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A CLASSIFICATION OF 2-CHAINS HAVING 1-SHELL
BOUNDARIES IN ROSY THEORIES

BYUNGHAN KIM, SUNYOUNG KIM, AND JUNGUK LEE

Abstract. We classify, in a non-trivial amenable collection of
functors, all 2-chains up to the relation of having the same 1-shell
boundary. In particular, we prove that in a rosy theory, every
1-shell of a Lascar strong type is the boundary of some 2-chain,
hence making the 1st homology group trivial.

We also show that, unlike in simple theories, in rosy theories
there is no upper bound on the minimal lengths of 2-chains whose
boundary is a 1-shell.

1. Introduction

In [5],[6], J. Goodrick, A. Kolesnikov and the first author developed
a homology theory for any amenable collection of functors in a very
general context. But the most interesting examples appear in model
theory. Namely, given any strong type p ∈ S(A) in a rosy theory T ,
we may assign a non-trivial amenable collection of functors preserving
thorn-independence and compute the corresponding homology groups.
By the general theory, if T has n-complete amalgamation (n ≥ 2) over
A = acl(A) then the (n − 1)-th homology group of p ∈ S(A) consists
of (n − 1)-shells with the support n + 1 = {0, . . . , n}. Hence, in any
simple T (where, due to 3-amalgamation, every 1-shell is the boundnary
of some 2-simplex), the 1st homology group is trivial. But the question
remained whether the same would hold in rosy theories. In this paper,
we show that the answer is yes (as long as p is a Lascar type). A crucial
ingredient in our proof is the fact that a and b realize the same Lascar
type if and only if their Lascar distance is finite, i.e., dA(a, b) < ω. In
the proof, the number of 2-simplices involved in a 2-chain having the
1-shell boundary is proportional to dA(a, b). Therefore one may guess
that, there does not exist a uniform bound for the minimal lengths of 2-
chains with 1-shell boundaries for various Lascar types in rosy theories,
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contrary to the case of simple theories where the bound is 1, due to
3-amalgamation. A series of rosy examples in [2] where the Lascar
distances increase are candidates. However in order to confirm that
in each example that a candidate 2-chain has the expected minimal
length, we need to rule out all other possibilities. For this goal we start
to classify all the 2-chains having the same 1-shell boundary in a very
general amenable context. The classification also has its own research
interests. We obtain some interesting and important results in regard
to the classification.
There are basically two operations on the class of 2-chains preserv-

ing the length and boundary of a chain. The first one is called the
crossing (CR-)operation and the second one is called the renaming-of-
support (RS-)operation. Two 2-chains are said to be equivalent if one
is obtained from the other by finitely many applications of the two
operations.
In the remainder of this section, we recall the definitions of an

amenable family of functors and the corresponding homology groups
introduced in [5],[6]. We thank Hyeung-Joon Kim and John Goodrick
for their valuable suggestions and comments.

Notation. Throughout the paper, s denotes an arbitrary finite set
of natural numbers. Given any subset X ⊆ P(s), we may view X
as a category where for any u, v ∈ X , Mor(u, v) consists of a single
morphism ιu,v if u ⊆ v, and Mor(u, v) = ∅ otherwise. If f : X → C is
any functor into some category C then for any u, v ∈ X with u ⊆ v,
we let fu

v denote the morphism f(ιu,v) ∈ MorC(f(u), f(v)). We shall
call X ⊆ P(s) a primitive category if X is non-empty and downward
closed, i.e., for any u, v ∈ P(s), if u ⊆ v and v ∈ X then u ∈ X . (Note
that all primitive categories have the empty set ∅ ⊂ ω as an object.)

Remark/Definition 1.1. Given any primitive categories X and Y ,
define

X + Y := {t ∪ k | t ∈ X, k ∈ Y }

which is clearly a primitive category itself containing X and Y as sub-
categories. And, for any t ∈ X , define

Xt := {k ∈ X | t ∩ k = ∅} and X|t := {k ∈ Xt | t ∪ k ∈ X}

both of which are clearly primitive subcategories of X . Observe:

(1) X|t ⊆ Xt ⊆ X
(2) X ⊆ Xt + P(t)
(3) X|t =

⋃
{P(u \ t) | t ⊆ u ∈ X}.
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Moreover, it is easy to check that the following are equivalent:
X = Xt + P(t) ⇐⇒ Xt = X|t ⇐⇒ X =

⋃
{P(u) | t ⊆ u ∈ X}.

If one of these equivalent conditions holds, we shall say that X splits
at t.

For any functor f : X → C to some category C and for any t ∈ X , the
localization of f at t is the functor f |t : X|t → C defined as follows: for
any u ⊆ v ∈ X|t, (f |t)

u
v = fu∪t

v∪t and f |t(v) = f(t ∪ v).

Definition 1.2. Let X ⊆ P(s) and Y ⊆ P(t) be any primitive cat-
egories (where s, t are some finite sets of natural numbers). And let
f : X → C and g : Y → C be any functors to some category C.

(1) We say that f and g are isomorphic if there is an order-preserving
bijection τ : s → t such that Y = {τ(u) | u ∈ X} and there is
a family of isomorphisms {hu : f(u) → g(τ(u)) | u ∈ X} ⊆
Mor(C) such that, for any u ⊆ v ∈ X ,

hv ◦ f
u
v = g

τ(u)
τ(v) ◦ hu.

(2) We say that f and g are permutations of each other if there is a
bijection σ : s → t (not necessarily order-preserving) such that
Y = {σ(u) | u ∈ X} and, for any u ⊆ v ∈ Y , g(v) = f(σ−1(v))

and (g)uv = f
σ−1(u)

σ−1(v) . In this case, we write g = f ◦ σ−1.

Note that, if f and g are permutations of each other via an order-
preserving map σ : s → t, then f and g are isomorphic.

Definition 1.3. Let A be a non-empty family of functors from various
primitive categories into some fixed category C. We say that A is
amenable if it satisfies the following properties:

(1) (Closed under isomorphism and permutation) If f ∈ A then
any functor g which is isomorphic to f or is a permutation of f
also belongs to A.

(2) (Closed under restriction and union) For any functor f : X → C
from some primitive category X into C,

f ∈ A ⇔ for every t ∈ X, f ↾ P(t) ∈ A.

(3) (Closed under localization) If f : X → C is any functor in A
then for every t ∈ X , f |t : X|t → C is also in A.

(4) (Extensions of localizations are localizations of extensions) Let
f : X → C be any functor in A which splits at some t ∈ X .
Then whenever f |t can be extended to some functor g : Z → C
in A where t ∩

⋃
Z = ∅, f can be extended to some functor

h : P(t) + Z → C in A such that h|t = g.
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Definition 1.4. By a (regular) n-simplex in a category C, we mean a
functor f : P(s) → C where s ⊆ ω has the size n + 1. We call s the
support of f and denote it by supp(f).

Definition 1.5. Let A be an amenable family of functors into some
category C. Let B ∈ Ob(C). If f is a functor in A such that f(∅) = B,
we shall say that f is over B. And we define:

Sn(A;B) := { f ∈ A | f is a regular n-simplex over B }

Cn(A;B) := the free abelian group generated by Sn(A;B).

