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Renewal theory for iterated perturbed random walks on a general

branching process tree: early generations
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Abstract

Let (ξk, ηk)k∈N be independent identically distributed random vectors with arbitrarily depen-
dent positive components. We call a (globally) perturbed random walk a random sequence
T := (Tk)k∈N defined by Tk := ξ1 + · · ·+ ξk−1 + ηk for k ∈ N. Consider a general branching
process generated by T and denote by Nj(t) the number of the jth generation individuals
with birth times ≤ t. We treat early generations, that is, fixed generations j which do not
depend on t. In this setting we prove counterparts for ENj of the Blackwell theorem and the
key renewal theorem, prove a strong law of large numbers for Nj , find the first-order asymp-
totics for the variance of Nj. Also, we prove a functional limit theorem for the vector-valued
process (N1(ut), . . . , Nj(ut))u≥0, properly normalized and centered, as t → ∞. The limit is
a vector-valued Gaussian process whose components are integrated Brownian motions.

Key words: functional limit theorem; general branching process; key renewal theorem; perturbed
random walk; renewal theory; strong law of large numbers
2000 Mathematics Subject Classification: Primary: 60K05, 60J80

1 Introduction

Let (ξi, ηi)i∈N be independent copies of a R
2-valued random vector (ξ, η) with arbitrarily depen-

dent components. Denote by (Si)i∈N0 (N0 := N ∪ {0}) the zero-delayed standard random walk
with increments ξi for i ∈ N, that is, S0 := 0 and Si := ξ1 + . . . + ξi for i ∈ N. Define

Ti := Si−1 + ηi, i ∈ N.

The sequence T := (Ti)i∈N is called perturbed random walk.
In the following we assume that ξ and η are almost surely (a.s.) positive. Now we define

a general branching process generated by T . At time 0 there is one individual, the ancestor.
The ancestor produces offspring (the first generation) with birth times given by the points of
T . The first generation produces the second generation. The shifts of birth times of the second
generation individuals with respect to their mothers’ birth times are distributed according to
copies of T , and for different mothers these copies are independent. The second generation
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produces the third one, and so on. All individuals act independently of each other. For t ≥ 0
and j ∈ N, denote by Nj(t) the number of the jth generation individuals with birth times ≤ t
and put Vj(t) := ENj(t), and Vj(t) := 0 for t < 0. Then

Nj(t) =
∑

r≥1

N
(r)
j−1(t− Tr)1{Tr≤t} =

∑

k≥1

N
(k)
1, j (t− T

(j−1)
k )1

{T
(j−1)
k

≤t}
, j ≥ 2, t ≥ 0, (1)

whereN
(r)
j−1(t) is the number of successors in the jth generation with birth times within [Tr, t+Tr]

of the first generation individual with birth time Tr; T
(j−1) := (T

(j−1)
k )k≥1 is some enumeration of

the birth times in the (j−1)th generation; N
(k)
1,j (t) is the number of children in the jth generation

with birth times within [T
(j−1)
k , t+T

(j−1)
k ] of the (j−1)th generation individual with birth time

T
(j−1)
k . By the branching property, (N

(1)
j−1(t))t≥0, (N

(2)
j−1(t))t≥0, . . . are independent copies of

Nj−1 which are also independent of T , and (N
(1)
1, j(t))t≥0, (N

(2)
1,j (t))t≥0, . . . are independent copies

of (N(t))t≥0 which are also independent of T (j−1). In what follows we write N for N1 and V for
V1. Passing in (1) to expectations we infer, for j ≥ 2 and t ≥ 0,

Vj(t) = V ∗(j)(t) = (Vj−1 ∗ V )(t) =

∫

[0, t]
Vj−1(t− y)dV (y) =

∫

[0, t]
V (t− y)dVj−1(y), (2)

where V ∗(j) is the j-fold convolution of V with itself. We call the sequence T := (T (j))j∈N
iterated perturbed random walk on a general branching process tree.

Following [3], we call the jth generation early, intermediate or late depending on whether j
is fixed, j = j(t) → ∞ and j(t) = o(t) as t → ∞, or j = j(t) is of order t. In the paper [3],
to which we refer for the motivation behind the study of T , the authors prove counterparts of
the elementary renewal theorem, the Blackwell theorem and the key renewal theorem for some
intermediate generations. In the present work we investigate early generations. Although the
analysis of early generations is simpler than that of intermediate generations, we solve here a
larger collection of problems. More precisely, we prove a strong law of large numbers for Nj(t)
and a functional limit theorem for the vector-valued process (N1(ut), N2(ut), . . . , Nk(ut))u≥0 for
each k ∈ N, properly normalized and centered as t → ∞; investigate the rate of convergence in
a counterpart for Vj of the elementary renewal theorem and find the asymptotics of the variance
VarNj(t). Also, counterparts for Vj of the Blackwell theorem and the key renewal theorem are
given.

The remainder of the paper is structured as follows. In Section 2 we state our main results.
Some auxiliary statements are discussed in Section 3. The proofs of the main results are given
in Section 4. Finally, the Appendix collects a couple of assertions borrowed from other articles.

2 Results

2.1 A counterpart of the elementary renewal theorem and the rate of con-

vergence result

Proposition 2.1 is a counterpart for Vj = ENj of the elementary renewal theorem.

Proposition 2.1. Assume that m = Eξ < ∞. Then, for fixed j ∈ N,

lim
t→∞

Vj(t)

tj
=

1

j!mj
. (3)
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Theorem 2.2 quantifies the rate of convergence in (3) under the assumptions Eξ2 < ∞ and
Eη < ∞. As usual, f(t) ∼ g(t) as t → ∞ means that limt→∞(f(t)/g(t)) = 1.

Theorem 2.2. Assume that the distribution of ξ is nonlattice, and that Eξ2 < ∞ and Eη < ∞.

Then, for any fixed j ∈ N,

Vj(t)−
tj

j!mj
∼ bV jt

j−1

(j − 1)!mj−1
, t → ∞, (4)

where m = Eξ < ∞ and bV := m
−1(Eξ2/(2m) − Eη) ∈ R.

2.2 Counterparts of the key renewal theorem and the Blackwell theorem

Theorem 2.3 is a counterpart for Vj of the key renewal theorem. Recall that the distribution of
a positive random variable is called nonlattice if it is not concentrated on any lattice (nd)n∈N0 ,
d > 0.

