Self-normalized Cramér moderate deviations for a supercritical Galton-Watson process

Xiequan Fan^a, Qi-Man Shao^b

^aCenter for Applied Mathematics, Tianjin University, Tianjin 300072, China ^bDepartment of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518000, China.

Abstract

Let $(Z_n)_{n\geq 0}$ be a supercritical Galton-Watson process. Consider the Lotka-Nagaev estimator for the offspring mean. In this paper, we establish self-normalized Cramér type moderate deviations and Berry-Esseen's bounds for the Lotka-Nagaev estimator. The results are believed to be optimal or near optimal.

Keywords: Lotka-Nagaev estimator; offspring mean; Self-normalized processes; Cramér moderate deviations; Berry-Esseen's bounds

2000 MSC: primary 60J80; 60F10; secondary 62F03; 62F12

1. Introduction

A Galton-Watson process can be described as follows

$$Z_0 = 1, \qquad Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}, \quad \text{for } n \ge 0,$$
 (1.1)

where $X_{n,i}$ is the offspring number of the *i*-th individual of the generation *n*. Moreover, the random variables $(X_{n,i})_{i>1}$ are independent of each other with common distribution law

$$\mathbb{P}(X_{n,i}=k) = p_k, \quad k \in \mathbb{N}, \tag{1.2}$$

and are also independent of Z_n .

An important task in statistical inference of Galton-Watson processes is to estimate the average offspring number of an individual m, usually termed the offspring mean. Clearly, it holds

$$m = \mathbb{E}Z_1 = \mathbb{E}X_{n,i} = \sum_{k=0}^{\infty} kp_k.$$

Denote v the standard variance of Z_1 , that is

$$v^2 = \mathbb{E}(Z_1 - m)^2. \tag{1.3}$$

To avoid triviality, assume that v > 0. For estimation of the offspring mean m, the Lotka-Nagaev [11, 12] estimator Z_{n+1}/Z_n plays an important role. For the Galton-Watson processes, Athreya [1]

has established large deviations for the normalized Lotka-Nagaev estimator (see also Chu [4] for selfnormalized large deviations); Ney and Vidyashankar [14, 15] obtained sharp rate estimates for the large deviation behavior of the Lotka-Nagaev estimator; Bercu and Touati [2] proved an exponential inequalities for the Lotka-Nagaev estimator via self-normalized martingale method. The main purpose of this paper is to establish self-normalized Cramér moderate deviations for the Lotka-Nagaev estimator Z_{n+1}/Z_n for the Galton-Watson processes.

The paper is organized as follows. In Section 2, we present Cramér moderate deviations for the self-normalized Lotka-Nagaev estimator, provided that $(Z_n)_{n\geq 0}$ or $(X_{n,i})_{1\leq i\leq Z_n}$ can be observed. In Section 3, we present some applications of our results in statistics. The rest sections devote to the proofs of theorems.

2. Main results

2.1. $(Z_k)_{k>0}$ can be observed

Assume that the total populations $(Z_k)_{k\geq 0}$ of all generations can be observed. For any $n_0 \geq 0$, we define

$$M_{n_0,n} = \frac{\sum_{k=n_0}^{n_0+n-1} \sqrt{Z_k} (\frac{Z_{k+1}}{Z_k} - m)}{\sqrt{\sum_{k=n_0}^{n_0+n-1} Z_k (\frac{Z_{k+1}}{Z_k} - m)^2}}.$$
(2.1)

We assume that the set of extinction of the process $(Z_k)_{k\geq 0}$ is negligible with respect to the annealed law \mathbb{P} . Then $M_{n_0,n}$ is well defined \mathbb{P} -a.s. As $(Z_k)_{k=n_0,\ldots,n_0+n}$ can be observed, $M_{n_0,n}$ can be regarded as a time type self-normalized process for the Lotka-Nagaev estimator Z_{k+1}/Z_k . The following theorem gives a self-normalized Cramér moderate deviation result for the Galton-Watson processes.

Theorem 2.1. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$.

[1] If
$$\rho \in (0, 1)$$
, then for all $x \in [0, o(\sqrt{n}))$,

$$\left| \ln \frac{\mathbb{P}(M_{n_0, n} \ge x)}{1 - \Phi(x)} \right| \le C_{\rho} \left(\frac{x^{2+\rho}}{n^{\rho/2}} + \frac{(1+x)^{1-\rho(2+\rho)/4}}{n^{\rho(2-\rho)/8}} \right), \tag{2.2}$$

where C_{ρ} depends only on the constants ρ, v and $\mathbb{E}Z_1^{2+\rho}$.

[ii] If $\rho = 1$, then for all $x \in [0, o(\sqrt{n}))$,

$$\left|\ln\frac{\mathbb{P}(M_{n_0,n} \ge x)}{1 - \Phi(x)}\right| \le C\left(\frac{x^3}{\sqrt{n}} + \frac{\ln n}{\sqrt{n}} + \frac{(1+x)^{1/4}}{n^{1/8}}\right),\tag{2.3}$$

where C depends only on the constants v and $\mathbb{E}Z_1^3$.

In particular, the inequalities (2.2) and (2.3) together implies that

$$\frac{\mathbb{P}(M_{n_0,n} \ge x)}{1 - \Phi(x)} = 1 + o(1) \tag{2.4}$$

uniformly for $n_0 \in \mathbb{N}$ and for $x \in [0, o(n^{\rho/(4+2\rho)}))$ as $n \to \infty$. Moreover, the same inequalities remain valid when $\frac{\mathbb{P}(M_{n_0,n} \ge x)}{1-\Phi(x)}$ is replaced by $\frac{\mathbb{P}(M_{n_0,n} \le -x)}{\Phi(-x)}$.

Notice that C_{ρ} and C do not depend on n_0 . Thus (2.4) holds uniformity in n_0 , which is of particular interesting in applications. For instance, due to the uniformity, in (2.4) we can take n_0 as a function of n.

Equality (2.4) implies that $\mathbb{P}(M_{n_0,n} \leq x) \to \Phi(x)$ as n tends to ∞ . Thus Theorem 2.1 implies the central limit theory for $M_{n_0,n}$. Moreover, equality (2.4) states that the relative error of normal approximation for $M_{n_0,n}$ tends to zero uniformly for $x \in [0, o(n^{\rho/(4+2\rho)}))$ as $n \to \infty$.

Theorem 2.1 implies the following moderate deviation principle (MDP) result for the time type self-normalized Lotka-Nagaev estimator.

Corollary 2.1. Assume the conditions of Theorem 2.1. Let $(a_n)_{n\geq 1}$ be any sequence of real numbers satisfying $a_n \to \infty$ and $a_n/\sqrt{n} \to 0$ as $n \to \infty$. Then for each Borel set B,

$$-\inf_{x\in B^o}\frac{x^2}{2} \le \liminf_{n\to\infty}\frac{1}{a_n^2}\ln\mathbb{P}\left(\frac{M_{n_0,n}}{a_n}\in B\right) \le \limsup_{n\to\infty}\frac{1}{a_n^2}\ln\mathbb{P}\left(\frac{M_{n_0,n}}{a_n}\in B\right) \le -\inf_{x\in\overline{B}}\frac{x^2}{2},\qquad(2.5)$$

where B^{o} and \overline{B} denote the interior and the closure of B, respectively.

Remark 2.1. From (2.2) and (2.3), it is easy to derive the following Berry-Esseen bound for the self-normalized Lotka-Nagaev estimator:

$$\left| \mathbb{P}(M_{n_0,n} \le x) - \Phi(x) \right| \le \frac{C_{\rho}}{n^{\rho(2-\rho)/8}},$$
(2.6)

where C_{ρ} depends only on the constants ρ, v and $\mathbb{E}Z_1^{2+\rho}$. When $\rho > 1$, by the self-normalized Berry-Esseen bound for martingales in Fan and Shao [7], we can get a Berry-Esseen bound of order $n^{-\frac{\rho}{6+2\rho}}$.

