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Abstract

We study the asymptotic behavior of the expectation of the maxima
and minima of random assignment process generated by a large matrix
with multinomial entries. A variety of results is obtained for different
sparsity regimes.
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1 Introduction and main results

1.1 Random assignment problem

We consider the following random assignment problem. Let (Xij) be an n × n
random matrix and let [1..n] denote the set {1, 2, . . . , n}. Let Sn denote the
group of permutations σ : [1..n] 7→ [1..n]. For every σ ∈ Sn, let

S(σ) =

n∑

i=1

Xiσ(i).

The process {S(σ), σ ∈ Sn} is called a random assignment process. The
problem consists in the study of the asymptotic behaviour of its extrema, in
particular,

E max
σ∈Sn

S(σ) and E min
σ∈Sn

S(σ), as n → ∞. (1)

We refer to [5, 11] for many applications of assignment processes and their
extrema in various fields of mathematics.
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There are many remarkable results in the area, including a famous result of
Aldous [1] who proved a conjecture by Mézard and Parisi claiming that

lim
n→∞

E min
σ∈Sn

S(σ) =
π2

6

when the Xij are i.i.d. standard exponential. Actually, he showed that, when
the random variables considered are nonnegative, the distribution of Xij affects
the limit in the minimisation problem only through the value of its probability
density function at 0.

In the mentioned case, the common distribution is bounded from below. The
situation is very different when one deals with the variables having unbounded
distributions. For obvious reasons, it is more convenient to illustrate this phe-
nomenon for maxima instead of minima. If the common law of the entries is not
bounded from above, then the expectation of maxima does not tend anymore to
a finite limit but grows to infinity and the problem consists in evaluation of the
corresponding growth order. In this direction, Mordant and Segers [9] showed
that if Xij are i.i.d. standard Gaussian, then

Emax
σ∈Sn

S(σ) = n
√
2 logn(1 + o(1)).

Some rather general results of this type were recently obtaind by Cheng et al.
[4] and Lifshits and Tadevosian [8].

Not so much is known for the assignment problem in the discrete setting.
One may mention the case of i.i.d. Poisson random variables studied in [8] and
a work of Parviainen [10] who considered uniform distributions on [1..n], or on
[1..n2], random permutations of [1..n] for each row, and those of [1..n2] for the
whole matrix.

In this article, we study (1) for random matrices X = (Xij)1≤i,j≤n with
the joint multinomial distribution of entries M(m,n2). Therefore, the matrix
entries are integer-valued, negatively dependent random variables with common
binomial distribution B(m, p) with success probability p = n−2 and number of
trials m. We allow the dependence m = m(n). As one will see, the presence of
this extra parameter m creates a space for a variety of asymptotic behaviors for
the expectation of the extrema.

1.2 A motivating example

Let us give an example showing how the studied problem emerges in information
transmission. Let A = (a1, ..., an) be an alphabet of n letters. If u and v are
two independent uniformly distributed words of length m, the n× n matrix X
defined by

Xij :=

m∑

k=1

1{uk=ai,vk=aj}, 1 ≤ i, j ≤ n,
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is distributed according to the multinomial lawM(m,n2). Recall that Hamming
distance between the words is defined by

dH(u, v) :=

m∑

k=1

1{uk 6=vk} = m−
m∑

k=1

1{uk=vk} = m−
n∑

i=1

Xii.

Assume that we have received a word v through a noisy channel and we have
to decide whether v is just a random word or a word u that passed through an
unknown coding σ : A 7→ A. The answer should clearly depend on the quantity

min
σ

dH(σ(u), v) = min
σ

(
m−

n∑

i=1

Xiσ(i)

)
= m−max

σ

n∑

i=1

Xiσ(i).

1.3 Results

Our setting is an asymptotic one, i.e., we let n → ∞ and allow m = mn to be
a function of n. The results depend heavily on the relation between n and m.
Therefore, we consider separately several zones gradually going down from large
m’s to the smaller ones. Everywhere we use the notation p = pn := n−2 for the
probability which is naturally related to our basic multinomial law M(m,n2).
All limits are meant for n → ∞.

Quasi-Gaussian zone

This zone is defined by assumption

mp

logn
→ ∞ (2)

which essentially means that all entries Xij are sufficiently large to be heuristi-
cally approximated with Gaussian variables.

