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ON FORKING AND DEFINABILITY OF TYPES IN SOME

DP-MINIMAL THEORIES

PIERRE SIMON AND SERGEI STARCHENKO

Abstract. We prove in particular that, in a large class of dp-minimal theories including

the p-adics, definable types are dense amongst non-forking types.

§1. Introduction and preliminaries. In this short note, we show how the
techniques from [5] can be adapted to prove the density of definable types in a
large class of dp-minimal theories. Density of definable types is the following:
for any φ(x) which does not fork over a model M , there is a global type p(x)
definable overM and containing φ(x). We prove this for dp-minimal T satisfying
an extra property—property (D)—which says that unary definable sets contain
a type that is definable over the same parameters as the set. This holds in
particular if definable sets have natural generic definable types. This also holds
whenever T has definable Skolem functions. In particular our theorem applies
to the field Qp of p-adic numbers.

Throughout, T is a complete countable theory. We let U be a monster model.
By a global type, we mean a type over U . We write M ≺+ N to mean M ≺ N
and N is |M |+-saturated.
The notation φ0 means ¬φ and φ1 means φ.
If M ≺+ N and p ∈ S(N), then p is M -invariant if for any b, b′ ∈ N and any

formula φ(x; y), b ≡M b′ implies p ⊢ φ(x; b) ↔ φ(x; b′). Any M -invariant type
over N extends in a unique way to a global M -invariant type. Thus there is no
harm in considering only global invariant types.

We refer to [5] or to [4] for basic facts about NIP theories, though we will now
collect all the statements that we need.
First recall that in an NIP theory, a global type p does not fork over a model

M if and only if it is M -invariant.
If p(x) and q(y) are two globalM -invariant types, then p(x)⊗q(y) denotes the

global type r(x, y) defined as tp(a, b/U) where b |= q and a |= p|Ua (invariant
extension of p to Ua).
If p(x)⊗ q(y) = q(y)⊗ p(x), then we say that p and q commute. It is not hard

to see that, in any theory T , a globalM -invariant type is definable if and only if
it commutes with all global types finitely satisfiable in M (see [5, Lemma 2.3]).
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Next we recall the notion of strict non-forking from [1]. Let M be a model
of an NIP theory. A sequence (bi)i<ω is strictly non-forking over M if for each
i < ω, tp(bi/b<iM) is strictly non-forking overM which means that it extends to
a global type tp(b∗/U) such that both tp(b∗/U) and tp(U/Mb∗) are non-forking
over M . We will only need to know two facts about strict non-forking sequences
(both proved in [1], see also [4, Chapter 5]):

(Existence) Given b ∈ U and M |= T , there is an indiscernible sequence
b = b0, b1, . . . which is strictly non-forking over M . We call such a sequence a
strict Morley sequence of tp(b/M).

(Witnessing property) If the formula φ(x; b) forks overM , then for any strictly
non-forking indiscernible sequence b = b0, b1, . . . , the type {φ(x; bi) : i < ω} is
inconsistent.

If φ(x; y) is an NIP formula, we let alt(φ) be the alternation number of φ,
namely the maximal n for which there is an indiscernible sequence (bi : i < ω)
and a tuple a with ¬(φ(a; bi) ↔ φ(a; bi+1)) for all i < n. If (bi : i < ω) is
indiscernible and {φ(x; bi) : i < alt(φ)/2+1} is consistent, then {φ(x; bi) : i < ω}
is also consistent.

We will also need the notion of “b-forking” as defined in Cotter and Starchenko’s
paper [2] and as recalled in [5]. For this, we assume that T is NIP.
Assume we have M ≺+ N and b ∈ U such that tp(b/N) is M -invariant.

We say that a formula ψ(x, b; d) ∈ L(Nb) b-divides over M if there is an M -
indiscernible sequence (di : i < ω) inside N with d0 = d and {ψ(x, b; di) : i < ω}
is inconsistent. We define b-forking in the natural way.

Fact 1. (T is NIP) Notations being as above, the following are equivalent:
(i) ψ(x, b; d) does not b-divide over M ;
(ii) ψ(x, b; d) does not b-fork over M ;
(iii) if (di : i < ω) is a strict Morley sequence of tp(d/M) inside N , then

{ψ(x, b; di) : i < ω} is consistent;
(iii)′ if (di : i < ω) is a strict Morley sequence of tp(d/M) inside N , then

{ψ(x, b; di) : i < m} is consistent where m is greater than the alternation number
of ψ(x, y; z);
(iv) there is a |= ψ(x, b; d) such that tp(a, b/N) is M -invariant.

