
ar
X

iv
:1

40
2.

04
41

v1
  [

m
at

h.
L

O
] 

 3
 F

eb
 2

01
4

REPRESENTATIONS OF IDEALS IN POLISH GROUPS AND IN BANACH SPACES

PIOTR BORODULIN–NADZIEJA, BARNABÁS FARKAS, AND GRZEGORZ PLEBANEK

ABSTRACT. We investigate ideals of the form {A⊆ω :
∑

n∈A
xn is unconditionally convergent}

where (xn)n∈ω is a sequence in a Polish group or in a Banach space. If an ideal on ω
can be seen in this form for some sequence in X , then we say that it is representable
in X .

After numerous examples we show the following theorems: (1) An ideal is repre-
sentable in a Polish Abelian group iff it is an analytic P-ideal. (2) An ideal is repre-
sentable in a Banach space iff it is a non-pathological analytic P-ideal.

We focus on the family of ideals representable in c0. We characterize this property
via the defining sequence of measures. We prove that the trace of the null ideal,
Farah’s ideal, and Tsirelson ideals are not representable in c0, and that a tall Fσ P-ideal
is representable in c0 iff it is a summable ideal. Also, we provide an example of a
peculiar ideal which is representable in ℓ1 but not in R.

Finally, we summarize some open problems of this topic.

1. INTRODUCTION

Recall that an ideal I on ω is summable if it is defined by a measure, i.e. there is a
(mass) function m: ω→ [0,∞) with

∑
i∈ωm(i) =∞ such that

I ∈ I ⇐⇒
∑

i∈I

m(i) <∞.

In this case, we write I = Im. Summable ideals, together with density ideals, are the
flagship examples of analytic P-ideals on ω. However, this class contains also ideals
which are, from the combinatorial viewpoint, very far from summable and density
ideals (see examples in the next section).

In this article, we consider some natural generalizations of summable ideals. Con-
sider a space X equipped in enough structure to speak about convergence of series, e.g.
a Polish Abelian group or a Banach space. We say that an ideal J on ω is representable

in X if there is a function m: ω→ X such that

I ∈ J ⇐⇒
∑

i∈I

m(i) converges unconditionally in X .

If X is complete, then the family of sets defined by the right part of the formula above
is an ideal on ω.
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Particular examples of non-summable ideals of this form appeared already in [Far99]
and [Vel99] (so called Tsirelson ideals). We deal rather with the general questions:
Which ideals can be represented in (certain) Polish Abelian groups and in (certain)
Banach spaces?

In Section 3 we present a short survey on the basics of analytic P-ideals and on the
related main tools we will need.

In Section 4 we introduce the notion of representations of ideals, and present some
examples of representations of classical analytic P-ideals.

In Section 5 we prove that an ideal is representable in some Polish Abelian group
iff it is an analytic P-ideal; and an ideal is representable in a Banach space iff it is,
additionally, non-pathological.

Recall the theorem due to Solecki which says that each analytic P-ideal can be de-
fined by using a lower semicontinuous submeasure. Morally, this result says that each
analytic P-ideal is in a sense similar to the density ideals. Indeed, many facts about
the density ideals can be generalized almost automatically by considering arbitrary
submeasures instead of those given by the density functions.

Partially, our research has a similar motivation. We investigate how much analytic
P-ideals resemble the summable ideal. Although our results can be interpreted as
an indication that “in a sense” each analytic P-ideal (especially non-pathological) is
summable, one should not expect here as strong consequences as in the case of Solecki
theorem. One of the main reason is that there is no general theory of summable ideals.
However, we believe that

(i) our approach reveals some “geometric” properties of non-pathological ideals
and therefore it can be helpful in their classification;

(ii) these methods can be useful in providing new interesting examples of non-
pathological analytic P-ideals;

(iii) representability of certain ideals in Banach spaces can be seen as a combinato-
rial property of the space itself and this may lead us to develop new methods
in the theory of Banach spaces.

A few more words on (iii). For example, one can ask which ideals are represented
in concrete Banach spaces. It seems that the characterization of representability in c0

is one of the most interesting questions here. We have not been able to characterize
fully the ideals representable in c0 but in Section 6 we prove that tall Fσ ideals are not
representable in c0 (if we exclude the “trivial” case of summable ideals). We also show
that the trace of the null ideal is not representable in c0. These results suggest that
ideals representable in c0 are more connected to density (like) ideals.

In contrast, the ideals represented in ℓ1 should be more close to summable ideals.
Actually, ideals representable in ℓ+1 are exactly the summable ideals. In Section 7 we
show that this is no longer true for ℓ1: we present an Fσ ideal which is representable
in ℓ1 but which is not summable.

In Section 8 we list some of our related open questions with additional explanations.
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3. PRELIMINARIES

Denote by Fin the ideal of finite subsets of ω, Fin = [ω]<ω. If I is an ideal on ω,
then we always assume that it is proper, i.e. ω /∈ I, and Fin ⊆ I. Write I+ = P(ω) \ I
for the family of I-positive sets and I∗ = {ω\X : X ∈ I} for the dual filter of I. If X ∈ I+
then the restriction of I to X is I ↾ X = {A ∈ I: A ⊆ X }. An ideal I on ω is Fσ, Borel,

analytic if I ⊆ P(ω)≃ 2ω is an Fσ, Borel, analytic set in the usual product topology of
the Cantor-set.

I is a P-ideal if for each countable C ⊆ I there is an A ∈ I such that C ⊆∗ A for each
C ∈ C (where C ⊆∗ A iff C \A is finite). In other words, I is a P-ideal iff the preordered
set (I,⊆∗) is σ-directed.

I is tall (or dense) if each infinite subset of ω contains an infinite element of I.
If A⊆ P(ω) then the ideal generated by A is

id(A) =
n

X ⊆ω : ∃A′ ∈ [A]<ω X ⊆∗
⋃

A′
o

.

In our investigations Borel P-ideals play the most important role. We show some
classical examples of these ideals (for more see [Hru11] or [MA09]):

The mentioned above summable ideal:

I1/n =

(
A⊆ω :
∑

n∈A

1

n+ 1
<∞
)

.

I1/n is a tall Fσ P-ideal. In general, if h: ω→ [0,∞) is such that
∑

n∈ω h(n) =∞ then
the summable ideal associated to h is Ih =

�
A ⊆ ω:
∑

n∈A h(n) < ∞
	
. It is also an Fσ

P-ideal which is tall iff h(n)→ 0.

The density zero ideal:

Z=

�
A⊆ω: lim

n→∞

|A∩ n|
n

= 0

�
=

¨
A⊆ω: lim

n→∞

|A∩ [2n, 2n+1)|
2n

= 0

«
.

Z is a tall Fσδ P-ideal. In general, if ~µ = (µn)n∈ω is a sequence of measures on ω
with pairwise disjoint finite supports and lim supn→∞µn(ω)> 0, then the density ideal

associated to ~µ is Z~µ =
�
A⊆ω : µn(A)→ 0

	
. It is always an Fσδ P-ideal which is tall iff

max{µn({k}) : k ∈ω} n→∞−−−→ 0.

Generalized density ideals: If ~ϕ = (ϕn)n∈ω is a sequence of submeasures on ω (see
below for the definition of a submeasure) with pairwise disjoint finite supports and
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lim supn→∞ϕn(ω) > 0, then the generalized density ideal associated to ~ϕ is Z~ϕ =
�
A⊆

ω: ϕn(A)→ 0
	
. Z~ϕ is an Fσδ P-ideal which is tall iff max{ϕn({k}) : k ∈ω} n→∞−−−→ 0.

The Fubini-product of {;} and Fin:

{;}⊗ Fin =
�
A⊆ω×ω : ∀ n ∈ω |(A)n|<ω

	
,

where (A)n = {m: (n, m) ∈ A}. It is a non-tall Fσδ P-ideal. Observe that {;} ⊗ Fin is a
density ideal: for n, m ∈ ω let supp(µn,m) = {(n, m)} and let µn,m({(n, m)}) = 1

n+1
. It

is easy to see that if ~µ= (µn,m)n,m∈ω then {;}⊗ Fin = Z~µ.