Theorem 2.3. Let f : [0,∞) → [0,∞) be a directly Riemann integrable function on [0,∞).
Assume that the distribution of ξ is nonlattice and that m < ∞. Then, for fixed j ∈ N,

∫

[0, t]
f(t− y)dVj(y) ∼

(1

m

∫ ∞

0
f(y)dy

)

Vj−1(t) ∼
∫ ∞

0
f(y)dy

tj−1

(j − 1)!mj
, t → ∞. (5)

Theorem 2.4, a counterpart for Vj of the Blackwell theorem, is just a specialization of The-
orem 2.3 with f(y) = 1[0, h)(y) for y ≥ 0. Nevertheless, we find it instructive to provide an
alternative proof. The reason is that the proof given in Section 4.2 illustrates nicely basic
concepts of the renewal theory and may be adapted to other settings.

Theorem 2.4. Assume that the distribution of ξ is nonlattice and m = Eξ < ∞. Then, for fixed

j ∈ N and fixed h > 0,

Vj(t+ h)− Vj(t) ∼ htj−1

(j − 1)!mj
, t → ∞. (6)

Remark 2.5. In the case η = 0 a.s. limit relation (6) can be found in Theorem 1.16 of [8].

2.3 Asymptotics of the variance

In this section we find, for fixed j ∈ N, the asymptotics of VarNj(t) as t → ∞ under the
assumption η = ξ a.s., so that Tk = Sk for k ∈ N. In other words, below we treat iterated

standard random walks. Theorem 2.6 is a strengthening of Lemma 4.2 in [7] in which the big
O estimate for VarNj(t) was obtained, rather than precise asymptotics. We do not know the
asymptotic behavior of VarNj(t) for (genuine) iterated perturbed random walks.

Theorem 2.6. Assume that η = ξ a.s., that the distribution of ξ is nonlattice and s
2 := Var ξ ∈

(0,∞). Then, for any j ∈ N,

lim
t→∞

VarNj(t)

t2j−1
=

s
2

(2j − 1)((j − 1)!)2m2j+1
, (7)

where m = Eξ < ∞.

Remark 2.7. In view of Corollary 2.10 the result of Theorem 2.6 is expected, yet the complete
proof requires some efforts. Of course, the relation

lim inft→∞
VarNj(t)

t2j−1
≥ s

2

(2j − 1)((j − 1)!)2m2j+1

is an immediate consequence of (11) and Fatou’s lemma.
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2.4 Strong law of large numbers

Theorem 2.8 is a strong law of large numbers for Nj .

Theorem 2.8. Assume that m = Eξ < ∞. Then, for fixed j ∈ N,

lim
t→∞

Nj(t)

tj
=

1

m
jj!

a.s. (8)

2.5 A functional limit theorem

Let B := (B(s))s≥0 be a standard Brownian motion and, for q ≥ 0, let

Bq(s) :=

∫

[0, s]
(s− y)qdB(y), s ≥ 0.

The process Bq := (Bq(s))s≥0 is a centered Gaussian process called the fractionally integrated

Brownian motion or the Riemann-Liouville process. Plainly, B = B0, B1(s) =
∫ s
0 B(y)dy, s ≥ 0

and, for integer q ≥ 2,

Bq(s) = q!

∫ s

0

∫ s2

0
. . .

∫ sq

0
B(y)dydsq . . . ds2, s ≥ 0.

In the following we write ⇒ and
d−→ to denote weak convergence in a function space and

weak convergence of one-dimensional distributions, respectively. As usual, we denote by D the
Skorokhod space of right-continuous functions defined on [0,∞) with finite limits from the left
at positive points. We prefer to use (Xt(u))u≥0 ⇒ (X(u))u≥0 in place of the formally correct
notation Xt(·) ⇒ X(·).

Given next is a functional limit theorem for (N1(ut), N2(ut), . . .)u≥0, properly normalized
and centered, as t → ∞.

Theorem 2.9. Assume that m = Eξ < ∞, s2 = Var ξ ∈ (0,∞) and Eηa < ∞ for some a > 0.
Then

(

(j − 1)!
(Nj(ut)− Vj(ut)√

m
−2j−1

s
2t2j−1

)

u≥0

)

j∈N

⇒
(

(Bj−1(u))u≥0

)

j∈N
, t → ∞ (9)

in the product J1-topology on DN.

If Eη1/2 < ∞, then the centering Vj(ut) can be replaced with (ut)j/(j!mj). If Eη1/2 = ∞, the

centering Vj(ut) can be replaced with

E(ut− (η1 + . . .+ ηj))
j
1{η1+...+ηj≤ut}

j!mj
=

∫ t1
0

∫ t2
0 . . .

∫ tj
0 P{η1 + . . .+ ηj ≤ y}dydtj . . . dt2

m
j

, (10)

where t1 = ut.

Now we derive a one-dimensional central limit theorem for Nj. To this end, it is enough to
restrict attention to just one coordinate in (9), put u = 1 there and note that Bj−1(1) has the
same distribution as (2j − 1)−1/2B(1).

Corollary 2.10. Under the assumptions of Theorem 2.9, for fixed j ∈ N,

(j − 1)!(2j − 1)1/2mj+1/2

stj−1/2

(

Nj(t)− Vj(t)
) d−→ B(1), t → ∞. (11)
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3 Auxiliary tools

For t ≥ 0, put U(t) :=
∑

n≥0 P{Sn ≤ t}, so that U is the renewal function of (Sn)n∈N0 . Whenever

Eξ2 < ∞, we have
0 ≤ U(t)− m

−1t ≤ cU , t ≥ 0, (12)

where cU := m
−2

Eξ2. The right-hand side is called Lorden’s inequality. Perhaps, it is not com-
monly known that Lorden’s inequality takes the same form for nonlattice and lattice distributions
of ξ, and we refer to Section 3 in [3] for the explanation of this fact. The left-hand inequality in
(12) is a consequence of Wald’s identity t ≤ ESν(t) = mU(t), where ν(t) := inf{k ∈ N : Sk > t}
for t ≥ 0.

Let us show that the left-hand inequality in (12) extends to the convolution powers Uj = U∗(j)

(see (2) for the definition) in the following sense.