The elements of Cn(A;B) are called the n-chains over B in A. For
each i = 0, . . . , n, we define a group homomorphism

∂i
n : Cn(A;B) → Cn−1(A;B)

by letting, for any n-simplex f : P(s) → C in Sn(A;B) where s = {s0 <
· · · < sn},

∂i
n(f) := f ↾ P(s \ {si})

and then extending linearly to all n-chains in Cn(A;B). Then we define
the boundary map

∂n : Cn(A;B) → Cn−1(A;B)

by

∂n(c) :=
∑

0≤i≤n

(−1)i∂i
n(c).

We shall often refer to ∂n(c) as the boundary of c. Next, we define:

Zn(A;B) := Ker ∂n

Bn(A;B) := Im ∂n+1.

The elements of Zn(A;B) and Bn(A;B) are called n-cycles and n-
boundaries, respectively. It is straightforward to check

∂n−1 ◦ ∂n = 0.

Hence we may define

Hn(A;B) := Zn(A;B)/Bn(A;B)

called the n-th (simplicial) homology group of A over B.

Notation 1.6. (1) For c ∈ Zn(A;B), [c] denotes the coset of Bn(A;B)
containing c.

(2) When n is clear from context, we shall often omit n from ∂i
n

and ∂n, writing simply as ∂i and ∂.
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(3) When we write an n-chain c ∈ Cn(A;B) as

c =
k∑

i=1

nifi

we shall assume, unless stated otherwise, that ni’s are nonzero
integers and fi’s are distinct n-simplices. (This form is called
the standard form of a chain.) For such an n-chain c, we define

the length of c and the support of c as |c| :=
∑k

i=1 |ni| and

supp(c) :=
⋃k

i=1{supp(fi)}, respectively.
(4) For c, d ∈ Cn(A;B), we say that d is a subchain (or subsum-

mand) of c if they are in the standard forms

c =
k∑

i=1

nifi and d =
∑

i∈J

mifi,

where J ⊆ {1, . . . , k} and, for each i ∈ J , ni · mi > 0 and
|mi| ≤ |ni|.

Remark/Definition 1.7. Let c be any n-chain and let d be a sub-
summand of c. For any n-chain d′, we shall say that the n-chain

c′ := c− d+ d′

is obtained by replacing the subsummand d in c by d′. Note that, if
|d′| ≤ |d| then |c′| ≤ |c|.

Remark/Definition 1.8. Given any bijection σ : ω → ω (not neces-
sarily order-preserving), we may induce an automorphism σ∗

n : Cn(A;B) →
Cn(A;B) for each n as follows: for any n-chain c =

∑
i nifi ∈ Cn(A, B),

where each fi is an n-simplex with si := supp(fi) = {si,0 < · · · < si,n},
we let σi := σ ↾ si and ti := σi(si) = {ti,0 < · · · < ti,n}. We define

σ∗(c) :=
∑

i

ni|σi|fi ◦ σ
−1
i

(see Definition 1.2(2)) with |σi| := sign(σ′
i) (= ±1) where σ′

i ∈ Sym(n+
1) such that for j ≤ n, σi(si,j) = ti,σ′

i(j)
. For example

σ∗(fi) = |σi|fi ◦ σ
−1
i .

Moreover, σ∗ commutes with the boundary map, i.e., ∂ ◦ σ∗ = σ∗ ◦ ∂.
This can be verified inductively by first checking the case where σ is a
transposition.

Next we define the amalgamation properties. For n = {0, . . . , n−1},
we let P−(n) := P(n) \ {n}. i.e., P−(n) is the set of all the proper
subsets of n.
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Definition 1.9. Let A be an amenable family of functors into a cate-
gory C.

(1) A has n-amalgamation (n ≥ 1) if every functor f : P−(n) → C
in A can be extended to some functor g : P(n) → C in A.

(2) A has n-complete amalgamation (written n-CA) if it has k-
amalgamation for every 1 ≤ k ≤ n.

(3) A has strong 2-amalgamation if, whenever f : P(s) → C and
g : P(t) → C are simplices in A which agree on P(s ∩ t), then
there exists some simplex h : P(s∪ t) → C in A extending both
f and g.

Remark 1.10. It is easy to verify that, for any amenable family A:

(1) strong 2-amalgamation ⇒ 2-amalgamation.
(2) (1-amalgamation + strong 2-amalgamation) ⇒ A has n-simplices

for every n ≥ 0.

Definition 1.11. An amenable family of functors is called non-trivial
if it has 1-amalgamation and strong 2-amalgamation (in particular, it
has 2-CA).

Definition 1.12. An n-chain c ∈ Cn(A;B) is called an n-shell if it is
in the form

c = ±
∑

0≤i≤n+1

(−1)ifi

where fi’s are n-simplices satisfying

∂ifj = ∂j−1fi whenever 0 ≤ i < j ≤ n+ 1.

We define En(A;B) := { c ∈ Cn(A;B) | c is an n-shell }.

It is straightforward to verify the following proposition.

Proposition 1.13. (1) En(A;B) ⊂ Zn(A;B).

(2) For every f ∈ Sn(A;B), ∂n(f) ∈ En−1(A;B).

(3) If c = ±
∑

0≤i≤n+1

(−1)ifi is any n-shell, then | supp(c)| = n + 2.

Moreover, there exists a unique functor g : P−(supp(c)) → C in
A extending all the fi’s. More precisely, if we let supp(c) =
{s0 < · · · < sn+1}, then g ↾ P(supp(c) \ {si}) = fi for each i.

(4) A has (n + 2)-amalgamation if and only if for any n-shell c,
there exists some (n+ 1)-simplex d such c = ±∂(d).

Definition 1.14. An amenable family of functors has weak 3-amalgamation
if each 1-shell is the boundary of some 2-chain c with |c| ≤ 3.
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The following result due to [5], [6] illustrates the importance of the
notion of shell.

Fact 1.15. [5][6] Let A be any non-trivial amenable family of functors.
If A has (n+ 1)-CA for some n ≥ 1, then

Hn(A;B) = {[c] | c ∈ En(A;B), supp(c) = {0, . . . , n+ 1} }.

In particular,

(1) H1(A;B) = 0 ⇔ E1(A;B) ⊂ B1(A;B)

(2) If A has weak 3-amalgamation then H1(A;B) = 0.

In the remainder of the paper, A shall denote a non-trivial
amenable family of functors into a category C.

Now we begin to talk about the prototypical examples of an amenable
family of functors : complete types in rosy theories. In the sequel
we work with a large saturated model M = Meq and its the-
ory T which is rosy. Recall that a theory is called rosy if there is
a ternary independence relation ⌣| on the small sets of its model, sat-
isfying the basic independence properties. (See [1], [4] for the precise
definition.) We take ⌣| here to be thorn-independence. Any simple or
o-minimal theory is known to be rosy. Moreover, if a simple theory T
has elimination of hyperimaginaries then non-forking independence is
equal to thorn-independence. So we assume that any simple T in
this paper has elimination of hyperimaginaries. (Of course this
is just for convenience as we can work in Mheq without the assump-
tion.) In particular, we assume that 3-amalgamation holds over any
algebraically closed set in simple T .

