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THE NEAT EMBEDDING PROBLEM FOR ALGEBRAS OTHER THAN

CYLINDRIC ALGEBRAS AND FOR INFINITE DIMENSIONS

ROBIN HIRSCH AND TAREK SAYED AHMED

Abstract. Hirsch and Hodkinson proved, for 3 ≤ m < ω and any k < ω, that the

class SNrmCAm+k+1 is strictly contained in SNrmCAm+k and if k ≥ 1 then the former

class cannot be defined by any finite set of first order formulas, within the latter class. We

generalise this result to the following algebras of m-ary relations for which the neat reduct

operator Nrm is meaningful: polyadic algebras with or without equality and substitution

algebras. We also generalise this result to allow the case where m is an infinite ordinal,

using quasipolyadic algebras in place of polyadic algebras (with or without equality). 1

Cylindric algebra is an algebraic correspondent of first-order logic with no
constants or functions, more specifically n-dimensional cylindric algebra, CAn,
is an algebraic correspondent of first-order logic restricted to n indexed variables,
for finite n. An algebra in CAn is a boolean algebra together with a cylindrifier
ci, which acts as a unary operator and corresponds to existential quantification
of the i’th variable, and a diagonal dij element corresponding to the equality
of the ith and j’th variable, for i, j < n. For m < n, the neat reduct NrmC
of a C ∈ CAn is the m-dimensional cylindric algebra obtained by restricting
to those elements c ∈ C such that cic = c for m ≤ i < n, and restricting to
those cylindrifiers and diagonals indexed by m. If K ⊆ CAn we write NrmK
for {NrmC : C ∈ K}. It is not the case that every algebra in CAm is the
neat reduct of an algebra in CAn, nor need it even be a subalgebra of a neat
reduct of an algebra in CAn. Furthermore, SNrmCAm+k+1 6= SNrmCAm+k,
whenever 3 ≤ m < ω and k < ω [10]. A consequence of this is that there are
m-variable formulas that can be proved with m+ k + 1-variables, but not with
m+ k-variables, in a certain, fairly typical, proof system.

Other algebras may be defined corresponding to restrictions or extensions of
the n-variable first order logic described above. Because our focus is on neat
reducts, we will only consider n-dimensional algebras where the cylindrifiers ci
are included, or at least are definable, within the set of operators of the algebra.
Without that restriction it would not be possible to define a neat reduct and
our algebras would correspond to first order logic without quantifiers, we do not
consider that case here. But we might choose to drop the diagonals from our
signature (corresponding to first order logic without equality), or we may add
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permutation operators, corresponding to permutations of the variables in first or-
der logic. By generalising the results about neat reducts of m-dimensional cylin-
dric algebras to other m-dimensional algebras, such as polyadic algebras with or
without equality, diagonal free cylindric algebras and substitution algebras, one
may deduce that there are m-variable formulas provable with m+k+1-variables
but not with m + k-variables in logical proof systems similar to the one in [9],
but with additional inference rules (corresponding to polyadic equality algebras
(PEA)) or fewer weaker inference rules (corresponding to substitution algebras
(Sc)).

Preliminaries. For cardinals m,n we write mn for the set of maps from m
to n. If U is an ultrafilter over ℘(I) and if Ai is some structure (for i ∈ I) we
write either Πi∈IAi/U or Πi/UAi for the ultraproduct of the Ai over U . Fix
some ordinal n ≥ 2. For i, j < n the replacement [i/j] is the map that is like the
identity on n except that i is mapped to j and the transposition [i, j] is the like
the identity on n except that i is swapped with j. A map τ : n → n is finitary
if the set {i < n : τ(i) 6= i} is finite, so if n is finite then all maps n → n are
finitary. It is known, and not hard to show, that any finitary permutation is
a product of transpositions and any finitary non-injective map is a product of
replacements.

The standard reference for all the classes of algebras mentioned previously
is [5]. Each class in {Dfn,Scn,CAn,PAn,PEAn,QPAn,QPEAn} consists of
boolean algebras with extra operators, as shown in figure 1, where dij is a nullary
operator (constant), ci, sτ , s[i/j] and s[i,j] are unary operators, for i, j < n, τ :
n → n. For finite n, polyadic algebras are the same as quasi-polyadic algebra
and for the infinite dimensional case we restrict our attention to quasi-polyadic
algebras in QPAn,QPEAn. Each class is defined by a finite set of equation
schema. Existing in a somewhat scattered form in the literature, equations
defining Scn,QPAn and QPEAn are given in the appendix, definition 15. For
CAn we follow the standard axiomatization given in in [4, definiton 1.1.1]. For
any operator o of any of these signatures, we write dim(o) (⊆ n) for the set
of dimension ordinals used by o, e.g. dim(ci) = {i}, dim(s[i/j]) = dim(dij) =
{i, j}. An algebra A in QPEAn has operators that can define any operator
of QPAn,CAn, Scn and Dfn. Thus we may obtain the reducts RdK(A) for
K ∈ {QPEAn,QPAn,CAn,Scn,Dfn} and it turns out that the reduct always
satisfies the equations defining the relevant class so RdK(A) ∈ K. Similarly from
any algebra A in any of the classes QPEAn,QPAn,CAn,Scn we may obtain
the reduct RdSc(A) ∈ Scn [2].

Let K ∈ {QPEA,QPA,CA,Sc,Df}, let A ∈ Kn and let 2 ≤ m ≤ n (pos-
sibly infinite ordinals). The reduct to m dimensions Rdm(A) ∈ Km is obtained
from A by restricting to those operators o such that dim(o) ⊆ m. The neat
reduct to m dimensions is the algebra Nrm(A) ∈ Km with universe {a ∈ A :
m ≤ i < n → cia = a} where all operators o with dim(o) ⊆ m are induced
from A (see [4, definition 2.6.28] for the CA case). More generally, for Γ ⊆ n
we write NrΓA for the algebra whose universe is {a ∈ A : i ∈ n \ Γ → cia = a}
with all the operators o of A where dim(o) ⊆ Γ. Let A ∈ Km, B ∈ Kn. An
injective homomorphism f : A → B is a neat embedding if the range of f is a
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class extra operators
Dfn ci : i < n
Scn ci, s[i/j] : i, j < n
CAn ci, dij : i, j < n
PAn ci, sτ : i < n, τ ∈ nn
PEAn ci, dij , sτ : i, j < n, τ ∈ nn
QPAn ci, s[i/j], s[i,j] : i, j < n
QPEAn ci, dij , s[i/j], s[i,j] : i, j < n

Figure 1. Non-boolean operators for the classes

subalgebra of Nrm(B). The notions of neat reducts and neat embeddings have
proved useful in analyzing the number of variables needed in proofs, as well as
for proving representability results, via the so-called neat embedding theorems
[1, 11, 12].