Farah’s ideal: The following ideal is the simplest known example of an Fσ P-ideal
which is not a summable ideal (see [Far00, Section 1.11]):

JF =

¨
A⊆ω:
∑

n∈ω

min{n, |A∩ [2n, 2n+1)|}
n2 <∞

«
.

The trace of the null ideal : Let N be the σ-ideal of subsets of 2ω with measure
zero (with respect to the usual product measure). The Gδ-closure of a set A ⊆ 2<ω is
[A] =
�

x ∈ 2ω : ∃∞ n x ↾n ∈ A
	
, a Gδ subset of 2ω. The trace of N is defined by

tr(N) =
�
A⊆ 2<ω : [A] ∈N

	
.

It is a tall Fσδ P-ideal.

Remark 3.1. Observe that in some sense I1/n ⊆ tr(N) ⊆ Z: let Itree be the “tree
version” of the summable ideal, that is,

Itree =

�
A⊆ 2<ω :
∑

s∈A

2−|s| <∞
�

.

Then clearly I1/n and Itree are isomorphic (by the most natural enumeration of 2<ω),
and Itree ⊆ tr(N). Furthermore, if Ztree is the tree version of the density zero ideal,

Ztree =
n

A⊆ 2<ω : lim
n→∞

|A∩ 2n|
2n

= 0
o

,

then it is isomorphic to Z and tr(N)⊆ Ztree.

We will apply Solecki’s representation of analytic P-ideals. A function ϕ : P(ω) →
[0,∞] is a submeasure (on ω) if ϕ(;) = 0; if X , Y ⊆ ω then ϕ(X ) ≤ ϕ(X ∪ Y ) ≤
ϕ(X ) +ϕ(Y ); and ϕ({n}) <∞ for n ∈ ω. ϕ is lower semicontinuous (lsc, in short) if
ϕ(X ) = limn→∞ϕ(X ∩ n) for each X ⊆ω.

If ϕ is an lsc submeasure then for X ⊆ω let ‖X‖ϕ = limn→∞ϕ(X \ n); and let

Exh(ϕ) =
�

X ⊆ω : ‖X‖ϕ = 0
	
,

Fin(ϕ) =
�

X ⊆ω : ϕ(X )<∞
	
.

It is easy to see that if Exh(ϕ) 6= P(ω), then it is an Fσδ P-ideal, which is tall iff
ϕ({n}) → 0. Similarly, if Fin(ϕ) 6= P(ω) then it is an Fσ ideal. Clearly, Iϕ({·}) ⊆
Exh(ϕ) ⊆ Fin(ϕ) always holds, where Iϕ({·}) stands for the summable ideal generated
by the sequence ϕ({n}).
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The next theorem provides one of the most important tools in the theory of analytic
P-ideals.

Theorem 3.2. (see [Sol99, Thm. 3.1.]) Let J be an ideal on ω. Then the following are

equivalent:

(i) J is an analytic P-ideal;

(ii) J= Exh(ϕ) for some (finite) lsc submeasure ϕ;

(iii) J is Polishable, that is, there is a Polish group topology on J with respect to the

usual group operation such that the Borel structure of this topology coincides with

the Borel structure inherited from P(ω).

Furthermore, J is an Fσ P-ideal iff J= Exh(ϕ) = Fin(ϕ) for some lsc submeasure ϕ.

In particular, analytic P-ideals are Fσδ.
The implication (ii)⇒(iii) is not difficult: for A, B ∈ Exh(ϕ) let dϕ(A, B) = ϕ(A△B).

Then it is easy to see that dϕ is a (translation) invariant complete metric (we can
assume that ϕ({n}) > 0 for every n), the generated topology is finer than the subspace
topology, and Borel(Exh(ϕ), dϕ) = Borel(P(ω)) ↾ Exh(ϕ).

If we refer to Exh(ϕ) as complete metric group, then we mean that it is equipped
with dϕ.

Remark 3.3. Notice that the Polish topology on Exh(ϕ) does not depend on the choice
of ϕ. It follows from the fact that Exh(ϕ) = Exh(ψ) if, and only if for every sequence
(An)n∈ω of pairwise disjoint finite sets (ϕ(An)→ 0 ⇐⇒ ψ(An)→ 0).

The summable and (generalized) density ideals can be written of the form Exh(ϕ)
very easily.

The definition of Farah’s ideal explicitly contains the definition of a submeasure ϕ,
and clearly JF = Exh(ϕ) = Fin(ϕ).

We also show the standard presentation of tr(N) of the form Exh(ϕ). For every
non-empty A⊆ 2<ω let

ϕ(A) = sup

�∑

s∈B

2−|s| : B ⊆ A is an antichain

�
.

Notice that actually this supremum is maximum: for each A ⊆ 2<ω let BA be the
antichain of the ⊆-minimal elements of A, then ϕ(A) =

∑
s∈BA

2−|s|. Then tr(N) =
Exh(ϕ).

4. GENERALIZATION OF SUMMABLE IDEALS

Let G be a nontrivial Hausdorff topological Abelian group (with the additive nota-
tion). We will use the following basic notions from the theory of topological Abelian
groups:

• A net (ai)i∈I in G is a sequence in G indexed by the underlying set of a directed
poset (I ,≤).
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• The net (ai)i∈I converges to b ∈ G if for every neighborhood U of b there is an
i0 ∈ I such that ai ∈ U for every i ≥ i0. Clearly, a net has at most one limit.
• A net (ai)i∈I is a Cauchy-net if for every neighborhood V of 0 ∈ G, there is a

j0 ∈ I such that a j− a j0
∈ V for every j ≥ j0 (this is a simplified but equivalent

definition of Cauchy nets).
• G is complete if every Cauchy-nets converge (the reverse implication always

holds).

Recall (see [Kle52]) that if G is metrizable and complete, then there is a compatible
invariant (and hence complete) metric on G.

Using nets, we can define the unconditional convergence of infinite series in G: let
h: ω→ G be a sequence in G. Then we write

∑
n∈ω h(n) = a ∈ G if the net

∑
h=

�
sh(F) =
∑

n∈F

h(n) : F ∈ [ω]<ω
�

ordered by ⊆ on [ω]<ω

converges to a; in other words:

∀ open U ∋ a ∃ F ∈ [ω]<ω ∀ E ∈ [ω]<ω
�

F ⊆ E⇒ sh(E) ∈ U
�
.

It is easy to see that
∑

n∈ω h(n) = a iff h(π(0)) + h(π(1)) + · · ·+ h(π(n))
n→∞−−−→ a for

every permutation π of ω.
Similarly, the series associated to h is unconditionally Cauchy if the net

∑
h is Cauchy,

i.e.

∀ open V ∋ 0 ∃ F ∈ [ω]<ω ∀ E ∈ [ω \ F]<ω sh(E) ∈ V .

Now we are finally ready to introduce the main definition of the article. Assume
that
∑

n∈ω h(n) does not exist. Then the (generalized) summable ideal associated to h,
IG

h
is the ideal generated by

SG
h
=

�
A⊆ω :
∑

n∈A

h(n) exists in G

�

=

�
A⊆ω : A is finite or

∑
h↾A is convergent in G

�
.

Of course, SG
h

is not necessarily an ideal. It is always closed for taking unions but
not necessary for taking subsets, see e.g. G = Q (with the usual addition) and let
h: ω→Q, h(n) = 1

n+1
. However, it is easy to see the following.

Fact 4.1. If G is complete, then IG
h
= SG

h
. If G is complete and metrizable, then IG

h
is tall

iff h(n)→ 0 ∈ G.

