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Abstract

We consider a branching random walk on a d-ary tree of height n (n ∈ N), under the
presence of a hard wall which restricts each value to be positive, where d is a natural number
satisfying d > 2. The question of behaviour of Gaussian processes with long range interactions,
for example the discrete Gaussian free field, under the condition that it is positive on a large
subset of vertices, and a relation with the expected maximum of the processes has been observed.
We find the probability of the event that the branching random walk is positive at every vertex
in the nth generation, and show that the conditional expectation of the Gaussian variable at a
typical vertex, under positivity, is less than the expected maximum by order of logn.

1 Introduction

We consider a tree of n levels, where n ∈ N. We assume that the root node of this tree has d
number of children, who in turn have d number of children each, and so on, till generation n, which
are leaf nodes. Here we assume that d ∈ N, with d > 2, since the case d = 1 is really trivial. This
is a d-ary tree, and we refer to it as T n. We refer to the subset of all the leaf nodes of this tree by
Tn. So | Tn |= dn.

We consider a particle starting from 0 ∈ R, which dies at time 1, and splits into d number of
children. Each of these children travels a distance given by independent standard Gaussian random
variables. Then at time 2, each of these children dies, and give rise to d number of children each,
which in turn follow the same process, the displacements at each step being independent of the
displacements in the previous time points. At time n we have dn many particles, each having
a displacement. The positions of these particles are collectively called branching random walk
at time n. We can equivalently define a branching random walk (BRW) as a Gaussian process
on T n. The origin stands for the root, and the displacements at each step are attached to the
edges. So, the d displacements at first generation are attached to the edges between the root and
its d children. To each vertex we attach a quantity equal to sum of the Gaussian variables that
we encounter while looking at the shortest path between itself and the root. The collection of
displacements of the dn particles at time n is given by the Gaussian variables attached to all the
vertices in Tn. We denote it by {φn

v : v ∈ Tn}. This is the branching random walk at time n.
Two particles at time n having the last common ancestor at time k (k ≤ n) is equivalent to two
leaf nodes, which have branched out from the same vertex at level k of the tree. Each of these
displacements are sums of n independent standard Gaussian random variables. Figure 1 gives a
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pictorial representation of the branching random walk for the case d = 2, i.e. on a binary tree.
The collection {Xi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , n} represents independent displacements, and
are i.i.d standard Gaussian random variables. There are dn many leaf nodes in the tree, and we
can fix an ordering of the vertices from 1 to dn. For any v ∈ Tn, i.e. v ∈ {1, 2, . . . , dn}, we define
ai(v) = ⌈ v

dn−i ⌉ for i = 1, 2, . . . , n. Then we can define φv
n =

∑n
j=1Xj,aj(v). This is another way of

constructing the BRW.

0

X1,1

X1,1

X1,1 +X2,1 X1,2 +X2,4

X1,2

X2,1 X2,2 X2,3 X2,4

Xn,1Xn,2 Xn,2nXn,2n−1

1 2 2n − 1 2n
φn
1 φn

2 φn
2n−1 φn

2nφn
1 =

∑n
j=1Xj,1

X1,2

Figure 1: BRW on binary tree

The covariance structure of this Gaussian process is given by the following:

Var(φn
v ) = n for all v ∈ Tn

Cov(φn
u, φ

n
v ) = n− 1

2
dT (u, v) for all u 6= v ∈ Tn .

(1)

where dT denotes the graph distance. So essentially the BRW is a multivariate normal distribu-
tion of dimension dn, with all means 0, and variances and covariances given by (1). We call the
corresponding probability measure P(·).

We wish to find bounds on the order of the probability of a branching random walk being
positive at the leaf nodes (v ∈ Tn). This is also the event that all the particles are on the right
of the starting point of the first particle. We also wish to find the expected value of the field
at a typical vertex in generation n, under the condition that the BRW is positive at all the leaf
nodes. The behaviour that we are considering is that of entropic repulsion for this Gaussian field,
which is its phenomenon of drifting away when pressed against a hard wall so as to have enough
room for local fluctuations, as is referred to in [15]. The phenomenon of entropic repulsion for the
Gaussian free field (GFF) has been studied in literature for some time now. The entropic repulsion
for infinite GFF on Z

d, d ≥ 3 has been studied in [3]. As a continuation to this, the GFF on a
finite box with Dirichlet boundary conditions, for dimension 3 or more was studied in [9]. In case
of the GFF on finite box, the positivity was looked at from two different angles, one involving the
interior only, while the other considers the whole box. Both looked at the phenomenon of positivity
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of the field in a box of size N . Though the typical behaviour of a vertex was similar, this order
was not so, when positivity for the entire box was considered. But on removing the positivity
condition for a layer near the box, the order was same as in [3]. It was also stated in [2] that
the probability of positivity in case of GFF in a box of dimension 2 decays exponentially, and this
is really a boundary phenomenon. So in order to look into the long range correlations, and local
fluctuations, the boundary effect has to be removed. This approach has been taken in [2] to look
into the behaviour of a typical vertex when pressed against this hard wall for a GFF.

