (7.12) together, we get, for all £k > n and all 0 < z = o(y/n),

1 +x2+P
Ii(z) < (1 - cp(;p)) exp {C4W}‘ (7.13)
Returning to (7.7), using the last inequality and (7.8), we deduce that, for all 0 < z = o(y/n),
n—1 e’}
P(T,22) < D P(Zy=k)2)+ Y P(Zy = k)i(x)
k=1 k=n
o0 14 2+p
< Crexp{—Con}+ Y P(Z, =k) (1 - ‘P(x)> exp {C4Ta;2}
k=n
0 1 + 24p
< Crexp{~Con} + Y B(Zy = b)(1 - 8(@) ) exp {Ci—— |
k=1
1+ z2tr
= Crexp{—Con}+ (1 - @(m)) exp {CA‘W}
14 z2tr
< (1 - <I>(x)> exp {C‘”’W}’ (7.14)

where the last line follows by (5.2).
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Next, we consider the lower bound of P(T}, > z). For I;(z), we have the following estimation: for
all kK > n and all 0 < z = o(y/n),

k
I(x) = P(Z(Xmi —m) > $\/Vk2 — k(m — Yk)2>

i=1

v

P(Ek:(Xm- —m) > :gvk>. (7.15)

i=1

When k > n, by self-normalized moderate deviations for iid random variables (cf. Lemma 7.3), we
have, for all 0 <z = o(y/n),

Ii(x) > (1 - <I>(x)> exp{ - 061—;7?}.

Returning to (7.7), we deduce that, for all 0 < z = o(y/n),

]P’(Tn > g;> > i P(Z, = k)I1(z)
k=n

> (1 — <I>(x)> eXp{ — C’Gl—;pia;zﬂ)} gP(Zn =k)
1 +$2+p -

> (1 - @(m)) exp{ — Cg
Using Lemma 7.2, we get, for all 0 < x = o(y/n),
((520) = (- s)on( LS o)

<1 - @(:p)) exp { - OQLW}.

np/2
Combining (7.14) and (7.16) together, we obtain the desired inequality.

}(1 P2, < n)).

nP/2

v

(7.16)

Applying (2.9) to (m — Xn,k) 1 We find that (2.9) remains valid when ]Pi(fg%ﬁ)) is replaced by
%. This completes the proof of Theorem 2.3. 0

8. Proof of Corollary 2.4

Clearly, it holds
sup |P(T, < z) — @ () ‘
r€R

< sup
x>nr/(8+4p)

P(T, < z) —@(w)‘—i— sup
0<z<nr/(8+4p)

+ sup ‘]P’(Tn <z)—(z) ‘ + sup

—npr/(8+4p) <x<0 m<—n/)/(8+4p)

=: TH1+TH2—|—TH3—|—TH4 (81)

P(T, < z) —@(w)‘
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By Theorem 2.3 and (5.2), it is easy to see that

and

TH, =
<
<
<
<

TH, <
<
<
<

sup P(Tn>x)—(1—<1>(:n))‘

x>np/(8+4p)

sup P(T, >z)+ sup (1—@(x))

x>nﬂ/(8+4p) x>nﬂ/(8+4p)
]P’(Tn > nP/ (8+4p)) + (1 _ q)(np/(8+4p)))
(1 — ®(n?/E+99))cC 1 exp { _ %(np/<8+4p>)2}

G
nP/2

suap  P(T, <=z)+ sup D (x)

x<—np/(8+4ﬂ) x<—np/(8+4ﬂ)

]P’(Tn < _np/(8+4p)) + (I)(_np/(8+4p))
1
B(—nP/BT10)C | exp{ _ §(np/(8+4p))2}

C
np/2 '

By Theorem 2.3 and the inequality |e® — 1| < |z|el*|, we have

and, similarly,

TH,

IN

IN

0<a<nr/(8+4p)

sup

P(T, > a) ~ (1-0(2))|

sup <1 - <I>(:17)) ‘ec(HxHﬂ)/"pm - 1‘

0<a<nr/(8+4p)

C 220 /np/2
7 sup <1 — (ID(a:)) (1 4 22tr)eC0Fa=0)/n
0<z<nr/(8+4p)
Cs
np/2
TH; = sup ‘]P’(Tn <z)—®(z) ‘

_nl/SSxSO

< sup @(x)‘ecuﬂxmunn)/ﬁ_1‘
_nl/SSxSO
Cy

< —.
= pe/2

Applying the bounds of THy, THy,THs and T Hy4 to (8.1), we obtain the desired inequality. This
completes the proof of Corollary 2.4.
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