Definition 4.2. We say that an ideal J onω is representable in G if there is an h: ω→ G

such that J = IG
h

. If C is a class of topological Abelian groups then J is C-representable

if it is representable in a G ∈ C.

For example, we can talk about Polish- or Banach-representable ideals. Notice that
we can always assume that G is separable because essentially we are working in
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〈ran(h)〉 (where 〈H〉 denotes the subgroup of G generated by H), this clearly holds
true for Banach spaces too because span(ran(h)) is separable.

Let us see some examples:

Example 4.3. Summable ideals are exactly those ideals which are representable in
R. For any h: ω → R the sum

∑
n∈A h(n) exists (in the unconditional sense) iff∑

n∈A |h(n)| < ∞, and hence IR
h
= IR|h| = I|h|. Similarly, J is summable iff it is rep-

resentable in Rn.

We will frequently use the classical (real) sequence spaces ℓ1, ℓ∞, and c0. We assume
that the reader is familiar with their basic properties.

Example 4.4. The ideal Z is representable in c0. Let h(0) = 0 and h(n) = 2−kek iff
n ∈ [2k, 2k+1) where ek = (δk,m)m∈ω. Then Z= I

c0
h

.

Example 4.5. If (Gn)n∈ω is a sequence of non-trivial discrete Abelian groups, then J

is representable in
∏

n∈ω Gn iff there is a countable (not necessarily infinite) family
{Xn : n ∈ω} ⊆ [ω]ω such that

J=
�
A⊆ω: ∀ n ∈ω |A∩ Xn| <ω

	
.

For example, {;}⊗ Fin has this property.

Example 4.6. Tsirelson ideals (see [Far99] and [Vel99]) T have the following form

A∈ T iff
∑

n∈A

αnen is unconditionally convergent in T,

where (en)n∈ω is the standard basic sequence in ℓ1, (αn)n∈ω ∈ c0 \ ℓ1 is fixed, and T is
a Tsirelson space. Note that here T can be understood either as the original Tsirelson
space or as its dual. Of course every Tsirelson ideal is representable in a Tsirelson
space.

Example 4.7. Let T be the group R/Z. Notice that an ideal is representable in T (or in
Tn) iff it is a summable ideal. Indeed, if Ih is a summable ideal where h: ω→ [0,∞),
then we can assume that h≤ 1/2 because Ih = Ih′ where h′(n) = min{h(n), 1/2}. It is
easy to see that considering h as a sequence in T, we obtain the same ideal.

If h: ω→ T = [0,1), then it is not difficult to show that IT
h
= Ig where g(n) = h(n)

if h(n)≤ 1/2 and g(n) = 1− h(n) else.

Example 4.8. An ideal is representable in Rω iff it is an intersection of countable
many summable ideals. Indeed, assume that h: ω→ Rω, h(n) = (xn

k
)k∈ω, and define

hk : ω → R, hk(n) = xn
k

for k, n ∈ ω. Then IR
ω

h
=
⋂

k∈ω Ihk
, and of course, the same

idea works in the reverse direction too.
There are non Fσ (and hence non summable) ideals which are representable in Rω.

Let {Xk : k ∈ω} be a partition of ω into infinite sets, such that
∑

n∈Xk

1
n+1
=∞, and let

J0 =

�
A⊆ω: ∀ k
∑

n∈A∩Xk

1

n+ 1
<∞
�

.
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Then J0 =
⋂

k∈ω Ihk
where hk(n) =

χXk
(n)

n+1
, and hence it is representable in Rω. J0 is not

Fσ e.g. because the almost disjointness number of J0, a(I0) =ω (simply {Xk : k ∈ω} is
an J0-MAD family), and we know that a(J) > ω for every Fσ ideal J (for more details
see e.g. [FS09]). We will come back to the question of representability in Rω later
(see Question 6.14).

Proposition 4.9.

(a) Every ideal J on ω is representable in a normed space.

(b) There is a normed space X with dim(X ) = 2c such that every J is representable

in X .

(c) Every ideal J is representable in a group satisfying g + g = 0.

Proof. (a): Let XJ be the linear subspace of ℓ∞ (or ℓ1 or c0) generated by
��
χA(n)

n2

�

n∈ω
: A∈ J
�

where χA is the characteristic function of A, en = (δn,k)k∈ω. Let h: ω → X , h(n) =

n−2en.
We claim that J = I

XJ

h
. Clearly J ⊆ I

XJ

h
. Conversely, if B /∈ J and A0, . . . ,Ak−1 ∈ J

then we can pick an m ∈ B \ (A0 ∪ · · · ∪ Ak−1) and hence

∑

n∈B

h(n)−α0

∑

n∈A0

h(n)− · · · −αk−1

∑

n∈Ak−1

h(n)

≥
1

m2

for any α0, . . . ,αk−1 ∈ R which yields that
∑

n∈B h(n) =
�χB(n)

n2

�
n∈ω /∈ XJ.

(b): Let ID be the family of all ideals on ω (we know that |ID| = 2c) and let X be
the finite support product of XJ’s:

X =
⊕

J∈ID

XJ =

�
x ∈
∏

J∈ID

XJ :
�
‖x(J)‖ 6= 0 : J ∈ ID

	
is finite

�

with the norm ‖x‖ = sup
�
‖x(J)‖ : J ∈ ID

	
. Clearly, if J 6= Fin then dim(XJ) = c and

hence dim(X ) = 2c.

(c): Equip J with the subspace topology inherited from P(ω) and with the usual
group operation (symmetric difference). Then it is easy to see that J = I

J

h
where

h(n) = {n}. �

Question 4.10. Does there exist a normed space X such that all ideals on ω are rep-
resentable in X but dim(X ) < 2c? (If 2c = c

+n for some n ∈ ω, then the answer is NO
because in this case |X |ω < 2c.)

5. CHARACTERIZATION OF POLISH- AND BANACH-REPRESENTABILITY

Theorem 5.1. An ideal J is Polish-representable if and only if J is an analytic P-ideal.
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Proof. We present two proofs for the “only if” part. In the first one, we show that
Polish-representable ideals are Fσδ P-ideals by a direct calculation. In the second proof
we show that all Polish-representable ideals are of the form Exh(ϕ) for some lsc sub-
measure ϕ.

First proof (sketch): Let G be a Polish Abelian group, d be a complete and translation
invariant (compatible) metric on G, and assume that h: ω → G such that

∑
n∈ω h(n)

does not exist. Then

IG
h
=
n

A⊆ω: the net
∑

h↾A is Cauchy
o

=
⋂

ǫ>0

⋃

F∈[ω]<ω

⋂

E∈[ω\F]<ω

n
A⊆ω : d
�
0, sh(A∩ E)
�
< ǫ
o

and the last set is clearly clopen, hence IG
h

is Fσδ.
Next, we show that IG

h
is a P-ideal. Let (Ak)k∈ω be a sequence of pairwise disjoint

elements of IG
h

,
∑

n∈Ak
h(n) = ak. For every k we can choose an Nk ∈ ω such that if

E ∈ [Ak \Nk]
<ω, then d(0, sh(E))< 2−k. Clearly, bk :=

∑
n∈Ak\Nk

h(n) = ak− sh(A∩Nk)

and d(0, bk) ≤ 2−k. It is not difficult to see that A=
⋃

k∈ωAk \ Nk ∈ IG
h

and of course
Ak ⊆∗ A for every k. The only additional property of d we need to use here is the
following easy consequence of the translation invariance: d(0, g0+ g1+ · · ·+ gn−1)≤
d(0, g0) + d(0, g1)+ · · ·+ d(0, gn−1) for g0, g1, . . . , gn−1 ∈ G.

Second proof: We show that if G is a Polish Abelian group and h: ω→ G, then there
is an lsc submeasure ϕ such that IG

h
= Exh(ϕ). Let ϕ be defined by ϕ(;) = 0 and if

A 6= ; then

ϕ(A) = sup
�
d
�
0, sh(F)
�

: ; 6= F ∈ [A]<ω
	
,

where d is a complete and translation invariant metric on G. Applying translation
invariance of d (see above), it is easy to see that ϕ is an lsc submeasure.

