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DEFINABLE HENSELIAN VALUATIONS

FRANZISKA JAHNKE AND JOCHEN KOENIGSMANN

AsstrAcT. In this note we investigate the question when a henseliareddield carries

a non-trivial 0-definable henselian valuation (in the language of ringshis Ts clearly
not possible when the field is either separably or real cloard, by the work of Prestel
and Ziegler, there are further examples of henselian valieéds which do not admit a
0-definable non-trivial henselian valuation. We give coiodis on the residue field which
ensure the existence of a parameter-free definiton. Incpéati we show that a henselian
valued field admits a non-trivial henseli@rdefinable valuation when the residue field is
separably closed or fiiciently non-henselian, or when the absolute Galois grouthef
(residue) field is non-universal.

1. INTRODUCTION

In a henselian valued fieldK(v), many arithmetic or algebraic questions can be re-
duced, via the henselian valuationto simpler questions about the value gradf and
the residue fieldv. By the celebrated Ax-Kochg@rshov Principle, in fact, if the residue
characteristic is 0, ‘everything’ can be so reduced: theotdér theory of K, v) (as valued
field) is fully determined by the 1st-order theoryw (as ordered abelian group) and of
Kv (as pure field). In that sense the valuation (with its two agganying structuresK
andKv) ‘knows’ everything aboukK, especially the full 1st-order theory Kfas pure field,
or, as one may call it, tharithmeticof K.

Conversely, in all natural examples, and, as we will see, astnothers as well, a
henselian valuation is so intrinsic toK that it is itself encoded in the arithmetic &,
or, to make this notion precise, that its valuation rii\gis 1st-order definable iK. Well
known examples are the classical fie@sandC((t)) with their valuation rings

Zp = {x€Qp|Iyl+pxt=y?*(forp=2)
CIrt] (xeC(() | Iy 1+t =y?)

Note that the second example uses the pararheTdris is not necessary though: one can
also find a parameter-free definition@f t]] in C((t)); however, as observed in [CDLM13],
it can no longer be an existential definition: otherwise tafdtion would go up the tower
of isomorphic fields

C((®) c () ccE*) c ...

thus leading to a 1st-order definition of a non-trivial valoa subring of the algebraically
closed fieldC((t¥*)) = U, C((t¥™)), contradicting quantifier eliminiation (every definable
subset is finite or cofinite).
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ThatC[[t]] is 0-definable inC((t)) follows from the more general fact that every henselian
valuation with non-divisible archimedean value grouf-+definable ([Koe04]). This has
recently been generalized to non-divisible regular valoeigs (those elementarily equiv-
alent to archimedean ordered groups, 5ee [Hon14]). Notdttbee are also several recent
preprints which discus8-definability of a range of henselian valuations using ol f
mulae of ‘simple’ quantifier type (i.e. definitions invohgry-,3-,¥3 or 3Y-formulae). To
learn more about these exciting developments, we refeetider to[[CDLM13],[[AK13],
[Feh13] and[[Prel4].

In this paper we will develop two new, fairly general criterone on the residue field
and one on the absolute Galois grdbp of K to guarante®-definability of (in the first
case a given, in the second case, at least some) henseliati®alonK. It is well-known
that separably and real closed fields admit no definable hiensaluations. Furthermore,
by the work of Prestel and Ziegler ([PZ787) there are henselian valued fields which
are neither separably nor real closed and which do not adwifalefinable henselian
valuation. It is thus a natural question to ask which condgion a henselian valued field
(K,Vv) ensure thav is 0-definable or thaK admits at least som@-definable henselian
valuation. In the present work, we focus on parameter-fegmitions as a definition of a
henselian valuation with parameters need not ensure thgeage of a definable henselian
valuation in elementarily equivalent fields. Note that thare also examples of henselian
valuations which are not even definable with parameters[ZE@6], Theorem 4.4). The
only known examples of henselian fields which admit no patarrdefinable henselian
valuations at all are separably and real closed fields.

The paper is organized as follows. In the next section, weuds the main tools
which we require. We recall the definition pfhenselian valuations and the canonical
(p)-henselian valuation. Building on work of the second au{see [Koe95]), the authors
have shown that the canonigadhenselian vaIuationE is typically definable (Theorem
3.1in [JK14]). We show that it is furthermore henseliffritiis coarser than the canonical
henselian valuation.