Studies on GFF in a box of size n in dimension 2 since Bolthausen et. al. in [2] have utilised
the covariance of GFF in the interior of the box. The connection between the covariance structure
of 2D-GFF and BRW was made in [6] to show tightness for the maximum of the GFF. It has been
observed to be log-correlated. To further refine the results on entropic repulsion of the GFF in
dimension 2 it is imperative to consider a similar behaviour for the BRW on a tree. Our calculations
heavily rely on the tail behaviour of BRW, as shown in Section 2. The connection between the tail
behaviours of 2D-GFF and BRW have already been mentioned above. The multi-scale analysis,
hinting towards the tree structure is made use of extensively to study the extremal properties
of GFF in dimension 2, as shown in [6], [4], [5]. Similar strategies have been applied to study
the entropic repulsion of Gaussian membrane model for the critical dimension 4 in [14]. It has
been worked out in [16], [17] that the Gaussian membrane model in the critical dimension is log-
correlated. The works of [13] further exhibit strong relations between the BRW and log-correlated
Gaussian fields, the branching number varying according to the dimension of the box.

In the backdrop of these studies, we consider the behaviour at a typical vertex of branching
random walk on a d−ary tree. This is specially relevant keeping in mind the covariance structure
of the BRW and that of the GFF in dimension 2, in the interior.

Entropic repulsion in case of GFF on Sierpinski carpet graphs has been covered in [8]. More
recently entropic repulsion in |∇φ|p surfaces has been considered in [7].

We are interested in P(φn
v ≥ 0 ∀v ∈ Tn) as well as E(φn

u | φn
v ≥ 0 ∀v ∈ Tn). We are essentially

interested in the conditional distribution of BRW at a typical vertex under the condition of positivity
at all vertices of level n. The computation of the expectation is the first step in that direction.

In regard to the behaviour of the branching random walk in presence of a hard wall, we recall
similar results for other Gaussian processes such as [10], [11], [2], [14], [8], [7]. The leading order
term in the exponent of the probability of positivity is what is estimated, while we estimate both
the leading order term and the second leading term in the exponent. This also helps us in finding
the second order term in the expected value of a typical vertex, under the hard wall condition.

We know from [19, Theorem 4] that E(maxv∈Tn φv) is of the form c1n − c2 log n + O(1). We

define mn = c1n−c2 log n, and σ2
d,n = 1−d−n

d−1 . In fact we have explicit values of c1 and c2 as
√
2 log d

and
3

2
√
2 log d

respectively.

Our main result of this paper, in regard to the probability of positivity, is the following:

Theorem 1.1 (Positivity probability). There exists λ′ =
√
2 logn√
log d

+O(1), such that for n sufficiently

large we have, for K1,K2,K3 > 0 independent of n, and K4 =
1

cσ2
d,n log d

,

K1e
− 1

2σ2
d,n

(mn−λ′)2−K3(mn−λ′)

≤ P(φn
v ≥ 0 ∀v ∈ Tn) ≤ K2e

− 1

2σ2
d,n

(mn−λ′)2−K4(mn−λ′).

(2)

In [2] it has been shown that the conditional expectation under positivity is roughly close to
the expected maximum for the discrete GFF in 2 dimensions. Similarly in [14] for the membrane
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model in dimension d = 4 a lower bound on the conditional expectation of a typical vertex, under
positivity is computed to be close to the expected maximum. Here, however we show that for a
branching random walk the conditional expectation is at least a constant times log n less than the
expected maximum. The second main result of this paper is:

Theorem 1.2 (Expected value). We have for u ∈ Tn, and n sufficiently large enough,

mn − 3
√
2√

log d
log n+O(1) ≤ E (φn

u | φn
v ≥ 0 ∀v ∈ Tn) ≤ mn −

√
2√

log d
log n+O(1).

The approach that we take for proving this is that we raise the average value of the Gaussian
process and then multiply a compensation probability to that. We optimise this average value so as
to maximise the probability of positivity. The value at which this probability is maximised should
ideally be the required conditional expectation.

In order to prove this in details, we invoke a model called the switching sign branching random
walk, which is similar in structure to the original branching random walk. The model is motivated
by a similar model that had been introduced before for BRW on the lattice Z

2 in [12], which was
effectively a construction on 4−ary tree. We have done a more general construction of this on a
d−ary tree in Section 3. We begin our calculations with a preliminary upper bound on the left
tail of the maximum of the BRW in Section 2. Section 3 contains the definition of the new model
switching sign branching random walk followed by a comparison of positivity for the branching
random walk with this model using Slepian’s lemma. A left tail computation for the maximum of
this model gives us the ingredients for proof of Theorem 1.1, which is in the concluding part of
Section 4. Section 5 contains the proof of Theorem 1.2. The upper bound follows from Section 3,
while for the lower bound we further have to invoke the Bayes’ rule and tail estimates to arrive at
our result.

Notation: We denote the event {φn
v ≥ 0 ∀v ∈ Tn} by Λ+

n . We also term the sum of all the
Gaussian variables at the level n as Sn. In mathematical terms Sn =

∑

v:v∈Tn
φn
v , where the sum

contains dn terms.