Let m ≤ n be ordinals and let ρ : m → n be an injection. For any n-
dimensional algebra B (substitution, cylindric or quasi-polyadic algebra with or
without equality) we define an m-dimensional algebra Rdρ(B), with the same
universe and boolean structure as B, where the (ij)th diagonal of Rdρ(B) is
dρ(i)ρ(j) ∈ B (if diagonals are included in the signature of the algebra), the ith

cylindrifier is cρ(i), the i for j replacement operator is the operator s
ρ(i)
ρ(j) ofA when

it is not term definable from the other operations, namely, in the two cases of Sc
and QPA (in the presence of diagonal elements and cylindrifiers these operations
are term definable), the ij transposition operator is sρ(i)ρ(j) if included in the
signature, for i, j < m. It is easy to check, for K ∈ {Df ,Sc,CA,QPA,QPEA},
that if B ∈ Kn then Rdρ(B) ∈ Km. Also, for B ∈ Kn and x ∈ B, we define
Rlx(B) by ‘restriction to x’, so the universe is the set of elements of B below
x, where the boolean unit is x, boolean zero and sum are not changed, boolean
complementation is relative to x, and the result of applying any non-boolean
operator is obtained by using the operator for B and intersecting with x. It is not
always the case that Rlx(B) is a Kn (we can lose commutativity of cylindrifiers).

The main question we address in this paper is whether SNrmKn = Km, where
m < n are possibly infinite ordinals and K ∈ {Df ,Sc,CA,QPA,QPEA} and,
if not, whether SNrmKn may be defined within Km using only finitely many
axioms (or finitely many axiom schemas, when m is infinite). The case K = Df
of diagonal free algebra is easily answered: SNrmDfn = Dfm, for 3 ≤ m ≤ n,
see [5, theorem 5.1.31]. We show that in all the other cases, the answers are
negative. In order to generalise the results of [10] to these other classes of algebra,
we define an m-dimensional polyadic equality type algebra C(m,n, r) where 3 ≤
m ≤ n, r < ω (see definition 4 below). These algebras are based on a relation
algebra construction that first appeared in [6, 7] or see [8, section 15.2], modified
here so that the elements become n-dimensional rather than two dimensional.
Still, although they are n-dimensional, all of their elements are generated by two
dimensional elements. We will then prove the following theorem.

THEOREM 1. Let 3 ≤ m ≤ n and r < ω.
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I. C(m,n, r) ∈ NrmQPEAn,
II. RdScC(m,n, r) 6∈ SNrmScn+1,

III. Πr/UC(m,n, r) is elementarily equivalent to a countable polyadic equality
algebra C ∈ NrmQPEAn+1.

The proof of this theorem is the substantial part of this paper. The proofs
are similar to proofs of corresponding results in [7] but modified for the signa-
tures considered here and with some further modifications. To prove the first
two parts, the algebras we consider will only have elements generated by two
dimensional elements, however for the third part we will also consider elements
that are essentially three dimensional (hence we will introduce three dimensional
hypernetworks, for this part only). From this theorem we deduce the following.

COROLLARY 2. Let K ∈ {QPEA,QPA,CA,Sc}, let 3 ≤ m < n < ω.
Then SNrmKn+1 is a proper subclass of SNrmKn which cannot be defined, within
SNrmKn+1, by any finite set of first order sentences.

Proof. We remarked earlier that for each choice of K and each n, the opera-
tors of Scn are definable by the operators of Kn which are themselves definable
by the operators of QPEAn. Hence, it follows from (I) that RdKC(m,n, r) ∈
NrmKn, from (II) RdKC(m,n, r) 6∈ SNrmKn+1, for r < ω and from (III)
RdK(C) ∈ NrmKn+1. Now suppose for contradiction that φ is a sentence defin-
ing SNrmKn within SNrmKn+1. Let U be any non-principal ultrafilter over
ω. Since RdKC(m,n, r) ∈ NrmKn \ SNrmKn+1, RdK(C(m,n, r)) 6|= φ, for each
r < ω. By  Loś’s theorem, Πr/U RdKC(m,n, r) |= ¬φ. By elementary equivalence
C |= ¬φ, contradicting (III). a

We will prove (I), (II), (III) below, after we have defined the algebras C(m,n, r).
For some time to come we restrict our attention to finite ordinals, which we
denote by m,n . . . , etc.

Main Construction. Now we define algebras C(m,n, r) ∈ QPEAm for 3 ≤
m ≤ n < ω and any linear order r. These algebras are based on the relation
algebras defined in [6, section 3].

DEFINITION 3. Define a function κ : ω×ω → ω by κ(x, 0) = 0 (all x < ω)
and κ(x, y + 1) = 1 + x× κ(x, y)) (all x, y < ω). For n, r < ω let

ψ(n, r) = κ((n− 1)r, (n− 1)r) + 1.

All of this is simply to ensure that ψ(n, r) is sufficiently big compared to n, r for
the proof of non-embeddability to work. The second parameter r < ω may be
considered as a finite linear order of length r. We may extend the definition of
ψ to the case where its second parameter is an arbitrary linear order by letting
ψ(n, r) = ω for any infinite linear order r. For any n < ω and any linear order
r, let

Bin(n, r) = {Id} ∪ {ak(i, j) : i < n− 1, j ∈ r, k < ψ(n, r)}
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where Id, ak(i, j) are distinct objects indexed by k, i, j. For i < n− 1, j ∈ r, k <
ψ(n, r) let

a(i,−) = {ak(i, j) : j ∈ r, k < ψ(n, r))},

a(−, j) = {ak(i, j) : i < n− 1, k < ψ(n, r)},

ak = {ak(i, j) : i < n− 1, j ∈ r},

a(i, j) = {ak(i, j) : k < ψ(n, r)},

a(−, > j) =
⋃

j<j′∈r
a(−, j′)

a(−,≤ j) =
⋃

j′≤j∈r

a(−, j′) and

a =
⋃

i<n−1

a(i,−).