Lemma 3.1. Let j ∈ N and m = Eξ ∈ (0,∞). Then

Uj(t) ≥
tj

j!mj
, t ≥ 0. (13)

Proof. We use the mathematical induction. When j = 1, (13) reduces to the left-hand inequality
in (12). Assuming that (13) holds for j ≤ k we infer

Uk+1(t)−
tk+1

(k + 1)!mk+1
=

∫

[0, t]

(

U(t− y)− t− y

m

)

dUk(y) +
1

m

∫ t

0

(

Uk(y)−
yk

k!mk

)

dy ≥ 0,

that is, (13) holds with j = k + 1.

Put G(t) := P{η ≤ t} for t ∈ R. Observe that G(t) = 0 for t < 0. Since V (t) ≤ U(t) for
t ≥ 0 we infer

V (t)− m
−1t ≤ cU , t ≥ 0 (14)

for any distribution of η. On the other hand, assuming that Eη < ∞,

V (t)− m
−1t =

∫

[0, t]
(U(t− y)− m

−1(t− y))dG(y)

− m
−1

∫ t

0
(1−G(y))dy ≥ −m−1

∫ t

0
(1−G(y))dy ≥ −m−1

Eη

having utilized U(t) ≥ m
−1t for t ≥ 0. Assuming that Eηa < ∞ for some a ∈ (0, 1) which

particularly implies that limt→∞ taP{η > t} = 0 we infer

V (t)− m
−1t ≥ −m−1

∫ t

0
(1−G(y))dy ≥ −c1 − c2t

1−a, t ≥ 0.

Thus, we have proved the following.

Lemma 3.2. Assume that Eξ2 < ∞. If Eη < ∞, then

|V (t)− m
−1t| ≤ cV , t ≥ 0 (15)

where cV := max(cU , m
−1

Eη) and cU = m
−2

Eξ2. If Eηa < ∞ for some a ∈ (0, 1), then

− c1 − c2t
1−a ≤ V (t)− m

−1t ≤ cV , t ≥ 0 (16)

for appropriate positive constants c1 and c2.
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Lemma 3.3 is needed for the proof of Theorem 2.6. Put Ũ(t) :=
∑

r≥1 P{Sr ≤ t} = U(t)− 1
for t ≥ 0.

Lemma 3.3. Assume that the distribution of ξ is nonlattice and Eξ2 < ∞. Then, for fixed

j ∈ N,
∫

[0, t]
(t− y)jdŨ(y) =

tj+1

(j + 1)m
+ (bU − 1)tj + o(tj), t → ∞, (17)

where bU := Eξ2/(2m2).

Proof. Using the easily checked formula

∫

[0, t]
(t− y)jdŨ(y) = j

∫ t

0

∫

[0, s]
(s− y)j−1dŨ(y)ds, j ∈ N, t ≥ 0

and the mathematical induction one can show that

∫

[0, t]
(t− y)jdŨ(y) = j!

∫ t

0

∫ yj

0
. . .

∫ y2

0
Ũ(y1)dy1 . . . dyj, j ∈ N, t ≥ 0.

Now (17) follows from the latter equality and the relation Ũ(t) = m
−1t+ bU − 1+ o(1) as t → ∞

which is nothing else but formula (4) with j = 1 and η = ξ a.s.

Lemma 3.4 will be used in the proof of Theorem 2.8.

Lemma 3.4. Assume that m = Eξ < ∞. Then

lim
t→∞

E(N(t))2

t2
=

1

m
2
.

Proof. The relation

lim inft→∞
E(N(t))2

t2
≥ 1

m
2

follows from E(N(t))2 ≥ (V (t))2 and Proposition 2.1. The converse inequality for the limit
superior is implied by the inequality

N(t) ≤ ν(t) =
∑

i≥0

1{Si≤t}, t ≥ 0 a.s.

and limt→∞ t−2
E(ν(t))2 = m

−2 (see Theorem 5.1 (ii) on p. 57 in [6]).

Propositions 3.5 and 3.6 are important ingredients in the proof of Theorem 2.9.

Proposition 3.5. Assume that m = Eξ < ∞, s2 = Var ξ ∈ (0,∞) and Eηa < ∞ for some a > 0.
Then

(N(ut)− V (ut)√
m
−3
s
2t

)

u≥0
⇒ (B(u))u≥0, t → ∞ (18)

in the J1-topology on D, where (B(u))u≥0 is a standard Brownian motion.
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Proof. According to part (B1) of Theorem 3.2 in [1],

(N(ut)− m
−1

∫ ut
0 G(y)dy√

m
−3
s
2t

)

u≥0
⇒ (B(u))u≥0, t → ∞

in the J1-topology on D, where, as before, G is the distribution function of η. Thus, it is enough
to show that, for all T > 0,

lim
t→∞

t−1/2 sup
u∈[0, T ]

∣

∣

∣
V (ut)− m

−1

∫ ut

0
G(y)dy

∣

∣

∣
= 0. (19)

According to (12), for u ∈ [0, T ] and t ≥ 0,

0 ≤ V (ut)− m
−1

∫ ut

0
G(y)dy =

∫

[0, ut]
(U(tu− y)− m

−1(tu− y))dG(y) ≤ cU ,

and (19) follows.

Proposition 3.6. Assume that m = Eξ < ∞, s2 = Var ξ ∈ (0,∞) and Eηa < ∞ for some a > 0.
Then

E sup
s∈[0, t]

(N(s)− V (s))2 = O(t), t → ∞.

Proof. In the case Eη < ∞ this limit relation is proved in Lemma 4.2(b) of [5].
From now on we assume that Eηa < ∞ for some a ∈ (0, 1) and Eη = ∞. As in the proof of

Lemma 4.2(b) of [5] we shall use a decomposition

N(t)− V (t) =
∑

k≥0

(1{Sk+ηk+1≤t} −G(t− Sk)) +
∑

k≥0

G(t− Sk)− V (t),

where G is the distribution function of η. It suffices to prove that

E

[

sup
s∈[0, t]

(

∑

k≥0

(1{Sk+ηk+1≤s} −G(s− Sk))
)2]

= O(t), t → ∞ (20)

and

E

[

sup
s∈[0, t]

(

∑

k≥0

G(t− Sk)− V (t)
)2]

= O(t), t → ∞. (21)

The proof of (21) given in [5] goes through for any distribution of η and as such applies without
changes under the present assumptions. On the other hand, the proof of (20) given in [5]
depends crucially on the assumption Eη < ∞ imposed in Lemma 4.2(b) of the cited article.
Thus, another argument has to be found.