IG
h
⊆ Exh(ϕ): Assume that A∈ IG

h
, i.e. that
∑

h↾A is Cauchy, that is, for every ǫ > 0
there is an N ∈ω such that d(0, sh(E))< ǫ for every E ∈ [A\N]<ω. Then ϕ(A\N)≤ ǫ
so limN→∞ϕ(A\ N) = 0.

Exh(ϕ)⊆ IG
h

: Assume that A∈ Exh(ϕ), that is, ϕ(A\N)→ 0 if N →∞. Assume that
ϕ(A\ N)< ǫ. If E ∈ [A\ N]<ω then d(0, sh(E))≤ ϕ(A\ N)< ǫ. It yields that

∑
h↾A is

Cauchy, i.e. A∈ IG
h

.

Proof of the “if” part: Let J= Exh(ϕ) be an analytic P-ideal. We show that J= I
Exh(ϕ)
h

where h: ω → Exh(ϕ), h(n) = {n}. First assume that A ∈ J. If ϕ(A \ n) < ǫ, then
dϕ(A, E) < ǫ whenever A∩ n ⊆ E ∈ [A]<ω (of course, sh(E) = E) hence

∑
n∈A h(n) =

A∈ IExh(ϕ)
h

. If B /∈ J, A∈ J, and n0 ∈ B\A, then dϕ(A, E)≥ ϕ({n0}) for every E ∈ [B]<ω

with n0 ∈ E, in other words
∑

n∈B h(n) 6= A, and so B /∈ IExh(ϕ)
h

. �

To characterize Banach-representability, we need the following notion:
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An lsc submeasure ϕ is non-pathological if it is the (pointwise) supremum of mea-
sures dominated by ϕ, i.e. for every A⊆ω

ϕ(A) = sup
�
µ(A) : µ is a measure on P(ω), and ∀ B ⊆ω µ(B) ≤ ϕ(B)

	
.

Because of the lower semicontinuity, it is enough to check that this equality holds for
every A∈ Fin (for more details and characterizations of non-pathological submeasures
see [Hru11, Cor. 5.26]).

An analytic P-ideal J is non-pathological iff J= Exh(ϕ) for some non-pathological lsc
submeasure ϕ. For example, summable ideals, density ideals, Farah’s ideal, tr(N), and
Tsirelson ideals are non-pathological. In general, constructions of pathological ideals,
even pathological lsc submeasures are non-trivial (see [Maz91] for an example of such
a construction and [Far00] for further references).

It is easy to see that all non-pathological generalized density ideals are representable
in c0 (see the idea of Example 4.4).

If h is a function from ω to a classical sequence space, then we will write h =

(xn
k
)n,k∈ω if h(n) = (xn

k
)k∈ω. If xn

k
≥ 0 for all n, k, then we write h≥ 0.

Lemma 5.2. Assume that h= (xn
k
)n,k∈ω : ω→ ℓ∞ is such that

∑
h does not converge. If

h′ = (|xn
k
|)n,k∈ω then I

ℓ∞
h
= I

ℓ∞
h′

.

Proof. I
ℓ∞
h′
⊆ I

ℓ∞
h

: Trivial because ‖sh(F)‖ ≤ ‖sh′(F)‖ for every finite F ⊆ω. Iℓ∞
h
⊆ I

ℓ∞
h′

:
Assume
∑

h′ ↾A is not convergent, i.e. not Cauchy. It means that for some ǫ > 0 for
all N ∈ ω there is an FN ∈ [A \ N]<ω such that ‖sh′(FN )‖ ≥ ǫ. We show that neither∑

h ↾A is Cauchy and that ǫ
4

witnesses it. Indeed, let N be arbitrary and fix a k such
that

��
∑

n∈FN

|xn
k |
��=
∑

n∈FN

|xn
k | >

ǫ

2
.

Let FN = F0
N ∪ F1

N be a partition such that k ∈ F0
N iff xn

k
< 0. Then

‖sh(F
0
N )‖= |
∑

n∈F0
N

xn
k | >

ǫ

4
or ‖sh(F

1
N )‖= |
∑

n∈F1
N

xn
k | >

ǫ

4
.

�

Theorem 5.3. An analytic P-ideal J is Banach-representable iff it is non-pathological.

Proof. Proof of the “if” part: Let J = Exh(ϕ) for some non-pathological ϕ, and let
(µk)k∈ω be a sequence of measures on ω such that ϕ(F) = sup

�
µk(F) : k ∈ ω
	

holds
for every F ∈ [ω]<ω, and so for every subsets of ω. Let h: ω → ℓ∞ be defined by
h= (µk({n}))n,k∈ω, i.e.

h(n) =
�
µ0({n}),µ1({n}),µ2({n}), . . .

�
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(confront Example 4.4). Clearly, if F ∈ [ω]<ω then sh(F) =
�
µ0(F),µ1(F), . . . ) and

hence ‖sh(F)‖ = ϕ(F). It implies that h is as required because

A∈ Iℓ∞
h

iff
∑

h↾A is convergent (i.e. Cauchy)

iff ∀ ǫ > 0 ∃ N ∀ F ∈ [A\ N]<ω ‖sh(F)‖ = ϕ(F) ≤ ǫ
iff ∀ ǫ > 0 ∃ N ϕ(A\ N)≤ ǫ (i.e. lim

n→∞
ϕ(A\ n) = 0)

iff A∈ Exh(ϕ).

Proof of the “only if” part: Assume J = IX
h

for some Banach space X and h: ω→ X .
We can assume that X = ℓ∞ because ℓ∞ contains isometric copies of all separable
Banach spaces. Applying Lemma 5.2, we can also assume that h ≥ 0. For k ∈ ω and
A⊆ω let µk(A) =

∑
n∈A h(n)k (so µk is a measure on ω), and let ϕ = sup{µk : k ∈ω}.

Just like in the proof of the “if” part, we have ‖sh(F)‖ = ϕ(F) and, by the same
argument as above, one can prove that Iℓ∞

h
= Exh(ϕ). �

Remark 5.4. We would like to present an alternative proof for the “only if” part where
we do not need to use ℓ∞ (and Lemma 5.2). Assume that Exh(ϕ) = IX

h
for some

Banach space X and h: ω→ X . We will construct a non-pathological lsc submeasure
ψ such that Exh(ϕ) = Exh(ψ).

Let eϕ : P(ω)→ [0,∞] be defined by eϕ(;) = 0 and for A 6= ;

eϕ(A) = sup
�
‖sh(F)‖: ; 6= F ∈ [A]<ω

	
.

In Theorem 5.1 we already proved that eϕ is an lsc submeasure and Exh( eϕ) = IX
h
=

Exh(ϕ). How to construct ψ? Fix an F ∈ [ω]<ω and let F ′ ⊆ F such that eϕ(F) =
‖sh(F

′)‖. Applying the Hahn-Banach theorem, there is an x∗F ∈ X ∗ with ‖x∗F‖ = 1 such
that x∗F
�
sh(F

′)
�
= ‖sh(F

′)‖. Then the function νF : P(ω)→ [0,∞]

νF (B) = x∗F
�
sh(F

′ ∩ B)
�
=
∑

n∈F ′∩B

x∗a(h(n))

defines a signed measure with support F ′. If νF = ν
+
F −ν−F where ν+F ,ν−F are measures

and ν+F ⊥ ν−F , then let µF = ν
+
F + ν

−
F . (In other words, the measure µF is uniquely

determined by µF ({n}) = |νF ({n})|.) Finally let ψ = sup{µF : F ∈ [ω]<ω}, a non-
pathological lsc submeasure.