The third section contains the main results of this paperb®dgn by giving conditions
on the residue field to make a henselian valuation definalde. fifst criterion says that
the henselian valuationon K is 0-definable if, for some prime, Kv allows a separable
extensionL with L # L(p) that does not allow g-henselian valuation (Theorelm B.6,
cf. section 2 for the definition of(p) and p-henselian). We deduce from this that any
henselian valuation with finitely generated, hilbertiaACPor simple but not separably
closed residue field i8-definable. We use a similar method to show that a hensellarda
field (K,v) whereKv is separably or real closed, bKtisn't, admits somé-definable
henselian valuation.

The next part discusses a second, Galois-theoretic onitdor the existence of @-
definable henselian valuation on a (hon-separably- and@alrclosed) henselian valued
field K (Theoreni3.15). It says that K is henselian an is non-universal that is,
that not every finite group is a subquotient®g, thenK admits some)-definable non-
trivial henselian valuation. In most cases, we will in faefide the canonical henselian
valuation onK. This generalizes old results by Neukirch, Geyer and Popesrsdiian
fields with prosolvablesk. One class of examples is given by henselian NIP fields of
positive characteristic.

These two criteria, one on the residue field of a given hemsefaluationv on K, and
one onGk in the presence cfomehenselian valuation oK, are fairly independent. One
easily finds examples of the first kind wheé®g is universal and examples where it isn't.
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Similarly, there are henselian fiel#&swith non-universalGx where every henselian val-
uation onkK satisfies the criterion on the residue field and such where nbthem does.

What is common between the two criteria, however, is the ottt proof which in either

case depends on a careful analysis when, on alfiettle canonicap-henselian valuation
vﬁ is already henselian. Although many fields have universsblalbe Galois groups, the
best known ones are hilbertian fields and PAC fields with noglian free absolute Galois
group. Hence some of the main examples of henselian valudd far which the second
criterion fails are covered by the first one.

2. HENSELIAN AND P-HENSELIAN VALUATIONS

2.1. The canonical henselian valuation.We call a fieldK henselianif it admits some
non-trivial henselian valuation. For any fiekd there is acanonical henselian valuation
on K. In this section, we recall the definition and discuss somiésgiroperties. We use
the following notation: For a valued fiel&(v), we denote the valuation ring &y, the
residue field byKv, the value group byK and the maximal ideal by,. For an element
a € Oy, we writea to refer to its image irKv.

Theorem 2.1(a la F.K. Schmidt) If a field admits two independent non-trivial henselian
valuations, then it is separably closed.

Proof. [EPO5], Theorem 4.4.1. O

One can deduce from this that the henselian valuations ordaféiem a tree: Divide
the class of henselian valuations iKirinto two subclasses, namely

H1(K) = { vhenselian oK | Kv # Kv*°P}

and
H(K) = { vhenselian oK | Kv = Kv*¢P},

A corollary of the above theorem is that any valuatien € Hy(K) is finer than any
vi € Hi(K), i.e. Oy, € O,,, and that any two valuations id;(K) are comparable. Further-
more, if H>(K) is non-empty, then there exists a unique coargest H,(K); otherwise
there exists a unique finegt € H1(K). In either caseyk is called thecanonical henselian
valuation Note that ifK is not separably closed and admits a non-trivial hensebdunay
tion, thenvk is also non-trivial.

As we will usually define henselian valuations on finite Galextensions later on, we
often use the fact that coarseningsvgfremain henselian when restricted to subfields of
finite index:

Theorem 2.2([EP05], Theorem 4.4.4)Let (L, w) be a valued field, and assume that L is
not separably closed and that w is a (not necessarily propeaysening of v. If K c L is
a subfield such that K is finite, then = w|k is a coarsening of .

2.2. p-henselianity. Throughout this section, lé& be a field andg a prime.

Definition. We define Kp) to be the compositum of all Galois extensions of K of p-power
degree. A valuation v on K is calledhenselianf v extends uniquely to ¢0). We call K
p-henselianf K admits a non-trivial p-henselian valuation.

Clearly, this definition only imposes a condition wiif K admits Galois extensions of
p-power degree.