Remark 1.3. The representation of the BRW as a sum of two Gaussian fields, in the setting of
entropic repulsion, is a key point of the article. The constant part which represents the typical
value of the field helps in obtaining the height under the entropic repulsion, while the covariance
fluctuations remain restored in the other part. This representation helps in optimizing over the set
of possible values for the typical height of the field under positivity.

Remark 1.4. Future directions along the line of this work include firstly the distributional behaviour
and convergence of the branching random walk under positivity. In [10] it has been shown that the
infinite GFF for d ≥ 3 under positivity, on removing the conditioned height, converges weakly to
the lattice free field. Whether a similar phenomenon can be observed in case of BRW is something
that can be considered.

Remark 1.5. Furthering our work, we can also consider the similar phenomenon for general log-
correlated Gaussian fields. The splitting of the covariance matrix into two parts, one involving a
constant Gaussian field, is not immediate in case of log-correlated Gaussian fields as in the form
considered in [13].
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2 Left tail of maximum of BRW

This section is dedicated to proving an exponential upper bound on the left tail of the maximum
of a BRW. We first begin with a comparison lemma by Slepian for Gaussian processes in [18].

Lemma 2.1. Let A be an arbitrary finite index set and let {Xa : a ∈ A} and {Ya : a ∈ A}
be two centered Gaussian processes such that: E(Xa − Xb)

2 ≥ E(Ya − Yb)
2, for all a, b ∈ A and

Var(Xa) = Var(Ya) for all a ∈ A. Then P(maxa∈AXa ≥ λ) ≥ P(maxa∈A Ya ≥ λ) for all λ ∈ R.

The main result of the section is the following:

Lemma 2.2. There exists constants C̄, c∗ > 0 such that for all n ∈ N and 0 ≤ λ ≤ (n)2/3,

P(max
v∈Tn

φn
v 6 mn − λ) ≤ C̄e−c∗λ (3)

Proof. From [19, Section 2.5] we have tightness for {maxv∈Tn φ
n
v−mn}n∈N, wheremn =

√
2 log dn−

3
2
√
2 log d

log n. So there exists β > 0 such that for all n ≥ 2,

P(max
v∈Tn

φn
v > mn − β) > 1/2. (4)

Further, we also have that for some κ > 0 and for all n ≥ n′ ≥ 2

√

2 log d(n− n′)− 3

2
√
2 log d

log(n/n′)− κ 6 mn −mn′ 6
√

2 log d(n − n′) + κ. (5)

Now we fix λ′ = λ/2, and n′ = ⌈n − 1√
2 log d

(λ′ − β − κ)⌉, where λ′ satisfies λ′ > β + κ +
√
2 log d.

From (5) it follows then that mn −mn′ 6 λ′ − β. We consider a tree of height n rooted at 0. We
consider all subtrees rooted at vertices v ∈ T n such that dT (0, v) = n − n′. They are individually
trees of height n′. The total number of such subtrees we have is dn−n′

. We call their leaf nodes

{T (1)
n′ , T

(2)
n′ , . . . , T

(dn−n′

)
n′ }. Now for all v ∈ Tn, we define

φ̄n
v = gn

′

v + φ,

where (gn
′

v )v∈Tn are the BRWs obtained by adding the Gaussians for the edges only in the subtrees
of height n′, and φ is an independent Gaussian of mean 0 and variance n− n′. Clearly

Var φn
v = Var φ̄n

v and Eφn
vφ

n
u ≤ Eφ̄n

v φ̄
n
u ∀u 6= v ∈ Tn.

So by Lemma 2.1, we have

P(max
v∈Tn

φn
v ≤ t) ≤ P(max

v∈Tn

φ̄n
v ≤ t) ∀ t ∈ R. (6)

Using (4) and (5), one has for all i ∈ {1, 2, . . . , dn−n′},

P( sup
v∈T (i)

n′

gn
′

v ≥ mn − λ′) = P( sup
v∈T (i)

n′

gn
′

v ≥ mn′ +mn −mn′ − λ′)

≥ P( sup
v∈T (i)

n′

gn
′

v ≥ mn′ − β) ≥ 1/2

5



and so P(supv∈Tn
gn

′

v < mn − λ′) ≤ (12)
dn−n′

.
Therefore,

P( sup
v∈Tn

φ̄n
v ≤ mn − λ) ≤ P( sup

v∈Tn

gn
′

v < mn − λ′) + P(φ ≤ −λ′) ≤ C̄e−c∗λ,

for some C̄, c∗ > 0. Now in conjunction with (6), the lemma is proved. Note that we choose C̄, c∗ > 0
such that the inequality holds for λ > 2(β + κ+

√
2 log d) as well as λ < 2(β + κ+

√
2 log d).

3 Switching Sign Branching Random Walk

At this juncture we define a new Gaussian process on the tree, which we call the switching sign
branching random walk. This was used to approximate the branching random walk in [12] in case
of a 4-ary tree. We have generalised the process for a d-ary tree. The switching sign branching
random walk consists of two parts, one that varies across vertices, and the other that is fixed over
vertices. The first part of the process, which is not fixed over vertices, is different from the normal
branching random walk in the sense that instead of the d edges coming out of it being associated
to independent normal random variables, they are associated with linear combinations of d − 1
independent Gaussians, such that the covariance between any two of them is the same, and all of
them add up to zero. The existence of this is guaranteed by the following Lemma.