Theorem 1. Under assumption (2) it is true that

E max
σ

n∑

i=1

Xiσ(i) =
m

n
(1 + o(1)),

E min
σ

n∑

i=1

Xiσ(i) =
m

n
(1 + o(1)).

Critical zone

The critical zone is described by assumption

mp

logn
→ c (3)

with some c > 0. Unlike to the quasi-Gaussian case, the expectation behavior
of maxima and minima is not the same anymore.
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Theorem 2. Under assumption (3) for all c > 0 it is true that

E max
σ

n∑

i=1

Xiσ(i) = cH∗n logn (1 + o(1)),

where H∗ = H∗(c) is the unique solution of equation
{
H logH − (H − 1) = 1

c ,

H > 1,
(4)

and for all c > 1 it is true that

E min
σ

n∑

i=1

Xiσ(i) = c H̃∗n logn (1 + o(1)),

where H̃∗ = H̃∗(c) is the unique solution of equation
{
H logH − (H − 1) = 1

c ,

0 < H < 1.
(5)

For c < 1 equation (5) has no solution and the result for the minimum is
completely different, as stated in the next theorem.

Theorem 3. Let c < 1 and

lim sup
mp

log n
≤ c. (6)

Then,

limP

(
min
σ

n∑

i=1

Xiσ(i) = 0

)
= 1.

Remark 4. The intermediate case c = 1 admits a similar treatment but the
result is less attractive. For example, one may replace assumption (6) with

mp

logn
≤ 1−

log(b logn)

logn
, b > 1.

Quasi-Poissonian zone

The quasi-Poissonian zone is described by the assumptions

mp

logn
→ 0 (7)

while, for every δ > 0,
mp ≫ n−δ. (8)

In this zone all entries Xij are well approximated by Poissonian variables with
intensity parameter mp. This zone includes moderately growing intensities mp,
the constant mp and even a narrow zone of mp slowly decreasing to zero, e.g.,
with logarithmic speed.
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Theorem 5. Under assumptions (7) and (8) it is true that

E max
σ

n∑

i=i

Xiσ(i) =
n logn

log
(

logn
mp

) (1 + o(1)). (9)

Remark 6. Note that if log(mp) ≪ log logn we obtain asymptotics n log n
log logn as

in the Poisson i.i.d. case with constant intensity [8].

Rather sparse matrices

In this zone, we go below (8) and assume that

mp = c n−a (1 + o(1)), a ∈ (0, 1). (10)

Consider first a regular case.

Theorem 7. Assume that (10) holds and

a 6∈

{
1

k
, k ∈ N

}
. (11)

Then, there exists a unique positive integer k such that

1

k + 1
< a <

1

k
(12)

and

E max
σ

n∑

i=1

Xiσ(i) = k n (1 + o(1)). (13)

Let us now briefly discuss the irregular case a = 1
k for some integer k ≥ 2.

Since the lower bound a > 1
k+1 is still true, one may obtain again

E max
σ

n∑

i=1

Xiσ(i) ≤ k n (1 + o(1)).

However, the opposite bound breaks down and we are only able to prove that

E max
σ

n∑

i=1

Xiσ(i) ≥ (k − 1)n(1 + o(1)).

To summarise, for the assignment process, we have in this case that

(k − 1)n (1 + o(1)) ≤ E max
σ

n∑

i=1

Xiσ(i) ≤ k n (1 + o(1))

and conjecture that

E max
σ

n∑

i=1

Xiσ(i) = (k − κ)n(1 + o(1)),

for some κ ∈ [0, 1] depending on a and c. Proving this and finding κ is beyond
the reach of current techniques.
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Very sparse matrices

This zone is determined by
1 ≪ m ≪ n. (14)

Notice that m ≈ n is equivalent to mp ≈ n−1, thus the current zone is just
below the previous one.

Theorem 8. Under assumption (14) it is true that

E max
σ

n∑

i=1

Xiσ(i) = m (1 + o(1)).