The last remark gives a self-normalized Berry-Esseen bound for the Lotka-Nagaev estimator, while the next theorem presents a normalized Berry-Esseen bound for the Lotka-Nagaev estimator. Denote

$$H_{n_0,n} = \frac{1}{\sqrt{n}v} \sum_{k=n_0}^{n_0+n-1} \sqrt{Z_k} \left(\frac{Z_{k+1}}{Z_k} - m\right).$$

Notice that the random variables $(X_{k,i})_{1 \le i \le Z_k}$ have the same distribution as Z_1 , and that $(X_{k,i})_{1 \le i \le Z_k}$ are independent of Z_k . Then for the Galton-Watson processes, it holds

$$\mathbb{E}[(Z_{k+1} - mZ_k)^2 | Z_k] = \mathbb{E}[(\sum_{i=1}^{Z_k} (X_{k,i} - m))^2 | Z_k] = Z_k v^2.$$

It is easy to see that $H_{n_0,n} = \sum_{k=n_0}^{n_0+n-1} \frac{1}{\sqrt{nv^2/Z_k}} \left(\frac{Z_{k+1}}{Z_k} - m\right)$. Thus $H_{n_0,n}$ can be regarded as a normalized process for the Lotka-Nagaev estimator Z_{k+1}/Z_k . We have the following normalized Berry-Esseen bounds for the Galton-Watson processes.

Theorem 2.2. Assume the conditions of Theorem 2.1 are satisfied.

[i] If $\rho \in (0, 1)$, then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(H_{n_0, n} \le x) - \Phi(x) \right| \le \frac{C_{\rho}}{n^{\rho/2}},\tag{2.7}$$

where C_{ρ} depends only on ρ, v and $\mathbb{E}Z_1^{2+\rho}$.

[ii] If $\rho = 1$, then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(H_{n_0, n} \le x) - \Phi(x) \right| \le C \frac{\ln n}{\sqrt{n}},\tag{2.8}$$

where C depends only on v and $\mathbb{E}Z_1^3$.

Moreover, the same inequalities remain valid when $H_{n_0,n}$ is replaced by $-H_{n_0,n}$.

The convergence rates of (2.7) and (2.8) are same to the best possible convergence rates of the Berry-Esseen bounds for martingales, see Theorem 2.1 of Fan [8] and its comment. Notice that $H_{n_0,n}$ is a martingale with respect to the natural filtration.

2.2. $(X_{n,i})_{1 \leq i \leq Z_n}$ can be observed for some n

Assume that the offspring numbers $(X_{n,i})_{1 \le i \le Z_n}$ of each individual in some generation n can be observed. Denote

$$T_n = \frac{Z_n \left(\frac{Z_{n+1}}{Z_n} - m\right)}{\sqrt{\sum_{i=1}^{Z_n} (X_{n,i} - \frac{Z_{n+1}}{Z_n})^2}}$$

the space type self-normalized process for the Lotka-Nagaev estimator Z_{n+1}/Z_n . The following theorem gives a Cramér moderate deviation result for the space type self-normalized Lotka-Nagaev estimator T_n .

Theorem 2.3. Assume that $p_0 = 0$ and $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Then

$$\left|\ln\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)}\right| = O\left(\frac{1 + x^{2+\rho}}{n^{\rho/2}}\right)$$
(2.9)

uniformly for $x \in [0, o(\sqrt{n}))$ as $n \to \infty$. Moreover, the same equality remains valid when $\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)}$ is replaced by $\frac{\mathbb{P}(T_n \le -x)}{\Phi(-x)}$.

The condition $p_0 = 0$ means that each individual has at least one offspring. Moreover, it also implies that $Z_n \to \infty$ a.s. as $n \to \infty$. Then by law of large numbers, we have $\frac{Z_{n+1}}{Z_n}$ tends to m a.s. as $n \to \infty$.

For the Galton-Watson processes, we refer to [1] for closely related results of Theorem 2.3, where Athreya has established a precise large deviation rate for the Lotka-Nagaev estimator Z_{n+1}/Z_n .

Using the inequality $|e^x - 1| \le e^C |x|$ valid for $|x| \le C$, from Theorem 2.3, we obtain the following estimation for the relative error of normal approximation.

Corollary 2.2. Assume the conditions of Theorem 2.3. Then

$$\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)} = 1 + O\left(\frac{1 + x^{2+\rho}}{n^{\rho/2}}\right)$$
(2.10)

uniformly for $x \in [0, O(n^{\rho/(4+2\rho)}))$ as $n \to \infty$. In particular, it implies that

$$\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)} = 1 + o(1) \tag{2.11}$$

uniformly for $x \in [0, o(n^{\rho/(4+2\rho)}))$ as $n \to \infty$. Moreover, the same equalities remain valid when T_n is replaced by $-T_n$.

Inequality (2.11) implies that the relative error of normal approximation for T_n tends to zero uniformly for $x \in [0, o(n^{\rho/(4+2\rho)}))$. Clearly, the range of validity for (2.11) coincides with the self-normalized Cramér moderate deviation result of Shao [17] for iid random variables.

By an argument similar to the proof of Corollary 2.1, Theorem 2.3 also implies the following self-normalized MDP result.

Corollary 2.3. Assume the conditions of Theorem 2.3. Let $(a_n)_{n\geq 1}$ be any sequence of real numbers satisfying $a_n \to \infty$ and $a_n/\sqrt{n} \to 0$ as $n \to \infty$. Then for each Borel set B,

$$-\inf_{x\in B^o}\frac{x^2}{2} \le \liminf_{n\to\infty}\frac{1}{a_n^2}\ln\mathbb{P}\left(\frac{T_n}{a_n}\in B\right) \le \limsup_{n\to\infty}\frac{1}{a_n^2}\ln\mathbb{P}\left(\frac{T_n}{a_n}\in B\right) \le -\inf_{x\in\overline{B}}\frac{x^2}{2},\tag{2.12}$$

where B^{o} and \overline{B} denote the interior and the closure of B, respectively.

From Theorem 2.3, we get the following self-normalized Berry-Esseen bound for T_n .

Corollary 2.4. Assume the conditions of Theorem 2.3. Then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(T_n \le x) - \Phi(x) \right| \le \frac{C_{\rho}}{n^{\rho/2}},\tag{2.13}$$

where C_{ρ} does not depend on n.

Clearly, the convergence rate for the Berry-Esseen bound of Corollary 2.4 is consistent with the classical case of iid random variables (cf. Bentkus and Götze [3]), and therefore it is optimal under the stated conditions.

Remark 2.2. Following the proof of Theorem 2.3, the results (2.9)-(2.13) remain true when T_n is replaced by

$$\widetilde{T}_n = \frac{Z_n \left(Z_{n+1} / Z_n - m \right)}{\sqrt{\sum_{i=1}^{Z_n} (X_{n,i} - m)^2}},$$

3. Applications

Cramér moderate deviations certainly have a lot of applications in statistics.