We claim that eϕ ≤ψ ≤ 2 eϕ and hence Exh(ψ) = Exh( eϕ) = Exh(ϕ).
eϕ ≤ψ: eϕ(F) = ‖sh(F

′)‖= x∗F (sh(F
′)) = νF (F

′) = νF (F) ≤ µF (F) ≤ψ(F).
ψ ≤ 2 eϕ: for every finite F and E if P = supp(ν+F ) = {k ∈ F ′ : x∗F (h(k))> 0} then

µF (E) =µF (F
′ ∩ E) = ν+F (F

′ ∩ E)+ ν−F (F
′ ∩ E)

=
��x∗F
�
sh(F

′ ∩ E ∩ P)
���+
��x∗F
�
sh(F

′ ∩ E \ P)
���

≤
sh(F

′ ∩ E ∩ P)
+
sh(F

′ ∩ E \ P)


≤ eϕ(E) + eϕ(E),

where we used that |x∗F (y)| ≤ ‖y‖ for every y ∈ X because ‖x∗F‖ = 1.
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6. REPRESENTABILITY IN c0

We will need the following notions (see [ST11] and [Mát]):
An lsc submeasure ϕ is density-like if for every ǫ > 0 there is a δ > 0 such that if

An ∈ [ω]<ω is a sequence of pairwise disjoint finite sets with ϕ(An) < δ, then there is
an X ∈ [ω]ω such that ϕ

�⋃
n∈X An

�
< ǫ. An analytic P-ideal J is density-like if there is

a density-like submeasure ϕ such that J = Exh(ϕ). Clearly, generalized density ideals
are density-like. At this moment we do not have any other examples of density-like
ideals (see Question 6.10).

An lsc submeasure ϕ is summable-like if there is an ǫ > 0 such that for every δ > 0
there is a sequence An ∈ [ω]<ω of pairwise disjoint finite sets with ϕ(An) < δ and
there is a k ∈ ω such that ϕ

�⋃
n∈Y An

�
≥ ǫ for every Y ∈ [ω]k. An analytic P-ideal J

is summable-like if there is a summable-like submeasure ϕ such that J = Exh(ϕ). For
example, summable ideals which are not trivial modifications of Fin (i.e. 6= {A ⊆ ω :
|A∩ X | <ω} for some X ⊆ω) and Farah’s ideal are summable-like.

Applying Remark 3.3, it is not difficult to see that if Exh(ϕ) = Exh(ψ) and ϕ is
summable- / density-like, then ψ is also summable- / density-like.

Clearly, an ideal cannot be both density- and summable-like. Moreover, tall Fσ P-
ideals are not density-like. In [Mát] Mátrai constructed an Fσ P-ideal which is neither
of them. Sławek Solecki remarked (in personal communication) that the Tsirelson
ideal defined through the classical Tsirelson space (not its dual) is another exam-
ple of Fσ P-ideal which is neither summable- nor density-like (and is clearly non-
pathological).

A less obvious example of summable-like ideal is tr(N) (see below) which is interest-
ing because in some sense it is as far from being a real summable ideal as it is possible:
in [HHH07] is was proved that tr(N) and Z are totally bounded, that is, ϕ must be
finite (i.e. ϕ(ω) < ∞) whenever tr(N) = Exh(ϕ) (or Z = Exh(ϕ)). The authors of
[HHH07] observed that if the splitting number, s(J) of an analytic P-ideal J is ω then
it must be totally bounded.

Proposition 6.1. tr(N) is summable-like.

Proof. We know that tr(N) = Exh(ϕ) where

ϕ(A) = sup

�∑

s∈B

2−|s| : B ⊆ A is an antichain

�
.

Let ǫ = 1
2

and δ > 0 be arbitrary. Fix an m ∈ω such that 2−m < δ, and for every n let

An =
�
s ∈ 2nm+m : s ↾ [nm, nm+m)≡ 0

	
.

It is easy to see that An is a finite antichain and that the measure of the associated
clopen set eAn =

⋃
s∈An
[s] is ϕ(An) = 2−m < δ where [s] = {x ∈ 2ω : s ⊆ x}. Clearly,

ϕ(A) = λ(eA).
The family {eAn : n ∈ω} forms an independent system: if n0 < n1 < · · ·< nk−1, then

eAn0
∩ eAn1
∩ · · · ∩ eAnk−1

=
�

x ∈ 2ω : ∀i < k x ↾ [nim, (ni + 1)m)≡ 0
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and hence λ
�⋂

i<k
eAni

�
= 2−mk = (2−m)k.

Applying independence, if Y ∈ [ω]2m

then

ϕ

�⋃

n∈Y

An

�
= λ

�⋃

n∈Y

eAn

�
=

2m∑

k=1

(−1)k+1
�

2m

k

��
2−m
�k
= 1− (1− 2−m)2

m m→∞−−−→ 1−
1

e

therefore if m is large enough, then ϕ
�⋃

n∈Y An

�
> 1

2
= ǫ. �

Representability in c0 can be characterized by combinatorics of the defining sub-
measure. This approach will help us showing that several classical ideals are not rep-
resentable in c0.

Proposition 6.2. An ideal J is representable in c0 iff there is a lsc submeasure ϕ and a

sequence (µk)k∈ω of measures on ω such that J = Exh(ϕ), ϕ = sup{µk : k ∈ ω}, and

{k : m ∈ supp(µk)} is finite for every m ∈ω.

Proof. If J = Exh(ϕ) for some submeasure ϕ = sup{µk : k ∈ ω} as in the statement.
Then the basic representation of Exh(ϕ) in ℓ∞ (see Theorem 5.3) is actually a repre-
sentation in c0.

Now assume that h= (xn
k
) : ω→ c0, h≥ 0, and J = I

c0
h

. We will modify h. To every
n fix a kn such that |xn

k
| < 2−n for every k ≥ kn, and let h′ = (yn

k
) : ω → c0 where

yn
k
= xn

k
if k < kn (otherwise yn

k
= 0). It is easy to see that Ic0

h′
= J and therefore we

can use the proof of Theorem 5.3 again to obtain the measures {µk : k ∈ ω} such that
J= I

c0

h′ = Exh(ψ) where ψ = sup{µk : k ∈ω}. Clearly, ψ is as desired. �

Proposition 6.3. Let (µk)k∈ω be a sequence of measures onω such that {k : m ∈ supp(µk)}
is finite for every m ∈ ω. Let ϕ = sup{µk : k ∈ ω} and J = Exh(ϕ). If µk is bounded for

every k, then J is a generalized density ideal.

Proof. For any k we can fix an nk such that µk(ω \ nk) < 2−k. Let µ′
k
(A) = µk(A∩ nk).

We claim that if ϕ′ = sup{µ′
k
: k ∈ω}, then Exh(ϕ′) = Exh(ϕ).

Clearly, Exh(ϕ′) ⊇ Exh(ϕ) (because ϕ′ ≤ ϕ). So, assume that A ∈ Exh(ϕ′), i.e.
for every ǫ > 0 there is an N ∈ ω such that if F ∈ [A \ N]<ω, then ϕ′(F) < ǫ. We
will find an M such that ϕ(F) < 2ǫ for every F ∈ [A \ M]<ω. Let K ∈ ω be such
that 2−K−1 ≤ ǫ < 2−K . For all k ≤ K fix an mk ≥ nk such that µk(ω \ mk) < 2−K−1

and let M = max{N , m0, m1, . . . , mK}. It is easy to see that if F ∈ [A \ M]<ω, then
ϕ(F) < ϕ′(F) + 2−K−1 < 2ǫ.

To finish the proof, we show the following general fact.

Claim. Assume that ψ = sup{νk : k ∈ ω} where νk is a measure for every k, |{k : m ∈
supp(νk)}| < ω for every m, and |supp(νk)| < ω for every k. Then Exh(ψ) is a general-

ized density ideal.