We fix any algebraically closed small subset B ⊆ M and consider the
category CB whose objects are all the small subsets of M containing
B, and whose morphisms are elementary maps over B (i.e., fixing B
pointwise). We also fix any p(x) ∈ S(B) (where x could be an infinite
tuple). When f is any functor from a primitive category X into CB
and u ⊆ v ∈ X , we shall abbreviate fu

v (f(u)) as f
u
v (u).

Definition 1.16. By a closed independent functor in p(x), we mean
a functor f from some primitive category X into CB satisfying the
following:

(1) Whenever {i} ⊂ ω is an object inX , we can choose a realization
b |= p(x) such that, if we let C := f ∅

{i}(∅) then f({i}) = acl(Cb)

and b⌣| B C.
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(2) Whenever u( 6= ∅) ⊂ ω is an object in X , we have

f(u) = acl

(
⋃

i∈u

f {i}
u ({i})

)

and {f
{i}
u ({i})| i ∈ u} is independent over f ∅

u(∅).

We let A(p) be the family of all closed independent functors in p.

Fact 1.17. [6] A(p) is a non-trivial amenable family of functors.

Notation 1.18. We shall abbreviate Sn(A(p);B), Cn(A(p);B), . . . as
SnA(p), CnA(p), . . .. We shall also abbreviate Hn(A(p);B) simply as
Hn(p). Other than this, we use standard notation. For example a ≡A b
denotes tp(a/A) = tp(b/A); and a ≡L

A b denotes Ltp(a/A) = Ltp(b/A),
i.e., the Lascar (strong) types of a, b over A are the same.

2. H1(p) in rosy theories

If a theory T is simple then due to 3-amalgamation and Fact 1.15,
we know H1(p) = 0. In this section we show the same holds for any
rosy T as long as p is a Lascar type.

Let f : X → CB be any functor in A(p) with f(∅) = B. If u ∈ X with
u = {i0 < · · · < ik}, we shall write f(u) = [a0, . . . , ak], where aj |= p,

f(u) = acl(B, a0 · · · ak), and acl(ajB) = f
{ij}
u ({ij}). Thus {a0, . . . , ak}

is independent over B.

Theorem 2.1. If B is a model, then A(p) has weak 3-amalgamation
over B (so H1(p) = 0).

Proof. Let f = a12 − a02 + a01 be any 1-shell in E1A(p) where each
aij : P({i, j}) → CB is a 1-simplex. We want to find a 2-chain g with
length 3 such that ∂g = f . For this goal there is no harm in assuming
that a01({1}) = [a] = a12({1}) and a12({2}) = [b] = a02({2}). Let
a01({0}) := [c] and a02({0}) := [c′], and let q be a coheir of p over
Babcc′. Choose any c′′ |= q. Then c′′ ⌣| B abcc′ (see [4]) and cc′′ ≡B

c′c′′. Now let g := a123 − a023 + a013 where aij3 are 2-simplices hav-
ing support {i, j, 3} extending aij such that a123({1, 2, 3}) = [a, b, c′′],
a023({0, 2, 3}) = [c′, b, c′′], a013({0, 1, 3}) = [c, a, c′′]. Hence we may as-
sume ∂0(a023) = ∂0(a123) and ∂0(a013) = ∂1(a123). But cc′′ ≡B c′c′′

implies that we may further assume ∂1(a013) = ∂1(a023). Therefore
∂g = f as desired. �

Remark 2.2. Of course the same proof shows that weak 3-amalgamation
(over a model) holds not only in A(p) but more generally inside M
(with arbitrary vertices).
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Recall that, for any tuples a and b, we write dB(a, b) ≤ n iff there is
a sequence of tuples c0, . . . , cn with c0 = a and cn = b, such that each
cici+1 begins some B-indiscernible sequence. The smallest such n (if it
exists) is denoted by dB(a, b) (called the Lascar distance between a and
b). Recall the fact that a ≡L

B b iff dB(a, b) < ω in any rosy theory.

Lemma 2.3. Let I = 〈a0, a1, . . .〉 be any B-indiscernible sequence.
Then for any c0 there is c ≡B c0 such that c⌣| B a0a1 and ca0 ≡B ca1.

Proof. Extend I to I ′ indiscernible over B having a sufficiently large
length. Then by the extension axiom there is c′ ≡B c0 such that
c′⌣| B I ′. Moreover, by the pigeonhole principle, there are ai, aj ∈ I ′

(i < j) such that c′ai ≡B c′aj . Now, by B-indiscernibility, there is c
such that ca0a1 ≡B c′aiaj . Then c is the desired tuple. �

Theorem 2.4. Suppose that p is a Lascar strong type. ThenH1(p) = 0.

Proof. For notational simplicity we let B = ∅. As in the proof of
Theorem 2.1, given any 1-shell f = a12 − a02 + a01 in E1A(p) where
each aij : P({i, j}) → CB is a 1-simplex, we want to find a 2-chain g
such that ∂g = f . Again there is no harm in assuming that a01({1}) =
[a] = a12({1}) and a12({2}) = [b] = a02({2}). Let a01({0}) := [c]
and a02({0}) := [c′]. By extension we can further assume {a, b, c, c′}
is independent. Now c, c′ |= p and let d(c, c′) = n. So there are
c = c0, . . . , cn = c′ such that cici+1 begins an indiscernible sequence,
for i < n. We can further assume that ab⌣| cc′ c1cn−1; so ab⌣| c0 · · · cn.
Then by Lemma 2.3, there are ei |= p (i < n) such that cici+1⌣

| ei
and eici ≡ eici+1 (*). Again by extension we suppose ab⌣| cici+1

ei, so
that each of the {a, ci, ei}, {a, ci+1, ei} is independent. Moreover each
{a, en−1, b}, {en−1, cn, b} is independent as well (**).
Now there is g0 := g+0 − g−0 where g+0 , g

−
0 are 2-simplices with sup-

port {0, 1, 3} such that g+0 ({0, 1, 3}) = [c0, a, e0] and g−0 ({0, 1, 3}) =
[c1, a, e0]; ∂

0g+0 = ∂0g−0 ; ∂
1g+0 = ∂1g−0 (this is possible by (*)); and g+0

extends a01 (i.e., ∂2g+0 = a01). Hence ∂g0 = a01 − ∂2g−0 .
By iteration we can find gi := g+i − g−i (0 < i < n− 1) where g+i , g

−
i

are 2-simplices with support {0, 1, 3} such that g+i ({0, 1, 3}) = [ci, a, ei]
and g−i ({0, 1, 3}) = [ci+1, a, ei]; ∂

0g+ = ∂0g−; ∂1g+ = ∂1g− (this again
is possible by (*)); and ∂2g+i = ∂2g−i−1. Therefore we have

∂(g0 + · · ·+ gn−2) = a01 − ∂2g−n−2.