3.1. p-value for hypothesis testing

Self-normalized Cramér moderate deviations can be applied to hypothesis testing of m for the Galton-Watson processes. When $(Z_k)_{k=n_0,\ldots,n_0+n}$ can be observed, we can make use of Theorem 2.1 to estimate p-value. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $0 < \rho \leq 1$, and that m > 1. Let $(z_k)_{k=n_0,\ldots,n_0+n}$ be an observation of $(Z_k)_{k=n_0,\ldots,n_0+n}$. In order to estimate the offspring mean m, we can make use of the Harris estimator [2] given by

$$\widehat{m}_n = \frac{\sum_{k=n_0}^{n_0+n-1} Z_{k+1}}{\sum_{k=n_0}^{n_0+n-1} Z_k}.$$

Then observation for the Harris estimator is

$$\widehat{m}_n = \frac{\sum_{k=n_0}^{n_0+n-1} z_{k+1}}{\sum_{k=n_0}^{n_0+n-1} z_k}.$$

By Theorem 2.1, it is easy to see that

$$\frac{\mathbb{P}(M_{n_0,n} \ge x)}{1 - \Phi(x)} = 1 + o(1) \quad \text{and} \quad \frac{\mathbb{P}(M_{n_0,n} \le -x)}{1 - \Phi(x)} = 1 + o(1) \tag{3.1}$$

uniformly for $x \in [0, o(n^{\rho/(4+2\rho)}))$. Notice that $1 - \Phi(x) = \Phi(-x)$. Thus, by (3.1), the probability $\mathbb{P}(M_{n_0,n} > |\widetilde{m}_n|)$ is almost equal to $2\Phi(-|\widetilde{m}_n|)$, where

$$\widetilde{m}_n = \frac{\sum_{k=n_0}^{n_0+n-1} \sqrt{z_k} (z_{k+1}/z_k - \widehat{m}_n)}{\sqrt{\sum_{k=n_0}^{n_0+n-1} z_k (z_{k+1}/z_k - \widehat{m}_n)^2}}$$

3.2. Construction of confidence intervals

3.2.1. The data $(Z_k)_{k>0}$ can be observed

Cramér moderate deviations can be also applied to construction of confidence intervals of m. We make use of Theorem 2.1 to construct confidence intervals.

Proposition 3.1. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Let $\kappa_n \in (0,1)$. Assume that

$$\left|\ln\kappa_n\right| = o\left(n^{\rho/(2+\rho)}\right). \tag{3.2}$$

Let

$$a_{n_0,n} = \left(\sum_{k=n_0}^{n_0+n-1} \sqrt{Z_k}\right)^2 - \left(\Phi^{-1}(1-\kappa_n/2)\right)^2 \sum_{k=n_0}^{n_0+n-1} Z_k,$$

$$b_{n_0,n} = 2\left(\Phi^{-1}(1-\kappa_n/2)\right)^2 \sum_{k=n_0}^{n_0+n-1} Z_{k+1} - 2\left(\sum_{k=n_0}^{n_0+n-1} \frac{Z_{k+1}}{\sqrt{Z_k}}\right) \left(\sum_{k=n_0}^{n_0+n-1} \sqrt{Z_k}\right),$$

$$c_{n_0,n} = \left(\sum_{k=n_0}^{n_0+n-1} \frac{Z_{k+1}}{\sqrt{Z_k}}\right)^2 - \left(\Phi^{-1}(1-\kappa_n/2)\right)^2 \sum_{k=n_0}^{n_0+n-1} \frac{Z_{k+1}^2}{Z_k}.$$

Then $[A_{n_0,n}, B_{n_0,n}]$, with

$$A_{n_0,n} = \frac{-b_{n_0,n} - \sqrt{b_{n_0,n}^2 - 4a_{n_0,n}c_{n_0,n}}}{2a_{n_0,n}}$$

and

$$B_{n_0,n} = \frac{-b_{n_0,n} + \sqrt{b_{n_0,n}^2 - 4a_{n_0,n}c_{n_0,n}}}{2a_{n_0,n}},$$

is a $1 - \kappa_n$ confidence interval for m, for n large enough.

Proof. Notice that $1 - \Phi(x) = \Phi(-x)$. Theorem 2.1 implies that

$$\frac{\mathbb{P}(M_{n_0,n} \ge x)}{1 - \Phi(x)} = 1 + o(1) \quad \text{and} \quad \frac{\mathbb{P}(M_{n_0,n} \le -x)}{1 - \Phi(x)} = 1 + o(1)$$
(3.3)

uniformly for $0 \le x = o(n^{\rho/(4+2\rho)})$, see (2.4). When κ_n satisfies the condition (3.2), the upper $(\kappa_n/2)$ th quantile of a standard normal distribution satisfies

$$\Phi^{-1}(1 - \kappa_n/2) = O(\sqrt{|\ln \kappa_n|}),$$

which is of order $o(n^{\rho/(4+2\rho)})$. Then applying (3.3) to the last equality, we complete the proof of Proposition 3.1. Notice that $A_{n_0,n}$ and $B_{n_0,n}$ are solutions of the following equation

$$\frac{\sum_{k=n_0}^{n_0+n-1}\sqrt{Z_k}(Z_{k+1}/Z_k-x)}{\sqrt{\sum_{k=n_0}^{n_0+n-1}Z_k(Z_{k+1}/Z_k-x)^2}} = \Phi^{-1}(1-\kappa_n/2).$$

This completes the proof of Proposition 3.1.

3.2.2. The data $(X_{n,i})_{1 \leq i \leq Z_n}$ can be observed

When $(X_{n,i})_{1 \le i \le Z_n}$ can be observed, we can make use of Corollary 2.2 to construct confidence intervals.

Proposition 3.2. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Let $\kappa_n \in (0,1)$. Assume that

$$\left|\ln\kappa_n\right| = o\left(n^{\rho/(2+\rho)}\right). \tag{3.4}$$

Let

$$\Delta_n = \frac{\Phi^{-1}(1 - \kappa_n/2)}{Z_n} \sqrt{\sum_{i=1}^{Z_n} (X_{n,i} - \frac{Z_{n+1}}{Z_n})^2}.$$

Then $[A_n, B_n]$, with

$$A_n = \frac{Z_{n+1}}{Z_n} - \Delta_n$$
 and $B_n = \frac{Z_{n+1}}{Z_n} + \Delta_n$,

is a $1 - \kappa_n$ confidence interval for m, for n large enough.

Proof. Corollary 2.2 implies that

$$\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)} = 1 + o(1) \quad \text{and} \quad \frac{\mathbb{P}(T_n \le -x)}{1 - \Phi(x)} = 1 + o(1) \tag{3.5}$$

uniformly for $0 \le x = o(n^{\rho/(4+2\rho)})$. When κ_n satisfies the condition (3.2), the upper $(\kappa_n/2)$ th quantile of a standard normal distribution satisfies $\Phi^{-1}(1-\kappa_n/2) = O(\sqrt{|\ln \kappa_n|})$, which is of order $o(n^{\rho/(4+2\rho)})$. Then applying (3.5) to the last equality, we complete the proof of Proposition 3.2.

When the risk probability κ_n goes to 0, we have the following more general result.

Proposition 3.3. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Let $\kappa_n \in (0,1)$ such that $k_n \to 0$. Assume that

$$\left|\ln\kappa_n\right| = o\left(\sqrt{n}\right).\tag{3.6}$$

Let

$$\Delta_n = \frac{\sqrt{2|\ln(\kappa_n/2)|}}{Z_n} \sqrt{\sum_{i=1}^{Z_n} (X_{n,i} - \frac{Z_{n+1}}{Z_n})^2}.$$

Then $[A_n, B_n]$, with

$$A_n = \frac{Z_{n+1}}{Z_n} - \Delta_n$$
 and $B_n = \frac{Z_{n+1}}{Z_n} + \Delta_n$,

is a $1 - \kappa_n$ confidence interval for m, for n large enough.