Let 3 ≤ m ≤ n < ω and let r be any linear order. Let F (m,n, r) be the set
of all functions f : m × m → Bin(n, r) such that for all x, y, z < m we have
f(x, x) = Id, f(x, y) = f(y, x), and (f(x, y), f(y, z), f(x, z)) 6∈ Forb, where
Forb (the forbidden triples) is the following set of triples

{(Id, b, c) : b 6= c ∈ Bin(n, r)}
∪

{(ak(i, j), ak
′
(i, j), ak

∗
(i, j′)) : k, k′, k∗ < ψ(n, r), i < n− 1, j′ ≤ j ∈ r}.

Since the variables x, y, z in the definition of F (m,n, r) are universally quanti-
fied, it actually follows that (f(x, y), f(y, z), f(x, z)) avoids all Peirceans of for-
bidden triples, for f ∈ F (m,n, r), e.g. we cannot have (f(x, y), f(y, z), f(x, z)) =
(b, Id, c) for b 6= c since this would entail (f(y, z), f(z, x), f(y, x)) = (f(y, z), f(x, z), f(x, y)) =
(Id, c, b) 6∈ Forb, contrary to the definition of Forb. For any f, g ∈ F (m,n, r) and
x, y < m we write f ≡xy g if for all w, z ∈ m \ {x, y} we have f(w, z) = g(w, z).
We may write f ≡x g instead of f ≡xx g. For τ : m→ m we write (fτ) for the
function defined by

(fτ)(x, y) = f(τ(x), τ(y)).(1)

Clearly, if f ∈ F (m,n, r) then (fτ) ∈ F (m,n, r).

For the next couple of sections we will consider cases where r < ω is a finite
linear order. The idea behind these algebras C(m,n, r) (formalised below) may
be sketched as follows. To prove theorem 1(II) we will assume for contradiction
that RdScC(m,n, r) ⊆ NrC for some C ∈ Scn+1, some finite m,n, r. We will
show, by an inductive proof, that there must be a large set S of distinct elements
of C, satisfying certain inductive assumptions, which we outline next. For each
s ∈ S and i, j < n + 1 there is an element α(s, i, j) ∈ Bin(n, r) obtained from
s by cylindrifying all dimensions in (n + 1) \ {i, j}, then using substitutions to
replace i, j by 0, 1. We show that (α(s, i, j), α(s, j, k), α(s, i, k)) 6∈ Forb, for all
s ∈ S and i, j, k < n+ 1. Our inductive assumptions state, among other things,
that cn(s) is constant, for s ∈ S, and for l < n there are fixed i < n − 1, j < r
such that for all s ∈ S we have α(s, l, n) ≤ a(i, j). This defines two functions
I : n → (n − 1), J : n → r such that α(s, l, n) ≤ a(I(l), J(l)) for all s ∈ S.
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The rank ρ(I, J) of (I, J) is the sum (over i < n − 1) of the maximum j with
I(l) = i, J(l) = j (some l < n) or −1 if there is no such l. We will prove that
there is a set S′ with index functions (I ′, J ′), still relatively large (large in terms
of the number of times we need to repeat the induction step) where the same
induction hypotheses hold but where ρ(I ′, J ′) > ρ(I, J). By repeating this enough
times (more than nr times) we obtain a non-empty set T with index functions
of rank strictly greater than (n− 1)× (r − 1), an impossibility.

We sketch the induction step. Since I cannot be injective there must be distinct
l1, l2 < n such that I(l1) = I(l2) and J(l1) ≤ J(l2). We may use l1 as a ”spare
dimension” (changing the index functions on l will not reduce the rank). Since
cn(s) is constant, we may fix s0 ∈ S so that for each s ∈ S \ {s0} we can
pick b ∈ Bin(n, r) such that s′ = cls0 · s[n/l]cls · α(b, l, n) is non-zero, using the
complete additivity of the operators. Let S∗ = {s′ : s ∈ S \ {s0}}, we wish to re-
establish the induction hypotheses for S∗, and many of these are simple to check.
But suitable functions I ′, J ′ might not exist because α(s, l, n) ∈ Bin(n, r) \ {Id}
might vary as s ranges over S \ {s0} (for l′ 6= l < n we can let I ′(l′) = I(l′) and
J ′(l′) = J(l′)). Still, because there are just (n − 1)r possible values for the i, j
indices of α(s, l, n) as s ranges over S \ s0 there must be a subset S′ ⊆ S∗ with

|S′| ≥ |S|−1
nr and where there exist i < n− 1, j < r such that for all s ∈ S \ {s0}

we have α(s, l, n) ≤ a(i, j). Now we let I ′, J ′ be identical to I, J respectively,
except I ′(l) = i, J ′(l) = j. With these index functions, the required set is S′

and we check all the induction hypotheses. The size of S′ is at least |S|−1
(n−1)r , still

big enough to continue. It remains to show that the rank of (I ′, J ′) is strictly
greater than that of (I, J). For this, we show that J ′(l) ≥ J(l) for all l < n.
Since (α(s, i, j), α(s, j, k), α(i, k)) 6∈ Forb and by the definition of Forb either
rng(I ′) properly extends rng(I) or there is l < n such that J ′(l) > J(l), hence
ρ(I ′, J ′) > ρ(I, J).

DEFINITION 4. The universe of C(m,n, r) is the power set of F (m,n, r)
and the operators are

• the boolean operators +,− are union and set complement,
• the diagonal dxy = {f ∈ F (m,n, r) : f(x, y) = Id},
• the cylindrifier cx(X) = {f ∈ F (m,n, r) : ∃g ∈ X f ≡x g} and
• the polyadic sτ (X) = {f ∈ F (m,n, r) : fτ ∈ X},

for x, y < m, X ⊆ F (m,n, r) and τ : m→ m.

Let x, y < m and let b ∈ Bin(n, r). Define

bx,y = {f ∈ F (m,n, r) : f(x, y) = b} ∈ C(m,n, r)(2)

Observe, for any x, y, z < m and λ, µ, ρ ∈ Bin(n, r), that

(u, v, w) ∈ Forb ⇐⇒ ux,y ∩ vy,z ∩ wx,z = ∅,(3)

in particular we will use the case (x, y, z) = (0, 1, 2), later.