2 Proofs

Proof of Theorem 1. Let X be a B(m, p)-distributed random variable. Then,

E exp(γX) = (1 + p(eγ − 1))m, γ ∈ R. (15)

Let now Xj, 1 ≤ j ≤ n, be B(m, p)-distributed random variables. We do not
assume any independence. Then, for every γ > 0, we have

E exp(γ max
1≤j≤n

Xj) ≤ E

n∑

j=1

exp(γXj) = n (1 + p(eγ − 1))m.

By Jensen inequality,

exp

(
γ E max

1≤j≤n
Xj

)
≤ E exp(γ max

1≤j≤n
Xj) ≤ n (1 + p(eγ − 1))m.

It follows that

E max
1≤j≤n

Xj ≤ γ−1 (logn+m log(1 + p(eγ − 1)))

≤ γ−1 (logn+mp(eγ − 1)) .

We choose γ := (2 logn
mp )1/2. By (2) we have γ → 0. Using the expansion

eγ − 1 = γ + γ2(1 + o(1))/2, we obtain

E max
1≤j≤n

Xj ≤ γ−1
(
logn+mp[γ + γ2(1 + o(1))/2]

)

= mp+ γ−1 logn+mpγ(1 + o(1))/2

= mp+ (2mp logn)1/2(1 + o(1)).

Furthermore, by (2) the second term is negligible and we obtain

E max
1≤j≤n

Xj ≤ mp (1 + o(1)).
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The same approach applies to the minima. With the same notation we have
for every γ > 0

E exp(−γ min
1≤j≤n

Xj) ≤ E

n∑

j=1

exp(−γXj) = n (1 + p(e−γ − 1))m.

By Jensen inequality,

exp

(
−γ E min

1≤j≤n
Xj

)
≤ E exp(−γ min

1≤j≤n
Xj) ≤ n (1 + p(e−γ − 1))m.

It follows that

E min
1≤j≤n

Xj ≥ −γ−1
(
logn+m log(1 + p(e−γ − 1))

)
.

We still use γ := (2 logn
mp )1/2 → 0. The expansion e−γ − 1 = −γ+ γ2(1+ o(1))/2

yields

log(1 + p(e−γ − 1)) = p(e−γ − 1)(1 + o(1)) = −pγ(1 + o(1)) + pγ2(1 + o(1))/2.

From this we get

E min
1≤j≤n

Xj ≥ −γ−1
(
logn+mp[−γ(1 + o(1)) + γ2(1 + o(1))/2]

)

= mp(1 + o(1))− γ−1 logn−mpγ(1 + o(1))/2

= mp(1 + o(1))− (2mp logn)1/2(1 + o(1)).

By (2) the second term is negligible and we obtain

E min
1≤j≤n

Xj ≥ mp (1 + o(1)).

Let us now apply these results to the multinomial assignment process. Here
the joint law of the entries Xij is M(m,n2) and every Xij follows Binomial law
B(m, p) with p = n−2. Our bound for the maxima yields

E max
σ

n∑

i=1

Xiσ(i) ≤
n∑

i=1

E max
1≤j≤n

Xij = n · E max
1≤j≤n

X1j ≤
m

n
(1 + o(1)),

while the bound for the minima yields

E min
σ

n∑

i=1

Xiσ(i) ≥
n∑

i=1

E min
1≤j≤n

Xij = n · E min
1≤j≤n

X1j ≥
m

n
(1 + o(1)).

It follows that

E max
σ

n∑

i=1

Xiσ(i) =
m

n
(1 + o(1)),

E min
σ

n∑

i=1

Xiσ(i) =
m

n
(1 + o(1)),

as required.
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Proof of Theorem 2. Let (Xj) be negatively associated random variables fol-
lowing the Bernoulli law B(m, p). We claim that for every c > 0 under (3) and
under the additional assumption

p logn → 0, (16)

it is true that

E max
1≤j≤n

Xj = cH∗ logn (1 + o(1)), as n → ∞. (17)

Further, for every c > 1,

E min
1≤j≤n

Xj = cH̃∗ logn (1 + o(1)), as n → ∞. (18)

The upper bound in (17) and the lower bound in (18). Let H > H∗.
Then

H logH − (H − 1) >
1

c
. (19)

Let r := Hp. Then, by (3), mr = Hmp = cH logn (1 + o(1)).
Applying the exponential Chebyshev inequality for every j and every v > 0,

we obtain

P(Xj ≥ cH logn+ v) = P(Xj ≥ mr + v)

≤
E eγXj

eγ(mr+v)
=

[
1 + p(eγ − 1)

eγr

]m
e−γv. (20)

By choosing the optimal γ := log
(

(1−p)r
p(1−r)

)
, we have

1 + p(eγ − 1)

eγr
=

(p
r

)r
exp ((1− r) log(1− p)− (1− r) log(1− r))

= H−Hp exp
(
−p+ r +O(p2)

)

= exp
(
−(H logH − (H − 1))p+ O(p2)

)
.