Proof. By Theorem 2.3, we have

$$\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)} = \exp\left\{\theta C \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} \quad \text{and} \quad \frac{\mathbb{P}(T_n \le -x)}{1 - \Phi(x)} = \exp\left\{\theta C \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} \tag{3.7}$$

uniformly for $0 \le x = o(\sqrt{n})$, where $\theta \in [-1, 1]$. Notice that

$$1 - \Phi(x_n) \sim \frac{1}{x_n \sqrt{2\pi}} e^{-x_n^2/2} = \exp\left\{-\frac{x_n^2}{2} \left(1 + \frac{2}{x_n^2} \ln(x_n \sqrt{2\pi})\right)\right\}, \ x_n \to \infty.$$

Since $k_n \to 0$, the last line implies that the upper $(\kappa_n/2)$ th quantile of the distribution

$$1 - \left(1 - \Phi\left(x\right)\right) \exp\left\{\theta C \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\}$$

converges to $\sqrt{2|\ln(\kappa_n/2)|}$, which is of order $o(\sqrt{n})$ as $n \to \infty$. Then applying (3.7) to T_n , we complete the proof of Proposition 3.3.

3.2.3. The parameter v^2 is known

When v^2 is known, we can apply normalized Berry-Esseen bounds (cf. Theorem 2.2) to construct confidence intervals.

Proposition 3.4. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Let $\kappa_n \in (0,1)$. Assume that $|\ln \kappa_n| = o(\log n)$. (3.8)

Then $[A_n, B_n]$, with

$$A_n = \frac{\sum_{k=n_0}^{n_0+n} Z_{k+1} / \sqrt{Z_k} - \sqrt{n} v \Phi^{-1} (1 - \kappa_n/2)}{\sum_{k=n_0}^{n_0+n} \sqrt{Z_k}}$$

and

$$B_n = \frac{\sum_{k=n_0}^{n_0+n} Z_{k+1} / \sqrt{Z_k} + \sqrt{n} v \Phi^{-1} (1 - \kappa_n/2)}{\sum_{k=n_0}^{n_0+n} \sqrt{Z_k}},$$

is a $1 - \kappa_n$ confidence interval for m, for n large enough.

Proof. Theorem 2.2 implies that

$$\frac{\mathbb{P}(H_{n_0,n} \ge x)}{1 - \Phi(x)} = 1 + o(1) \quad \text{and} \quad \frac{\mathbb{P}(H_{n_0,n} \le -x)}{1 - \Phi(x)} = 1 + o(1) \tag{3.9}$$

uniformly for $0 \leq x = o(\sqrt{\log n})$. The upper $(\kappa_n/2)$ th quantile of a standard normal distribution satisfies

$$\Phi^{-1}(1-\kappa_n/2) = O(\sqrt{|\ln \kappa_n|}),$$

which, by (3.8), is of order $o(\sqrt{\log n})$. Proposition 3.4 follows from applying (3.9) to $H_{n_0,n}$.

3.3. An infectious disease model

An infectious disease model $(Z_n)_{n\geq 0}$ may be described as follows:

$$Z_0 = 1, \quad Z_{n+1} = Z_n + \sum_{i=1}^{Z_n} Y_{n,i}, \quad \text{for } n \ge 0,$$
 (3.10)

where Z_n stands for the total population of patients with infectious disease at time n, and $Y_{n,i}$ is the number of patients infected by the *i*-th individual of Z_n in a unit time (for instance, one day). Moreover, we assume that the random variables $(Y_{n,i})_{i\geq 1}$ are iid random variables with common distribution law

$$\mathbb{P}(Y_{n,i}=k) = p_k, \quad k \in \mathbb{N}, \tag{3.11}$$

and are also independent to Z_n . Denote by r the average number of patients infected by an individual patient in a unite time, that is

$$r = \mathbb{E}Y_{n,i} = \sum_{k=0}^{\infty} k \, p_k.$$

Denote by v the standard variance of $Y_{n,i}, n, i \ge 1$, then v is also the standard variance of Z_1 , that is

$$v^2 = \mathbb{E}(Z_1 - m)^2.$$

To avid triviality, assume that v > 0. We are interested in the estimation of r.

Proposition 3.5. Assume that $\mathbb{E}Z_1^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Let $\kappa_n \in (0,1)$. Assume that

$$\left|\ln\kappa_{n}\right| = o\left(n^{\rho/(2+\rho)}\right). \tag{3.12}$$

Let $A_{n_0,n}$ and $B_{n_0,n}$ be defined in Proposition 3.1. Then $[A_{n_0,n}-1, B_{n_0,n}-1]$ is a $1-\kappa_n$ confidence interval for r, for n large enough.

Proof. It is easy to see that (3.10) can be rewritten in the form of (1.1), with $X_{n,i} = 1 + Y_{n,i}$. Thus, we have m = 1 + r. Then Proposition 3.5 follows by Proposition 3.1.

4. Proof of Theorem 2.1

In the proof of Theorem 2.1, we will make use of the following lemma (cf. Corollary 2.3 of Fan et al. [9]), which gives self-normalized Cramér moderate deviations for martingales.

Lemma 4.1. Let $(\eta_k, \mathcal{F}_k)_{k=1,...,n}$ be a finite sequence of martingale differences. Assume that there exist a constant $\rho \in (0,1]$ and numbers $\gamma_n > 0$ and $\delta_n \ge 0$ satisfying $\gamma_n, \delta_n \to 0$ such that for all $1 \le i \le n$,

$$\mathbb{E}[|\eta_k|^{2+\rho}|\mathcal{F}_{k-1}] \le \gamma_n^{\rho} \mathbb{E}[\eta_k^2|\mathcal{F}_{k-1}]$$
(4.1)

and

$$\left\|\sum_{k=1}^{n} \mathbb{E}[\eta_k^2 | \mathcal{F}_{k-1}] - 1\right\|_{\infty} \le \delta_n^2 \quad a.s.$$

$$(4.2)$$

Denote

$$V_n = \frac{\sum_{k=1}^n \eta_k}{\sqrt{\sum_{k=1}^n \eta_k^2}}$$

and

$$\widehat{\gamma}_n(x,\rho) = \frac{\gamma_n^{\rho(2-\rho)/4}}{1+x^{\rho(2+\rho)/4}}.$$

[i] If $\rho \in (0,1)$, then for all $0 \le x = o(\gamma_n^{-1})$,

$$\left|\ln\frac{\mathbb{P}(V_n \ge x)}{1 - \Phi(x)}\right| \le C_\rho \left(x^{2+\rho}\gamma_n^\rho + x^2\delta_n^2 + (1+x)\left(\delta_n + \widehat{\gamma}_n(x,\rho)\right)\right).$$
(4.3)

[ii] If $\rho = 1$, then for all $0 \le x = o(\gamma_n^{-1})$,

$$\left|\ln\frac{\mathbb{P}(V_n \ge x)}{1 - \Phi(x)}\right| \le C\left(x^3\gamma_n + x^2\delta_n^2 + (1 + x)\left(\delta_n + \gamma_n|\ln\gamma_n| + \widehat{\gamma}_n(x, 1)\right)\right).$$
(4.4)

Now, we are in position to prove Theorem 2.1. Denote

$$\hat{\xi}_{k+1} = \sqrt{Z_k} (Z_{k+1}/Z_k - m)$$

 $\mathfrak{F}_{n_0} = \{\emptyset, \Omega\}$ and $\mathfrak{F}_{k+1} = \sigma\{Z_i : n_0 \leq i \leq k+1\}$ for all $k \geq n_0$. Notice that $X_{k,i}$ is independent of Z_k . Then it is easy to verify that

$$\mathbb{E}[\hat{\xi}_{k+1}|\mathfrak{F}_{k}] = Z_{k}^{-1/2}\mathbb{E}[Z_{k+1} - mZ_{k}|\mathfrak{F}_{k}] = Z_{k}^{-1/2}\sum_{i=1}^{Z_{k}}\mathbb{E}[X_{k,i} - m|\mathfrak{F}_{k}]$$

$$= Z_{k}^{-1/2}\sum_{i=1}^{Z_{k}}\mathbb{E}[X_{k,i} - m]$$

$$= 0.$$
(4.5)