The rest of the proof is similar to that of Theorem 2.1. We put
gn−1 := g+n−1−a023+a123 where aj23 is a 2-simplex with support {j, 2, 3}
extending aj2 such that a023({0, 2, 3}) = [cn, b, en−1], a123({1, 2, 3}) =
[a, b, en−1] (see (**)). Also g+n−1 is a 2-simplex with g+n−1({0, 1, 3}) =
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[cn−1, a, en−1] extending ∂
2g−n−2. Moreover again by (*), we have ∂1g+n−1 =

∂1a023. Thus it follows

∂gn−1 = ∂2g+n−1 − a02 + a12 = ∂2g−n−2 − a02 + a12.

Therefore for g := g0 + · · ·+ gn−1, we have ∂g = f as desired. �

3. A classification of 2-chains with a 1-shell boundary

In this section, we bring our attention back to a non-trivial amenable
family of functors A and classify 2-chains of A having 1-shell bound-
aries. Basically we show that any 2-chain having a 1-shell boundary is
equivalent to one of two types of 2-chains, called the NR-type and the
RN-type.

We start by introducing two operations on 2-chains called the cross-
ing operation and the renaming-of-support operation, respectively. For
any distinct real numbers x and y, we shall abbreviate the open interval
(min{x, y},max{x, y}) as [(x, y)] = [(y, x)].

Definition 3.1. Let v ∈ C2(A;B) be a 2-chain and let w := ǫ1α1+ǫ2α2

be a subsummand of v, where αi’s are 2-simplices with for i = 1, 2,
ǫi = ±1, supp(αi) = {ℓ1, ℓ2, ki} (ki, ℓi being all distinct numbers) such
that α1 and α2 agree on the intersection of their domains, namely
P({ℓ1, ℓ2}). Further assume that, if we let γ := αi ↾ P({ℓ1, ℓ2}), then
γ does not appear in ∂(w), i.e., the two γ terms in ∂(w) have opposite
signs and cancel each other.
Now by strong 2-amalgamation, there exists some 3-simplex µ ex-

tending both αi. For i = 1, 2, let βi := µ ↾ P({k1, k2, ℓi}) and

w′ :=

{
ǫ2 β1 + ǫ1 β2 if ǫ1ǫ2 = −1, and exactly one of k2, ℓ1 belongs to [(k1, ℓ2)]

ǫ1 β1 + ǫ2 β2 otherwise.

Then the operation of replacing the subsummand w in v by w′ is
called the crossing operation (or simply CR-operation).

Example 3.2. Let f0, f1, f2, f3 be 2-simplices with supp(fi) = {0, 1, 2, 3}\
{i}. Assume that fi and fj agree on their intersection, for every pair
i, j. Consider the 2-chain c = f0 − f1 + f2. Then we can apply the
CR-operation to the subsummand f0 − f1 to obtain a new 2-chain

c′ = (−f2 + f3) + f2 or simply f3.

This example illustrates in particular that a CR-operation may not be
reversible. i.e., once we apply a CR-operation to a 2-chain, we may not
be able to recover the original 2-chain by applying more CR-operations
(unless we allow 2-chains to be written redundantly as f3 − f2 + f2).
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Next, we define an operation on n-chains called the renaming-of-
support operation.

Definition 3.3. Let c be an n-chain in Cn(A;B) and let d be a sub-
summand of c. Let j ∈ supp(d) such that j /∈ supp(∂n(d)). (In this
situation, we say that d has a vanishing support, namely j, in its bound-
ary.) Choose any k /∈ supp(c) and any bijection σ : ω → ω which sends
j 7→ k but which fixes the rest of the elements in supp(c). Then
the operation of replacing the subsummand d in c by σ∗

n(d) is called
the renaming-of-support operation (or simply RS-operation). (See Re-
mark/Definition 1.8 to recall the definition of σ∗

n.)

Remark 3.4. When we apply the CR- and RS-operation to some sub-
summand of an n-chain c, the resulting n-chain has the same boundary
as c (guaranteed by the fact that σ∗

n commutes with the boundary map
∂) and has a shorter or equal length as c (by Remark/Definition 1.7
and the clear fact that σ∗

n preserves the lengths of n-chains).

Remark/Definition 3.5. A 2-chain c is called proper if its length
|c| does not change after any finitely many applications of CR/RS-
operations to its subsummands. It is clear that any 2-chain may be
reduced to a proper 2-chain after finitely many applications of the
two operations. Any CR-operation (also RS-operation) applied to any
proper 2-chain is in fact reversible. This allows us to define an equiva-
lence relation ∼ among proper 2-chains by: c ∼ c′ ⇔ c can be obtained
from c′ by finitely many applications of the CR/RS-operations to its
subsummands. Note that c ∼ c′ implies ∂(c) = ∂(c′) and |c| = |c′|.

We are now ready to introduce the notions of renameable type and
non-renameable type for 2-chains having 1-shell boundaries.

Definition 3.6. Let α be a 2-chain having a 1-shell boundary.

(1) We say α is of renameable type (or simply RN-type) if some
subsummand of α has a vanishing support. Otherwise, α is
said to be of non-renameable type (or simply NR-type).

(2) α is called minimal if it is proper, and for any proper α′ equiv-
alent to α, there does not exist any subsummand β of α′ such
that ∂(β) = 0.

Remark 3.7. Suppose that α is a 2-chain having a 1-shell boundary.

(1) Note that α is of NR-type iff none of the CR or RS-operation
is applicable to α, i.e. nothing else is equivalent to α except α
itself. So an NR-type chain is minimal.
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As was the case in Example 3.2, an RN-type α can sometimes
be transformed to an NR-type by CR-operations. But if α is
proper then its RN/NR-type is preserved under equivalence.

(2) We can always find some minimal 2-chain α′ such that ∂(α) =
∂(α′). Such an α′ can be obtained from α by finitely many
applications of CR/RS-operations and deleting subsummands
having trivial boundary.

There is a 2-chain β with |β| = 5 having a 1-shell boundary
such that any subsummand of β does not have the trivial bound-
ary but β ′ with |β ′| = 5 obtained from β by the CR-operation
has a subsummand with the boundary 0.

(3) If α is minimal then any α′ equivalent to α is minimal as well
(of course |α| = |α′| and ∂(α) = ∂(α′) too).

Notation. Let f be any simplex. For any subset {j0, . . . , jk} ⊆ supp(f),
we shall abbreviate f ↾ P({j0, . . . , jk}) as f

j0,··· ,jk . Also, given a chain
c =

∑
i∈I nifi (in its standard form), and any subset {j0, . . . , jk} ⊆

supp(c), we shall write cj0,...,jk to denote the subchain
∑

i∈J nifi, where
J := {i ∈ I | supp(fi) = {j0, . . . , jk}}.

Example 3.8. Of course any 2-simplex is of NR-type. The following
is an NR-type 2-chain with length 5: Let α = a1 + a2 + a3 − a4 − a5 be
a 2-chain with 2-simplices ai having supp(ai) = {0, 1, 2} such that;

• a1,21 , a1,22 = a1,24 , a1,23 = a1,25 are distinct;
• a0,22 , a0,21 = a0,25 , a0,23 = a0,24 are distinct;
• and so are a0,13 , a0,11 = a0,14 , a0,12 = a0,15 .