Lemma 3.1. There exists A ∈ R
(d−1)×(d−1) such that for W ∼ N(0, σ2I(d−1)×(d−1)), the co-

variance matrix of Ỹ = (Y1, Y2, · · · , Yd−1)
⊤ = AW has diagonal entries equal to σ2 and all its

off-diagonal entries equal (say η). Further Var(1⊤AW ) = σ2 and Cov(−1⊤AW, (AW )i) = η for
all i ∈ {1, 2, . . . , d− 1}. Here by 1 we represent the column vector of size d− 1 with all its entries
as 1, and 1⊤ is the transpose of it.

Proof. We know that the covariance matrix for Ỹ is σ2AA⊤. Further from the condition that
Var(1⊤AW ) = σ2 we get that η = − σ2

d−1 . So in order for A to exist we must have

AA⊤ =











1 − 1
d−1 − 1

d−1 . . . − 1
d−1

− 1
d−1 1 − 1

d−1 . . . − 1
d−1

...
...

...
. . .

...
− 1

d−1 − 1
d−1 − 1

d−1 . . . 1











(d−1)×(d−1)

.

Since the matrix on the right hand side is a symmetric matrix with non-negative eigenvalues, by
Cholesky decomposition we obtain the existence of such an A. In particular, we have a specific

choice of A =
√

d
d−1I(d−1)×(d−1) −

√
d−1

(d−1)3/2
J(d−1)×(d−1) , where Jk×k is the square matrix of order k

with all entries equal to 1.

We now define Yd = −1⊤Ỹ , and Y = (Y1, Y2, · · · , Yd)
⊤. This Y is a degenerate multivariate

normal, with variance-covariance matrix given as follows:

Var(Yi) = σ2 for all i ∈ {1, 2, . . . , d}

Cov(Yi, Yj) = − σ2

d− 1
for all i 6= j ∈ {1, 2, . . . , d} .

(7)
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Z

Z + Y1 Z + Y2 Z + Yd−1 Z + Yd

Y1 = (AW )1 Y2 = (AW )2 Yd−1 = (AW )d−1 Yd = −∑d−1
i=1 (AW )i

Figure 2: Node of the varying part of SSBRW

A pictorial representation of a node for the SSBRW process is given in Figure 2.
We now provide a few heuristic descriptions of the SSBRW, followed by formal defintion.
We consider a particle starting from a random point X ∈ R, which dies at time 1, and splits

into d number of children. The joint distribution of the distances travelled by these children is
given by (7), with choice of σ2 = 1− d−n. Then at time 2, each of these children die, and give rise
to d number of children each, which in turn follow the same process, the displacements at each step
being independent of the displacements in the previous time points, except for the variances and

covariances at level l being 1− d−(n−l+1) and −1−d−(n−l+1)

d−1 each respectively. At time n we have dn

many particles, each having a displacement. The displacements of the collection of these particles
is called a switching sign branching random walk at time n. The random term X is normally
distributed, with mean 0 and variance 1−d−n

d−1 , and is independent of everything else.
We can equivalently define a switching sign branching random walk as a Gaussian process on

T n. The root is fixed at a random point X, and the displacements at each step are attached to the
edges. So, the first d displacements are attached to the edges between the root and its d children.
To each vertex we attach a quantity equal to sum of the Gaussians that we encounter while looking
at the shortest path between itself and the root, plus the random variable attached to the root.
Then, the collection of the displacements of the dn particles at time n, is given by the Gaussians
attached to all the vertices in Tn. We denote it by {ξnv : v ∈ Tn}. This is the switching sign
branching random walk at time n. Two particles at time n having risen from the same ancestor
at time k (k ≤ n), is equivalent to two leaf nodes, which have branched out from the same vertex
at level k of the tree. Each of these displacements are sums of n independent Gaussians, plus the
random term X which is independent of everything else.

The formal definition of the SSBRW is now provided below:

Definition 3.2. The collection {Yi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , n} represents displacements,
and are Gaussian random variables. But unlike the BRW, we have Var(Yi,j) = 1 − d−(n−i+1).
Also, the collection of {Yi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , n} does not represent a collection of

independent random variables. Rather we have
∑d

j′=1 Yi,md+j′ = 0, for all m = {0, 1, . . . , di−1− 1},
i = {1, 2, . . . , n}. We do however still have that Yi1,j1 and Yi2,j2 are independent if i1 6= i2. Also,
Yi,j1 and Yi,j2 are independent if ⌈j1/d⌉ 6= ⌈j2/d⌉. Otherwise, if ⌈j1/d⌉ = ⌈j2/d⌉ then Yi,j1 and Yi,j2

are not independent, and Cov(Yi,j1 , Yi,j2) = −1−d−(n−i+1)

d−1 . There are dn many leaf nodes in the tree,
and we can fix an ordering of the vertices from 1 to dn. For any v ∈ Tn, i.e. v ∈ {1, 2, . . . , dn},
we define ai(v) = ⌈ v

dn−i ⌉ for i = 1, 2, . . . , n. Then we can define φ̃n
v =

∑n
j=1 Yj,aj(v). The switching

7



sign branching random walk is given by

ξnv = φ̃n
v +X (8)

where X is an independent Gaussian variable with mean zero and variance 1−d−n

d−1 .