LEMMA 5. For 3 ≤ m, 2 ≤ n and r < ω the algebra C(m,n, r) satisfies
all of the axioms defining QPEAm (see definition 15, noting that for finite
m, PEAm is the same as QPEAm) except, perhaps, the commutativity of
cylindrifiers cxcy(X) = cycx(X).
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Proof. Routine. a

LEMMA 6. If 3 ≤ m ≤ m′ then C(m,n, r) ∼= NrmC(m′, n, r).

Proof. The isomorphism mapsX ⊆ F (m,n, r) to {f ∈ F (m′, n, r) : f�m×m ∈
X}. a

LEMMA 7. For 3 ≤ m ≤ n and r < ω, C(m,n, r) ∈ QPEAm.

Proof. If r = 0 then Bin(n, r) = {Id} so C(m,n, 0) is the trivial algebra
hence C(m,n, 0) ∈ QPEAm. Now assume r > 0. In view of lemma 5 we only
have to check the commutativity of cylindrifiers: cxcyX = cycxX, for x, y < m.
This equation is trivial if x = y so assume not. By complete additivity, it suffices
to check the case where X is an atom, X = {f} for some f ∈ F (m,n, r), that
is we must show that g ∈ cxcy{f} ⇐⇒ g ∈ cycx{f}. Thus given g ≡xy f , it
suffices to find h ∈ F (m,n, r) such that f ≡x h ≡y g. If there is z < m, z 6= x, y
and f(y, z) = Id then the required h is g[y/z], or if g(z, x) = Id the required
h is f [x/z]. Suppose there is no such z, so for each z < m, z 6= x, y we
have f(y, z), g(x, z) ∈ a. Let h : m × m → Bin(n, r) be identical to f on
pairs not involving x, be identical to g on pairs not involving y (this is well-
defined, since f ≡xy g) and let h(x, y) = h(y, x) = a0(i, 0), where i is the least
number below n− 1 such that it is not the case that there is z 6= x, y < m and
f(y, z), g(x, z) ∈ a(i,−). Since m ≤ n and there are only m−2 possible values of
z in m \ {x, y} and n− 1 possible values of i, such an i must exist. This defines
h. It is now easy to check that h ∈ F (m,n, r).

a
We can now prove theorem 1 (I): if 3 ≤ m ≤ n and r < ω then C(m,n, r) ∼=
Nrm(C(n, n, r)) by lemma 6 and C(n, n, r) ∈ QPEAn by lemma 7, so C(m,n, r) ∈
NrmQPEAn. Next, we prove theorem 1 (II).

LEMMA 8. Let 3 ≤ m < ω, 2 ≤ n < ω, r < ω. RdScC(m,n, r) 6∈
SNrmScn+1.

Proof. Suppose, for contradiction, that X ∈ Scn+1 and ′ : RdScC(m,n, r)→
NrmX is an isomorphism. Let B ⊆ Bin(n, r) and let i < j < n+ 1. Define

α(B, i, j) =
∑
{s[0/i]s[1/j]f ′ : f ∈ F (m,n, r), f(0, 1) ∈ B} ∈ X

For b ∈ Bin(n, r) we may write α(b, i, j) instead of α({b}, i, j). By additivity of
the substitutions ∑

b∈Bin(n,r)

α(b, i, j) = 1.(4)

Further, for i < j < k < n+ 1 and b, c, d ∈ Bin(n, r), we have

α(b, i, j) · α(c, j, k) · α(d, i, k) = 0

⇐⇒ Σf∈F (m,n,r), f(0,1)=bs[0/i]s[1/j]f
′ · Σg(0,1)=cs[0/j]s[1/k]g

′ · Σh(0,1)=ds[0/i]s[1/k]h
′ = 0

⇐⇒ ¬∃p ∈ F (m,n, r) (p(i, j) = b, p(j, k) = c, p(i, k) = d)

⇐⇒ (b, c, d) ∈ Forb(5)
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Let

βk = α(ak(0, 0), 0, n) ·
∏
i<n

α(Id, 0, i) ∈ X .

Since there is f ∈ F (m,n, r) with f(0, 1) = ak(0, 0), letting σ : n+ 1→ n+ 1 be
the function σ(1) = n, σ(i) = 0 (i < n+ 1, i 6= 1), we have 0 6= sσf

′ ≤ βk, and

clearly for k 6= k′ < ψ(n, r) we have βk ·βk′ ≤ α(ak(0, 0), 0, n)·α(ak
′
(0, 0), 0, n) =

0.
Let S0 = {βk : k < ψ(n, r)}. We will prove by induction over t that if

t ≤ (n− 1)r there is a set St with |St| > κ((n− 1)r, (n− 1)r − t) and functions
It : {0, . . . , n− 1} → {0, . . . , n− 2}, Jt : {0, . . . , n− 1} → {0, . . . , r − 1}, such
that for all β, β′ ∈ St

1. if l < n then β ≤ α(a(It(l), Jt(l)), l, n),
2. there is k < ψ(n, r) unique to β ∈ St such that β ≤ α(ak, 0, n),
3. cnβ = cnβ

′,

To see that the case t = 0 holds: let I0(i) = 0, J0(i) = 0 (all i < n).
Given functions It, Jt as above and i < n− 1 let the index of i with respect to

It, Jt be

ind(i, It, Jt) = max({Jt(l) : l < n− 1, It(l) = i} ∪ {−1}).
Define the rank ρ(It, Jt) =

∑
i<n−1 ind(i, It, Jt). Observe that ind(0, I0, J0) = 0

and ind(i, I0, J0) = −1 for 0 < i < n−1, so ρ(I0, J0) = 0+(n−2)×(−1) = 2−n.
We also assume, inductively,

4. ρ(It, Jt) ≥ 2− n+ t.

We have seen that this last inductive condition also holds for t = 0.
Let 0 ≤ t < (n − 1)r and assume these properties hold. Since |dom(It)| = n

and |rng(It)| ≤ n − 1 there must be u < v < n with It(u) = It(v). Pick such
a pair (u, v) and let l = u if Jt(u) ≤ Jt(v), else let l = v. Note, by choice of
l, that if I ′, J ′ are functions identical to I, J , respectively, except perhaps on l,
then ρ(I ′, J ′) ≥ ρ(I, J).