Then α is of NR-type with a 1-shell boundary a1,21 − a0,22 + a0,13 .

Before stating our first main theorem of the classification, we intro-
duce a notion called chain-walk which will be used in our proof.

Remark 3.9. Recall that if α is a 2-chain with a 1-shell boundary,
then its length is always an odd positive number.

For the rest of this section, we fix a 1-shell boundary f12−f02+f01
with supp(fjk) = {j < k}.

Definition 3.10. Let α be a 2-chain having the boundary f12−f02+f01.

A subchain β =
m∑
i=0

ǫibi of α (where ǫi = ±1 and bi is a 2-simplex, for

each i) is called a chain-walk in α from f01 to −f02 if

(1) there are non-zero numbers k0, . . . , km+1 (not necessarily dis-
tinct) such that k0 = 1, km+1 = 2, and for i ≤ m, supp(bi) =
{ki, ki+1, 0};
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(2) (∂ǫ0b0)
0,1 = f01, (∂ǫmbm)

0,2 = −f02; and
(3) for 0 ≤ i < m,

(∂ǫibi)
0,ki+1 + (∂ǫi+1bi+1)

0,ki+1 = 0.

The sum
m∑
i=0

ǫibi with its order is called a representation of the chain-

walk β. Unless said otherwise a chain-walk is written in the form of
a representation. Notice that a chain-walk may have more than one
representation. For example, a reordering of terms in β above may also
satisfy conditions (1)-(3). By a section of the chain-walk β, we shall
mean a subchain of β in the form

β ′ :=
m′∑

i=j

ǫibi for some 0 ≤ j < m′ ≤ m

and the sequence 〈kj, kj+1, . . . , km′ , km′+1〉 is called the walk sequence of
β ′. A chain-walk β in α is called maximal (in α) if it has the maximal
possible length. We say α is centered at 0 if some (hence every) maximal
chain-walk in α from f01 to −f02 is, as a chain, equal to α.
We similarly define such notions as a chain-walk in α from −f02 to

f12, α is centered at 2, and so on.

Remark 3.11. In the definition above, if β is a chain-walk in α from
f01 to −f02, then 0 ∈ supp(bi) for all i, but 0 /∈ supp(∂β−f01+f02); and
the walk sequence of β is a sequential arrangement of (supp(bi)\{0})’s
without repetition of the overlapped support.
Note now that given any 2-chain α as in the definition above, since

there are only finitely many 2-simplex terms in α, we can always find
a chain-walk say, from f01 to −f02: We start with any 2-simplex term
b in α such that ∂2b = f01 and then keep finding a term in α (with the
coefficient) cancelling out adjacent 1-simplex boundaries. This process
must stop with a term having −f02 as its boundary.
Even if 0 is in the support of every simplex term of α, it need not

be centered at 0: Let α = c0 + c1 − c2 such that ∂c0 = g12 − f02 + f01;
∂c1 = f12 − g02 + g01; and ∂(−c2) = −g12 + g02 − g01, where fij 6= gij.
Then c0 itself is a maximal chain-walk in α from f01 to −f02. Note
that α = c0 + c1 − c2 is not a chain-walk from f01 to −f02, whereas it
is a chain-walk from f12 to f01, i.e, α is centered at 1.

Lemma 3.12. Let α be a 2-chain with the 1-shell boundary f12−f02+

f01. Let β =
m∑
i=0

ǫibi be a chain-walk in α, say from −f02 to f12. Assume

there is a section β ′ =
m′∑
i=j

ǫibi of β such that for supp(bi) = {2, ki, ki+1},
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either ki 6= km′+1 for all i = j, . . . , m′; or ki 6= kj for all i = j +
1, . . . , m′ + 1. Then by finitely many applications of CR-operations to
β ′, we obtain a simplex c with supp(c) = {2, kj, km′+1} such that, for

some ǫ = ±1, β ′′ :=
j−1∑
i=0

ǫibi + ǫc +
m∑

i>m′

ǫibi is still a chain-walk from

−f02 to f12.

Proof. When j = m′, there is nothing to prove. Assume the lemma
holds whenm′−j = n. Let us show that the lemma holds whenm′−j =
n+ 1. Assume ki 6= km′+1 for all i = j, . . . , m′. Then we can apply the
CR-operation to ǫm′−1bm′−1 + ǫm′bm′ , and we get ǫ′m′−1b

′
m′−1 + ǫ′m′b′m′

with supp(b′m′−1) = {2, km′−1, km′+1}, having the same boundary. Due

to the induction hypothesis applied to
m′−2∑
i=j

ǫibi + ǫ′m′−1b
′
m′−1, we are

done. When ki 6= kj for all i = j + 1, . . . , m′ + 1, we apply the CR-
operation to ǫjbj + ǫj+1bj+1, and similarly we are done. �

Remark/Definition 3.13. In Lemma 3.12, we call β ′′, a reduct of β.
The walk sequence of β ′′ is also called a reduct of the walk sequence
of β. So given a chain-walk its reducts are also chain-walks, which are
obtained by the repeated applications of the CR-operation as described
in Lemma 3.12.

Theorem 3.14. Let α be a minimal 2-chain with the boundary f12 −
f02 + f01.

(1) Assume α is of NR-type. Then |α| = 1 or |α| ≥ 5. If |α| ≥
5 then any chain-walk in α from f01 to −f02 is of the form
2n∑
i=0

(−1)iai which is as a chain equal to α such that f12 = a1,22j

for some 1 ≤ j ≤ n− 1.
(2) α is of RN-type iff α is equivalent to a 2-chain

α′ = a0 +

2n−1∑

i=1

ǫiai + a2n

(n ≥ 1) which is a chain-walk from f01 to −f02 such that
∂0a2n = f12, ∂

1(a2n) = −f02 and supp(a2n) = {0, 1, 2}. (The
representation of α′ is called standard.)

Proof. (1) As mentioned in Remark 3.11, a chain-walk β in α from
f01 to −f02 exists. Now since α is of NR-type, supp(α) = {0, 1, 2}. If
|β| < |α| then it follows α−β has a vanishing support 0, a contradiction.
Hence |α| = |β| and α = β. Suppose now that |α| = 3. So the chain-
walk is a0 − a1 + a2 = α and either ∂0a0 = f12 or ∂0a2 = f12. Then
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either ∂0a1 = ∂0a2 or ∂0a0 = ∂0a1. In either case, the subchain of α
has a vanishing support 1 or 2, a contradiction. Hence |α| = 1 or ≥ 5.
When |α| ≥ 5, all we need to show is that f12 6= ∂0a0 and f12 6= ∂0a2n.
If f12 = ∂0a0 then α − a0 has a vanishing support 1, a contradiction.
Hence f12 6= ∂0a0. Similarly, we can show f12 6= ∂0a2n.
(2) (⇐) It follows supp(∂(α′ − a2n)) = {0, 1}, i.e., α′ − a2n has

a vanishing support, so α′ is of RN-type. Since CR/RS-operations
preserve the minimality and the chain types, α is also an RN-type.