Finally a theory T is dp-minimal if for every A ⊂ U , every singleton a and any
two infinite sequences I0, I1 of tuples, if Ik is indiscernible over AI1−k, k = 0, 1,
then for some k ∈ {0, 1}, Ik is indiscernible over Aa.
Any o-minimal or weakly o-minimal theory is dp-minimal, as is the theory of

the fields of p-adics.
The following theorem was proved in [5]:

Theorem 2. (T is dp-minimal) Let p(x) be a global M -invariant type in a
single variable, then p is either definable over M or finitely satisfiable in M .

§2. The main theorem. We will say that T has property (D) if for every
set A (of real elements) and consistent formula φ(x) ∈ L(A), with x a single
variable, there is an A-definable complete type p ∈ Sx(A) extending φ(x).
We emphasise that the type p might not extend to a global A-definable type.
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Lemma 3. Let M ≺ N and b ∈ U such that tp(b/N) is M -definable. Assume
that p ∈ Sx(Mb) is a complete Mb-definable type, then p extends to a complete
type q ∈ Sx(Nb) which is Mb-definable using the same definition scheme as p.

Proof. For each formula φ(x; y, b) ∈ L(b), there is by hypothesis a formula
dφ(y; b) ∈ L(M) such that for every d ∈ M |y| we have p ⊢ φ(x; d, b) if and only
if U |= dφ(d; b). We have to check that the scheme φ(x; y, b) 7→ dφ(y; b) defines a
consistent complete type overNb. This follows at once from the fact that tp(b/N)
is an heir of tp(b/M). Let us check completeness for example. Assume that there
is some n ∈ N and formula φ(x; y, b) such that U |= ¬dφ(n; b)∧¬d(φ0)(n; b). By
the heir property, there must be such a tuple n inM , which is a contradiction. ⊣

Lemma 4. (T is NIP) Let M ≺+ N , n < ω and assume that any formula
θ(y; d) ∈ L(N) with |y| = n and non-forking over M extends to an M -definable
type over N . Let φ(x, y; d) ∈ L(N) be non-forking over M , where |y| = n and
|x| = 1. Then we can find a tuple (a, b) |= φ(x, y; d) such that tp(a, b/N) is
M -invariant and tp(b/N) is definable (over M).

Proof. Let (di : i < ω) be a strict Morley sequence of tp(d/M) inside N .
Let m < ω be greater than the alternation number of φ(x, y; z). As the formula
φ(x, y; d) does not fork over M , it extends to a global M -invariant type p. Then
the conjunction ψ(x, y; d̄) =

∧
i<m φ(x, y; di) is in p. In particular it is consistent

and does not fork over M . The same is true for θ(y; d̄) = (∃x)ψ(x, y; d̄). By
hypothesis, we can find some b ∈ U such that tp(b/N) is M -definable and U |=
θ(b; d̄). We claim that the formula φ(x; b, d) does not b-fork over M . Assume
that it did. Then the conjunction

∧
i<m φ(x, b; di) would be inconsistent. But

this contradicts the fact that θ(b; d̄) holds. Hence we may find a ∈ U such
that φ(a, b; d) holds and tp(a, b/N) does not fork over M (equivalently is M -
invariant). ⊣

Theorem 5. Assume that T is dp-minimal and has property (D). Let M |= T
and φ(x; d) ∈ L(U) be non-forking over M . Then φ(x; d) extends to a complete
M -definable type.

Proof. The proof is an adaptation of the argument given for Proposition 2.7
in [5]. We argue by induction on the length of the variable x.

|x| = 1: Assume that |x| = 1 and take p(x) a global type extending φ(x; d) and
non-forking over M . If p is definable, we are done. Otherwise, by Theorem 2,
p is finitely satisfiable in M . This implies that φ(x; d) has a solution a in M .
Then tp(a/U) does the job.

Induction: Assume we know the result for |x| = n, and consider a non-forking
formula φ(x1, x2; d), where |x2| = n and |x1| = 1. Let N ≻ M sufficiently
saturated, with d ∈ N . Using the induction hypothesis and Lemma 4, we can
find a tuple (a1, a2) |= φ(x1, x2; d) such that tp(a1, a2/N) is M -invariant and
tp(a2/N) is definable (over M).
If p = tp(a1, a2/N) is definable we are done. Otherwise, there is some type

q ∈ S(N) finitely satisfiable in M such that p does not commute with q.
Now let c ∈ U such that (a1ˆa2, c) |= p⊗ q. Let I be a Morley sequence of q

over everything. As tp(a2/N) is definable, it commutes with q. Therefore the
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sequence c̄ = c + I is indiscernible over Na2. However, it is not indiscernible
over Na1a2. Take some M ≺+ N1 ≺+ N with tp(N1/Md) finitely satisfiable in
M .
Take r ∈ S(U) finitely satisfiable in N . Let b |= r|Na2 c̄. Build a Morley

sequence J of r over everything. Then b+ J is indiscernible over Na2c̄ and c̄ is
indiscernible over NbJ . As c̄ is not indiscernible over Na1a2, by dp-minimality,
b+ J must be indiscernible over Na1a2. Hence b |= r|Na1a2 c̄.
We have shown that r|Na2 c̄ ⊢ r|Na1a2 c̄. Let l = lr ∈ {0, 1} such that r(y) ⊢