Proof. We can easily find an interval partition (Pn)n∈ω of ω such that for every k there
is an n with supp(νk) ⊆ Pn ∪ Pn+1. Let ϕn(A) = sup{νk(A∩ Pn) : k ∈ ω} for every n.
Notice that ϕn is a submeasure concentrated on Pn. We show that if ~ϕ = (ϕn)n∈ω, then
Z~ϕ = Exh(ψ).
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Clearly supn∈ωϕn(A)≤ supk∈ω νk(A) holds for every A, in particular

ϕn(A) = ϕn(A∩ Pn)≤ sup
k∈ω
νk(A\min(Pn)),

and thus Z~ϕ ⊇ Exh(ψ). Conversely, if A /∈ Exh(ψ) then there is an ǫ > 0 such that for
every m there is a km such that νkm

(A\m)> ǫ. The set {km : m ∈ω} is infinite because
the supports of νk ’s are finite. For a fixed m, there is an nm such that supp(νkm

) ⊆
Pnm
∪ Pnm+1 and hence

ϕnm
(A)≥ ϕnm

(A\m)> ǫ/2 or ϕnm+1(A)≥ ϕnm+1(A\m)> ǫ/2.

The set {nm : m ∈ ω} is also infinite because Pn ∪ Pn+1 can cover only finitely many
supports of νk’s. Therefore ϕn(A)9 0 and A /∈ Z~ϕ. �

Clearly, ϕ′ and the sequence (µ′
k
)k satisfies the conditions of the claim, so we are

done. �

Corollary 6.4. If an analytic P-ideal is totally bounded and representable in c0, then it is

a generalized density ideal.

Corollary 6.5. tr(N) is not representable in c0.

The next result shows that among tall Fσ ideals the representability in c0 is equiva-
lent to the representability in R.

Theorem 6.6. A tall Fσ P-ideal I is representable in c0 iff it is a summable ideal.

Proof. (Non-trivial implication.) Fix an lsc submeasure ϕ such that I = Exh(ϕ) =
Fin(ϕ). Suppose that I is representable in c0, and (using Proposition 6.2) fix a non-
pathological submeasure ψ = sup{µn : n ∈ ω} such that I = Exh(ψ) and there is a
strictly increasing function f : ω→ ω such that µn({k}) = 0 if n ≥ f (k). Also, assume
that ϕ ≥ ψ. Otherwise, we could consider ϕ +ψ instead of ϕ (notice that Exh(ϕ) =
Exh(ϕ+ψ) and Fin(ϕ) = Fin(ϕ+ψ)). Because of tallness, ϕ({n}),ψ({n})→ 0.

Assume on the contrary that I is not summable. Let ψn = maxm≤nµm. Then In =

Exh(ψn) is summable for every n (In = Ihn
where hn(k) = ψn({k})) and we have

I ⊆ · · · ⊆ In+1 ⊆ In ⊆ · · · ⊆ I0. Hence, for each n we can find An ∈ In \ I. We can
assume that (i) (An)n∈ω are pairwise disjoint and (ii) ψn(An)< 2−n for every n.

(i): Fix a sequence (Bk)k∈ω such that Hn = {k : An = Bk} is infinite for every n.
Then by recursion we can pick finite sets Fk ⊆ Bk such that ϕ(Fk) > k and max(Fk) <

min(Fk+1). Finally let A′n =
⋃
{Fk : k ∈ Hn}. Then A′n ⊆ An and A′n /∈ I.

(ii): Applying tallness, for every n there is an mn such that

ψn(An \mn)≤
∑

m∈An\mn

ψn({m}) < 2−n,

hence after finite modifications (ii) holds true.
In particular,
⋃

k≥n Ak ∈ In because ψn(Ak) ≤ ψk(Ak) < 2−k (if n ≤ k) and hence
we can use σ-subadditivity of ψn.

Now we will construct a set X ∈ Exh(ψ) \ Fin(ϕ), which will lead us to the contra-
diction. First, we can fix a sequence (X ′n)n∈ω such that
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(a) X ′0 ∈ [A0]
<ω and X ′n+1 ∈

�
A f (max(X ′n)+1)
�<ω,

(b) max(X ′n)<min(X ′n+1),
(c) ϕ(X ′n) ≈ 1 for every n.

Let X ′ =
⋃

n∈ω X ′n and consider the following ideals on X ′: I ↾ X ′ is a tall Fσ P-ideal
(hence not density-like), and Z~ϕ is a tall generalized density ideal (hence density-like)
where ~ϕ = (ϕ ↾ X ′n)n∈ω. Clearly, I ↾ X ′ ⊆ Z~ϕ. Therefore there is an X ⊆ X ′ such that
ϕ(X ) =∞ (i.e. X /∈ Fin(ϕ)) but ϕ(X ∩ X ′n)→ 0. We show that X ∈ Exh(ψ).

Let kn = max(X ′n) + 1 and Xn = X ∩ X ′n. Clearly Xn+1 ⊆ A f (kn)
∩ [kn, kn+1). Fix

m, N ∈ω. We have two cases:
1. f (kN )≥ m. Then using N ≤ kN ≤ f (kN ) we obtain that

µm(X \ kN )≤ µm

� ⋃

j≥ f (kN )

A j

�
≤ψm

� ⋃

j≥ f (kN )

A j

�

≤
∑

j≥ f (kN )

2− j = 2− f (kN )+1 ≤ 2−kN+1 ≤ 2−N+1.

2. f (kN )< m. Then we work with a partition of X \ kN and obtain that

• µm

�
X ∩ [kN , kN+1)
�
= µm(XN+1)≤ψ(XN+1)≤ ϕ(XN+1);

• µm(X\kN+1)≤ µm

�⋃
j≥ f (kN+1)

A j

�
≤ µm

�⋃
j≥N A j

�
≤ψm

�⋃
j≥N A j

�
≤ 2−N+1.

In both cases, µm(X \kN )≤ ϕ(XN+1)+2−N+1. Moreover this value does not depend

on m and tends to 0. Hence ψ(X \ kN ) = supm∈ωµm(X \ kN )
N→∞−−−→ 0, i.e. X ∈

Exh(ψ). �

Corollary 6.7. Farah’s ideal and the Tsirelson ideals are not representable in c0.

Proposition 6.8. Let I be representable in c0. Assume that there is no A ∈ [ω]ω such

that I ↾ A is contained in a summable ideal. Then I is a generalized density ideal.

Proof. We can assume that I= Exh(ϕ), where ϕ = sup{µk : k ∈ω} is such that {k : m ∈
supp(µk)} is finite for every m. Suppose there is k ∈ω such that µk is unbounded. Let
A = supp(µk) and notice that I ↾ A ⊆ Exh(µk) = Iµk({·}). Therefore, I ↾ A is contained
in a summable ideal. Hence each µk is bounded. But then, by Proposition 6.3, I is a
generalized density ideal. �

It seems that it is difficult to find a density-like ideal which is not a generalized den-
sity ideal (see Question 6.10), so it is difficult to find a (non-pathological) density-like
ideal which is not representable in c0. The above proposition shows that the situation
differs drastically with summable-like ideals: it is impossible to find an example which
is representable in c0 and which does not resemble a summable ideal at least locally.
So, representability in c0 seems to be closely connected to density-likeness. However
the question of the full characterization is still open.

Question 6.9. How to characterize analytic P-ideals which can be represented in c0?

It is connected to an irritating question mentioned before:
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Question 6.10. Is there a density-like ideal which is not a generalized density ideal?

In the context of Proposition 6.8 there remains a question, how much ideals con-
tained in a summable ideal resemble summable ideals itself. Despite the fact that
summable ideals are quite small, there are nontrivial examples of ideals covered by
a summable ideal which seem to be quite far from being summable itself. A natural
example of such an ideal is Farah’s ideal. Indeed, notice that JF can be covered by
summable ideals in many ways, e.g. let h(k) = 1/n if k ∈ [2n, 2n + n) and h(k) = 0
else, then JF ⊆ Ih. There is even a density ideal covered by a summable ideal:

Example 6.11. Let µn({k}) = 1/n, h(k) = 2−n for k ∈ [2n, 2n+1). Then Z~µ ⊆ Ih simply
because if a ∈ωω and an

n
→ 0 then
∑

n∈ω
an

2n <∞.