Figure 3 gives a pictorial representation of the switching sign branching random walk for the
case d = 2, i.e. on a binary tree. All the Yi,j’s represent displacements, and are distributed as
Gaussian. In this figure we show the dependence described in the paragraph above by replacing
one of the dependent random variables by the relevant function of the others which it correlates
with.

In this construction, unlike the BRW, we have a different variance for each level l (1 ≤ l ≤ n).
Here, level 1 denotes the edge connecting the root to its children and level n denotes the edges
joining the leaf nodes to their parents. We denote this switching sign branching random walk
on the leaf nodes Tn as {ξnv : v ∈ Tn}. For v ∈ Tn we denote the Gaussian variable that is
added on level l, on the path connecting v to the root, by Yl,al(v) as defined before. We have

Var(Yl,al(v)) = 1 − d−(n−l+1) as stated in the formal definition. The switching sign branching
random walk will consist of two parts, the first coming from the contribution at different levels

in the tree, which is φ̃n
v

def
=
∑n

l=1 Yl,al(v). The second part is the random variable X, which is an

independent Gaussian variable with mean zero and variance 1−d−n

d−1 . The two parts are summed
together to get ξnv .

X

Y1,1

X + Y1,1

X + Y1,1 + Y2,1

X − Y1,1

Y2,1 −Y2,1 Y2,3 −Y2,3

Yn,1 −Yn,1 −Yn,2n−1Yn,2n−1

1 2 2n − 1 2n
X + φ̃n

1 X + φ̃n
2 X + φ̃n

2n−1 X + φ̃n
2n

φ̃n
1 = X +

∑n
j=1 Yj,1

−Y1,1

Figure 3: SSBRW on Binary tree

The covariance structure for this new model closely resembles that of the branching random
walk. The following lemma deals with this comparison:

Lemma 3.3. The Gaussian fields {ξnv : v ∈ Tn} and {φn
v : v ∈ Tn} are identically distributed.
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Proof. First we show that the variances are identical for the two processes. To this end, we begin
by computing the variance of ξnv as follows:

Var(ξnv ) = 1− d−1 + 1− d−2 + · · · + 1− d−n +
1− d−n

d− 1

= n− 1− d−n

d− 1
+

1− d−n

d− 1
= n.

Next, in case of the covariances we consider u, v ∈ Tn, u 6= v, such that they have the last common
ancestor at generation n− k, i.e. Cov(φn

u, φ
n
v ) = n− k. Then we have

ai(u) = ai(v) for 1 ≤ i ≤ n− k,
ai(u) 6= ai(v) for n− k + 1 ≤ i ≤ n,
⌈an−k+1(u)/d⌉ = ⌈an−k+1(v)/d⌉,
⌈aj(u)/d⌉ 6= ⌈aj(v)/d⌉ for n− k + 2 ≤ i ≤ n.

(9)

We know that Cov(φ̃n
u, φ̃

n
v ) =

∑n
i=1Cov(Yi,ai(u), Yi,ai(v)) from the fact that Yi1,j1 and Yi2,j2 are

independent if i1 6= i2. From (9) we have,

Cov(φ̃n
u, φ̃

n
v ) =

n−k
∑

i=1

Var(Yi,ai(u)) + Cov(Yn−k+1,an−k+1(u), Yn−k+1,an−k+1(v)).

Plugging in the values we get,

Cov(φ̃n
u, φ̃

n
v ) = −1− d−k

d− 1
+

n
∑

l=k+1

(1− d−l) = n− k − 1− d−n

d− 1
.

Hence, Cov(ξnu , ξ
n
v ) = Var(X) + Cov(φ̃n

u, φ̃
n
v ) = n− k. So, the covariance structures for the fields ξ

and φ match, and hence they are identically distributed.

A simple corollary of Lemma 3.3, is the following, based on the fact that the two processes have
identical distributions.

Corollary 3.4. We have the following equality:

P(φn
v ≥ 0 ∀v ∈ Tn) = P(max

v∈Tn

φ̃n
v ≤ X) (10)

Corollary 3.5. From [19, Theorem 4], we have Emaxv∈Tn φ
n
v = n

√
2 log d− 3

2
√
2 log d

log n+O(1).

Therefore,

Emax
v∈Tn

φ̃n
v = n

√

2 log d− 3 log n

2
√
2 log d

+O(1).

Corollary 3.6. There exists constants C̄ ′, c∗ > 0 such that for all n ∈ N and 0 ≤ λ ≤ (n)2/3,

P(max
v∈Tn

φ̃n
v 6 mn − λ) ≤ C̄ ′e−c∗λ (11)

Proof.

1

2
P(max

v∈Tn

φ̃n
v 6 mn − λ) = P(max

v∈Tn

φ̃n
v 6 mn − λ,X ≤ 0) ≤ P(max

v∈Tn

φn
v 6 mn − λ).