Thus $(\hat{\xi}_k, \mathfrak{F}_k)_{k=n_0+1,\dots,n_0+n}$ is a finite sequence of martingale differences. Notice that $X_{k,i} - m, i \ge 1$, are centered and independent random variables. Thus, the following equalities hold

$$\sum_{k=n_0}^{n_0+n-1} \mathbb{E}[\hat{\xi}_{k+1}^2 | \mathfrak{F}_k] = \sum_{k=n_0}^{n_0+n-1} Z_k^{-1} \mathbb{E}[(Z_{k+1} - mZ_k)^2 | \mathfrak{F}_k] = \sum_{k=n_0}^{n_0+n-1} Z_k^{-1} \mathbb{E}[(\sum_{i=1}^{Z_k} (X_{k,i} - m))^2 | \mathfrak{F}_k]$$

$$= \sum_{k=n_0}^{n_0+n-1} Z_k^{-1} Z_k \mathbb{E}[(X_{k,i} - m)^2]$$

$$= nv^2. \tag{4.6}$$

Moreover, it is easy to see that

$$\mathbb{E}[|\hat{\xi}_{k+1}|^{2+\rho}|\mathfrak{F}_{k}] = Z_{k}^{-1-\rho/2}\mathbb{E}[|Z_{k+1} - mZ_{k}|^{2+\rho}|\mathfrak{F}_{k}] \\ = Z_{k}^{-1-\rho/2}\mathbb{E}[|\sum_{i=1}^{Z_{k}}(X_{k,i} - m)|^{2+\rho}|\mathfrak{F}_{k}].$$
(4.7)

By Rosenthal's inequality, we have

$$\mathbb{E}[|\sum_{i=1}^{Z_k} (X_{k,i} - m)|^{2+\rho} |\mathfrak{F}_k] \leq C'_{\rho} \left(\left(\sum_{i=1}^{Z_k} \mathbb{E} (X_{k,i} - m)^2 \right)^{1+\rho/2} + \sum_{i=1}^{Z_k} \mathbb{E} |X_{k,i} - m|^{2+\rho} \right) \\ \leq C'_{\rho} \left(Z_k^{1+\rho/2} v^{2+\rho} + Z_k \mathbb{E} |Z_1 - m|^{2+\rho} \right).$$

Since the set of extinction of the process $(Z_k)_{k\geq 0}$ is negligible with respect to the annealed law \mathbb{P} , we have $Z_k \geq 1$ for any k. From (4.7), by the last inequality and the fact $Z_k \geq 1$, we deduce that

$$\mathbb{E}[|\hat{\xi}_{k+1}|^{2+\rho}|\mathfrak{F}_{k}] \leq C_{\rho}'(v^{\rho} + \mathbb{E}|Z_{1} - m|^{2+\rho}/v^{2})v^{2} \\
= C_{\rho}'(v^{\rho} + \mathbb{E}|Z_{1} - m|^{2+\rho}/v^{2})\mathbb{E}[\hat{\xi}_{k+1}^{2}|\mathfrak{F}_{k}] \\
= C_{\rho}(v^{\rho} + \mathbb{E}Z_{1}^{2+\rho}/v^{2})\mathbb{E}[\hat{\xi}_{k+1}^{2}|\mathfrak{F}_{k}].$$
(4.8)

Let $\eta_k = \hat{\xi}_{n_0+k}/\sqrt{n}v$ and $\mathcal{F}_k = \mathfrak{F}_{n_0+k}$. Then $(\eta_k, \mathcal{F}_k)_{k=1,\dots,n}$ is a martingale difference sequences and satisfies the conditions (4.1) and (4.2) with $\delta_n = 0$ and $\gamma_n = (C_\rho (v^\rho + \mathbb{E}Z_1^{2+\rho}/v^2))^{1/\rho}/\sqrt{n}v$. Clearly, it holds

$$M_{n_0,n} = \frac{\sum_{k=1}^n \eta_k}{\sqrt{\sum_{k=1}^n \eta_k^2}}.$$

Applying Lemma 4.1 to $(\eta_k, \mathcal{F}_k)_{k=1,\dots,n}$, we obtain the desired inequalities.

5. Proof of Corollary 2.1

We first show that for any Borel set $B \subset \mathbb{R}$,

$$\limsup_{n \to \infty} \frac{1}{a_n^2} \ln \mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \le -\inf_{x \in \overline{B}} \frac{x^2}{2}.$$
(5.1)

When $B = \emptyset$, the last inequality is obvious, with $-\inf_{x \in \emptyset} \frac{x^2}{2} = -\infty$. Thus, we may assume that $B \neq \emptyset$. Let $x_0 = \inf_{x \in B} |x|$. Clearly, we have $x_0 \ge \inf_{x \in \overline{B}} |x|$. Then, by Theorem 2.1, it follows that for $a_n = o(\sqrt{n})$,

$$\mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \leq \mathbb{P}\left(|M_{n_0,n}| \ge a_n x_0\right) \\
\leq 2\left(1 - \Phi\left(a_n x_0\right)\right) \exp\left\{C_{\rho}\left(\frac{(a_n x_0)^{2+\rho}}{n^{\rho/2}} + \frac{\ln n}{\sqrt{n}} + \frac{(1 + a_n x_0)^{1-\rho(2+\rho)/4}}{n^{\rho(2-\rho)/8}}\right)\right\}.$$

Using the following inequalities

$$\frac{1}{\sqrt{2\pi}(1+x)}e^{-x^2/2} \le 1 - \Phi(x) \le \frac{1}{\sqrt{\pi}(1+x)}e^{-x^2/2}, \quad x \ge 0,$$
(5.2)

and the fact that $a_n \to \infty$ and $a_n/\sqrt{n} \to 0$, we obtain

$$\limsup_{n \to \infty} \frac{1}{a_n^2} \ln \mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \leq -\frac{x_0^2}{2} \leq -\inf_{x \in \overline{B}} \frac{x^2}{2},$$

which gives (5.1).

Next, we prove that

$$\liminf_{n \to \infty} \frac{1}{a_n^2} \ln \mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \ge -\inf_{x \in B^o} \frac{x^2}{2}.$$
(5.3)

When $B^o = \emptyset$, the last inequality is obvious, with $-\inf_{x \in \emptyset} \frac{x^2}{2} = -\infty$. Thus, we may assume that $B^o \neq \emptyset$. Since B^o is an open set, for any given small $\varepsilon_1 > 0$, there exists an $x_0 \in B^o$, such that

$$0 < \frac{x_0^2}{2} \le \inf_{x \in B^o} \frac{x^2}{2} + \varepsilon_1.$$

Again by the fact that B^o is an open set, for $x_0 \in B^o$ and all small enough $\varepsilon_2 \in (0, |x_0|]$, it holds $(x_0 - \varepsilon_2, x_0 + \varepsilon_2] \subset B^o$. Without loss of generality, we may assume that $x_0 > 0$. Clearly, we have

$$\mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \geq \mathbb{P}\left(M_{n_0,n} \in (a_n(x_0 - \varepsilon_2), a_n(x_0 + \varepsilon_2)]\right) \\
= \mathbb{P}\left(M_{n_0,n} \geq a_n(x_0 - \varepsilon_2)\right) - \mathbb{P}\left(M_{n_0,n} \geq a_n(x_0 + \varepsilon_2)\right).$$
(5.4)

Again by Theorem 2.1, it is easy to see that for $a_n \to \infty$ and $a_n = o(\sqrt{n})$,

$$\lim_{n \to \infty} \frac{\mathbb{P}(M_{n_0,n} \ge a_n(x_0 + \varepsilon_2))}{\mathbb{P}(M_{n_0,n} \ge a_n(x_0 - \varepsilon_2))} = 0$$