Hence,
[
1 + p(eγ − 1)

eγr

]m
= exp (−(H logH − (H − 1) + o(1))mp)

= exp (−(H logH − (H − 1)) c logn(1 + o(1)))

:= n−β+o(1),

where by (19) it is true that

β = (H logH − (H − 1))c > 1.

Substituting the above results in (20) we obtain

P(Xj ≥ cH logn+ v) ≤ n−β+o(1) e−γv.
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It is now trivial that

P( max
1≤j≤n

Xj ≥ cH logn+ v) ≤ n−(β−1)+o(1) e−γv.

It follows that

E max
1≤j≤n

Xj − cH logn = E

(
max
1≤j≤n

Xj − cH logn

)

≤ E

(
max
1≤j≤n

Xj − cH logn

)

+

=

∫ ∞

0

P( max
1≤j≤n

Xj ≥ cH logn+ v) dv

≤ n−(β−1)+o(1)

∫ ∞

0

e−γv dv = n−(β−1)+o(1) 1

γ

= n−(β−1)+o(1) 1

logH
(1 + o(1)) → 0.

Therefore,
E max

1≤j≤n
Xj ≤ cH logn+ o(1).

By letting H ց H∗ we obtain the upper bound in (17).
The lower bound in (18) is obtained in exactly the same way through the

Chebyshev inequality for the lower tails.

Converse bounds. The lower bound in (17) is reached in a few steps.
We give a Poissonian approximation of Binomial laws, then provide a lower
bound for this Poissonian approximation. This bound provides a lower bound
for the maximum’s expectation of independent Binomial i.i.d. random vari-
ables. Finally, using negative association argument, we reduce the claim to the
independence case.

Step 1. Let X be a Binomial B(m, p)-distributed random variable. Elemen-
tary calculations show that Poissonian approximation

P(X = k) = e−mp (mp)k

k!
(1 + o(1)

is valid if p2m → 0, pk → 0, and k2

m → 0.

Step 2. Let c > 0 and H > 1. Let k = [cH logn+1] and λ = c logn(1+o(1)).
Then an elementary evaluation of Poissonian probabilities yields

e−λλ
k

k!
= n−β+o(1)

where
β := c(H logH − (H − 1)). (21)

9



Now we combine the results of the two steps. Note that with (3), (16) and for
k = cH logn (1 + o(1)), all three assumptions of Step 1 are verified and, with
λ = mp, we obtain

P(X ≥ cH logn) ≥ P(X = k) = n−β+o(1).

If 1 < H < H∗, then β < 1.

Step 3. Let (X̃j)1≤j≤n be independent copies of X . Then

P( max
1≤j≤n

X̃j ≤ cH logn) = P(X ≤ cH logn)n ≤ (1− n−β+o(1))n

≤ exp(−n1−β+o(1)) → 0. (22)

It follows that
E max

1≤j≤n
X̃j ≥ cH logn(1 + o(1)). (23)

Step 4. From the desintegration theorem for negatively associated variables,
due to Christofides and Vaggelatou [3], see also Bulinski and Shashkin [2, Chap-
ter 2,Theorem 2.6 and Lemma 2.2], one has

E max
1≤j≤n

Xj ≥ E max
1≤j≤n

X̃j . (24)

Combining this estimate with the result of Step 3, for every H < H∗ we obtain

E max
1≤j≤n

Xj ≥ cH logn(1 + o(1)).

Letting H ր H∗, we obtain the lower bound in (17).