Now using (3), and with C̄ ′ = 2C̄ we arrive at (11).
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4 Estimates on left tail and positivity

From the equation (10) we understand that the probability of positivity for the branching random
walk can be computed using bounds on the left tail of the maximum of φ̃n

. , a part of the switching
sign branching random walk, as the left tail is heavily concentrated around the maximum. This
motivates the following computations on the left tail of the maximum.

Lemma 4.1. We call c = 1/
√
2 log d(where mn =

√
2 log dn − 3

2
√
2 log d

log n) to be the constant

such that |mn−cλ −mn + λ| → 0 as n → ∞, where λ = λ(n) = o(n) is positive. Then there exists
constants C ′, C ′′,K ′,K ′′ independent of n such that for sufficiently large n we have:

K ′ exp(−K ′′dcλ) ≤ P(max
v∈Tn

φ̃v ≤ mn − λ) ≤ C ′ exp(−C ′′dcλ). (12)

Proof. We work with P(maxv∈Tn φ̃v ≤ mn−cλ) as due to our definition of c, for sufficiently large n
this probability is close to P(maxv∈Tn φ̃v ≤ mn−λ). From [5, 13], we can see that {maxv∈Tn φ̃v−mn}
converges in distribution, as it is equivalent in distribution to a BRW, after adding the same
independent Gaussian to all points. Hence P(maxv∈Tn φ̃v ≤ mn−cλ) and P(maxv∈Tn φ̃v ≤ mn − λ)
converge to the same point. We know that the BRW is a Gaussian field which is obtained by adding
the same Gaussian to all vertices of an SSBRW. This helps us find bounds on lower and upper tails
of maximum of SSBRW using results on convergence of maximum of BRW, as proved in [1], [5] etc.

We also force λ to be such that cλ is an integer. For other values of λ, we can adjust for
the constants by looking at ⌈cλ⌉ and ⌊cλ⌋. We first consider the tree only up to the level cλ and
consider the cumulative sum of the Gaussian variables at these vertices till the level cλ. We rename
all these Gaussian variables at level cλ of this new tree to be A1, A2, . . . , Adcλ . Then each Ai is
essentially of the form

∑cλ
j=1 Yj,aj(v) for some v ∈ Tn. We know that the definition in Section 3 of

switching sign branching random walk model guarantees
∑dcλ

i=1Ai = 0. We consider the subtrees
rooted at the vertex which has values Ai and call its maximum to be Mi. These are trees of height
n − cλ and hence we have EMi = mn−cλ + O(1) ∀i and M := maxv∈Tn φ̃v = maxd

cλ

i=1(Mi + Ai).
We want to obtain bounds for the probability P(maxv∈Tn φ̃v ≤ mn−cλ). We condition on the values
of A1, A2, . . . , Adcλ which in turn breaks down the required probability in a product form since
the maxima for the dcλ subtrees are independent and have identical distributions. We have the
following,

P(max
v∈Tn

φ̃v ≤ mn−cλ | A1, A2, . . . , Adcλ) = P(
dcλ
max
i=1

(Mi +Ai) ≤ mn−cλ | A1, A2, . . . , Adcλ).

This can be further broken down from independence as,

P(
dcλ
max
i=1

(Mi +Ai) ≤ mn−cλ | A1, A2, . . . , Adcλ) =
∏dcλ

i=1
P(Mi +Ai ≤ mn−cλ | Ai). (13)

The right hand side of (13) satisfies the following inequality:

∏dcλ

i=1
P(Mi +Ai ≤ mn−cλ | Ai) ≤

∏dcλ

i:Ai>0
P(Mi ≤ mn−cλ −Ai | Ai),

which happens since for the cases where Ai < 0 we bound the terms in the product by 1. The right
hand side of the last inequality is further bounded by:

(C̄ ′ ∨ 1)d
cλ
exp(−c∗

∑dcλ

i=1
A+

i ) = exp(dcλ log(C̄ ′ ∨ 1)− c∗
∑dcλ

i=1
A−

i ) (14)

10



In the final two steps we first make use of (11), followed by the fact that
∑

i Ai = 0. We consider
two different cases:

1) When A−
i ≤ 2Ā for at least dcλ/2 many i, where Ā is a positive constant to be chosen later

on.

2) When 1) doesn’t happen and so then
∑dcλ

i=1A
−
i ≥ Ādcλ.

Even for the first case we break it down into two parts according to whether
∑dcλ

i=1A
−
i ≥ Ādcλ or

not.
When 2) holds then clearly (14) is bounded by exp(−(c∗Ā − log(C̄ ′ ∨ 1))dcλ), and now on

choosing Ā such that c∗Ā− log(C̄ ′∨1) > 0 we have c∗∗ > 0 such that our required term is bounded
by exp(−c∗∗dcλ).