On the other hand, tr(N) cannot be covered by any summable ideal.

Example 6.12. tr(N) (and hence Z) cannot be covered by a summable ideal. Let
h: 2<ω → [0,∞). It is easy to find an branch x ∈ 2ω such that

∑
x↾n⊆t h(t) = ∞

for each n ∈ ω. Choose a sequence of pairwise disjoint finite sets (Fn)n∈ω such that
Fn ⊆ {t : x ↾ n⊆ t} and

∑
t∈Fn

h(t)> 1. Then
⋃

n∈ω Fn ∈ tr(N) \ Ih.

Question 6.13. How do (analytic P-)ideals which are contained in a summable ideal
look like?

This question is connected also to the question of representability in Rω. We men-
tioned (see Example 4.8) that an ideal is representable in Rω iff it is a countable
intersection of summable ideals. In particular, it has to be contained in a summable
ideal, so neither tr(N) nor Z is representable in Rω.

Question 6.14. Is there any characterization of ideals representable in Rω?

In the next diagram, we summarize all possible connections between properties of
ideals we investigated, and also put easy examples into every “bubble” (where we
know any).
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non-pathological analytic P-ideals (i.e. Banach-representable ideals)

?
?

summable-like ideals Mátrai’s land density-like ideals

tr(N)
generalized

density ideals

Fin

JF

I1/n ⊕Z

Z

I1/n

tall Fσ
ideals

ideals repr. in c0

tall
Tsirelson

ideals

non-trivial

summable ideals

Explanations:

• A summable ideal is non-trivial if it is not a trivial modification of Fin.
• J0 ⊕ J1 = {A⊆ 2×ω: {n : (i, n) ∈ A} ∈ Ji, i = 0,1}.
• “?” means that we do not know any examples in this “bubble.”

7. REPRESENTABILITY IN ℓ1

Notice that if an ideal is represented in ℓ1 by a sequence whose every coordinate
is non-negative, then it is a summable ideal. However, in general this is not true. We
present an example of an ideal I which is representable in ℓ1 but is not summable. The
construction is motivated by the standard example of an unconditionally convergent
but not absolutely convergent sequence in ℓ1.

We will need two interval partitions (Pn)n∈ω and (Qn)n∈ω of ω: Let Pn = [0 +
1+ 2 + · · · + n, 0 + 1 + 2 + · · · + n + (n + 1)), let Q0 = [0,1) and if n > 0 then let
Qn = [1+ 2+ 4+ · · ·+ 2n−1, 1+ 2+ 4+ · · ·+ 2n). Define the following sequence of
“Rademacher-like” vectors:
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• r0 = (1);
• r1 = (

1
2
, 1

2
), r2 = (

1
2
,−1

2
);

• r3 = (
1
4
, 1

4
, 1

4
, 1

4
), r4 = (

1
4
, 1

4
,−1

4
,−1

4
), r5 = (

1
4
,−1

4
, 1

4
,−1

4
);

• r6 = (
1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
), r7 = (

1
8
, 1

8
, 1

8
, 1

8
,−1

8
,−1

8
,−1

8
,−1

8
),

r8 = (
1
8
, 1

8
,−1

8
,−1

8
, 1

8
, 1

8
,−1

8
,−1

8
), r9 = (

1
8
,−1

8
, 1

8
,−1

8
, 1

8
,−1

8
, 1

8
,−1

8
);

and so on. In general, in the nth block we construct ri ∈ R2n

for i ∈ Pn (notice that
2n = |Qn|), they are the first |Pn| many “Rademacher-like” vectors in R2n

. Define the
operation T : R2n → L1[0,1] by T (x) ↾ Ik ≡ 2n xk for k < 2n where Ik =

� k
2n , k+1

2n

�

and x = (xk)k<2n . Then T is an isometric linear embedding and {T (ri) : i ∈ Pn} is
the sequence of the first n+1 usual Rademacher functions. In particular the following
version of Khintchine’s inequality holds true: there is C > 0 such that for any sequence
(ci)i∈Pn

of real numbers

∑

i∈Pn

ci ri


1

≤ C

�∑

i∈Pn

c2
i

�1/2

(this is an immediate corollary of [Hei11, Theorem 3.25]).
Now, we will define a sequence x = (x i)i∈ω in ℓ1 which will represent the Rademacher-

ideal JR = I
ℓ1
x . Simply “shift” the vectors (ri)i∈Pn

to the interval Qn, put zeros into every
other coordinate, and divide it with n (if n > 0). More precisely, if i ∈ Pn then let
supp(x i) = Qn and

x i

�
min(Qn) + k
�
=

ri(k)

n
for k < 2n.

For X ⊆ω let AX = {n ∈ω: Pn ∩ X 6= ;}.

Theorem 7.1.

(0) JR is a tall Fσ ideal.

(1) If X ∈ JR then AX ∈ I1/n.

(2) If AX ∈ I1/
p

n then X ∈ JR.

(3) JR is not a summable ideal.

Proof. (0): Tallness is trivial because ‖x i‖ = 1/n if i ∈ Pn. Let ϕ : P(ω) → [0,∞) be
defined by

ϕ(A) =
∑

n∈ω
max

�
∑

i∈F

x i


1

: ; 6= F ⊆ Pn ∩ A

�
.

One can see that ϕ is a submeasure and JR = Fin(ϕ).

(1): Let
∑

i∈X x i = a and assume on the contrary that
∑

n∈AX
1/n=∞. Without loss

of generality assume that X ∩Pn = { jn} is a singleton for each n ∈ AX . Clearly, ||x jn
||1 =

1/n for each n ∈ AX and thus ‖a‖1 =
∑

k∈X xk


1 =
∑

n∈AX
x jn


1 =
∑

n∈AX
||x jn
||1 =∑

n∈AX
1/n=∞, a contradiction.

(2): Suppose
∑

n∈AX
1/
p

n < ∞. This time we can assume that X ∩ Pn = Pn for
each n ∈ AX . We are going to use different (but in ℓ1 equivalent, see [Hei11, Theorem
3.10]) definition of unconditional convergence:

∑
(xn)n is unconditionally convergent
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if for any choice of signs (εn)n the series
∑
(εn xn)n is convergent, in the classical sense,

that is, the sequence of initial subsums is convergent.
For any choice of signs (εk)k, K0 ∈ Pn0

, and K1 ∈ Pn1
, K0 < K1, n0, n1 ∈ AX , using

Khintchine’s inequality we have

∑

k∈X∩[K0,K1)

εk xk


1

=


∑

i∈Pn0
\K0

εi x i


1

+
∑

n∈AX∩(n0 ,n1)


∑

i∈Pn

εi x i


1

+


∑

i∈Pn1
∩K1

εi x i



≤ C ·
∑

n∈AX∩[n0,n1]

�
n+ 1

n2

�1/2
n0,n1→∞−−−−−→ 0

because of our assumption on AX .

Before (3), we need a general Lemma:

Lemma 7.2. Assume that a = (an)n∈ω, b = (bn)n∈ω, c = (cn)n∈ω ∈ c0, an, bn, cn ≥ 0 for

every n, and that Ia ⊆ Ib. Then Iac ⊆ Ibc (where ac = (ancn)n∈ω and bc = (bncn)n∈ω).

Proof. Fix an X ∈ Iac. We can assume that X =ω by restricting our sequences to X . We
have to show that ω ∈ Ibc. For every m define Bm = {n : bn ≥ 2man}, and let C = ‖c‖0.

Claim There is an m such that Bm ∈ Ib.