Proposition 2.3([Koe95], Propositions 1.2 and 1.3for a valued field K, v), the follow-
ing are equivalent:
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(1) vis p-henselian,

(2) v extends uniquely to every Galois extension of K of pepalegree,

(3) v extends uniquely to every Galois extension of K of @egre _

(4) for every polynomial & O, which splits in Kp) and every a O, with f(a) = 0
andf’(a) # 0, there exista € O, with f(a) = 0anda = a.

As for fields carrying a henselian valuation, there is agatar@onicalp-henselian val-
uation, due to the following analogue of Theordeni 2.1:

Theorem 2.4([Br676], Corollary 1.5) If K carries two independent non-trivial p-hense-
lian valuations, then k= K(p).

We again divide the class @gkhenselian valuations df into two subclasses,
HP(K) = { v p-henselian oK | Kv # Kv(p) }

and
HJ(K) = { v p-henselian oK | Kv = Kv(p) } .

As before, one can deduce that any valuatipre HS(K) is finer than anyv; € Hf(K),
i.e. Oy, ¢ Oy, and that any two valuations in(K) are comparable. Furthermore, if
HJ(K) is non-empty, then there exists a unique coarsest vatugfiin H5(K); otherwise
there exists a unique finest valuat'rdbe Hf(K). In either casevﬁ is called thecanonical
p-henselian valuation Again, if K is p-henselian and # K(p) holds, thenvﬁ is also
non-trivial.

Note that unlike henselianity, beimghenselian does not go up arbitrary algebraic ex-
tensions, as a superfield might have far more extensiopspofver degree. Nevertheless,
similar to Theorerh 2]2, sometimgshenselianity goes down:

Proposition 2.5. Let K be a field, K+ K(p). Assume that L is a normal algebraic exten-
sion of K, where L is p-henselian andA_L(p). If

(1) K<L g K(p)or
(2) L/K is finite

then K is p-henselian.

Proof. 1.: Seel[Koe03], Proposition 2.10.

2.. AssumeK is not p-henselian, and let be a valuation oK. By the first part of the
propositiony has infinitely many extensions ¥(p): If there were onlyn extensions of/
to K(p), then there would be sonié > K finite, L’ ¢ K(p), such thaw hadn extensions
to L’. The normal hull ofL.” and thusk would bep-henselian.

Now assumd. = K(ay, ..., any) finite and normal, theiK(p)(az,...,am) € L(p). If wis
a valuation orL, thenv = w|x has infinitely many prolongations #(p). As v has only
finitely many prolongations th, and all these are conjugate must have infinitely many
prolongations t&(p)(as, . . . , an) and hence ta.(p). O

For any valued fieldp-extensions of the residue field lift pextensions of the field.

Proposition 2.6 ([EPQ5], Theorem 4.2.6)Let (K, V) be a valued field and p a prime. If
Kv # Kv(p), then K+ K(p).
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2.3. Defining p-henselian valuations.In this section, we recall a Corollary of the Main
Theorem in[[JK14] which is used in all of our proofs in latectsens.

When it comes to henselian valued fields, real closed fieldaya play a special role.
By o-minimality, no real closed field admits a definable héiagevaluation, and there are
real closed fields which admit no henselian valuations (Rfevhereas others do (like
R((t9))). These diiculties are reflected by 2-henselian valuations on Eudlidiedds. A
field K is calledEuclideanif [K(2) : K] = 2. Any Euclidean field is uniquely ordered,
the positive elements being exactly the squares. If a Eealidield has no odd-degree
extensions, then it is real closed. In particular, therenifa,g-sentencey such that any
field K with K # K(2) modelg iff it is non-Euclidean. Note that Euclidean fields are the
only fields for whichK(p) can be a finite proper extensionkf

Theorem 2.7(Corollary 3.3 in [JK14]) Let p be a prime and consider the class of fields
K = { K | K p-henselian, witly, € K in casecharK) # p}

There is a parameter-fre€;ing-formulag,(x) such that

(1) if p # 2 or Kvz is not Euclidean, the,(x) defines the valuation ring of the
canonical p-henselian valuatiorﬁyand

(2) if p=2and Ky is Euclidean, them,(x) defines the valuation ring of the coarsest
2-henselian valuation®s such that K¢ is Euclidean.