For u, t ≥ 0, put

Zt(u) :=
∑

k≥0

(

1{Sk+ηk+1≤ut} −G(ut− Sk))1{Sk≤ut},

so that

E

[

sup
s∈[0, t]

(

∑

k≥0

(1{Sk+ηk+1≤s}−G(s − Sk))
)2]

= E[ sup
u∈[0, 1]

(Zt(u))
2].
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In what follows we write supu∈K when the supremum is taken over an uncountable set K and
maxm≤k≤n when the maximum is taken over the discrete set {m,m + 1, . . . , n}. We start by
observing that, for positive integer I = I(t) to be chosen later in (28),

sup
u∈[0, 1]

|Zt(u)| = max
0≤k≤2I−1

sup
u∈[0, 2−I ]

∣

∣Zt(k2
−I + u)− Zt(k2

−I) + Zt(k2
−I)

∣

∣

≤ max
0≤k≤2I

|Zt(k2
−I)|+ max

0≤k≤2I−1
sup

u∈[0, 2−I ]

|Zt(k2
−I + u)− Zt(k2

−I)|.

We have used subadditivity of the supremum for the last inequality. We proceed as on p. 764
in [9]. Put Fj := {k2−j : 0 ≤ k ≤ 2j} for j ∈ N0 and fix u ∈ FI . Now define uj := max{w ∈ Fj :
w ≤ u} for nonnegative integer j ≤ I. Then uj−1 = uj or uj−1 = uj − 2−j . With this at hand,

|Zt(u)| =
∣

∣

∣

I
∑

j=1

(Zt(uj)− Zt(uj−1)) + Zt(u0)
∣

∣

∣
≤

I
∑

j=0

max
1≤k≤2j

|Zt(k2
−j)− Zt((k − 1)2−j)|.

Combining the fragments together we arrive at the inequality which a starting point of our
subsequent work

sup
u∈[0, 1]

|Zt(u)| ≤
I

∑

j=0

max
1≤k≤2j

|Zt(k2
−j)−Zt((k−1)2−j)|+ max

0≤k≤2I−1
sup

u∈[0, 2−I ]

|Zt(k2
−I+u)−Zt(k2

−I)|.

Thus, (20) follows if we can show that

E

( I
∑

j=0

max
1≤k≤2j

|Zt(k2
−j)− Zt((k − 1)2−j)|

)2

= O(t), t → ∞ (22)

and that
E[ max

0≤k≤2I−1
sup

u∈[0, 2−I ]

(Zt(k2
−I + u)− Zt(k2

−I))2] = O(t), t → ∞. (23)

We intend to prove that, for u, v ≥ 0, u > v and t ≥ 0,

E(Zt(u)− Zt(v))
2 ≤ 2Eν(1)a((u − v)t), (24)

where, for t ≥ 0, a(t) :=
∑[t]+1

k=0 (1 − G(k)) and ν(t) = inf{k ∈ N : Sk > t} =
∑

k≥0 1{Sk≤t}.
Indeed,

E(Zt(u)− Zt(v))
2 =

∫

(vt, ut]
G(ut− y)(1−G(ut− y))dν(y)

+

∫

[0, vt]
(G(ut − y)−G(vt− y))(1 −G(ut− y) +G(vt− y))dν(y)

≤
∫

(vt, ut]
(1−G(ut− y))dν(y) +

∫

[0, vt]
(G(ut − y)−G(vt− y))dν(y).

Using Lemma 5.1 with f(y) = (1 − G(y))1[0, (u−v)t)(y) and f(y) = G((u − v)t + y) − G(y),
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respectively, we obtain

E

∫

(vt, ut]
(1−G(ut− y))dν(y) = E

∫

[0, ut]
(1−G(ut− y))1[0, (u−v)t)(ut− y)dν(y)

≤ Eν(1)

[ut]
∑

n=0

sup
y∈[n, n+1)

((1 −G(y))1[0, (u−v)t)(y))

≤ Eν(1)

[(u−v)t]
∑

n=0

(1−G(n)) ≤ Eν(1)a((u− v)t) (25)

and

E

∫

[0, vt]
(G(ut− y)−G(vt− y))dν(y) ≤ Eν(1)

[vt]
∑

n=0

sup
y∈[n, n+1)

(G((u − v)t+ y)−G(y))

≤ Eν(1)
(

[vt]
∑

n=0

(1−G(n))−
[vt]
∑

n=0

(1−G((u − v)t+ n+ 1))
)

≤ Eν(1)
(

[vt]
∑

n=0

(1−G(n))−
[ut]+1
∑

n=0

(1−G(n)) +

[(u−v)t]+1
∑

n=0

(1−G(n))
)

≤ Eν(1)a((u − v)t). (26)

Combining (25) and (26) yields (24).
Proof of (22). The assumption Eηa < ∞ entails limt→∞ ta(1−G(t)) = 0 and thereupon, given
C > 0 there exists t1 > 0 such that a(t) ≤ Ct1−a whenever t ≥ t1. Using this in combination
with (24) yields

E(Zt(k2
−j)− Zt((k − 1)2−j))2 ≤ 2CEν(1)2−j(1−a) =: C12

−j(1−a) (27)

whenever 2−jt ≥ t1. Let I = I(t) denote the integer number satisfying

2−It ≥ t1 > 2−I−1t. (28)

Then the inequalities (27) and

E[( max
1≤k≤2j

(Zt(k2
−j)− Zt((k − 1)2−j))2] ≤

2j
∑

k=1

E(Zt(k2
−j)− Zt((k − 1)2−j))2

≤ C12
aj

hold whenever j ≤ I. Invoking the triangle inequality for the L2-norm yields

E

( I
∑

j=0

max
1≤k≤2j

|Zt(k2
−j)−Zt((k−1)2−j)|

)2

≤
( I
∑

j=0

(E[ max
1≤k≤2j

(Zt(k2
−j)−Zt((k−1)2−j))2]1/2

)2

≤ C1

( I
∑

j=0

2aj/2
)2

=
(

O
(

2aI/2
))2

= O(ta), t → ∞.

Here, the last equality is ensured by the choice of I.
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Proof of (23). We shall use a decomposition

Zt(k2
−I + u)− Zt(k2

−I)

=
∑

j≥0

(

1{Sj+ηj+1≤(k2−I+u)t} −G((k2−I + u)t− Sj)
)

1{k2−I t<Sj≤(k2−I+u)t}

+
∑

j≥0

(

1{k2−I t<Sj+ηj+1≤(k2−I+u)t} −(G((k2−I + u)t− Sj)−G(k2−I t− Sj))
)

1{Sj≤k2−I t}

=: J1(t, k, u) + J2(t, k, u).