(⇒) We prove this in a series of claims. Note that |α| ≥ 3.

Claim 1. There is a 2-chain α1 ∼ α which is centered at 2 such that
| supp(α1)| > 3.

Proof of Claim 1. Let α2 := α if | supp(α)| > 3. Otherwise since
α is of RN-type, we can apply RS-operations to obtain some α2 ∼ α
with | supp(α2)| > 3. Now there is β :=

∑
i∈I

ǫibi, a maximal chain-

walk in α2 from −f02 to f12. If β = α2 we put α1 := α2 and we are
done. Otherwise let γ := α2 − β, and then γ has a vanishing support
2 in its boundary. By applying the RS-operation to γ we find γ′ with
2 /∈ supp(γ′) such that α2 ∼ α′

2 := β + γ′.
Assume now inductively we can find a desired α1 ∼ α′

2 when |γ′| = m.
Let |γ′| = m + 1. Note that f12 − f02 + f01 6= ∂(β), since otherwise
∂(γ′) = 0 contradicting the minimality of α′

2. Hence there is i0 ∈ I with
supp(bi0) = {2, n0, n1} such that bn0,n1

i0
( 6= f01) with a coefficient, stays

in ∂(β). Therefore there must be a term ǫj0bj0 (ǫj0 ∈ {1,−1}) in γ′ such
that (2 /∈) supp(bj0) = {n0, n1, n2} and bn0,n1

i0
= bn0,n1

j0
is cancelled out

in ∂(ǫi0bi0+ǫj0bj0). Now applying the CR-operation to ǫi0bi0+ǫj0bj0 , we
get ǫ′i0b

′
i0
+ ǫ′j0b

′
j0

with supp(b′i0) = {2, n0, n2}, supp(b
′
j0
) = {2, n1, n2},

preserving the boundary. Then from β, we obtain β ′ by substituting
ǫ′i0b

′
i0
+ ǫ′j0b

′
j0

for ǫi0bi0 . Notice that β ′ is still a chain-walk from −f02
to f12 while α′

2 ∼ α′′
2 := β ′ + (γ′ − ǫj0bj0). Hence by the induction

hypothesis there is a desired α1 ∼ α′′
2 . We have proved Claim 1.

Claim 2. There is a 2-chain α2 ∼ α1 that has a 1-simplex term c
(with the coefficient 1) such that supp(c) = {0, 1, 2}, and f12 − f02 =
∂0(c)− ∂1(c).

Proof of Claim 2. For notational simplicity, let {0, 1, 2, 3} ⊆ supp(α1),

and write α1 =
2n∑
i=0

ǫici, a chain-walk from −f02 to f12. So for some

j0 ≤ 2n, we have ǫj0 = 1, supp(cj0) = {0, 1, 2}, and ∂2(cj0) = f01.

Let β0 :=
j0−1∑
i=0

ǫici, and β1 :=
2n∑

i=j0+1

ǫici. We shall find the desired c
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−f02f01
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Figure 1. A standard RN-type 2-chain

(and α2) by applying the process in Lemma 3.12 and finding reducts
of chain-walks, starting from α1. Each time, the reduced chain-walk
together with the deleted terms is equivalent to α1.

Case 1) 3 /∈ supp(β1): So 3 ∈ supp(β0). Now let I0 := 〈0, . . . , 3, . . . , 0〉
be the walk sequence of β0, and let I1 = 〈1, . . . , 1〉 be the walk sequence
of β1. So I0I1 is the walk sequence of α1. Now I0 = J0J1 such that J1

starts with 3 but all other components 6= 3. Then due to Lemma 3.12
(applied to J1I1), we can find γ1, a reduct of α1, whose walk sequence
is J0〈3, 1〉. Now J0 = 〈0, . . .〉.
If 3 is not in J0 then again by Lemma 3.12, we can further find a

reduct of γ1 whose walk sequence is 〈0, 3, 1〉, then again further reduce
it with the walk sequence 〈0, 1〉, and we are done.
If 3 is in J0 then in general, by finding a sequence of all 3’s in J0

and applying Lemma 3.12, we can reduce J0 to a sequence of the form
J ′
0 = 〈03, k13, k23, . . . ; kℓ〉 where each ki 6= 3. If none of the ki’s is 0

then by applying Lemma 3.12 again to J ′
0〈3, 1〉 we directly reduce it

to 〈0, 1〉 and we are done. Otherwise, one of the ki’s is 0, and we can
similarly reduce J ′

0 to a sequence of the form 〈03, 03, . . . ; kℓ〉. Now the
reduced walk sequence is 〈03, 03, . . . ; kℓ; 3, 1〉. If kℓ 6= 1 then it can
directly be reduced to 〈0, 1〉 and we are done. If kℓ = 1 then it can be
reduced to 〈0, 1; 3, 1〉 and further reduced to 〈0, 3, 1〉 and to 〈0, 1〉, so
we are done.

Case 2) 3 /∈ supp(β0): Then 3 ∈ supp(β1) and the proof will be
similar to Case 1.

Case 3) 3 ∈ supp(β0) ∩ supp(β1): By an argument similar to that
in Case 1, the walk sequence of α1 can be in general reduced to I =
〈03, 03, . . . ; k, 3〉〈0, 1〉〈3, k′; 31, . . . , 31〉. Now by the argument in the
last part of the proof of Case 1, 〈03, 03, . . . ; k, 3〉〈0, 1〉 can be reduced
to 〈0, 1〉. Hence I can be reduced to 〈0, 1〉〈3, k′; 31, . . . , 31〉. Then by
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the same argument it can finally be reduced to 〈0, 1〉, and we have
proved Claim 2.

Now lastly we simply take a chain-walk γ from f01 to −f02 in α2

terminating with c (= the 1-simplex described in Claim 2). Then by
an argument similar to that in the proof of Claim 1, we repeatedly
apply the CR-operation to γ (while keeping c unchanged), and obtain
a desired α′ ∼ α2 centered at 0 forming a chain-walk from f01 to −f02.
Then we take the reverse order of the representation of the chain-walk
α′. �

In an upcoming paper [7], it is shown that for any minimal 2-chain
whose boundary is a 1-shell, there is an equivalent 2-chain which has
the same boundary with support size three.

4. Examples

This section is devoted to exhibiting a certain family of examples
of 2-chains of types in rosy theories whose boundaries are 1-shells.
The existence of these examples implies that, in rosy theories, there is
no uniform bound for the minimal lengths of 2-chains having 1-shell
boundaries.
We recall the examples described in [2]. For a positive integer n,

consider a (saturated) structure Mn = (|Mn|;S, gn), where |Mn| is a
circle; S is a ternary relation such that S(a, b, c) holds iff a, b, c are
distinct and b comes before c going around the circle clockwise starting
at a; and gn is a rotation (clockwise) by 2π/n-radians. When n is
obvious from context, gn is often written as g. The following Fact 4.1,
4.2 are from [2].

Fact 4.1. (1) Th(Mn) has the unique 1-complete type pn(x) over
∅, which is isolated by the formula x = x.