In the other case also

P(Mi ≤ mn−cλ −Ai | Ai) ≤ P(Mi ≤ mn−cλ + 2Ā)

for those i for which A−
i ≤ 2Ā. From the lower bound on the right tail of the maximum of

a branching random walk (see [19, eq. (2.5.11)]), we can find p, independent of n, where 0 <
p < 1 such that P(Mi ≤ mn−cλ + 2Ā) < p for all sufficiently large n and so the probability
∏dcλ

i=1 P(Mi + Ai ≤ mn−cλ | Ai) is bounded by exp(−c̄dcλ). Now from this c̄ and c∗∗ we select one
unified C ′, C ′′ so that

P(max
v∈Tn

φ̃v ≤ mn−cλ) ≤ C ′ exp(−C ′′dcλ).

Again for the lower bound we have

P(max
v∈Tn

φ̃v ≤ mn−cλ) =

∫

Rdcλ

∏dcλ

i=1
P(Mi ≤ mn−cλ −Ai)dPA1,...,Adcλ

≥ (p̄)d
cλ

∫

[−1,1]dcλ
dPA1,...,Adcλ

,

where p̄ is chosen to be a lower bound on P(Mi ≤ mn−cλ − 1) for all sufficiently large n, which
can be obtained from using convergence results on maximum of branching random walk. Now
{A1, A2, . . . , Adcλ} are obtained by linear combinations of {Yi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , cλ},
each of which Gaussian random variables, each being obtained from cλ many of them(which are
also independent), and a way to make all Ai’s in the range [−1, 1] is to make absolute value of the
contribution at the jth level, (i.e. Yj,av(j)) to be bounded by 1

10(cλ+1−j)2
, for j = 1, 2, . . . , cλ. Each

of these Yj,av(j)s come from translation of independent standard Gaussians, which we put bounds

on. So the independent standard Gaussians for level j are bounded by 1
10

√
d(cλ+1−j)2

. So this gives,

for some constant K > 0,

P(max
v∈Tn

φ̃v ≤ mn−cλ) ≥ (p̄)d
cλ

cλ
∏

j=1

(

1

10K
√
d(cλ+ 1− j)2

)(d−1)dj−1

.

We take a logarithm of this term above, which leads to a sum. Approximation of the sum, as shown
below in Lemma 4.2, proves (12).

11



Lemma 4.2.
∑n

j=1(log |n+ 1− j|)dj is of order Θ(dn).

Proof. We begin with an upper bound on the sum. We use a trivial bound of log |x| ≤ |x| for
|x| ≥ 1, followed by a few series summations.

n
∑

j=1

(log |n+ 1− j|)dj ≤
n
∑

j=1

(|n + 1− j|)dj

= (n+ 1)
n
∑

j=1

dj −
n
∑

j=1

jdj

= (n+ 1)
dn+1 − d

d− 1
− ndn+2 − (n+ 1)dn+1 + d

(d− 1)2

=
dn+2 − (n+ 1)d2 + nd

(d− 1)2

This gives an upper bound of order dn. The lower bound follows easily.

We now look back into our question of the branching random walk being positive at all vertices.
We know that the maximum of the BRW is heavily concentrated around the expected maximum.
Using this fact, in a neighbourhood around the maximum, we further try to maximise the proba-
bility of the maximum being there. This point where this occurs will also roughly be the typical
value of a vertex. This motivates the proof of Theorem 1.1.

Proof of Theorem 1.1. Upper bound: From (10) we have an upper-bound on the probability of
positivity based on the switching sign branching random walk. We optimise this bound by first
raising the mean to a level and look at the compensation we have to apply correspondingly. We
optimise over these two to obtain our bound. We apply a similar strategy for obtaining the lower
bound as well. We recall (10) at this juncture along with X, and the variance of X to be σ2

d,n =
1−d−n

d−1 . Let us recall the event Λ+
n defined before as {φn

v ≥ 0 ∀v ∈ Tn}. In (10), we condition on
the value of X to obtain the following:

P(Λ+
n ) =

1

σd,n
√
2π

∫ ∞

−∞
P(max

v∈Tn

φ̃n
v ≤ x) exp(−x2/2σ2

d,n)dx

Instead of integrating over x we may as well replace x by mn − λ, and then integrate over λ. We
split the integral into three parts, first with {−∞ < λ ≤ 0}, second with {3

c logd n ≤ λ < ∞} and
the rest. From tail estimates of a Gaussian, the first part is bounded by O(exp(− 1

2σ2
d,n

(mn−λ′)2)).

From (12), we know that the second part is bounded by C ′ exp(−C ′′n3). The rest part has an
upper bound:

C ′

σd,n
√
2π

∫ 3
c
logd n

0
exp(−C ′′dcλ) exp(−(mn − λ)2/2σ2

d,n)dλ. (15)

We maximize the integrand in (15), over the range of the integral, to obtain an optimal λ, say λ′,
which is of order log n. It satisfies the equation

mn − λ′ = σ2
d,nC

′′cdcλ
′

log d.
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Recalling mn =
√
2 log dn− 3

2
√
2 log d

log n and c = 1/
√
2 log d from Lemma 4.1, we can see that,

2n− 3 logn
2 log d − λ′/

√
2 log d

dcλ′
−→
n→∞

C ′′

d− 1
.

This implies that λ′ =
√
2 logn√
log d

+O(1). Plugging in we obtain an upper bound as in (2).