It suffices to prove that, for i = 1, 2,

E[ max
0≤k≤2I−1

sup
u∈[0, 2−I ]

(Ji(t, k, u))
2] = O(t), t → ∞. (29)

Proof of (29) for i = 1. Since |J1(t, k, u)| ≤ ν((k2−I + u)t) − ν(k2−It) and t 7→ ν(t) is a.s.
nondecreasing we infer supu∈[0, 2−I ] |J1(t, k, u)| ≤ ν((k + 1)2−I t)− ν(k2−It) a.s. Hence,

E[ max
0≤k≤2I−1

sup
u∈[0, 2−I ]

(Ji(t, k, u))
2] ≤ E[ max

0≤k≤2I−1
(ν((k + 1)2−I t)− ν(k2−I t))2]

≤ E

2I−1
∑

k=0

E(ν((k+1)2−I t)− ν(k2−It))2 ≤ 2IE(ν(2−It))2 ≤ (t/t1)E(ν(2t1))
2 = O(t), t → ∞.

Here, the second inequality follows from distributional subadditivity of ν(t) (see, for instance,
formula (5.7) on p. 58 in [6]), and the third inequality is secured by the choice of I.
Proof of (29) for i = 2. We have

sup
u∈[0, 2−I ]

|J2(t, k, u)| ≤ sup
u∈[0, 2−I ]

(

∑

j≥0

1{k2−I t<Sj+ηj+1≤(k2−I+u)t} 1{Sj≤k2−I t}

+
∑

j≥0

(G((k2−I + u)t− Sj)−G(k2−I t− Sj))
)

1{Sj≤k2−I t}

)

≤
∑

j≥0

1{k2−I t<Sj+ηj+1≤(k+1)2−I t} 1{Sj≤k2−I t}

+
∑

j≥0

(G(((k + 1)2−I)t− Sj)−G(k2−I t− Sj))1{Sj≤k2−I t}

≤
∣

∣

∣

∑

j≥0

(

1{k2−I t<Sj+ηj+1≤(k+1)2−I t} −(G(((k + 1)2−I)t− Sj)−G(k2−I t− Sj))
)

1{Sj≤k2−I t}

∣

∣

∣

+ 2
∑

j≥0

(G(((k + 1)2−I)t− Sj)−G(k2−I t− Sj))
)

1{Sj≤k2−I t}

=: J21(t, k) + 2J22(t, k).

Using (26) with u = (k + 1)2−I and v = k2−I we obtain

E(J22(t, k))
2 ≤ E(ν(1))2(a(2−I t))2 ≤ E(ν(1))2(a(2t1))

2

which implies

E( max
0≤k≤2I−1

J22(t, k))
2 ≤ 2I max

0≤k≤2I−1
E(J22(t, k))

2

≤ (t/t1)E(ν(1))
2(a(2t1))

2 = O(t), t → ∞.
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Further, by (26),

E(J21(t, k))
2 = E

∫

[0, k2−I t]
(G((k + 1)2−I t− y)−G(k2−I t− y))dν(y) ≤ Eν(1)a(2−I t).

Hence, E(max0≤k≤2I−1 J21(t, k))
2 = O(t) by the same reasoning as above, and (29) for i = 2

follows. The proof of Proposition 3.6 is complete.

4 Proofs of the main results

4.1 Proofs of Proposition 2.1 and Theorem 2.2

Proof of Proposition 2.1. The simplest way to prove this is to use Laplace transforms. Indeed,
for fixed j ∈ N,

∫

[0,∞)
e−stdVj(t) =

(

Ee−sη

1− Ee−sξ

)j
∼ 1

m
jsj

, s → 0 + .

By Karamata’s Tauberian theorem (Theorem 1.7.1 in [2]), (3) holds.

Proof of Theorem 2.2. We use induction on j. Let j = 1. Write

V (t)− m
−1t =

∫

[0, t]
(U(t− y)− m

−1(t− y))dG(y) − m
−1

∫ t

0
(1−G(y))dy. (30)

Plainly, the second term converges to −m−1
Eη as t → ∞. It is a simple consequence of the

Blackwell theorem that
lim
t→∞

(U(t)− m
−1t) = (2m2)−1

Eξ2 = bU .

Using this in combination with (15) we invoke Lebesgue’s dominated convergence theorem to
infer that the first term in (30) converges to bU as t → ∞. Thus, we have shown that (4) with
j = 1 holds true.

Assume that (4) holds for j = k. In view of (4) with j = 1, given ε > 0 there exists t0 > 0
such that

|V (t)− m
−1t− bV | ≤ ε (31)

whenever t ≥ t0. Write, for t ≥ t0,

Vk+1(t)−
tk+1

(k + 1)!mk+1
=

∫

[0, t−t0]
(V (t− y)− m

−1(t− y))dVk(y)

+

∫

(t−t0, t]
(V (t− y)− m

−1(t− y))dVk(y) + m
−1

∫ t

0

(

Vk(y)−
yk

k!mk

)

dy = I1(t) + I2(t) + I3(t).

In view of (31),
(bV − ε)Vk(t− t0) ≤ I1(t) ≤ (bV + ε)Vk(t− t0),

whence
bV − ε

k!mk
≤ lim inft→∞

I1(t)

tk
≤ lim supt→∞

I1(t)

tk
≤ bV + ε

k!mk

by Proposition 2.1.

11



Using (15) we obtain |I2(t)| ≤ cV (Vk(t)−Vk(t−t0)) for all t ≥ t0, whence limt→∞ t−kI2(t) = 0
by Theorem 2.4. A combination of this with the last centered formula and sending ε → 0+ we
infer

I1(t) + I2(t) ∼ bV t
k

k!mk
, t → ∞.

Finally, by the induction assumption and L’Hôpital’s rule

I3(t) ∼
bV t

k

(k − 1)!mk
, t → ∞.

Combining fragments together we arrive at (4) with j = k + 1.

4.2 Proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. The proof of Theorem 2.7 (a) in [3] applies, with obvious simplifications.
Note that for early generations (j is fixed), asymptotic relation (3) holds under the sole assump-
tion m < ∞. This is not the case for intermediate generations (j = j(t) → ∞, j(t) = o(t) as
t → ∞) treated in [3] which explains the appearance of the additional assumption Eξr < ∞ for
some r ∈ (1, 2] in Theorem 2.7 of the cited paper.