The upper bound in (18) follows in a similar way. Let now k := [cH logn].
By using Poissonian approximation and Poissonian asymptotics we obtain

P(X ≤ cH logn) ≥ P(X = k) = n−β+o(1)

with the same β from (21). If H̃∗ < H < 1, then β < 1.
As before, for independent variables we obtain

P

(
min

1≤j≤n
X̃j ≥ cH logn

)
≤ exp

(
− n1−β+o(1)

)
.

10



It follows that

E min
1≤j≤n

X̃j = E

[
min

1≤j≤n
X̃j1{min1≤j≤n X̃j≤cH log n}

]

+E

[
min

1≤j≤n
X̃j1{min1≤j≤n X̃j>cH logn}

]

≤ cH log n+

n∑

j=1

E

[
Xj1{min1≤i≤n,i6=j X̃i>cH logn}

]

= cH log n+ nE X̃1 P

(
min

2≤i≤n
X̃i > cH logn

)

≤ cH log n+ n · c logn (1 + o(1)) exp(−n1−β+o(1))

= cH log n+ o(1).

The final negative association argument reads as follows. Since (Xj) are
negatively associated, so are (−Xj), too. From the desintegration theorem
cited above it follows that

E max
1≤j≤n

(−Xj) ≥ E max
1≤j≤n

(−X̃j)

which is equivalent to
E min

1≤j≤n
Xj ≤ E min

1≤j≤n
X̃j .

By combining the obtained results, we have

E min
1≤j≤n

Xj ≤ cH logn(1 + o(1)).

Finally, letting H ց H̃∗ we obtain the upper bound in (18).

The estimates for assignment process. Recall that a multinomial dis-
tribution is negatively associated, see Joag-Dev and Proschan [7] and Bulinski
and Shashkin [2, Chapter 1,Theorem 1.27]. Furthermore, with p = n−2, the
assumption (16) is also valid.

Therefore, the bounds (17) and (18) apply to the sums of the entries Xij .
They yield, respectively,

E max
σ

n∑

i=1

Xiσ(i) ≤
n∑

i=1

E max
1≤j≤n

Xij ≤ cH∗n logn (1 + o(1)),

E min
σ

n∑

i=1

Xiσ(i) ≥
n∑

i=1

E min
1≤j≤n

Xij ≥ c H̃∗n logn (1 + o(1)).

The opposite bounds follow by the “greedy method” introduced in [9] (and
used in [8]) that we recall now. This method allows to construct a quasi-optimal
permutation σ∗ that provides sufficiently large value or sufficiently small value
of the assignment process. Recall that [1..i] := {1, 2, . . . , i}. Define

σ∗(1) := arg max
j∈[1..n]

X1j ,

11



and let for all i = 2, . . . , n

σ∗(i) := arg max
j 6∈σ∗([1..i−1])

Xij .

It is natural to call this strategy greedy, because at every step we consider the
row i, take the maximum of its available elements (without considering the
influence of this choice on subsequent steps) and then forget the row i and the
corresponding column σ∗(i). The number of variables used at consequent steps
is decreasing from n to 1.

By using the greedy method, we have

E max
σ

n∑

i=1

Xiσ(i) ≥ E

n∑

i=1

Xi σ∗(i) =

n∑

i=1

E max
j 6∈σ∗([1..i−1])

Xij

=

n∑

i=1

E max
1≤j≤n−i+1

Xij . (25)

The latter equality may seem surprising because the index sets [n]\σ∗([1..i− 1])
are random and depend on the matrixX . However, it is justified by the following
lemma.

Lemma 9. Let N1, N2 > 0 be positive integers and let a random vector X :=
(Xj)1≤j≤N1+N2

be distributed according to a multinomial law Mm,N1+N2
. Let

X(1) := (Xj)1≤j≤N1
and X(2) := (Xj)N1<j≤N2

. Let 1 ≤ q ≤ N2 and let

J ⊂ (N1, N1 + N2] be a random set of size q determined by X(1). Then the

variables maxj∈J Xj and maxN1<j≤N1+q Xj are equidistributed.

By applying the asymptotic expression (17) to each term of the sum (25)
and using that the function n 7→ logn is slowly varying we obtain the desired
lower bound

E max
σ

n∑

i=1

Xiσ(i) ≥ cH∗ n logn (1 + o(1)).