Since t < (n− 1)r we have |St| > κ((n− 1)r, (n− 1)r − t) ≥ κ((n− 1)r, 1) =
1. Fix some β0 ∈ St. For each β ∈ St \ {β0}, since cnβ = cnβ0, we have
cncls[n/l]cl(β) = cncl(β0), hence clβ0 · s[n/l]clβ 6= 0. By (4), there is b ∈
Bin(n, r) such that

δ = clβ0 · s[n/l]clβ · α(b, l, n) 6= 0.

We know that β0 ≤ α(ak0(0, 0), 0, n), β ≤ α(ak(0, 0), 0, n) for some k0 6= k <
ψ(n, r), so δ ≤ α(ak0(0, 0), 0, l)·α(ak(0, 0)(0, n))·α(b, l, n). By (5), (ak0(0, 0), ak(0, 0), b) 6∈
Forb and we cannot have b = Id. Hence b = ak

′
(i, j) for some i < n − 1, j <

r, k′ < ψ(n, r). For i < n, j < r let

S(i, j) = {clβ0 · s[n/l]clβ · α(ak(i, j), l, n) : k < ψ(n, r), β ∈ St \ {β0}} \ {0}.
By cardinalities, there are fixed i0 < n − 1 and j0 < r such that |S(i0, j0)| ≥
|St|−1
(n−1)r >

κ((n−1)r,(n−1)r−t)−1
(n−1)r = κ((n−1)r, (n−1)r−(t+1)). Let St+1 = S(i0, j0),

let It+1 be identical to It except that l 7→ i0 and let Jt+1 be identical to Jt
except that l 7→ j0. If i0 6∈ rng(It) then Ind(i0, It+1, Jt+1) = j0 ≥ 0 > −1 =
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Ind(i0, It, Jt), otherwise for any p < n + 1 if It(p) = i0 then j0 > Jt(p), by
(5) applied to (p, l, n), so j0 = Ind(i0, It+1, Jt+1) > Ind(i0, It, Jt). Either way,
ρ(It+1, Jt+1) > ρ(It, Jt). Hence St+1, It+1, Jt+1 satisfies induction hypothesis 3.
The other induction hypotheses are straightforward.

By induction, the properties hold for all t ≤ (n− 1)r. Letting t = (n− 1)r, we
have a set S(n−1)r of size strictly greater than κ((n− 1)r, (n− 1)r− (n− 1)r) =
κ((n− 1)r, 0) = 0, i.e. non-empty, and there are functions It, Jt of rank at least
(2−n) + ((n− 1)r) = (n− 1)(r− 1) + 1, an impossibility since for each i < n− 1
the maximum index i can have is r − 1, hence the maximum possible rank is
(n− 1)(r − 1). We conclude that RdScC(m,n, r) 6∈ SNrmScn+1. a

We now concentrate on proving (III), that Πr/U C(m,n, r) ∈ SNrmQPEAn+1,
for any non-principal ultrafilter U . A standard ultraproduct argument shows
that Πr/U C(m,n, r) ∼= C(m,n,Πr/U r) so we have to prove that C(m,n, ρ) ∈
SNrmQPEAn+1, where ρ = Πr/U r. Note that ρ is a linear order containing an
infinite ascending chain. First we define a game.

DEFINITION 9. Let m,n < ω, let ρ be a linear order and let Λ = (n+ 1)3.
An m-hypernetwork h = (f, g) consists of some f ∈ F (m,n, ρ) and a ternary
function g : 3m → Λ such that for all x, y, z, x′, y′, z′ < m, if f(x, x′) =
f(y, y′) = f(z, z′) = Id then g(x, y, z) = g(x′, y′, z′). For X ⊆ m we say that
h = (f, g) is strict over X if x 6= y ∈ X ⇒ f(x, y) 6= Id. If m′ ≤ m and
h = (f, g) is an m-hypernetwork then h�m′ denotes the m′-hypernetwork obtained
from h by restriction to m′. As before, for x, y < m we write (f, g) ≡xy (f ′, g′)
if for all v, w, z ∈ m\x, y we have f(v, w) = f ′(v, w) and g(v, w, z) = g′(v, w, z),
also we write ≡x instead of ≡xx.
We define a game G = G(m,n, ρ) as follows. A play of G is a sequence
h0, h1, . . . , ht, (t < ω) of (n+ 1)-hypernetworks. In round t < ω of the game, ∀
plays either an m-dimensional move θ by choosing any m-hypernetwork θ or an
amalgamation move (u, v, σ, τ, x, y) where u, v < t, σ, τ : n + 1 → n + 1, x, y <
n + 1 and huσ ≡xy hvτ . In response to an m-dimensional move θ, ∃ must
play a (n+1)-hypernetwork ht such that ht�m = θ. In response to an amalga-
mation move (u, v, σ, τ, x, y), ∃ must play a (n + 1)-hypernetwork ht such that
huσ ≡x ht ≡y hvτ . If she fails to provide such a response to either kind of move
then she loses the play in that round. If ∃ does not lose in any of the ω rounds
of G then she wins the play.

LEMMA 10. Let 3 ≤ m < n < ω and let ρ be a linear order containing an
infinite ascending sequence. ∃ has a winning strategy in G(m,n, ρ).

Proof. Let j0 < j1 < j2 . . . ∈ ρ be an infinite ascending sequence, let
J = {j0, j1, . . . } ⊆ ρ. We describe ∃’s strategy. Consider round t of a play of the
game. Suppose, inductively, that ∃ has successfully implemented her strategy in
all previous rounds s < t, the play so far is h0, h1, . . . ht−1. Suppose ∀ plays an
m-dimensional move θ. Let σ : (n+ 1)→ m be the function defined by

σ(i) =

{
i (i < m)
0 (m ≤ i < n+ 1)

∃ plays the hypernetwork θσ. Observe that if X ⊆ (n+ 1) and |X| > m then θσ
is not strict over X.
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Now suppose ∀ plays an amalgamation move (u, v, σ, τ, x, y) where huσ ≡xy
hvτ . To avoid trivialities assume x 6= y. ∃ is required to find ht = (ft, gt)
such that huσ ≡x ht ≡y hvτ . These equivalences uniquely determine the value
of ft on any pair from n + 1 except (x, y) and (y, x) and they determine the
value of gt on any triple from n + 1 except those involving both x and y. If
there is w < t and ρ : n + 1 → n + 1 such that huσ ≡x hwρ ≡y hvτ then ∃
lets ht = hwρ (if there is more than one possible solution, then any will do).
Since such a move by ∀ is clearly superfluous we will assume henceforth that
∀ never makes such a move. Furthermore, we will assume that if ∀ plays the
amalgamation move (u, v, σ, τ, x, y) then there is no u′ < u and σ′ : n+1→ n+1
such that huσ ≡x hu′σ′ (if such a u′ < u and σ′ existed then ∀ could instead
play (u′, v, σ′, τ, x, y)) and there is no v′ < v and τ ′ : n + 1 → n + 1 such that
hvτ ≡y hv′τ ′.