Proof of Theorem 2.4. When j = 1, relation (6) holds by Lemma 4.2 (a) in [3]. Write

Vj(t+ h)− Vj(t) =

∫

[0, t]
(V (t+ h− y)− V (t− y))dVj−1(y) +

∫

(t, t+h]
V (t+ h− y)dVj−1(y)

=: Aj(t) +Bj(t).

We first show that the contribution of Bj(t) is negligible. Indeed, using monotonicity of V and
limt→∞(Vj(t+ h)/Vj(t)) = 1 (see Proposition 2.1) we obtain

Bj(t) ≤ V (h)(Vj−1(t+ h)− Vj−1(t)) = o(Vj−1(t)), t → ∞.

In view of (6) with j = 1, given ε > 0 there exists t0 > 0 such that

|V (t+ h)− V (t)− m
−1h| ≤ ε

whenever t ≥ t0. Thus, we have, for t ≥ t0,

Aj(t) =

∫

[0, t−t0]
(V (t+h−y)−V (t−y))dVj−1(y)+

∫

(t−t0, t]
V (t+h−y)dVj−1(y) =: Aj,1(t)+Aj,2(t).

By the argument used for Bj(t) we infer Aj,2(t) = o(Vj−1(t)). Further, Aj,1(t) ≤ (m−1h +
ε)Vj−1(t− t0), whence

lim sup
t→∞

(Aj(t)/Vj−1(t)) ≤ m
−1h.

A symmetric argument proves the converse inequality for the limit inferior. Invoking Proposition
2.1 completes the proof of Theorem 2.4.
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4.3 Proof of Theorem 2.6

For j ∈ N and t ≥ 0, put Dj(t) := VarNj(t). Recall that, as a consequence of the assumption
η = ξ a.s., Tr = Sr for r ∈ N and V (t) = Ũ(t) =

∑

r≥1 P{Sr ≤ t} for t ≥ 0. However, we prefer

to write Vj rather than Ũj.
Let j ∈ N, j ≥ 2. We obtain with the help of (1)

Nj(t)− Vj(t) =
∑

r≥1

(

N
(r)
j−1(t− Sr)− Vj−1(t− Sr)

)

1{Sr≤t}

+

(

∑

r≥1

Vj−1(t− Sr)1{Sr≤t} −Vj(t)

)

=: Nj, 1(t) +Nj, 2(t), t ≥ 0, (32)

whence
Dj(t) = E(Nj, 1(t))

2 + E(Nj, 2(t))
2. (33)

We start by showing that the following asymptotic relations hold, for j ≥ 2, as t → ∞,

E(Nj, 2(t))
2 = Var

(

∑

r≥1

Vj−1(t− Sr)1{Sr≤t}

)

= E

(

∑

r≥1

Vj−1(t− Sr)1{Sr≤t}

)2
− V 2

j (t) ∼ s
2

(2j − 1)((j − 1)!)2m2j+1
t2j−1, t → ∞. (34)

Proof of (34). We shall use the equality (see formula (4.9) in [7])

E

(

∑

r≥1

Vj−1(t−Sr)1{Sr≤t}

)2

= 2

∫

[0, t]
Vj−1(t−y)Vj(t−y)dŨ(y)+

∫

[0, t]
V 2
j−1(t−y)dŨ(y). (35)

In view of (4)

∫

[0, t]
Vj−1(t− y)Vj(t− y)dŨ(y) =

∫

[0, t]

( (t− y)j−1

(j − 1)!mj−1
+

bV (j − 1)(t− y)j−2

(j − 2)!mj−2
+ o((t− y)j−2)

)

×
((t− y)j

j!mj
+

bV j(t− y)j−1

(j − 1)!mj−1
+ o((t− y)j−1)

)

dŨ(y) =
1

(j − 1)!j!m2j−1

∫

[0, t]
(t− y)2j−1dŨ(y)

+
bV (2j

2 − 2j + 1)

(j − 1)!j!m2j−2

∫

[0, t]
(t− y)2j−2dŨ(y) +

∫

[0, t]
o((t− y)2j−2)dŨ(y),

where bV = Eξ2/(2m2)− 1 because under the present assumption Eη = m. According to (17)

∫

[0, t]
(t− y)2j−1dŨ(y) =

t2j

2jm
+ bV t

2j−1 + o(t2j−1), t → ∞;

∫

[0, t]
(t− y)2j−2dŨ(y) =

t2j−1

(2j − 1)m
+ o(t2j−1), t → ∞.

Also, it can be checked that

∫

[0, t]
o((t− y)2j−2)dŨ(y) = o(t2j−1), t → ∞.
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By Proposition 2.1,

V 2
j−1(t) ∼ t2j−2

((j − 1)!)2m2j−2
and V (t) = Ũ(t) ∼ t

m

, t → ∞.

As in the proof of Proposition 2.1 we now invoke Karamata’s Tauberian theorem (Theorem 1.7.1
in [2]) to obtain

∫

[0, t]
V 2
j−1(t− y)dŨ(y) ∼ t2j−1

(2j − 1)((j − 1)!)2m2j−1
, t → ∞.

Using the aforementioned asymptotic relations and recalling (35) we infer

E

(

∑

r≥1

Vj−1(t− Sr)1{Sr≤t}

)2

=
t2j

(j!)2m2j
+

2bV t
2j−1

(j − 1)!j!m2j−1
+

2bV (2j
2 − 2j + 1)t2j−1

(2j − 1)(j − 1)!j!m2j−1

+
t2j−1

(2j − 1)((j − 1)!)2m2j−1
+ o(t2j−1), t → ∞.

Further, as t → ∞,

V 2
j (t) =

t2j

(j!)2m2j
+

2tj

j!mj

(

Vj(t)−
tj

j!mj

)

+

(

Vj(t)−
tj

j!mj

)2

=
t2j

(j!)2m2j
+

2bV t
2j−1

((j − 1)!)2m2j−1
+o(t2j−1)

having utilized (4). The last two asymptotic relations entail (34).
With (34) at hand we are ready to prove (7). To this end, we shall use the mathematical

induction. If j = 1, (7) takes the form D1(t) = E(N(t) − Ũ(t))2 ∼ s
2
m
−3t as t → ∞. This can

be checked along the lines of the proof of (34). Alternatively, this relation follows from Theorem
3.8.4 in [6] where the assumption that the distribution of ξ is nonlattice is not made. Assume
that (7) holds for j = k − 1 ≥ 1, that is,

Dk−1(t) ∼ s
2

(2k − 3)((k − 2)!)2m2k−1
t2k−3, t → ∞.