φl(a1, a2; y). Then r(y)|Na2 c̄ ⊢ φ
l(a1, a2; y). By compactness, there is a formula

θr(y) in r(y)|Na2 c̄ which already implies φl(a1, a2; y). Using compactness of
the space of global N -finitely satisifiable types, we can extract from the family
(θr(y))r a finite subcover C. Let θl(y) be the disjonction of the formulas in C
that imply φl(a1, a2; y). Summing up, we have:
U |= θl(y) → φl(a1, a2; y), l = 0, 1, and every type finitely satisfiable in N

satisfies either θ1(y) or θ2(y). In particular, this is true of any point n ∈ N .
Write θ1(y) as θ1(y; a2, c̄, e) exhibiting all parameters, with e ∈ N . By invari-

ance of tp(a1, a2, c̄/N), we may assume that e ∈ N1 and in particular tp(e/Md)
is finitely satisfiable in M .
As tp(c̄/Na2) is finitely satisfiable in M , there is c̄′ ∈M such that:

|= θ1(d; a2, c̄
′, e) ∧ (∃x)(∀y)(θ1(y; a2, c̄

′, e) → φ(x; y)).

Next, tp(e/Md) is finitely satisfiable in M . As tp(a2/N) is M -definable, also
tp(e/Mda2) is finitely satisifiable in M and we may find e′ ∈ M such that the
previous formula holds with e replaced by e′.
By property (D), there is some Ma2-definable type p1(x1) ∈ S(Ma2) con-

taining the formula (∀y)(θ1(y; a2, c̄
′, e′) → φ(x; y)). By Lemma 3, p1 extends

to a complete Ma2-definable type over Na2. Let a′1 realise that type. Then
tp(a′1, a2/N) is M -definable and we have |= φ(a′1, a2; d) as required. ⊣

Theorem 5 was proved for unpackable VC-minimal theories by Cotter and
Starchenko in [2]. This class contains in particular o-minimal theories (for which
the result was established earlier by Dolich [3]) and C-minimal theories with infi-
nite branching. We show now that our result generalises Cotter and Starchenko’s
and covers some new cases, in particular the field of p-adics.

Lemma 6. Let A be any set of parameters and p(x) be a global acl(A)-definable
type. Then p|A is A-definable.

Proof. Take φ(x; y) ∈ L and let dφ(y; a), a ∈ acl(A), be the φ-definition
of p. Then tp(a/A) is isolated by a formula φ(z) ∈ L(A). Define Dφ(y) =
(∃z)φ(z) ∧ dφ(y; z). Then Dφ(y) is a formula over A and defines the same set
on A as dφ(y). ⊣

Proposition 7. The following classes of theories have property (D):
• theories with definable Skolem functions;
• dp-minimal linearly ordered theories;
• unpackable VC-minimal theories.

Proof. Let T have definable Skolem functions and take a formula φ(x) ∈
L(A). Then we can find a ∈ dcl(A) such that |= φ(a), and thus tp(a/A) is as
required.
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Assume now that T is dp-minimal and that the language contains a binary
symbol < such that T ⊢ “x < y defines a linear order”. Let φ(x) ∈ L(A) be a
formula with |x| = 1. If the formula φ(x) contains a greatest element, then that
element is definable from A, and we conclude as in the previous case. Otherwise,
consider the following partial type over U :

p0 = {a < x : a ∈ φ(U)} ∪ {x < b : φ(U) < b} ∪ {φ(x)}.

Let P be the set of completions of p0 over U . By Lemma 2.8 from [6], any
p ∈ P is definable over M . In particular, P is bounded. Since P is A-invariant
(setwise), we conclude that every p ∈ P is acleq(A)-definable. Let p be such a
type. Then by Lemma 6 p|A is A-definable.

Finally, let T be an unpackable VC-minimal theory. We will use results and
terminology from [2]. Let φ(x) ∈ L(A) be a consistent formula with |x| = 1.
We work in T eq. By the uniqueness of Swiss cheese decomposition, there is a
consistent formula θ(x) over acl(A) that defines a Swiss cheese and |= θ(x) →
φ(x). The outer ball B of θ(x) is definable over acl(A). The generic type the
interior of B (see [2, Definition 2.9]) is a global type definable over acl(A). Now
use Lemma 6. ⊣

Knowing that the theory of the p-adics has definable Skolem functions, we
obtain the following corollary.

Corollary 8. Let T = Th(Qp) andM |= T , then any formula in L(U) which
does not fork over M extends to an M -definable type.
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