Now, although we have not yet entirely defined ft, for each x′, y′ < n + 1 we
already know whether ft(x

′, y′) = Id or not (we cannot have ft(x, y) = Id, by
our assumption about ∀-moves). For any x1, y1, z1, x2, y2, z2 < n + 1 we write
(x1, y1, z1) ∼ (x2, y2, z2) iff ft(x1, x2) = ft(y1, y2) = ft(z1, z2) = Id.

First ∃ defines gt :3(n + 1) → Λ by defining gt on all triples involving both x
and y in such a way that if x is any triple involving x and y and if y is any triple
of elements of (n + 1) then gt(x) = gt(y) ⇐⇒ (x ∼ y). Since ∼ is clearly an
equivalence relation and since Λ = (n + 1)3, the range of gt is large enough to
allow this.

Secondly, ∃ defines ft ∈ F (n+ 1, n, ρ) by letting ft(x, y) = a0(i, j) where

• j ∈ J is greater than each element of the finite set {j′ ∈ J : ∃s < t, x′, y′ <
n+ 1 fu(x′, y′) ∈ a(−, j′)}, least possible subject to that.

• i < n − 1 is least such that there is no w < n + 1 and j ∈ ρ \ J with
fsσ(y, w), fvτ(w, x) ∈ a(i, j).

We will prove that the strategy may be implemented, in particular the i < n− 1
required in the second part may always be found. To prove our claim, suppose
for contradiction that there are w0, w1, . . . , wn−2 < n + 1 such that for each
i < n − 1 there is j ∈ ρ \ J and fuσ(y, wi), (fvτ)(wi, x) ∈ a(i, j). Observe that
fu is strict over {σ(y), σ(wi) : i < n− 1}, so fu was itself played in response to
an amalgamation move, say (u′, v′, σ′, τ ′, x′, y′). By our assumption that there
is no u∗ < u and σ∗ such that fuσ ≡x fu∗σ

∗, we see that {σ(y′), σ(x′)} ⊆
{y, w0, w1, . . . , wn−2}. Inductively, ∃ chose fu(σ(y′), σ(x′)) ∈ a(−, k′) for some
k′ ∈ K, hence {σ(y′), σ(x′)} ⊆ {w0, . . . , wn−2}. Similarly, fv was played in
response to an amalgamation move (u∗, v∗, σ∗, τ∗, x∗, y∗), fv(τ(y∗), τ(x∗)) ∈
a(−, k∗) (some k∗ ∈ K) and {τ(y∗), τ(x∗)} ⊆ {w0, . . . , wn−2}. By uniqueness
of k′ and k∗ we deduce that k′ = k∗, u = v and {σ(y′), σ(x′)} = {τ(y∗), τ(x∗)}.
When ∃ played fu she ensured that for each wh (h < n−1) the label gu(σ(y′), σ(x′), σ(wh))
is unique but it is equal to gv(τ(y′), τ(x′), τ(wh)) (since guσ ≡xy gvτ), hence
σ(wh) = τ(wh). But then, define ρ : (n + 1) → (n + 1) by ρ(v) = σ(v), for
v ∈ (n + 1) \ {x}, and ρ(x) = τ(x). Then huσ ≡x huρ ≡y hvσ, contrary to our
assumption. This proves the claim and proves that ∃’s strategy can always be
implemented.
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By choice of i, j it is clear that ft avoids all forbidden triples so indeed ft ∈
F (n+ 1, n, ρ). a

LEMMA 11. Let 3 ≤ m < n < ω and let ρ be a countable linear order
containing an infinite ascending sequence. Then C(m,n, ρ) ∈ NrmQPEAn+1.

Proof. Consider a play of G(m,n, ρ) in which ∃ plays her winning strategy
and ∀ plays all possible m-dimensional moves and all possible amalgamation
moves. Since ρ is countable, this can be scheduled. Let H be the set of all
hypernetworks occurring in the play. As in definition 4, the power set ℘(H) is
the universe of a QPEAn+1-type algebra C, where dij = {(f, g) ∈ H : f(i, j) =
Id}, ci(X) = {h ∈ H : ∃h′ ∈ X, h′ ≡i h} and sτ (X) = {h ∈ H : hτ ∈ X}, for
i, j < n+1, τ : (n+1)→ (n+1). As with lemma 5 it is easy to see that C satisfies
all the QPEAn+1 axioms other than commutativity of cylindrifiers, and since
H is closed under amalgamation, commutativity holds too, so C ∈ QPEAn+1.
The map λ : C(m,n, ρ) → NrmC defined by ι(f) = {(f ′, g′) ∈ H : f ′�m = f} is
easily shown to be an isomorphism. a
Since Πr/UC(m,n, r) ∼= C(m,n,Πr/Ur) and Πr/Ur contains an infinite ascending
sequence, this proves theorem 1(III) and completes the proof of theorem 1.

Infinite dimensional case. Now we prove the infinite dimensional case, by
lifting the dimensions for the finite case to the transfinite; a trick due to Monk;
witness [5, theorem 3.2.87] where Monk lifts his classical non finite axiomati-
zability result for RCAn (n > 2) to the transfinite. Our proof has the same
structure as the finite dimensional case, but naturally we need an infinite dimen-
sional quasi- polyadic equality algebra. Let n be an infinite ordinal. For each
finite subset Γ ⊆ n let

ρΓ be the unique order preserving bijection from |Γ| onto Γ.

Let I = {Γ : Γ ⊆ n, |Γ| < ω}. For each Γ ∈ I, let MΓ = {∆ ∈ I : Γ ⊆ ∆}, and
let F be an ultrafilter on I such that ∀Γ ∈ I, MΓ ∈ F (such an ultrafilter exists
because MΓ1 ∩MΓ2 = MΓ1∪Γ2). Let r < ω, 1 ≤ k < ω, Γ ∈ I, and let CrΓ be an
algebra similar to QPEAn such that

RdρΓCrΓ = C(|Γ|, |Γ|+ k, r).