Using this and the equality

E(Nk,1(t))
2 = E

∑

r≥1

Dk−1(t− Sr)1{Sr≤t} =

∫

[0, t]
Dk−1(t− y)dŨ(y)

in combination with Karamata’s Tauberian theorem (Theorem 1.7.1 in [2]) or, even simpler, a
bare hands calculation we infer

E(Nk, 1(t))
2 ∼ s

2

(2k − 3)(2k − 2)((k − 2)!)2m2k
t2k−2, t → ∞.

By virtue of (33) and (34) we conclude that (7) holds for j = k. The proof of Theorem 2.6 is
complete.
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4.4 Proof of Theorem 2.8

We use the mathematical induction. When j = 1, (8) holds true by formula (24) in [1]. Assuming
that it holds for j = k we intend to show that (8) also holds for j = k+1. To this end, we write
with the help of (1) for j = k + 1:

Nk+1(t) =
∑

r≥1

(

N
(r)
1, k+1(t− T (k)

r )− V (t− T (k)
r )

)

1

{T
(k)
r ≤t}

+

∫

[0, t]
V (t− y)dNk(y), t ≥ 0. (36)

By Proposition 2.1, given ε > 0 there exists t0 > 0 such that |t−1V (t) − m
−1| ≤ ε whenever

t ≥ t0. We have
∫

(t−t0, t]
V (t− y)dNk(y) ≤ V (t0)(Nk(t)−Nk(t− t0)) = o(tk) a.s. as t → ∞

by the induction assumption. Analogously,

∫

(t−t0, t]
(t− y)dNk(y) = o(tk) a.s. as t → ∞.

Further,

∫

[0, t−t0]
V (t− y)dNk(y) ≥ (m−1 − ε)

∫

[0, t−t0]
(t− y)dNk(y) ≥ (m−1 − ε)

(

∫

[0, t]
(t− y)dNk(y)

−
∫

(t−t0, t]
(t− y)dNk(y)

)

.

Using
∫

[0, t](t − y)dNk(y) =
∫ t
0 Nk(y)dy and applying L’Hôpital’s rule in combination with the

induction assumption we infer

lim
t→∞

∫

[0, t](t− y)dNk(y)

tk+1
=

1

m
k(k + 1)!

a.s.

Combining pieces together we arrive at

lim inft→∞

∫

[0, t] V (t− y)dNk(y)

tk+1
≥ 1

m
k+1(k + 1)!

a.s.

The converse inequality for the limit superior follows similarly, whence

lim
t→∞

∫

[0, t] V (t− y)dNk(y)

tk+1
=

1

m
k+1(k + 1)!

a.s. (37)

Further,

E

(

∑

r≥1

(

N
(r)
1, k+1(t−T (k)

r )−V (t−T (k)
r )

)

1

{T
(k)
r ≤t}

)2
=

∑

r≥1

E
(

N
(r)
1, k+1(t−T (k)

r )−V (t−T (k)
r )

)2
1

{T
(k)
r ≤t}

≤
∫

[0, t]
E(N(t− y))2dVk(y) ≤ E(N(t))2Vk(t) = O(tk+2), t → ∞
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having utilized monotonicity of t 7→ E(N(t))2 for the last inequality and Lemmas 2.1 and 3.4 for
the last equality. Invoking now the Markov inequality and the Borel-Cantelli lemma we conclude
that

lim
n→∞

∑

r≥1

(

N
(r)
1, k+1(n

2 − T
(k)
r )− V (n2 − T

(k)
r )

)

1

{T
(k)
r ≤n2}

n2(k+1)
= 0 a.s. (38)

(n approaches ∞ along integers). This together with (37) yields

lim
n→∞

Nk+1(n
2)

n2(k+1)
=

1

m
k+1(k + 1)!

a.s.

Thus, it remains to show that we may pass to the limit continuously. To this end, note that, for
each t ≥ 0, there exists n ∈ N such that t ∈ [(n − 1)2, n2) and use a.s. monotonicity of Nk+1 to
obtain

(n− 1)2(k+1)

n2(k+1)

Nk+1((n − 1)2)

(n− 1)2(k+1)
≤ Nk+1(t)

tk+1
≤ Nk+1(n

2)

n2(k+1)

n2(k+1)

(n − 1)2(k+1)
a.s.

Letting t tend to ∞ we arrive at

lim
t→∞

Nk+1(t)

tk+1
=

1

m
k+1(k + 1)!

a.s.,

thereby completing the induction step. The proof of Theorem 2.8 is complete.

4.5 Proof of Theorem 2.9

In the case Eη < ∞ this result follows from Theorem 3.2 and Lemma 4.2 in [5]. Thus, we
concentrate on the case Eηa < ∞ for a ∈ (0, 1) and Eη = ∞.

We are going to apply Theorem 5.2 with N∗
j = Nj for j ∈ N. According to (16),

−c1 − c2t
1−a ≤ V (t)− m

−1t ≤ cU , t ≥ 0

for some positive constants c1 and c2 and cU = m
−2

Eξ2, that is, condition (42) holds with
c = m

−1, ω = 1, ε1 = a, ε2 = 1, a0 + a1 = cU , b0 = −c1, b1 = −c2. By Proposition 3.6,

E sup
s∈[0, t]

(N(s)− V (s))2 = O(t), t → ∞,

that is, condition (43) holds with γ = 1/2. By Proposition 3.5,

(N(ut)− V (ut)√
m
−3
s
2t

)

u≥0
⇒ (B(u))u≥0, t → ∞

in the J1-topology on D. This means that condition (44) holds with γ = 1/2, b = m
−3/2

s

and W = B, a Brownian motion. Recall that the process B is locally Hölder continuous with
exponent β for any β ∈ (0, 1/2). Thus, by Theorem 5.2, relation (9) is a specialization of (45)

with γ = 1/2, ω = 1, R
(1)
j = Bj−1, j ∈ N and ρj = 1/(mjj!), j ∈ N0.