(2) Th(Mn) is ℵ0-categorical and has quantifier-elimination.
(3) For any subset A ⊂ Mn, acl(A) = dcl(A) =

⋃
0≤i<n g

i
n(A) (in

the home-sort), where gin = gn ◦ · · · ◦ gn︸ ︷︷ ︸
i times

.

(4) For each a ∈ Mn with n > 1, and an integer i, S(gi(a), x, gi+1(a))
isolates a complete type over a.

In what follows, we assume n > 1.

Fact 4.2. (1) There are a, b ∈ Mn such that d(a, b) > n/2.
(2) For any a, b ∈ Mn, the following are equivalent:

(i) a, b begin some ∅-indiscernible sequence,
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(ii) a and b have the same type over some elementary substruc-
ture of Mn,

(iii) a = b ∨ S(a, b, gn(a)) ∨ S(b, a, gn(b)) holds.

Thus the unique 1-complete type pn is also a Lascar type.

Theorem 4.3. (1) Th(Mn) has weak elimination of imaginaries.
(2) Th(Mn) is rosy having thorn U-rank 1 with a trivial pregeome-

try.

Proof. (1) We claim that if a set D in (Mn)
k is definable over A0 and

A1 respectively where Ai = acl(Ai) = dcl(Ai) (in the home-sort) then
it is definable over B := A0 ∩ A1: We sketch the proof of the claim by
freely using Fact 4.1. Let k = 1. Due to quantifier elimination, D is
some union of finitely many arcs on Mn. Clearly each end-point of a
connected component of D is in dcl(Ai) and so in B as well. Hence D
is indeed B-definable. Now for induction, assume the claim holds for
k − 1. We want to show it holds for k. Suppose that ϕi(x1, . . . , xk, āi)
defines D where āi ∈ Ai. Then, for each element b, the set Db de-
fined by ϕi(x1, . . . , xk−1, b, āi) is definable over Bb, by the induction
hypothesis. But due to ℵ0-categoricity (so there are only finitely many
formulas over ∅ up to equivalence), it easily follows that for each y,
ϕi(x1, . . . , xk−1, y, āi) is definable over B, i.e. D is definable over B as
we wanted.

Now let E(x̄, ȳ) be an ∅-definable equivalence relation on (Mn)
k. For

ā ∈ (Mn)
k, let ā′ denote a finite tuple of algebraic closure of ā in the

home-sort. Let b̄ be the maximal subtuple of ā′ which is algebraic over
ā/E. Thus there is ā′′ ≡acl(ā/E) ā

′ such that b̄ = ā′ ∩ ā′′ as sets. Hence
due to the claim, ā/E ∈ dcleq(b̄) and b̄ ∈ acl(ā/E). We have proved
(1).
(2) Due to (1), Th(Mn) is rosy having thorn U -rank 1 as pointed

out in [4]. Notice that Mn has the same pregeometry as the n-copies
of a half-closed interval, and so Mn forms a trivial pregeometry with
its algebraic closures. �

Definition 4.4. Let a, b ∈ Mn be any elements with acl(a) 6= acl(b).

(1) We define the S-distance of b from a, denoted by Sd (a, b) as
follows: Sd (a, b) = k iff Mn |= S(gk(a), b, gk+1(a)). For integers
k < l, we write k ≤ Sd (a, b) ≤ l if Mn |= S(gk(a), b, gl+1(a)).

(2) We define the Ŝ-distance of b from a, denoted by Ŝd (a, b), as
similar manner as Sd (a, b), using the formula

Ŝ(x, y, z) ≡ (x 6= z ∧ S(x, y, z)) ∨ (x = z ∧ x 6= y).
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Remark 4.5. Let x, y, z ∈ Mn have mutually disjoint algebraically
closures. Then for any k, l,m ∈ Z,

(1) Sd (y, x) = − Sd (x, y)− 1;
(2) (a) for l − k 6≡ −1, 0 (mod n), if k ≤ Sd (x, y) ≤ l − 1, and

Sd (y, z) = m, then m+ k ≤ Sd (x, z) ≤ m+ l;
(b) for l − k ≡ −1 (mod n), if k ≤ Sd (x, y) ≤ l − 1, and

Sd (y, z) = m, then gk+m(x) 6= z.

(1)′ Ŝd (y, x) = − Ŝd (x, y)− 1;

(2)′ for k 6≡ l (mod n), if k ≤ Ŝd (x, y) ≤ l − 1, and Ŝd (y, z) = m,

then m+ k ≤ Ŝd (x, z) ≤ m+ l.

Lemma 4.6. Let k and l0, . . . , lm be fixed integers and Lj :=
∑j

i=0 li.
Let a and d0, . . . , dm+1 (m+ 1 < n) be elements in Mn such that

(∗)m : Ŝd (a, d0) = k, Ŝd (di, di+1) = li, 0 ≤ i ≤ m.

Then

k + Lm ≤ Ŝd (a, dm+1) ≤ k + Lm +m+ 1.

Moreover, by choosing appropriate elements for a and d0, . . . , dm+1, the

quantity Ŝd (a, dm+1) can be made to be any integer in [ k + Lm, k +
Lm +m+ 1 ] (∗∗)m.

Proof. We show this using induction on m. For m = 0, by Remark
4.5(2)′, it follows from (∗)0 that

k + l0 ≤ Ŝd (a, d1) ≤ k + l0 + 1.

Moreover it is not hard to see (∗∗)0 holds.
Now assume the lemma holds for m−1 with m+1 < n. Let us show

the lemma for m. For i ≤ m + 1, a, di ∈ Mn are given which satisfy
(∗)m. Firstly, by the induction hypothesis for m− 1,

k + Lm−1 ≤ Ŝd (a, dm) ≤ k + Lm−1 +m.

Since m+ 1 < n,

k + Lm−1 ≤ Sd (a, dm) ≤ k + Lm−1 +m.

Then again by Remark 4.5(2)′,

k + Lm ≤ Ŝd (a, dm+1) ≤ k + Lm +m+ 1.

Secondly, we show the moreover part. Fix Lm ≤ j ≤ Lm +m+ 1 and
a′ ∈ Mn. If j = Lm, then j − lm = Lm−1 and due to the induction
hypothesis, there are d′0, . . . , d

′
m that satisfy (∗)m−1 and

Ŝd (a′, d′m) = k + j − lm.
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So, Ŝd (a′, glm(d′m)) = k + j, and Mn |= S (glm(d′m), d
′
m+1, g

k+j+1(a′))
for some d′m+1 ∈ Mn. Thus

Ŝd (d′m, d
′
m+1) = lm, Ŝd (a′, d′m+1) = k + j.

So, a′ and d′i for i ≤ m + 1 satisfy the required condition. Now for
j > Lm, the proof is similar to the case j = Lm except that we replace
j − lm by j − lm − 1 and take d′m+1 in Mn such that

Mn |= S(gk+j(a′), d′m+1, g
lm+1(d′m)).