From (5.4), by the last line and Theorem 2.1, it holds for all n large enough and $a_n = o(\sqrt{n})$,

$$\mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \geq \frac{1}{2} \mathbb{P}\left(M_{n_0,n} \geq a_n(x_0 - \varepsilon_2)\right) \\
\geq \frac{1}{2} \left(1 - \Phi\left(a_n(x_0 - \varepsilon_2)\right)\right) \exp\left\{-C_{\rho}\left(\frac{(a_n x_0)^{2+\rho}}{n^{\rho/2}} + \frac{\ln n}{\sqrt{n}} + \frac{(1 + a_n x_0)^{1-\rho(2+\rho)/4}}{n^{\rho(2-\rho)/8}}\right)\right\}.$$

Using (5.2) and the fact that $a_n \to \infty$ and $a_n/\sqrt{n} \to 0$, after some calculations, we get

$$\liminf_{n \to \infty} \frac{1}{a_n^2} \ln \mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \ge -\frac{1}{2}(x_0 - \varepsilon_2)^2.$$

Letting $\varepsilon_2 \to 0$, we deduce that

$$\liminf_{n \to \infty} \frac{1}{a_n^2} \ln \mathbb{P}\left(\frac{M_{n_0,n}}{a_n} \in B\right) \geq -\frac{x_0^2}{2} \geq -\inf_{x \in B^o} \frac{x^2}{2} - \varepsilon_1.$$

Since that ε_1 can be arbitrarily small, we get (5.3). Combining (5.1) and (5.3) together, we complete the proof of Corollary 2.1.

6. Proof of Theorem 2.2

In the proof of Theorem 2.2, we will make use of the following lemma (cf. Theorem 2.1 of Fan [8]), which gives exact Berry-Esseen's bounds for martingales.

Lemma 6.1. Assume the conditions of Lemma 4.1.

[i] If $\rho \in (0, 1)$, then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(\sum_{k=1}^{n} \eta_k \le x) - \Phi(x) \right| \le C_\rho \Big(\gamma_n^\rho + \delta_n\Big).$$
(6.1)

[ii] If $\rho = 1$, then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(\sum_{k=1}^{n} \eta_k \le x) - \Phi(x) \right| \le C\left(\gamma_n |\log \gamma_n| + \delta_n\right).$$
(6.2)

Recall the martingale differences $(\eta_k, \mathcal{F}_k)_{k=1,...,n}$ defined in the proof of Theorem 2.1. Then η_k satisfies the conditions (4.1) and (4.2) with $\delta_n = 0$ and $\gamma_n = (C_\rho (v^\rho + \mathbb{E}Z_1^{2+\rho}/v^2))^{1/\rho}/\sqrt{n}v$. Clearly, it holds $H_{n_0,n} = \sum_{k=1}^n \eta_k$. Applying Lemma 6.1 to $(\eta_k, \mathcal{F}_k)_{k=1,...,n}$, we obtain the desired inequalities. \Box

7. Proof of Theorem 2.3

Define the generating function of Z_n as $f_n(s) = \mathbb{E}s^{Z_n}$, $|s| \leq 1$. We have the following lemma, see Athreya [1].

Lemma 7.1. If $p_1 > 0$ then

$$\lim_{n \to \infty} \frac{f_n(s)}{p_1^n} = \sum_{k=1}^{\infty} q_k s^k,\tag{7.1}$$

where $(q_k, k \ge 1)$ is defined via the generating function $Q(s) = \sum_{k=1}^{\infty} q_k s^k, 0 \le s < 1$, the unique solution of the functional equation

$$Q(f(s)) = p_1 Q(s),$$
 where $f(s) = \sum_{j=1}^{\infty} p_j s^j, \ 0 \le s < 1,$

subject to

$$Q(0) = 0,$$
 $Q(1) = \infty,$ $Q(s) < \infty \text{ for } 0 \le s < 1.$

Lemma 7.2. It holds

$$\mathbb{P}(Z_n \le n) \le C_1 \exp\{-nc_0\}.$$
(7.2)

Proof. When $p_1 > 0$, using Markov's inequality and Lemma 7.1, we have for $s_0 = \frac{1+p_1}{2} \in (0,1)$,

$$\sum_{k=1}^{n-1} \mathbb{P}(Z_n = k) I_k(x) \leq \mathbb{P}(Z_n \leq n) = \mathbb{P}(s_0^{Z_n} \geq s_0^n) \leq s_0^{-n} f_n(s_0)$$
$$\leq C(\frac{p_1}{s_0})^n Q(s_0)$$
$$= C_1 \exp\{-nc_0\},$$
(7.3)

where $C_1 = CQ(s_0)$ and $c_0 = \ln(s_0/p_1)$. Notice that $s_0 \in (p_1, 1)$, thus $c_0 > 0$. Recall that $p_0 = 0$. When $p_1 = 0$, we have $Z_n \ge 2^n$, and (7.2) holds obviously for all n large enought.

In the proof of Theorem 2.3, we need the following technical lemma of Jing, Shao and Wang [10], which gives a self-normalized Cramér moderate deviation result for iid random variables.

Lemma 7.3. Let $(Y_i)_{i\geq 1}$ be a sequence of iid and centered random variables. Assume that $\mathbb{E}|Y_1|^{2+\rho} < \infty$ for some $\rho \in (0,1]$. Let $S_n = \sum_{i=1}^n Y_i$ and $V_n^2 = \sum_{i=1}^n Y_i^2$. Then

$$\left| \ln \frac{\mathbb{P}(S_n / V_n \ge x)}{1 - \Phi(x)} \right| \le C_{\rho} \frac{1 + x^{2+\rho}}{n^{\rho/2}}$$
(7.4)

uniformly for $0 \le x = o(\sqrt{n})$ as $n \to \infty$.

7.1. Proof of the theorem

Now, we are in a position to prove Theorem 2.3. Recalling that Z_n is the number of individuals of the BPRE in generation n, and $X_{n,i}$, $1 \le i \le Z_n$, is the number of the offspring of the *i*th individual in generation n. Denote

$$V(n)^{2} = \sum_{i=1}^{Z_{n}} (X_{n,i} - m)^{2}, \qquad \bar{X}(n) = \frac{Z_{n+1}}{Z_{n}}, \qquad \bar{Y}_{n} = \frac{Z_{n+1}}{n}.$$
(7.5)

Then we have

$$\sum_{i=1}^{Z_n} (X_{n,i} - \bar{X}(n))^2 = \sum_{i=1}^{Z_n} \left((X_{n,i} - m) + (m - \bar{X}(n))^2 - V(n)^2 - Z_n(m - \bar{X}(n))^2 \right).$$
(7.6)

By (7.6), it is easy to see that T_n can be rewritten as follows:

$$T_n = \frac{\sum_{i=1}^{Z_n} (X_{n,i} - m)}{\sqrt{V(n)^2 - Z_n (m - \bar{X}(n))^2}}.$$

Notice that $X_{n,i}$, $1 \le i \le Z_n$, have the same distribution as Z_1 , and that Z_n is independent of ξ_n . By the total probability formula and the independence of Z_n and $(X_{n,i})_{i\ge 1}$, we obtain, for all $x \ge 0$,

$$\mathbb{P}(T_n \ge x) = \mathbb{P}\left(\sum_{i=1}^{Z_n} (X_{n,i} - m) \ge x\sqrt{V(n)^2 - Z_n(m - \bar{X}(n))^2}\right) \\
= \sum_{k=1}^{\infty} \mathbb{P}(Z_n = k) \mathbb{P}\left(\sum_{i=1}^k (X_{n,i} - m) \ge x\sqrt{V_k^2 - k(m - \bar{Y}_k)^2}\right) \\
= \sum_{k=1}^{\infty} \mathbb{P}(Z_n = k) \mathbb{P}\left(\sum_{i=1}^k (X_{n,i} - m) \ge x\sqrt{V_k^2 - k(m - \bar{Y}_k)^2}\right) \\
=: \sum_{k=1}^{\infty} \mathbb{P}(Z_n = k) I_k(x).$$
(7.7)