The existence of such a uniform definition of the canongehknselian makes sure that
the diferent cases split into elementary classes:

Corollary 2.8. The classes of fields
Ky = { K | K p-henselian, witltp € K in casecharK) # p and \} € Hf(K)}
and
%, = { K| K p-henselian, witlt, € K in casecharK) # p and \; € H5(K) |
are elementary classes ing.
Proof. The class
{ K | K p-henselian, with, € K in case chai() # p}

is an elementary class ifiing by Corollary 2.2 in[[Koe95]. The sentence dividing the
class into the two elementary subclasses is the statemeih@ithe residue field of the
valuation defined by(x) as in Theorerh 217 admits a Galois extension of degreé¢ote
that if p = 2 andKv, is Euclidean, bot!vﬁ andvﬁ* are elements dﬂf(K). O

Remark. When one is only interested in defining henselian valuations can usually
avoid to consider the special case of a Euclidean residud:fikl (K, v) is a henselian
valued field, K not real closed and Kv Euclidean, then — sirlyileo Proposition[2.6 —
K is also real, so i¢ K. Now K(i) is a 0-interpretable extension of K, and the unique
prolongation w of v to Ki) has a non-Euclidean residue field, namely(f.v Thus, in
order to get a parameter-free definition of v, itfgtes to define w without parameters on
K(i).

However, the same argument does not work for p-henseliaratiahs, as there is no
strong enough analogue of Theoreml 2.2. Thus, for complsterake, we give Theorem
2.4 in its full generality.
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2.4. p-henselian valuations as henselian valuationd.et K be a henselian field angla
prime such thakK # K(p) holds. As any henselian valuation is in particutahenselian,
we have either/E 2 Wk orvﬁ ¢ Vk. In the first casevf; is henselian. As we will make use
of this fact several times later, we note here that this isat &n equivalence:

Observation 2.9. Let K be a henselian field with K K(p) for some prime p. Therﬁ\,is
henselianﬁvﬁ coarsensy.

Proof. Any coarsening of a henselian valuation — llkke— is henselian. Conversely, as-
sume thatvﬁ is henselian and a proper refinementgf Then, by the definition ofy,
we getv{i € Hy(K) and hence € Hy(K). In this casev{i has a proper coarsening with
p-closed residue field, contradicting the definition/Qf O

3. MAIN RESULTS

3.1. Conditions on the residue field. We first want to show that we can use the canonical
p-henselian valuation to define any henselian valuation vhas notp-henselian residue
field.

Proposition 3.1. Let(K, v) be a non-trivially henselian valued field and p a prime. Assum
that the residue field Kv is not p-henselian and thatKKv(p). If p = 2, assume further
that Kv is not Euclidean. Then v (@sdefinable.

Proof. Let p and K, v) be as above. If chaf) # p, we assumé, € K for now.

Note thatk # K(p) (Propositiofi26). Thus is p-henselian. We claim thaf = v. As
v is henselian, it is in particulgr-henselian and hence comparable/,‘io SinceKv is not
p-henseliany,ﬂ is a coarsening of, as otherwisaﬁ would induce gp-henselian valuation
on Kv ([EPQ5], Corollary 4.2.7). Assumqi is a proper coarsening of Then we get
Ve HS(K) and henc&Kv = Kv(p), contradicting our assumption dfv. This proves the
claim.

For p = 2, we get from our assumption thlatvﬁ = Kv is not Euclidean. Thusg,ﬂ is
henselian an@-definable by Theorein2.7.

In case chaK) # p andK does not contain a primitivpth root of unity, we consider
K’ = K({p). As this is a)-definable extension df, it suffices to define the — by henselian-
ity unique — prolongation’ of v to K’. SinceK’V is a finite normal extension d€v of
degree at mogp — 1, it still satisfiesK’v' # K’V (p) and is furthermore ngp-henselian by
Propositio 2b6. Now’ is 0-definable as above, and thus se.is m|

Morally speaking, the proposition says that if we have a bkms valued field K, v)
such that the residue field is ‘far away’ from being henseliaanv is @-definable. Hence
we will now consider well-known classes of examples of nendelian fields and prove
that any henselian valuation with such a residue fielddefinable.

Example. Let k be a finite field. ThenG= Z, in particular k # k(p) holds for all primes
p. Note that k is not Euclidean sinchark) > 0. As k admits no non-trivial valuations,
k is also not p-henselian. Now by Proposition]3.1(Kf v) is a non-trivially henselian
valued field with K= k, then v ig)-definable.