�

Now, let A(pn) be the family of all the closed independent func-
tors in pn. We follow the notation given at the beginning of Section
2: given a closed independent functor f over ∅ in pn with u = {i0 <
· · · < ik} ∈ dom(f), we write f(u) = [a0, . . . , ak], where aj ∈ Mn,

f(u) = acl(a0, . . . , ak), and acl(aj) = f
{ij}
u ({ij}). When we write

f(u) ≡ [b0, . . . , bk], it of course means that [a0, . . . , ak] ≡ [b0, . . . , bk].
By Theorem 4.3, it is equivalent to saying a0 · · · ak ≡ b0 · · · bk.

Remark 4.7. Let τ =
m∑
i=0

ǫiti (ti 2-simplex) be a chain-walk (in pn)

from f01 to −f02 such that Di = supp(ti) = {0, ki, ki+1} with k0 = 1,
km+1 = 2. Then putting together the triangles t0(D0), . . . , tm(Dm) side
by side centered at 0, we can find elements a and d0, . . . , dm+1 in Mn

such that for 0 ≤ i ≤ m,

ti(Di) ≡

{
[a, di, di+1] if ki < ki+1

[a, di+1, di] if ki > ki+1.

Combining the classification results in Section 3 and Lemma 4.6,
we will show that there does not exist any finite upper bound for the
minimal lengths of 2-chains with 1-shell boundaries in the types pn.

Theorem 4.8. Let A be a non-trivial amenable collection and let s be
a 1-shell. Define B(s), and B(A) as follows:

(1) B(s) := min{ |τ | : τ is a (minimal) 2-chain and ∂(τ) = s }.
(If s is not the boundary of any 2-chain, define B(s) := −∞.)

(2) B(A) := max{B(s) : s is a 1-shell of A }.

Let n > 1 and let s = s12 − s02 + s01 be a 1-shell from A(pn) with
supp(sij) = {i, j}. Then there are a, b, c, c′ in Mn and some integers
k1, k2, k3 with 0 ≤ ki < n such that,

• Ŝd (a, c) = k1, Ŝd (a, b) = k2, and Ŝd (b, c′) = k3;
• s01({0, 1}) ≡ [a, c], s02({0, 2}) ≡ [a, b], and s12({1, 2}) ≡ [c′, b].
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Let 0 ≤ k4(< n) ≡ k2 − (k1 − k3) (mod n) and let

ns := min{2(n− k4)− 1, 2k4 + 1}.

Then
B(s) = ns.

Moreover, taking k1 = 0, k2 = 0, and k3 = [n
2
], we get ns ≥ n − 1 and

B(A(pn)) ≥ n− 1. Therefore lim
n→∞

B(A(pn)) = ∞.

Proof. (1) B(s) ≥ ns : By Theorem 2.4 and Corollary 3.14, there is a

chain-walk τ =
2m∑
i=0

(−1)iti from s01 to −s02 and ∂(τ) = s. We want to

show |τ | ≥ ns. Suppose not, i.e., |τ | = 2m+1 < n−1. By Remark 4.7,
there are di’s (0 ≤ i ≤ 2m+ 1) in Mn such that ac ≡ ad0, d2m+1 = b;
and

• Ŝd (d0, d1) = l0, Ŝd (d2m−1, d2m) = l2m for some integers li;
• t0({0, k0, k1}) ≡ [a, d0, d1], t2j−1({0, k2j−1, k2j}) ≡ [a, d2j , d2j−1],
and t2j({0, k2j, k2j+1}) ≡ [a, d2j, d2j+1] for 1 ≤ j ≤ m.

Now ∂τ = s implies ∂0t2j0 = s12 for some 0 ≤ 2j0 ≤ 2m; and for any
0 ≤ j1 6= j0 ≤ m there is 0 ≤ j2 6= j0 ≤ m (indeed a bijection) such
that ∂0t2j1 = ∂0t2j2+1. So

• Ŝd (d2j0, d2j0+1) = −k3 − 1; and
• [d2j1 , d2j1+1] ≡ [d2j2+2, d2j2+1].

By Remark 4.5(1)′, Ŝd (d2j1, d2j1+1) = − Ŝd (d2j2, d2j2+1)−1. Therefore

l2j0 = −k3 − 1 and l2j2+1 = −l2j1 − 1, so
2m∑
j=0

lj = −k3 −m − 1. Hence

due to Lemma 4.6 and 2m + 1 < n − 1, we have k1 − k3 − m − 1 ≤
Ŝd (a, b) ≤ k1 − k3 +m. Thus

Ŝd (a, b) = k2; and k1 − k3 −m− 1 ≤ Ŝd (a, b) ≤ k1 − k3 +m.

We rewrite it as

Ŝd (gk1−k3(a), b) = k2−(k1−k3); and −m−1 ≤ Ŝd (gk1−k3(a), b) ≤ m.

We can replace k2− (k1−k3) by k4 and we have n− (m+1) < k4+1 or
m+1 > k4. In either case, we have m ≥ min{n−k4−1, k4}. Therefore
2m+1 ≥ 2min{n−k4−1, k4}+1 = min{2(n−k4)−1, 2k4+1} = ns,
a contradiction. We have proved B(s) ≥ ns.

(2)B(s) ≤ ns : We construct a chain-walk γ =
ns−1∑
i=0

ri with supp(γ) =

{0, 1, 2} and ∂γ = s as follows: Note that since ns is odd, ms :=
(ns−1)/2 is an integer. Also note that, if we let N1 := k1−k3−ms−1
and N2 := k1 − k3 +ms, then k2 ≡ Ni (mod n) (i = 1 or 2). Hence we



22 BYUNGHAN KIM, SUNYOUNG KIM, AND JUNGUK LEE

have Ŝd (a, b) = N1 or Ŝd (a, b) = N2. Applying Lemma 4.6 with k1 and
l0, . . . , l2ms

such that l2i+1 = −l2i−1 for 0 ≤ i < ms and l2ms
= −k3−1,

we obtain
2ms∑
i=0

li = L2ms
= −ms−k3−1, and L2ms

+2ms+1 = ms−k3.

Therefore if j is chosen to be such that j = N1 − k1 or = N2 − k1, and
by applying (∗∗)2ms

in Lemma 4.6, we can find d′0, . . . , d
′
2ms+1(= d′ns

)
such that

Ŝd (a, d′0) = k1, Ŝd (d′i, d
′
i+1) = li for 0 ≤ i ≤ 2ms, and Ŝd (a, d′ns

) = k2.

Then due to Fact 4.1(4) and Remark 4.5 (1)′, it follows that ad′0 ≡
ac, ad′ns

≡ ab, d′ns−1d
′
ns

≡ c′b and d′2id
′
2i+1 ≡ d′2i+1d

′
2i+2 for 0 ≤ i < ms.

Hence clearly we have a desired 2-chain γ =
ns−1∑
i=0

ri such that

ri({0, 1, 2}) ≡

{
[a, d′i, d

′
i+1] if i ≡ 0 (mod 2)

[a, d′i+1, d
′
i] if i ≡ 1 (mod 2).

�

Corollary 4.9. For each n ≥ 5, A(pn) does not have weak 3-amalgamation.
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