Suppose that Bm /∈ Ib for every m. Then we can find a sequence (Fm)m∈ω of finite
sets such that for every m (i) Fm ⊆ Bm, (ii) 2−m ≤ sa(Fm)< 2−m+1, and (iii) max(Fm)<

min(Fm+1). Then clearly B =
⋃

m∈ω Bm ∈ Ia but sb(Fm) ≥ 1 for every m hence B /∈ Ib,
a contradiction.

Let m be such that Bm ∈ Ib. Then
∑

n∈ω
bncn ≤ C
∑

n∈Bm

bn+
∑

n/∈Bm

bncn

≤ C
∑

n∈Bm

bn+ 2m
∑

n/∈Bm

ancn

≤ C
∑

n∈Bm

bn+ 2m
∑

n∈ω
ancn <∞.

�

(3): The ideal I is not a summable ideal. Suppose that JR = Ih for some h: ω →
[0,∞). Let d(n) = sh(Pn) and e(n) = sh(Pn)/n. According to (2) I1/

p
n ⊆ Id and by the

Lemma (applied for a(n) = 1/
p

n, b(n) = d(n), and c(n) = 1/n) we have I 1
n
p

n
⊆ Ie.

This just means that e ∈ ℓ1.
For each n ∈ ω pick in ∈ Pn of the smallest possible weight with respect to h. (1)

implies that the set X = {in : n ∈ ω} /∈ JX (simply because AX = ω /∈ I1/n). But∑
n∈X h(n)≤
∑

n∈ω
d(n)

n
=
∑

n∈ω e(n)<∞, a contradiction. �

Question 7.3. Is there a nice characterization of representability in ℓ1? Does it imply
e.g. that the ideal is Fσ?
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8. SOME RELATED QUESTIONS

The topic of this article can be developed in many ways, e.g. by considering char-
acterizations of representability in particular structures. Below we list some problems
which we found interesting.

Representations in C[0,1]. The Banach space C[0,1] of continuous real-valued
functions on the unit interval with the sup-norm is (isomorphically) universal for the
class of separable Banach spaces, i.e. it contains copies (via linear homeomorphisms)
of all separable Banach spaces. Therefore, all non-pathological analytic P-ideal are
representable in C[0,1].

Question 8.1. Is there any “canonical” way of representing non-pathological analytic
P-ideals in C[0,1]? Here “canonical” stands for a simple construction of a representa-
tion of Exh(supn∈ωµn) in C[0,1] from the defining sequence (µn)n∈ω of measures on
ω.

Question 8.2. Assume that all non-pathological analytic P-ideals are representable in
a Banach space X . Does it imply that X is (isomorphically) universal for the class of all
separable Banach spaces?

Weak representations. Another natural way to associate ideals to sequences in
topological Abelian groups is the following: If h :ω→ G then let

eIG
h
=
n

A⊆ω:
∑

h↾A is Cauchy
o

.

Clearly, eIG
h

is always an ideal, and IG
h
⊆ eIG

h
= I
eG
h

where eG ⊇ G is the completion of

G. Of course, if G is complete, then IG
h
= eIG

h
.

For example, let X be a Banach space and consider X with the weak topology w =

σ(X , X ∗). Then we can talk about ideals representable in the completion eX of (X , w).
If we are interested in a special case, namely, ideals of the form eIX ,w

h
, i.e. ideals of the

form I
eX
h

where we work with sequences h : ω → X ⊆ eX with range in X only, then
applying [Die84, page 44, Thm. 6] it is easy to see that these ideals are Fσ.

Question 8.3. Is there any characterization of ideals of the form eIX ,w
h

where X =

c0,ℓ1,ℓ∞?

Ideals defined by families of finite sets. It seems that numerous ideals can be
written in a quite special form. For a function f : ω → [0,∞) and finite set F ⊆ ω
define a measure in the following way: µ f

F (A) = s f (A∩ F) =
∑

k∈A∩F f (k). Now for a

family F ⊆ [ω]<ω we can define a submeasure ϕ f

F
= supF∈F µ

f

F .
For instance, consider 2<ω instead of ω, and let f , g : 2ω→ [0,∞), f (s) = 2−|s| and

g(s) = |s|−2. Then we obtain the following example:

• if F = [2<ω]<ω, then Exh(ϕ f

F
) is the summable ideal;

• if F = {levels}, then Exh(ϕ f

F
) is the density ideal;

• if F = {antichains}, then Exh(ϕ f

F
) is tr(N);
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• if F consists of finite subsets which do not have more than 2n/n elements from
n-th level, then Exh(ϕg

F
) is Farah’s ideal.

We hope that some families of finite sets (with an appropriate f ) could give us some
interesting ideals.

Question 8.4. Is there any characterization of ideals of the form Exh(ϕ f

F
)? Or at least

in the special cases described above (i.e. with a fixed f )?

Basic representations. Let E be the canonical basic sequence of c0. Consider a
linear space X ′ ⊆ c0 equipped with a norm ||·|| and let X be the completion of (X ′, ||·||).
We will say that an ideal I is basically represented in X if

A∈ I iff
∑

n∈A

αn xn unconditionally converges in X

for some sequence (αn)n∈ω from R+ and a sequence (xn)n∈ω from E (where we assume
that e = xn only for finitely many n’s, for every e ∈ E).

It seems that this representations ties ideals with Banach spaces in a more evident
way than the standard representation. E.g.

• summable ideals are those basically representable in ℓ1;
• density ideals are those basically representable in c0;
• Tsirelson ideals are basically representable in Tsirelson space(s).

Perhaps this approach can be used to construct peculiar Banach spaces. For example
we can ask if there is a norm such that tr(N) is representable in the above way?

REFERENCES

[Die84] Joseph Diestel. Sequences and series in Banach spaces, volume 92 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 1984.
[Far99] Ilijas Farah. Ideals induced by Tsirelson submeasures. Fund. Math., 159(3):243–258, 1999.
[Far00] Ilijas Farah. Analytic quotients: theory of liftings for quotients over analytic ideals on the

integers. Mem. Amer. Math. Soc., 148(702):xvi+177, 2000.
[FS09] Barnabás Farkas and Lajos Soukup. More on cardinal invariants of analytic P-ideals. Comment.

Math. Univ. Carolin., 50(2):281–295, 2009.
[Hei11] Christopher Heil. A basis theory primer. Applied and Numerical Harmonic Analysis.

Birkhäuser/Springer, New York, expanded edition, 2011.
[HHH07] Fernando Hernández-Hernández and Michael Hrušák. Cardinal invariants of analytic P-ideals.

Canad. J. Math., 59(3):575–595, 2007.
[Hru11] Michael Hrušák. Combinatorics of filters and ideals. In Set theory and its applications, volume

533 of Contemp. Math., pages 29–69. Amer. Math. Soc., Providence, RI, 2011.
[Kle52] V. L. Klee, Jr. Invariant metrics in groups (solution of a problem of Banach). Proc. Amer. Math.

Soc., 3:484–487, 1952.
[MA09] D. Meza-Alcántara. Ideals and filters on countable sets. PhD thesis, Universidad Nacional

Autónoma México, 2009.
[Mát] Tamás Mátrai. More cofinal types. preprint.
[Maz91] Krzysztof Mazur. Fσ-ideals and ω1ω

∗
1-gaps in the Boolean algebras P(ω)/I . Fund. Math.,

138(2):103–111, 1991.



22 PIOTR BORODULIN–NADZIEJA, BARNABÁS FARKAS, AND GRZEGORZ PLEBANEK

[Sol99] Sławomir Solecki. Analytic ideals and their applications. Ann. Pure Appl. Logic, 99(1-3):51–72,
1999.

[ST11] Sławomir Solecki and Stevo Todorcevic. Avoiding families and Tukey functions on the
nowhere-dense ideal. J. Inst. Math. Jussieu, 10(2):405–435, 2011.
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