Probably the best known example of a non-henselian fieldhareationals. One way
of showing that the rationals admit no non-trivial henseNaluation is via Hilbert’s Ir-
reducibility Theorem: No hilbertian field is henselian (¢gsnma 15.5.4 in[[FJ08]). We
will now show by a similar proof that furthermore any henaelivalued field with hilber-
tian residue field satisfies the assumption of the above gitpo. First, we recall the
definition of hilbertianity.
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Definition. Let K be afield and let T and X be variables. Then K is catidgolertianif for
every polynomial f K[T, X] which is separable, irreducible and monic when considered
as a polynomial in KT)[X] there is some & K such that {a, X) is irreducible in K[X].

Note thatHilbert’s Irreducibility Theorenstates tha® is hilbertian.
Examples of hilbertian fields include all infinite finitely merated fields, in particular
number fields and function fields over finite fields.

Lemma 3.2. If K is a hilbertian field then K# K(p) for any prime p. Furthermore, K is
neither Euclidean nor p-henselian.

Proof. If K is hilbertian, therK is not Euclidean an& # K(p) holds for any primep by
Corollary 16.3.6 in[[FJO8]. Let us first treat the case diaré p. We may then assume
thatK contains a primitivepth root of unity ask(¢p) is again hilbertian, and iK(p) was
p-henselian then so would &by Proposition 2.5.

Let v be a non-trivial valuation oK. Choosem € m, \ {0} and consider the irreducible
polynomial f(T, X) = XP + mT — 1 in K(T)[X]. If K is hilbertian, there exists ame K*
such thatf (a, X) is irreducible inK[X]. Furthermore, by exercise 13.4 in [FJ0&may
be chosen i0,. But now f(a, X) splits in K(p), and has a simple zero Kv. Hence by
Propositio 2.By cannot bep-henselian.

In case chaK) = p, the same argument as above applies to the polynaditifalX) =
XP+ X+mT-2. O

Combining Theorermn 217 with LemmaB.2, we also get:

Corollary 3.3. Let(K, V) be a henselian valued field such that Kv is hilbertian. Then v i
0-definable.

Example. For any number field K and any ordered abelian groipthe power series
valuation on K(I')) is 0-definable.

Another well-known class of fields which are not henseliaa on-separably closed
PAC fields. As in general — unlike hilbertian fields — PAC fietilsnot need to admit any
Galois extensions of prime degree, we give a suitable gératian of Propositio 3]1.
Any non-separably closed PAC field has a finite Galois extensihich is still PAC and
which admits in turn Galois extensions of prime degree. Tosivates the following

Definition. Let K be a field. We call Kirtually not p-henselianf p | #Gx and there is
some finite Galois extension L of K with4A.L(p) such that L is not p-henselian.

Note that ifK # K(p), thenK is virtually not p-henselianff it is not p-henselian by
Propositio 2.6. We will now show a PAC field is virtually not p-henselian for any
prime p with p | #Gk. First, we show that a PAC field with K # K(p) is not p-henselian
using the same method as one uses to show that such a fieldiems#lian (seé [FJ08],
Corollary 11.5.5).

Lemma 3.4 (Kaplansky-Krasner fop-henselian valuations)Assume thafK, v) is a p-
henselian valued field and takesfK[X] separabledeg(f) > 1, such that f splits in Kp).
Suppose for each € vK there exists some«K such that ¢f(x)) > y. Then f has a zero
in K.

Proof. Without loss of generality we may assume tliaé monic and that dedj = n > 0.
Write

f09 = [ [x=x)
i=1
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for x; € K(p). Takey > n- maxv(x; — Xj) | 1 <i < j < n} and choose € K such that
n
v((9) = D V(x=x) > 7.
i=1
Hence for somg with 1 < j < nwe getv(x — X;) > y/n. If x; ¢ K, then there is some
o € Gal(K(p)/K) such thatr(x;) # x;. Thus, we get

V(X — (X)) = (e(X = X)) = V(X — X}) > %
where the last equality holds &ss p-henselian. Therefore
V(X — o (X;)) = minfv(x; — X), v(x — o(x;))} > %
which contradicts the choice ¢f Hence we concludg; € K, sof has a zero irK. ]

Lemma 3.5. Let K be a field and p a prime. If K is PAC and p-henselian, therhaxe
K = K(p).