Now we prove the claim that the centering Vj(ut) can be replaced with that given in (10).
We first note that the equality in (10) follows with the help of the mathematical induction in k
from the representation

E(t−Ri)
k
1{Ri≤t} =

∫

[0, t]
(t− y)kdP{Ri ≤ y}

= k

∫ t

0

∫

[0, s]
(s− y)k−1dP{Ri ≤ y}ds, i, k ∈ N, t ≥ 0,
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where Ri := η1 + . . .+ ηi. Here, the first step of induction is justified by the equality

∫

[0, t]
(t− y)dP{Ri ≤ y} =

∫ t

0
P{Ri ≤ s}ds, i ∈ N, t ≥ 0.

Further, we show that whenever Eξ2 < ∞ irrespective of the distribution of η, for all T > 0,

lim
t→∞

t−(j−1/2) sup
u∈[0, T ]

|Vj(ut)− (j!mj)−1
E(ut−Rj)

j
1{Rj≤ut} | = 0. (39)

To this end, we recall that, according to formula (4.4) in [4] (we use the formula with η = 0),

Uj(t)−
tj

j!mj
≤

j−1
∑

i=0

(

j

i

)

cj−i
U ti

i!mi
, t ≥ 0,

where cU = m
−2

Eξ2. Using this and Lemma 3.1, we obtain, for u ∈ [0, T ] and t ≥ 0,

∣

∣

∣
Vj(ut)−

E(ut−Rj)
j
1{Rj≤ut}

j!mj

∣

∣

∣
=

∫

[0, ut]

(

Uj(ut− y)− (ut− y)j

j!mj

)

dP{Rj ≤ y}

≤
∫

[0, ut]

j−1
∑

i=0

(

j

i

)

cj−i
U (ut− y)i

i!mi
dP{Rj ≤ y} ≤

j−1
∑

i=0

(

j

i

)

cj−i
U (T t)i

i!mi
= o(tj−1/2), t → ∞

which proves (39).
It remains to show that if Eη1/2 < ∞, then the centering Vj(ut) can be replaced with

(ut)j/(j!mj). To justify this, it suffices to check that

lim
t→∞

supu∈[0, T ]

(

(ut)j − j!
∫ ut
0

∫ t2
0 . . .

∫ tj
0 P{Rj ≤ y}dydtj . . . dt2

)

tj−1/2
= 0. (40)

The numerator of the ratio under the limit on the left-hand side of (40) is equal to

sup
u∈[0, T ]

∫ tu

0

∫ t2

0
. . .

∫ tj

0
P{Rj > y}dydtj . . . dt2 =

∫ tT

0

∫ t2

0
. . .

∫ tj

0
P{Rj > y}dydtj . . . dt2.

Hence, we are left with showing that

lim
t→∞

t−(j−1/2)

∫ t

0

∫ t2

0
. . .

∫ tj

0
P{Rj > y}dydtj . . . dt2 = 0.

Assume that Eη < ∞, so that ERj < ∞ and thereupon limt→∞

∫ t
0 P{Rj > y}dy = ERj < ∞.

Then using L’Hospital’s rule (j − 1)-times we obtain

lim
t→∞

∫ t
0

∫ t2
0 . . .

∫ tj
0 P{Rj > y}dydtj . . . dt2

tj−1/2
=

2j−1

1 · 3 · . . . · (2j − 1)
lim
t→∞

∫ t
0 P{Rj > y}dy

t1/2
= 0.

Assume that Eη = ∞. Since Eη1/2 < ∞ is equivalent to ER
1/2
j < ∞ we infer limt→∞ t1/2P{Rj >

t} = 0. With this at hand, using L’Hospital’s rule j-times we infer

lim
t→∞

∫ t
0

∫ t2
0 . . .

∫ tj
0 P{Rj > y}dydtj . . . dt2

tj−1/2
=

2j

1 · 3 · . . . · (2j − 1)
lim
t→∞

t1/2P{Rj > t} = 0.

The proof of Theorem 2.9 is complete.
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5 Appendix

In this section we state several results borrowed from other sources. The first of these can be
found in the proof of Lemma 7.3 in [1].

Lemma 5.1. Let f : [0,∞) → [0,∞) be a locally bounded function. Then, for any l ∈ N,

E

(

∑

k≥0

f(t− Sk)1{Sk≤t}

)l

≤
( [t]
∑

j=0

sup
y∈[j, j+1)

f(y)

)l

E(ν(1))l, t ≥ 0, (41)

where ν(t) = inf{k ∈ N : Sk > t}.
For j ∈ N and t ≥ 0, denote by N∗

j (t) the number of the jth generation individuals with
birth times ≤ t in a general branching process generated by an arbitrary locally finite point
process T ∗, and put V ∗

j (t) := EN∗
j (t). In particular, N∗

j = Nj for j ∈ N when T ∗ = T . For
notational simplicity, put N∗ := N∗

1 and V ∗ := V ∗
1 .

Let W := (W (s))s≥0 denote a centered Gaussian process which is a.s. locally Hölder contin-
uous and satisfy W (0) = 0. For each u > 0, put

R
(u)
1 (s) := W (s), R

(u)
j (s) :=

∫

[0, s]
(s− y)u(j−1)dW (y), s ≥ 0, j ≥ 2.

The following result follows from Theorem 3.2 in [5] and its proof.

Theorem 5.2. Assume the following conditions hold:

(i)
b0 + b1t

ω−ε1 ≤ V ∗(t)− ctω ≤ a0 + a1t
ω−ε2 (42)

for all t ≥ 0 and some constants c, ω, a0, a1 > 0, 0 < ε1, ε2 ≤ ω and b0, b1 ∈ R,

(ii)
E sup

s∈[0, t]
(N∗(s)− V ∗(s))2 = O(t2γ), t → ∞ (43)

for some γ ∈ (0, ω).

(iii)
(N∗(ut)− V ∗(ut)

btγ

)

u≥0
⇒ (W (u))u≥0, t → ∞ (44)

in the J1-topology on D for some b > 0 and the same γ as in (43).

Then
(

(N∗
j (ut)− V ∗

j (ut)

bρj−1tγ+ω(j−1)

)

u≥0

)

j∈N

⇒
((

R
(ω)
j (u)

)

u≥0

)

j∈N
(45)

in the J1-topology on DN, where

ρj :=
(cΓ(ω + 1))j

Γ(ωj + 1)
, j ∈ N0

with Γ(·) denoting the gamma function.
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