Replacing maxima by minima in the greedy method and using (18) yields the
remaining upper bound

E min
σ

n∑

i=1

Xiσ(i) ≤ c H̃∗ n logn (1 + o(1)).

This completes the proof of Theorem 2 except for the postponed proof of
Lemma 9.

Proof of Lemma 9. Let

S = S(X(1)) :=

N1∑

j=1

Xj .

12



Recall that the conditional distribution of X(2) w.r.t. X(1) is Mm−S,N2
. This

means that for all x1 ∈ N
N1 , x2 ∈ N

N2 it is true that

P(X(2) = x2, X
(1) = x1) = P(X(1) = x1) Mm−S(x1),N2

(x2).

For every fixed set J ⊂ (N1, N1 +N2] of size q, it holds that

P(X(2) = x2,J = J) =

m∑

s=0

P(J = J, S = s) Mm−s,N2
(x2),

by summing up over x1 ∈ J−1(J). Now, for every non-negative integer µ, by
summing up over x2 such that maxj∈J x2j = µ, we obtain

P(max
j∈J

Xj = µ,J = J) =

m∑

s=0

P(J = J, S = s) Mm−s,N2
(x2 : max

j∈J
x2j = µ).

The latter factor does not depend on a particular set J due to exchangeability
property of the multinomial law. We thus may denote

Mm−s,N2
(x2 : max

j∈J
x2j = µ) =: F (m− s,N2, q, µ)

and obtain

P(max
j∈J

Xj = µ,J = J) =

m∑

s=0

P(J = J, S = s) F (m− s,N2, q, µ).

By summing up over all sets J of size q we see that

P(max
j∈J

Xj = µ) =

m∑

s=0

P(S = s) F (m− s,N2, q, µ)

does not depend on the specific choice of J , and the claim of lemma follows.

Proof of Theorem 3. We are going to use an old result by Erdős and Rényi [6]
about the existence of perfect matching in a random bipartite graph. Let G be
a uniformly distributed n+ n bipartite graph with m = m(n) edges. If

lim
(m
n

− logn
)
= ∞, (26)

then with probability tending to one, as n → ∞, G has a perfect matching.
In the matrix form, this result asserts the following. Let Y = Y (n,m) =

{Yij}1≤i,j≤n be a uniformly distributed random n×n matrix with entries taking
values in {0, 1} and satisfying

∑n
i,j=1 Yij = m. If (26) holds, then

limP

(
max
σ

n∑

i=1

Yiσ(i) = n

)
= 1. (27)

13



Let now X = (Xij) be our matrix following the multinomial law M(m,n2).

Introduce the matrix Ỹ by

Ỹij :=

{
0, Xij > 0,

1, Xij = 0.

Note that

P(Ỹij = 1) = P(Xij = 0) = (1− p)
m

= exp (−mp (1 + o(1))) .

Let S :=
∑n

i,j=1 Ỹij be the number of empty cells in our matrix X . Observe

that, conditioned on S, the matrix Ỹ has the same distribution as Y (n, S).
Taking into account that the probability in (27) is non-decreasing as a function
of m, we have for every positive integer M

P

(
min
σ

n∑

i=1

Xiσ(i) = 0

)
= P

(
max
σ

n∑

i=1

Ỹiσ(i) = n

)

≥ P(S ≥ M) P

(
max
σ

n∑

i=1

Y (n,M)iσ(i) = n

)
. (28)

We choose M = nβ with β ∈ (1, 2− c) and show that both probabilities in the
latter product tend to one as n → ∞.

For the first one, using (6), we have

ES = n2
E Ỹ11 = n2 exp (−mp (1 + o(1))) ≥ n2−c(1+o(1)).

Furthermore, since the variables Ỹij are negatively correlated, we have

VarS ≤ n2 Var Ỹ11 ≤ n2
E Ỹ11 = ES.

Finally, using β < 2− c, by Chebyshev inequality,

P(S ≤ nβ) ≤ P(|S − ES| ≥ ES − nβ) = P(|S − ES| ≥ ES(1 + o(1)))

≤
VarS

(ES)2(1 + o(1))
≤

ES

(ES)2(1 + o(1))
→ 0.