By Lemma 7.1, we have

$$\sum_{k=1}^{n-1} \mathbb{P}(Z_n = k) I_k(x) \le \mathbb{P}(Z_n \le n) \le C_1 \exp\{-nc_0\},$$
(7.8)

For $k \ge n$, the tail probability $I_k(x)$ can be divided into two parts: for all $x \ge 0$,

$$I_{k}(x) = \mathbb{P}\left(\sum_{i=1}^{k} (X_{n,i} - m) \ge x\sqrt{V_{k}^{2} - k(m - \bar{Y}_{k})^{2}}, \ k(m - \bar{Y}_{k})^{2} < V_{k}^{2}(1 + x^{\rho})/k^{\rho/2}\right) \\ + \mathbb{P}\left(\sum_{i=1}^{k} (X_{n,i} - m) \ge x\sqrt{V_{k}^{2} - k(m - \bar{Y}_{k})^{2}}, \ k(m - \bar{Y}_{k})^{2} \ge V_{k}^{2}(1 + x^{\rho})/k^{\rho/2}\right) \\ \le \mathbb{P}\left(\sum_{i=1}^{k} (X_{n,i} - m) \ge xV_{k}\sqrt{1 - (1 + x^{\rho})/k^{\rho/2}}\right) + \mathbb{P}\left(k(m - \bar{Y}_{k})^{2} \ge V_{k}^{2}(1 + x^{\rho})/k^{\rho/2}\right) \\ =: I_{k,1}(x) + I_{k,2}(x).$$
(7.9)

We first give an estimation for $I_{k,1}(x)$. Notice that $(X_{n,i}-m)_{i\geq 1}$ are conditional independent with respect to ξ_n . When $k \geq n$, by self-normalized moderate deviations for centered random variables $(X_{n,i}-m)_{i\geq 1}$ (cf. Lemma 7.3), we have, for all $0 \leq x = o(\sqrt{n})$,

$$\left| \ln \frac{I_{k,1}(x)}{1 - \Phi\left(x\sqrt{1 - (1 + x^{\rho})/k^{\rho/2}}\right)} \right| \le C_2 \frac{1 + x^{2+\rho}}{k^{\rho/2}} \le C_2 \frac{1 + x^{2+\rho}}{n^{\rho/2}}.$$

Using (5.2), we deduce that, for all $x \ge 0$ and $0 \le \varepsilon \le 1$,

$$\frac{1 - \Phi\left(x\sqrt{1 - \varepsilon}\right)}{1 - \Phi\left(x\right)} = 1 + \frac{\int_{x\sqrt{1 - \varepsilon}}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt}{1 - \Phi\left(x\right)} \le 1 + \frac{\frac{1}{\sqrt{2\pi}} e^{-x^{2}(1 - \varepsilon)/2} x\varepsilon}{\frac{1}{\sqrt{2\pi}(1 + x)} e^{-x^{2}/2}} \le 1 + C(1 + x^{2})\varepsilon e^{x^{2}\varepsilon/2} \le \exp\left\{C(1 + x^{2})\varepsilon\right\}.$$
(7.10)

Using the last inequality, we get, for all $k \ge n$ and all $0 \le x = o(\sqrt{n})$,

$$I_{k,1}(x) \leq \left(1 - \Phi(x\sqrt{1 - (1 + x^{\rho})/k^{\rho/2}})\right) \exp\left\{C_2 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\}$$

$$\leq \left(1 - \Phi(x)\right) \exp\left\{C_2 \frac{1 + x^{2+\rho}}{n^{\rho/2}} + C(1 + x^2) \frac{1 + x^{\rho}}{k^{\rho/2}}\right\}$$

$$\leq \left(1 - \Phi(x)\right) \exp\left\{C_3 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\},$$
(7.11)

which gives an estimation for $I_{k,1}(x)$.

Next we give an estimation for $I_{k,2}(x)$. Notice that

$$k(m - \bar{Y}_k)^2 = \frac{1}{k} \left(\sum_{i=1}^k (X_{n,i} - m) \right)^2.$$

Thus, we have

$$I_{k,2}(x) = \mathbb{P}\left(\left(\sum_{i=1}^{k} (X_{n,i} - m)\right)^2 \ge k^{1 - \rho/2} V_k^2 (1 + x^{\rho})\right)$$
$$= \mathbb{P}\left(\left|\sum_{i=1}^{k} (X_{n,i} - m)\right| \ge V_k \sqrt{k^{1 - \rho/2} (1 + x^{\rho})}\right).$$

Applying (7.4) to the centered random variables $(\pm (X_{n,i} - m))_{i \ge 1}$, we obtain, for all $k \ge n$ and all $0 \le x = o(\sqrt{n})$,

$$\begin{split} I_{k,2}(x) &\leq 2\Big(1 - \Phi(\sqrt{k^{1-\rho/2}(1+x^{\rho})})\Big) \exp\left\{C\frac{1 + (\sqrt{k^{1-\rho/2}(1+x^{\rho})})^{2+\rho}}{\sqrt{k}}\right\} \\ &\leq 2\exp\left\{-\frac{1}{4}k^{1-\rho/2}(1+x^{\rho})\right\}, \end{split}$$

where the last line follows by (5.2). Again by (5.2), we have, for all $k \ge n$ and all $0 \le x = o(\sqrt{n})$,

$$I_{k,2}(x) \leq 2 \exp\left\{-\frac{1}{4}n^{1-\rho/2}(1+x^{\rho})\right\} \\ \leq C\frac{1+x}{n}\left(1-\Phi(x)\right),$$
(7.12)

which gives an estimation for $I_{k,2}(x)$. Combining (7.9), (7.11) and (7.12) together, we get, for all $k \ge n$ and all $0 \le x = o(\sqrt{n})$,

$$I_k(x) \leq \left(1 - \Phi(x)\right) \exp\left\{C_4 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\}.$$
 (7.13)

Returning to (7.7), using the last inequality and (7.8), we deduce that, for all $0 \le x = o(\sqrt{n})$,

$$\mathbb{P}(T_n \ge x) \le \sum_{k=1}^{n-1} \mathbb{P}(Z_n = k) I_k(x) + \sum_{k=n}^{\infty} \mathbb{P}(Z_n = k) I_k(x) \\
\le C_1 \exp\{-C_0 n\} + \sum_{k=n}^{\infty} \mathbb{P}(Z_n = k) \left(1 - \Phi(x)\right) \exp\left\{C_4 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} \\
\le C_1 \exp\{-C_0 n\} + \sum_{k=1}^{\infty} \mathbb{P}(Z_n = k) \left(1 - \Phi(x)\right) \exp\left\{C_4 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} \\
= C_1 \exp\{-C_0 n\} + \left(1 - \Phi(x)\right) \exp\left\{C_4 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} \\
\le \left(1 - \Phi(x)\right) \exp\left\{C_5 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\},$$
(7.14)

where the last line follows by (5.2).