Lower bound: Again recalling (12) we obtain that

P(Λ+
n ) ≥

K ′
√
2πσd,n

∫ λ′+1

λ′

e−K ′′dcλ exp(−(mn − λ)2/2σ2
d,n)dλ.

The integrand here is infact a decreasing function of λ in the range λ ∈ [λ′, λ′ + 1], where λ′ is
from the first part of the proof. This gives a lower bound of

K ′
√
2πσd,n

e−K ′′dcdcλ
′

exp(−(mn − λ′ − 1)2/2σ2
d,n).

So, we obtain the required lower bound in (2).

5 Expected value of a typical vertex under positivity

Proof of Theorem 1.2. We want to compute E
(

Sn
dn | Λ+

n

)

. Due to Lemma 3.3, this is equivalent to

computing E

(

∑dn

v=1 ξ
n
v

dn
| ξnu ≥ 0 ∀ u ∈ Tn

)

= E

(

X | maxv∈Tn φ̃
n
v ≤ X

)

. The conditioning events

{ξnu ≥ 0 ∀ u ∈ Tn} and {maxv∈Tn φ̃
n
v ≤ X} are equivalent, since (φ̃n

v )v∈Tn is symmetric around 0.

Also,
∑dn

v=1 ξ
n
v

dn equals X since
∑dn

v=1 φ̃
n
v = 0. So the previous equality holds.

Upper Bound: We first split the expectation into two parts, one concerning the contribution
of the right tail in the integral and the rest. We aim to show that the contribution of the right tail
is negligible, thereby implying that the main contribution is from the rest, which gives an upper
bound on the expectation. The tail here is motivated by the maximizer in Theorem 1.1.

E

(

X | max
v∈Tn

φ̃n
v ≤ X

)

=
1√

2πσd,n

∫ ∞

−∞
xe−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=
1√

2πσd,n

∫ mn−a logn

−∞
xe−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

+
1√

2πσd,n

∫ ∞

mn−a logn
xe−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

We denote the first term by J1 and the next one by J2. We first want to show that the contribution of
J2 in the conditional expectation is negligible. We use a trivial upper bound on the tail probability
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in the numerator. Then we compute the integral which is the tail expectation of a normal.

J2 ≤ 1√
2πσd,n

∫ ∞

mn−a logn
xe−x2/2σ2

d,n
1

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=
1√

2πσd,nP(maxv∈Tn φ̃
n
v ≤ X)

∫ ∞

mn−a logn
xe−x2/2σ2

d,ndx

=
σd,ne

−(mn−a logn)2/2σ2
d,n

√
2πP(maxv∈Tn φ̃

n
v ≤ X)

So we end up showing that contribution from the right tail is negligible. We now move on to the
rest part and obtain an upper bound for it. We use a general upper bound on x from the range
of the integral, which we can do since the integral exists and is finite by the fact that absolute
expectation of a normal exists.

J1 ≤ mn − a log n√
2πσd,n

∫ mn−a logn

−∞
e−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

≤ mn − a log n√
2πσd,n

∫ ∞

−∞
e−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

= mn − a log n

From (2) it is clear that on choosing a such that a log n ≤ λ′ the upper bound on the conditional

expectation is mn − a log n. Hence we can choose a =
√
2√

log d
.

Lower Bound: We apply a similar technique as in case of the upper bound, the only difference
being that we look at the left tail instead, motivated by the left tail of the maximum of the Gaussian
process.

E

(

X | max
v∈Tn

φ̃n
v ≤ X

)

=
1√

2πσd,n

∫ ∞

−∞
xe−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=
1√

2πσd,n

∫ mn− 3
c
logd n

−∞
xe−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

+
1√

2πσd,n

∫ ∞

mn− 3
c
logd n

xe−x2/2σ2
d,n

P(maxv∈Tn φ̃
n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

We denote the first term by I1 and the second by I2.
When x ∈ (−∞,mn − 3

c logd n] then P(maxv∈Tn φ̃
n
v ≤ x) ≤ C ′ exp(−C ′′n3) following (12). Also

we have a lower bound on the probability of positivity, which gives the following bounds on I1 and
I2.

|I1| 6 C
∼
e

1

2σ2
d,n

(mn−λ′)2+dcλ
′

(log λ′−log p̄/K)−C′′n3 ∫ ∞

−∞
| x | e−x2/2σ2

d,ndx
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where C
∼
> 0 is a constant not depending on n. This shows that this term is negligible. Further,

I2 ≥
(

mn − 3

c
logd n

)

1√
2πσd,n

∫ ∞

mn− 3
c
logd n

e−x2/2σ2
d,n

P(maxv∈Tn φ̃
n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=

(

mn − 3

c
logd n

)

1√
2πσd,n

∫ ∞

−∞
e−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx− o(1)

= mn − 3
√
2√

log d
log n− o(1).

In the last step we have used the value of c = 1√
2 log d

, as fixed before in Lemma 4.1.

A Acknowledgement

The author would like to thank his graduate advisor Prof. Jian Ding for suggesting the problem
and for many helpful discussions on the same.

References
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