Proof. Assume thaK is PAC andp-henselian. We show tha¢ = K(p) holds. Take
f € K[X] a separable, irreducible polynomial with dél¢ 1 splitting inK(p). It suffices
to show that for alc € K* there exists ax € K such that/(f(x)) > v(c), as thenf has a
zero inK.

Consider the curvg(X,Y) = f(X)f(Y) — 2. Considerg(X,Y) as a polynomial over
KSeHY]. Eisenstein’s criterion [[FJ08], Lemma 2.3.10(b)) appliover this ring to any
linear factor off(Y), thusg(X, Y) is absolutely irreducible. AK is PAC, there exisk,y €
K such thatf (x) f(y) = ¢2. Thus, eithew(f(x)) > v(c) or v(f(y)) > v(c) holds. O

As being PAC passes up to algebraic extensions, any PACKiéfdin particular not
virtually p-henselian for all prime@ | #Gk. Furthermore, as real closed fields are not
PAC, no PAC field is Euclidean.

We now give a stronger version of Proposition3.1. The maiieince is that the we
drop the assumption on the residue field to admit a Galoiseidr of p-power degree for
some primep.

Theorem 3.6. Let (K, V) be a non-trivially henselian valued field with |p#Gk,, and if
p = 2 assume that Kv is not Euclidean. If Kv is virtually not p-hai@ then v is)-
definable on K.

Proof. If Kvis virtually not p-henselian an&v # Kv(p), thenv is 0-definable by Propo-
sition[3.1.

In caseKv = Kv(p), by assumption there ishenselian finite Galois extensianof
Kvwith L # L(p). As Kv is not EuclideanL is also not Euclidean. By Propositibn P.5,
we may assume that contains a primitivepth root of unity in case chakv) # p. Let
[L:Kv]=n.

Consider any finite Galois extensidh of K, with w the unique prolongation afto M
such thatMw = L holds. As beforew is 0-definable orM (sincew = va as in the proof of
Propositio 3.11) and hence, by interpretivigin K using parameters, so is its restriction
to K.

Thus, it remains to show that a definition can be found withgarameters. The inter-
pretation of Galois extensions of a fixed degred&atan be done uniformly with respect
to the parameters (namely the idg@ents of a minimal polynomial generating the exten-
sion). By Theoren 217, the definition of thehenselian valuations on these can also be
done uniformly. To make sure that the residue field of the na@bp-henselian valuation
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of a finite Galois extension df corresponds to a field as described above, we need to
restrict to extensionM of K with vg" € Hf(M). By Corollary[2.8, this is @-definable
condition. Hence we get the desired definition by

ﬂ(O\,& N K ’ K ¢ M Galois [M : K] =n, M # M(p), M not p-henselian,
£p € Mif char(M) # p, Vi, € HP(M)).
mi
As an immediate consequence, we have the following

Corollary 3.7. Let p be a prime and let K be a field such that Gk and that K is
virtually not p-henselian. If g= 2, assume that K is not Euclidean. Then the power series
valuation is@-definable on K(I')), for any ordered abelian group.

Combining Theorerin 316 with Lemrha 8.5, we get:

Corollary 3.8. Let(K, V) be a henselian valued field such that Kv is PAC and not separabl
closed. Then v i@-definable.

Another application of Theoren 3.6 are henselian valueddigith simple residue
fields. We call a fielasimpleif Th(K) is simple in the sense of Shelah (see [Weag00] for
some background on simplicity). In a simple theory, no ardes with infinite chains are
interpretable. Thus, no simple field admits a definable valoaHence, by Theorem 2.7,
simple fields cannot bp-henselian for any prime. As all Galois extensions of a simple
field are interpretable iK and thus again simple, any non-separably closed simpleKield
is not virtually p-henselian for any with p | #Gk. Thus, we get the following

Corollary 3.9. Let(K, V) be a henselian valued field such that Kv is simple and not sepa-
rably closed. Then v i8-definable.

Real closed and separably closed residue field$n all our definitions of henselian valu-
ations we showed so far that a given henselian valuatmma fieldK coincided with both
the canonical henselian valuatigg and the canonicgh-henselian valuatiomﬁ for some
prime p. However, it can happen that sorv;%is henselian, but a proper coarsening of a
given henselian valuation In this caseyf; is again henselian arfddefinable. An example
for this are henselian valued fields with separably closeiive field:

Theorem 3.10. Let K be a field which is not separably closed. Assume that Iérisélian
with respect to a valuation with separably closed residud fiehen K admits a non-trivial
0-definable henselian valuation.