Let

Br =
∏
Γ/F

CrΓ.

THEOREM 12. Let U be any non-principal ultraproduct over ω.

1. Br ∈ SNrnQPEAn+k,
2. RdScB

r 6∈ SNrnScn+k+1 and
3. Πr/UB

r ∈ SNrnQPEAn+k+1.

But first a lemma.

LEMMA 13. Let n be an infinite ordinal, let X be any finite subset of n, let
I = {Γ : X ⊆ Γ ⊆ n, |Γ| < ω}. For each Γ ∈ I let MΓ = {∆ ∈ I : ∆ ⊇ Γ}
and let F be any ultrafilter over I such that for all Γ ∈ I we have MΓ ∈ F. Let
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AΓ,BΓ be QPEAn-type algebras. If for each Γ ∈ I we have RdρΓAΓ = RdρΓBΓ

then ΠΓ/FAΓ = ΠΓ/FBΓ.
Furthermore, if RdρΓAΓ ∈ QPEA|Γ| for each Γ ∈ I, then ΠΓ/FAΓ ∈ QPEAn.

Proof. Standard proof, by  Loś’ theorem. For the first part, note that the
universe of ΠΓ/FAΓ is identical to that of ΠΓ/FRdρΓAΓ which is identical to
the universe of ΠΓ/FBΓ, by the assumption in the first part of the lemma. Each
operator o of QPEAn is the same for both ultraproducts because {Γ ∈ I :
dim(o) ⊆ rng(ρΓ) = Γ} ∈ F .

For the second part, it suffices to prove that each of the defining axioms for
QPEAn holds for ΠΓ/FAΓ. Let σ = τ be one of the defining equations for
QPEAn, the number of dimension variables involved is certainly finite, indeed
it can be at most four (see definition 15.8). Take any i, j, k, l ∈ n, we must
prove that ΠΓ/FAΓ |= σ(i, j, k, l) = τ(i, j, k, l). If i, j, k, l ∈ rng(ρΓ), say i =
ρΓ(i0), j = ρΓ(j0), k = ρΓ(r0), l = ρΓ(l0), then RdρΓAΓ |= σ(i0, j0, k0, l0) =
τ(i0, j0, k0, l0), since RdρΓAΓ ∈ QPEA|Γ|, so AΓ |= σ(i, j, k, l) = τ(i, j, k, l).

Hence {Γ ∈ I : AΓ |= σ(i, j, k, l) = τ(i, j, k, l)} ⊇ {Γ ∈ I : i, j, k, l ∈ rng(ρΓ} ∈ F ,
hence ΠΓ/FAΓ |= σ(i, j, k, l) = τ(i, j, k, l). Thus ΠΓ/FAΓ ∈ QPEAn. a

Proof of theorem 12. For the first part, for each Γ ∈ I we know that
C(|Γ|+k, |Γ|+k, r) ∈ QPEA|Γ|+k and Nr|Γ|C(|Γ|+k, |Γ|+k, r) ∼= C(|Γ|, |Γ|+k, r)
(by lemmas 6 and 7). Let σΓ be the one to one function (|Γ| + k) → (n + k)
where ρΓ ⊆ σΓ and σΓ(|Γ| + i) = n + i for each i < k. Let AΓ be an algebra
similar to a QPEAn+k such that RdσΓAΓ = C(|Γ|+k, |Γ|+k, r). By the second
part of lemma 13, with n + k in place of n, m ∪ {n + i : i < k} in place of X,
{Γ ⊆ n+ k : |Γ| < ω, X ⊆ Γ} in place of I, and with σΓ in place of ρΓ, we know
that ΠΓ/FAΓ ∈ QPEAn+k.

We prove that Br ⊆ NrnΠΓ/FAΓ. Recall that Br = ΠΓ/FC
r
Γ. For each Γ ∈ I,

RdρΓCrΓ = C((|Γ|, |Γ|+ k, r)

∼= Nr|Γ|C(|Γ|+ k, |Γ|+ k, r)

= Nr|Γ|RdσΓAΓ

= RdσΓNrΓAΓ

= RdρΓNrΓAΓ.

By the first part of lemma 13 we deduce that ΠΓ/FC
r
Γ
∼= ΠΓ/FNrΓAΓ ⊆ NrnΠΓ/FAΓ,

proving (1).
Now we prove (2), RdScB

r 6∈ SNrnScn+k+1. For this assume, seeking a
contradiction, that RdScB

r ∈ SNrnScn+k+1, i.e. RdScB
r ⊆ NrnC, where C ∈

Scn+k+1. Pick any 3 ≤ m < ω (e.g. take m = 3) and let λ : m + k + 1 →
n + k + 1 be the function defined by λ(i) = i for i < m and λ(m + i) = n + i

for i < k + 1. Then Rdλ(C) ∈ Scm+k+1 and RdmRdScB
r ⊆ NrmRdλ(C). Let

A = RdmRdScB
r. We have just shown that

A ∈ SNrmScm+k+1.(6)

For finite m+ > m, let

xm+ = {f ∈ F (m+,m+ + k, r) : m ≤ j < m+ → ∃i < m f(i, j) = Id}.
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Then xm+ ∈ C(m+,m+ + k, r) and cixm+ · cjxm+ = s[i/j]xm+ · s[j/i]xm+ = xm+

for distinct i, j < m. Furthermore

Im+ : C(m,m+ k, r) ∼= Rlxm+RdmC(m+,m+ + k, r)

via

In(S) = {f ∈ F (m+,m+ + k, r) : f � m×m ∈ S,∀j(m ≤ j < m+ → ∃i < m f(i, j) = Id)}.
So for each Γ ∈ I, I|Γ| is an isomorphism

C(m,m+ k, r) ∼= Rlx|Γ|RdmC(|Γ|, |Γ|+ k, r).

Let x = (x|Γ| : Γ ∈ I)/F (∈ Br) and let ι(b) = (I|Γ|b : Γ ∈ I)/F for
b ∈ C(m,m + k, r). Then ι is an isomorphism from RdScC(m,m + k, r) into
RdScRlxRdmBr = RlxRdmRdScB

r = RlxA. Now A ∈ SNrmScm+k+1, by (6),
and A |= s[i/j]x · s[j/i]x = x for any distinct i, j < m by  Loś’ theorem. It follows,
by [4, theorem 2.6.38], that

RlxA ∈ SNrmScm+k+1.(7)

(Note that proof of the cited theorem makes no use of diagonal elements.) But
then RdScC(m,m + k, r) ⊆ RlxA ∈ SNrmScm+k+1, contrary to theorem 1(II).
This proves (2).