On the other hand, since β > 1, the assumption (26) with m := M = nβ is
true. Therefore, the second probability in the product (28) tends to one by
Erdős–Rényi result. We obtain from (28) that

limP

(
min
σ

n∑

i=1

Xiσ(i) = 0

)
= 1,

which is the desired claim.
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Proof of Theorem 5. The proof goes along the same lines as the one of The-
orem 2. Instead of the key relation (17), we prove the following claim. Let
(Xj) be negatively associated random variables following Bernoulli law B(m, p).
Then under assumptions (7) and (8) it is true that

E max
1≤j≤n

Xj =
logn

log
(

log n
mp

) (1 + o(1)), as n → ∞. (29)

Upper bound. For the upper bound in (29) that we are going to prove
now, no lower bound on mp is needed; we only use (7).

Let β > 1, y := β logn
mp , r := y

log y . Notice that under (7) we have y, r → ∞.

Next, for a Binomisal B(m, p) random variable X and for every v > 0 it is true
that

P


X ≥

β logn

log
(

logn
mp

) + v


 ≤ P


X ≥

β logn

log
(

β logn
mp

) + v




= P



X ≥
β log n

mp

log
(

β logn
mp

) mp+ v





= P

(
X ≥

y

log y
mp+ v

)
= P (X ≥ rmp+ v) .

In the next calculation we use the Poisson version of the bound for exponential
moment

E exp(γX) ≤ exp(mp(eγ − 1))

that immediately follows from the exact formula (15). By applying Chebyshev
inequality with Poisson-optimal parameter γ = log r we obtain

P (X ≥ rmp+ v) ≤ E exp(γX) exp(−γ(rmp+ v))

≤ exp(−mp(γr − eγ + 1)− γv)

= exp(−mp(r log r − r + 1)− γv).

Since r → ∞, we have

r log r − r + 1 ∼ r log r ∼ y =
β logn

mp
.

It follows that

P (X ≥ rmp+ v) ≤ exp(−β logn(1 + o(1))− γv)

= n−β(1+o(1)) exp(−γv).

and

P

(
max
1≤j≤n

Xj ≥ rmp+ v

)
≤ n P (X ≥ rmp+ v) ≤ n−(β−1)(1+o(1)) exp(−γv).
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Hence,

E max
1≤j≤n

Xj ≤ rmp+ n−(β−1)(1+o(1))

∫ ∞

0

exp(−γv)dv

= rmp+ n−(β−1)(1+o(1))γ−1.

Note that
rmpγ = r log r mp ∼ ymp = β logn → ∞,

hence we conclude that n−(1−β)(1+o(1))γ−1 is negligible compared to rmp, thus

E max
1≤j≤n

Xj ≤ rmp(1 + o(1)) ∼
β logn

log
(

logn
mp

)

and the required upper bound follows by letting β ց 1.

Lower bound. Let β ∈ (0, 1), y := β logn
mp , r := y

log y , and

k := rmp =
y

log y
mp =

β logn

log y
.

Assumption (7) yields y → ∞, k = o(logn), ek = no(1), emp = no(1).
On the other hand, under assumption (8) we have | log(mp)| ≪ logn, which

yields log y ≪ logn, hence k → ∞.
Therefore, by using Poissonian approximation, we obtain

P(X ≥ k) ≥ P(X = k) ∼ e−mp (mp)k

k!
∼ e−mp ek (2πk)−1/2

(mp

k

)k

= no(1) r−k = no(1) r−rmp = no(1) exp(−r log r mp)

= no(1) exp(−y(1 + o(1))mp) = n−β+o(1).

By repeating the arguments from (22), (23), and (24) we obtain

E max
1≤j≤n

Xj ≥ k(1 + o(1)) =
y

log y
mp (1 + o(1)) =

β logn

log y
(1 + o(1))

and letting β ր 1 provides the required lower bound in (29).
Once (29) is proved, the proof of Theorem 5 is completed by the same simple

arguments (including the greedy method) as that of Theorem 2.

Proof of Theorem 7. Upper bound. We have

E max
1≤j≤n

Xj

= E

[
max
1≤j≤n

Xj1{max1≤j≤n Xj≤k}

]
+ E

[
max
1≤j≤n

Xj1{max1≤j≤n Xj>k}

]

≤ k +

n∑

j=1

E
[
Xj1{Xj>k}

]
= k + nE

[
X11{X1>k}

]
.
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Furthermore, since the law of X1 is B(m, p), it is true that

P(X1 = ℓ) =
m!