Proof. We show first thaGy is pro-soluble. IfK is henselian with respect to a valuation
with separably closed residue field, thenhas also separably closed residue field. wet
be the prolongation ofx to KS¢P. Recall that there is an exact sequence

lw — Gk — Gk

wherel,, denotes the inertia group afoverK (see[EPO5], Theorem 5.2.7). Hence)as
is pro-soluble (se¢ [EPD5], Lemma 5.3.2), sGijs

Thus, there is some primgwith K # K(p). But nowv{i is indeed a (not necessarily
proper) coarsening ofx: Otherwise, the definition of,’i would imply Kvk # Kvk(p).
If K contains a primitivepth root of unity or chai) = p, thenvﬁ is 0-definable and
henselian. Else, we consider elefinable extensiok ({p). Then the canonical henselian
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valuation onK(¢,) still has separably closed residue field, therefaﬁ&p)m gives a0-
definable henselian valuation énh m]

Corollary 3.11. Let K be a field and assume that K is not real closed. If K is Hearse
with respect to a valuation with real closed residue fiel&grthK admits a non-trivia®-
definable henselian valuation.

Proof. If (K, V) is henselian an#v is real closed, consider the unique prolongatioof v
to L = K(i). The residue fieldw is separably closed, so L admit§alefinable henselian
valuation by Theorein 3.10. Asis the restriction ofvto K, vis alsod-definable ork. o

3.2. Henselian fields with non-universal absolute Galois groupslin this section, we
will give a Galois-theoretic condition to ensure the existe of a non-trivial)-definable
henselian valuation on a henselian field.

The following group-theoretic definition is taken from [N&0

Definition. Let G be a profinite group. We say that Gusiversalif every finite group
occurs as a continuous subquotient of G.

Note that for a fieldK, Gk is non-universalff there is soma € N such that the sym-
metric groupS,, does not occur as a Galois group over any finite Galois exdarafiK
(and then ndsy, with m > n will occur). The connection between non-universal absolut
Galois groups and henselianity is given by the followingestzent:

Theorem 3.12([Koe05], Theorem 3.1)Let K be a field and let L and M be algebraic
extensions of K which both carry non-trivial henselian \alans. Assume further that,G
is non-trivial pro-p and G non-trivial pro-g for primes p< g. Let v and w be (not neces-
sarily proper) coarsenings of the canonical henselian atins on L and M respectively,
and, if p= 2 and Lv is real closed, assume v to be the coarsest henseliaaticn on L
with real closed residue field. Then eitheg @ universal or ¥ and wx are comparable
and the coarser valuation is henselian on K.

Example. All of the following profinite groups are non-universal:
(1) pro-abelian groups,
(2) pro-nilpotent groups,
(3) pro-soluble groups,
(4) any group G such that p#G for some prime p.

Non-abelian free profinite groups are of course universaid &0 are absolute Galois
groups of hilbertian fields.

Now we can use Theorem 3]12 to deduce henselianity froandg-henselianity:

Proposition 3.13. Suppose & is non-universal, and Kp) # K # K(q) for two primes
p < g. In case p= 2, assume further that K is not Euclidean. If K is p- and g-héase
then K is henselian.

Proof. Consider the henselizatidd (respectivelyM’) of K with respect to the canonical
p-henselian vaIuatiomE (the canonicaf-henselian vaIuatioqu) onK. Then defind. to
be the fixed field of -Sylow subgroup o6, ., andM accordingly.

Claim: L is not separably closed.

Proof of Claim: We need to show that’ is not p-closed. But ifa € K(p) has degree
p" overK, then — aS/E is p-henselian -« is moved by some element 8f(K(p)/K). As
decomposition groups behave well in towers, weagetL.
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In casep = 2, the same argument shows thais also not real closed. Sindeis p-
henselian an@, is prop, L is also henselian, and likewise i4. Now we consider the
canonical henselian valuations on L and the canonical henselian valuatian on M.

If p = 2 andLv_ is real closed, we replacg by the coarsest henselian valuationlon
with real closed residue field. Asis not real closed, this is again a non-trivial henselian
valuation.