Next, we consider the lower bound of $\mathbb{P}(T_n \ge x)$. For $I_k(x)$, we have the following estimation: for all $k \ge n$ and all $0 \le x = o(\sqrt{n})$,

$$I_{k}(x) = \mathbb{P}\left(\sum_{i=1}^{k} (X_{n,i} - m) \ge x \sqrt{V_{k}^{2} - k(m - \bar{Y}_{k})^{2}}\right)$$

$$\ge \mathbb{P}\left(\sum_{i=1}^{k} (X_{n,i} - m) \ge x V_{k}\right).$$
(7.15)

When $k \ge n$, by self-normalized moderate deviations for iid random variables (cf. Lemma 7.3), we have, for all $0 \le x = o(\sqrt{n})$,

$$I_k(x) \ge \left(1 - \Phi(x)\right) \exp\left\{-C_6 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\}.$$

Returning to (7.7), we deduce that, for all $0 \le x = o(\sqrt{n})$,

$$\mathbb{P}(T_n \ge x) \ge \sum_{k=n}^{\infty} \mathbb{P}(Z_n = k) I_k(x)$$

$$\ge (1 - \Phi(x)) \exp\left\{-C_6 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} \sum_{k=n}^{\infty} \mathbb{P}(Z_n = k)$$

$$\ge (1 - \Phi(x)) \exp\left\{-C_6 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} (1 - \mathbb{P}(Z_n \le n))$$

Using Lemma 7.2, we get, for all $0 \le x = o(\sqrt{n})$,

$$\mathbb{P}(T_n \ge x) \ge (1 - \Phi(x)) \exp\left\{-C_6 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\} (1 - C_1 e^{-C_0 n}) \\
\ge (1 - \Phi(x)) \exp\left\{-C_9 \frac{1 + x^{2+\rho}}{n^{\rho/2}}\right\}.$$
(7.16)

Combining (7.14) and (7.16) together, we obtain the desired inequality.

Applying (2.9) to $(m - X_{n,k})_{k \ge 1}$, we find that (2.9) remains valid when $\frac{\mathbb{P}(T_n \ge x)}{1 - \Phi(x)}$ is replaced by $\frac{\mathbb{P}(T_n \le -x)}{\Phi(-x)}$. This completes the proof of Theorem 2.3.

8. Proof of Corollary 2.4

Clearly, it holds

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(T_n \le x) - \Phi(x) \right| \\ \le \sup_{x > n^{\rho/(8+4\rho)}} \left| \mathbb{P}(T_n \le x) - \Phi(x) \right| + \sup_{0 \le x \le n^{\rho/(8+4\rho)}} \left| \mathbb{P}(T_n \le x) - \Phi(x) \right| \\ + \sup_{-n^{\rho/(8+4\rho)} \le x \le 0} \left| \mathbb{P}(T_n \le x) - \Phi(x) \right| + \sup_{x < -n^{\rho/(8+4\rho)}} \left| \mathbb{P}(T_n \le x) - \Phi(x) \right| \\ =: TH_1 + TH_2 + TH_3 + TH_4.$$
(8.1)

By Theorem 2.3 and (5.2), it is easy to see that

$$TH_{1} = \sup_{x > n^{\rho/(8+4\rho)}} \left| \mathbb{P}(T_{n} > x) - (1 - \Phi(x)) \right|$$

$$\leq \sup_{x > n^{\rho/(8+4\rho)}} \mathbb{P}(T_{n} > x) + \sup_{x > n^{\rho/(8+4\rho)}} (1 - \Phi(x))$$

$$\leq \mathbb{P}(T_{n} > n^{\rho/(8+4\rho)}) + (1 - \Phi(n^{\rho/(8+4\rho)}))$$

$$\leq (1 - \Phi(n^{\rho/(8+4\rho)}))e^{C} + \exp\left\{-\frac{1}{2}(n^{\rho/(8+4\rho)})^{2}\right\}$$

$$\leq \frac{C_{1}}{n^{\rho/2}}$$

and

$$TH_{4} \leq \sup_{x < -n^{\rho/(8+4\rho)}} \mathbb{P}(T_{n} \leq x) + \sup_{x < -n^{\rho/(8+4\rho)}} \Phi(x)$$

$$\leq \mathbb{P}(T_{n} \leq -n^{\rho/(8+4\rho)}) + \Phi(-n^{\rho/(8+4\rho)})$$

$$\leq \Phi(-n^{\rho/(8+4\rho)})e^{C} + \exp\left\{-\frac{1}{2}(n^{\rho/(8+4\rho)})^{2}\right\}$$

$$\leq \frac{C_{2}}{n^{\rho/2}}.$$

By Theorem 2.3 and the inequality $|e^x - 1| \le |x|e^{|x|}$, we have

$$TH_{2} = \sup_{0 \le x \le n^{\rho/(8+4\rho)}} \left| \mathbb{P}(T_{n} > x) - (1 - \Phi(x)) \right|$$

$$\leq \sup_{0 \le x \le n^{\rho/(8+4\rho)}} (1 - \Phi(x)) \left| e^{C(1 + x^{2+\rho})/n^{\rho/2}} - 1 \right|$$

$$\leq \frac{C}{n^{\rho/2}} \sup_{0 \le x \le n^{\rho/(8+4\rho)}} (1 - \Phi(x)) (1 + x^{2+\rho}) e^{C(1 + x^{2+\rho})/n^{\rho/2}}$$

$$\leq \frac{C_{3}}{n^{\rho/2}}$$

and, similarly,

$$TH_{3} = \sup_{-n^{1/8} \le x \le 0} \left| \mathbb{P}(T_{n} \le x) - \Phi(x) \right|$$

$$\leq \sup_{-n^{1/8} \le x \le 0} \Phi(x) \left| e^{C(1+|x|^{3})(\ln n)/\sqrt{n}} - 1 \right|$$

$$\leq \frac{C_{4}}{n^{\rho/2}}.$$

Applying the bounds of TH_1, TH_2, TH_3 and TH_4 to (8.1), we obtain the desired inequality. This completes the proof of Corollary 2.4.

Acknowledgements

This work has been partially supported by the National Natural Science Foundation of China (Grant Nos. 11601375 and 11971063).

References

- Athreya, K.B. (1994). Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4: 779–790.
- [2] Bercu, B., Touati, A. (2008). Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab., 18(5): 1848–1869.
- [3] Bentkus, V., Götze, F. (1996). The Berry-Esseen bound for Student's statistic. Ann. Probab. 24(1): 491–501.
- [4] Chu W. (2018). Self-normalized large deviation for supercritical branching processes. J. Appl. Probab. 55: 450–458.
- [5] Chung, K.L. (1946). The approximate distribution of Student's statistic. Ann. Math. Statist. 17(4): 447–465.
- [6] Cramér, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. Actualite's Sci. Indust. 736: 5–23.
- [7] Fan, X., Shao, Q.M. (2018). Berry-Esseen bounds for self-normalized martingales. Comm. Math. Statist. 6(1): 13–27.
- [8] Fan, X. (2019). Exact rates of convergence in some martingale central limit theorems. J. Math. Anal. Appl. 469(2): 1028–1044.
- Fan, X., Grama, I., Liu, Q. and Shao, Q.M. (2019). Self-normalized Cramer type moderate deviations for martingales. *Bernoulli* 25(4A): 2793–2823.
- [10] Jing, B.Y., Shao, Q.M., Wang, Q. (2003). Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 31(4): 2167–2215.
- [11] Lotka, A. (1939). Theorie analytique des assiciation biologiques. Actualités Sci. Ind. 780: 123–136.
- [12] Nagaev, S.V. (1967). On estimating the expected number of direct descendants of a particle in a branching process. *Theory Probab. Appl.* **12**: 314–320.
- [13] Nagaev, S.V. (1979). Large deviations of sums of independent random variables. Ann. Probab. 7, 745–789.
- [14] Ney, P.E. and Vidyashankar A.N. (2003). Harmonic moments and large deviation rates for supercritical branching processes. Ann. Appl. Probab. 13: 475–489.
- [15] Ney, P.E. and Vidyashankar A.N. (2004). Local limit theory and large deviations for supercritical branching processes. Ann. Appl. Probab. 14: 1135–1166.
- [16] Nakashima, M. (2013). Lower deviations of branching processes in random environment with geometrical offspring distributions. Stochastic Process. Appl. 123(9): 3560–3587.
- [17] Shao, Q.M. (1999). A Cramér type large deviation result for Student's t-statistic. J. Theor. Probab. 12(2): 385–398.
- [18] Tanny, D. (1988). A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. *Stochastic Process. Appl.* 28(1): 123–139.