(m− ℓ)!

pℓ

ℓ!
(1− p)m−ℓ ≤

mℓpℓ

ℓ!
, 0 ≤ ℓ ≤ m.

Hence,

E
[
X11{X1>k}

]
≤

∞∑

ℓ=k+1

(mp)ℓ

(ℓ − 1)!
=

∞∑

q=0

(mp)k+1+q

(k + q)!

≤ (mp)k+1 exp(mp) = (mp)k+1(1 + o(1)).

Therefore,

E max
1≤j≤n

Xj ≤ k + ck+1n1−a(k+1) (1 + o(1)) = k + o(1), (30)

where we used the lower bound in (12) at the last step.

Turning to the lower bound, for every positive integer v in the independent

case, we have

P

(
max
1≤j≤v

Xj < k

)
= P (X1 < k)v = (1− P (X1 ≥ k))v

≤ (1− P (X1 = k))
v

= exp{−v P (X1 = k) (1 + o(1))}

= exp

{
−v

ckn−ak

k!
(1 + o(1))

}
. (31)

Let us fix some small δ ∈ (0, 1). By letting v = [δn] and using the upper bound
in (12) we obtain

P

(
max

1≤j≤[δn]
Xj < k

)
→ 0.

It follows that

E max
1≤j≤[δn]

Xj ≥ k P

(
max

1≤j≤[δn]
Xj ≥ k

)
= k (1 + o(1)),

By using negative association argument (24), we also obtain

E max
1≤j≤[δn]

Xj ≥ k (1 + o(1)) (32)

in the multinomial setting.
Finally, by using (30) and the greedy method based on (32), we conclude

that in the regular case (11) for the assignment process it is true that

E max
σ

n∑

i=1

Xiσ(i) = k n (1 + o(1)).
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Proof of Theorem 14. The upper bound

max
σ

n∑

i=1

Xiσ(i) ≤ m

is trivial; it remains to prove the lower bound.
Let us denote (ui, vi)1≤i≤m the coordinates of the particles thrown on the

square table. All ui and all vi are i.i.d. random variables uniformly distributed
on integers [1..n]. Let U0 = V0 = ∅,

Uk := {ui, 1 ≤ i ≤ k} , Vk := {vi, 1 ≤ i ≤ k} , 1 ≤ k ≤ m,

and introduce the events

Ak := {uk 6∈ Uk−1, vk 6∈ Vk−1} , 1 ≤ k ≤ m.

It is obvious that for each k

P(Ak) ≥ 1−
2m

n
,

hence by m ≪ n

E

(
m∑

k=1

1{Ak}

)
≥ m

(
1−

2m

n

)
= m (1 + o(1)).

On the other hand, we have

max
σ

n∑

i=1

Xiσ(i) ≥
m∑

k=1

1{Ak}, (33)

which entails the desired

E max
σ

n∑

i=1

Xiσ(i) ≥ m (1 + o(1)).

Acknowledgements. The work of M. Lifshits was supported by RSF grant
21-11-00047. G. Mordant gratefully acknowledges the support of the DFG
within SFB 1456.

References

[1] Aldous, D. J. (2001) The ζ(2) limit in the random assignment problem. Random
Structures & Algorithms 18, No.4, 381–418.

[2] Bulinski, A.V. and Shashkin A.P. (2007) Limit theorems for associated random

fields and related systems. Advanced Series on Statistical Science & Applied Prob-
ability, vol. 10, World Scientific.

18



[3] Christofides, T. C. and Vaggelatou, E. (2004) A connection between supermodu-
lar ordering and positive/negative association. J. Multivar. Anal. 88, No.1, 138–
151.

[4] Cheng, Y., Liu, Y., Tkocz, T. and Xu A. (2021) Typical values of extremal-weight
combinatorial structures with independent symmetric weights. Preprint.

[5] Coppersmith, D. and Sorkin, G. B. (1999) Constructive bounds and exact expec-
tations for the random assignment problem. Random Structures & Algorithms

15, No.2, 113–144.
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