Now we prove theorem 12(3), putting the superscript r to use. Recall that
Br = ΠΓ/FC

r
Γ, where CrΓ has the type of QPEAn and RdρΓCrΓ = C(|Γ|, |Γ|+k, r).

We know that Πr/URdρΓCrΓ = Πr/UC(|Γ|, |Γ| + k, r) ⊆ Nr|Γ|AΓ, for some AΓ ∈
QPEA|Γ|+k+1.

Let λΓ : |Γ|+ k + 1→ n+ k + 1 extend ρΓ : |Γ| → Γ (⊆ n) and satisfy

λΓ(|Γ|+ i) = n+ i

for i < k + 1. Let FΓ be a QPEAn+k+1 type algebra such that RdλΓFΓ = AΓ.
As before, by the second part of lemma 13, ΠΓ/FFΓ ∈ QPEAn+k+1. And

Πr/UB
r = Πr/UΠΓ/FC

r
Γ

∼= ΠΓ/FΠr/UC
r
Γ

⊆ ΠΓ/FNr|Γ|AΓ

= ΠΓ/FNr|Γ|RdλΓFΓ

⊆ NrnΠΓ/FFΓ,

proving the last part of the theorem. a

COROLLARY 14. Let n be an infinite ordinal, let k ∈ ω. Let K be any
class between Sc and QPEA. Then SNrnKn+k+1 ⊂ SNrnKn+k. Furthermore,
SNrnKn+k+1 is not finite schema axiomatisable over SNrnKn+k.

The first part of the corollary is credited to Pigozzi in [4, page 464], for cylindric
algebras; however it seems that Pigozzi did not publish his proof, and we have
not found a published proof elsewhere. See [5, definition 4.1.4] for the precise
definition of finitely schema axiomatisability and see [5, theorem 4.1.7] to see
how non finite schema axiomatisability follows from theorem 12.

We summarize the situation in figure 2. The first table addresses the case
when 3 ≤ n < ω and the second table addresses the case when n ≥ ω. For
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Algebras Status of the Neat Embedding Problem
for 3 ≤ n < ω, k < ω

Citation

Dfn SNrnDfn+k = Dfn [5, therorem 5.1.31]
Scn SNrnScn+k+1 is n.f.a. over SNrnScn+k Corollary 2
CAn SNrnCAn+k+1 is n.f.a. over SNrnCAn+k [8, theorem 15.1(4)]

QPAn SNrnQPAn+k+1 is n.f.a. over SNrnQPAn+k Corollary 2
QPEAn SNrnQPEAn+k+1 is n.f.a. over SNrnQPEAn+k Corollary 2

Algebras Status of the Neat Embedding Problem for n ≥
ω, k < ω

Citation

Dfn SNrnDfn+k = Dfn [5, theorem 5.1.31]
Scn SNrnScn+k+1 is n.f.a. over SNrnScn+k Corollary 14
CAn SNrnCAn+k+1 is n.f.a. over SNrmCAn+k Corollary 14

QPAn SNrnQPAn+k+1 is n.f.a. over SNrnQPAn+k Corollary 14
QPEAn SNrnQPEAn+k+1 is n.f.a. over SNrnQPEAn+k Corollary 14

PAn SNrnPAn+k = PAn [3, theorem 3.3]
PEAn SNrnPEAn+k = PEAn [5, theorem 5.4.17]

Figure 2. Summary of Neat Embedding Problem

n = 0, 1, the problem is trivial (SNrnKn+k = Kn). For n = 2, we have for
K ∈ {Df ,SC,QA} and k > 0, SNr2K2+k = K2. The Df case is trivial, the
SC and QA cases follow from [5, theorem 5.4.33] without much ado. On the
other hand, for K ∈ {CA,PEA} (where diagonal elements are present) and
m > 0, SNr2K2+k = RK2 with RK2 denoting representable algebras in K2.
This follows from [5, theorems 3.2.65, 5.4.34].

Appendix.

DEFINITION 15. Substitution Algebra, Sc: [13].
Let n be an ordinal. By a substitution algebra of dimension n, briefly an

Scn, we mean an algebra

A = (A,+,−, ci, s[i/j] : i, j < n)

where (A,+,−) is a boolean algebra, ci, s[i/j] are unary operations on A (for
i, j < n) satisfying the following equations for all i, j, k, l < n:

1. ci0 = 0, x ≤ cix, ci(x · ciy) = cix · ciy, and cicjx = cjcix,
2. s[i/i]x = x,
3. s[i/j] is a boolean endomorphisms,
4. s[i/j]cix = cix,
5. cis[i/j]x = s[i/j]x whenever i 6= j,
6. s[i/j]ckx = cks[i/j]x, whenever k /∈ {i, j},
7. cis[j/i]x = cjs[i/j]x,
8. s[j/i]s[l/k]x = s[l/k]s[j/i]x, whenever |{i, j, k, l}| = 4,
9. s[i/j]s[i/k]x = s[i/k]x if i 6= k,

10. s[l/i]s[j/l]x = s[l/i]s[j/i]x.
Quasipolyadic algebra, QPA: [14].
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A quasipolyadic algebra of dimension n, briefly a QPAn, is an algebra

A = (A,+,−, ci, s[i/j], s[i,j] : i, j < n)

where the reduct to Scn is a substitution algebra (it satisfies (1)–(10) above)
and additionally it satisfies the following equations for all i, j, k < n:

2’ s[i/i](x) = s[i,i](x) = x, and s[i,j] = s[j,i],
3’ s[i/j] and s[i,j] are boolean endomorphisms

11. s[i,j]s[i,j]x = x,
12. s[i,j]s[i,k] = s[j,k]s[i,j] if |{i, j, k}| = 3,
13. s[i,j]s[j/i]x = s[i/j]x.

Quasipolyadic equality algebra, QPEA: [14].
A quasipolyadic equality algebra of dimension n, briefly a QPEAn is an

algebra
B = (A, dij)i,j<n

where A is a QPAn (i.e. it satisfies all the equations above), dij is a
constant and the following equations hold, for all i, j, k < n:

14. s[i/j]dij = 1,
15. x · dij ≤ s[i/j]x.
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