By Theoreni 312, the restrictions|x andvy|x are comparable and the coarser one is
henselian. Ad. andM are algebraic extensions &f, none of the restrictions is trivial.
HenceK is henselian. O

Proposition 3.14. Let G¢ be non-universal. Assume that there are two primesgwith
p,q | #Gk and such that Kp) # K # K(q) holds. If K is henselian, then K is henselian
with respect to a non-triviad-definable valuation.

Proof. As long as we define a coarseningwafwithout parameters, we may assume that
{p: &g € Kif char(K) # p or g respectively: The only special case is wher 2 andK

is Euclidean andbkg is proq. ThenK(i) already containgg and thusvigu = Vkg IS

a non-trivial@-definable henselian valuation &(i). In this case, its restriction tK is
non-trivial @-definable henselian valuation é&n

So now assumé,, {q € K. In particular, in case = 2, K is not formally real and so
Kvz cannot be Euclidean. All these extensions still have ndvensal absolute Galois
groups.

As K is henselian, it is in particulgs- andg-henselian. We consider the canonipal
henseliang-henselian) valuatiow (vji respectively) orK. If vi orvjl is henselian, then
we have found #@-definable henselian valuation.

But this must always be the case: Assume that neilﬁemor vﬂ is henselian. Then
Vk IS @ proper coarsening mﬁ and thuKvg is p-henselian and satisfigsvk # Kvk (p).
Similarly, Kv is g-henselian and&vx # Kvk(qg) holds. Therefore, by Propositidn 3113,
Kvk is henselian. This contradicts the definitionvf O

We can now prove our main result on henselian fields with namensal absolute Galois
group.

Theorem 3.15. Let K be henselian, and assume that S non-universal. If K is neither
separably nor real closed, then K admitddedefinable henselian valuation. If ikvs
neither separably nor real closed, theg is 0-definable.

Proof. By assumptionK is neither separably nor real closedKliis henselian an&vg is
separably closed (respectively real closed), tkemits ad-definable henselian valuation
by Theoreni:3.710 (respectively Corolldry 3.11). Thus, we msgume from now on that
Kvk is neither separably nor real closed.

In this caseyy is the finest henselian valuation #hand thusKvk is not henselian.
Furthermore, there is some prirpavith p | #Gky, . Assume first thaGy, is pro-p, then
it follows thatKvk # Kvk(p) and thusK # K(p) (Propositioni 2.6). In particulavk must
be a coarsening oﬂ'; But if vk was a proper coarsening UE thenKvk would be p-
henselian and hence —@g,, is pro-p— henselian or real closed. Since we have assumed
thatKvk is neither real closed nor henselian, we get= v{i. As in previous proofs (see
for example the proof ¢f3.14), we may assuspe K if char(K) # p, sovk is 0-definable.

Now consider the case that there are (at least) two primesq with p,q | #Gky,-
Thus, alsm, g | #Gk holds. IfKvk (p) # Kvk # Kvk(q), then — using Propositidn 2.6 once
more — we hav&K(p) # K # K(q). By the proof of Proposition 3.14, onem[f andvﬂ is
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henselian. Sayﬁ is henselian, then we geg c VE by Observatiof Z]9. Bui is also a
coarsening of?, asKvk # Kvk(p). Thus, we concludey = vﬁ, and hencey is again
0-definable.

Finally, if there are two primep, q | Gky,, butKvk = Kvk(p) or Kvk = Kvk(q), we
want to consider finite Galois extensiohf Kvk with L(p) # L # L(g). Let M be a
finite Galois extension oK, and letw be the unique prolongation @k to M. Note that
Gy is again non-universal and, &&w is still neither separably nor real closed,= vy
holds. IfMw(p) # Mw = Mw(q), thenw is 0-definable orM byvf,I orv(,f,I as above. Say
w = Vi, Aswis in particularg-henselian andiw # Mw(q), we getw > vi. Thus, in any
case the finest common coarseningﬁ@p‘andv‘ﬁv1 is equal to the coarser one of the two and
furthermored-definable and henselian.

Now we fix an integen such that there is a Galois extensidrof K (containing, and
q if necessary) such thatw(p) # Mw # Mw(q). Just like in the proof df 316, we get a
parameter-free definition afby

(O, - O) N K | K € M Galois [M : K] = n, M(p) # M # M(q),
{p € Mifchar(M) # p, g € M if char(M) # g, Vi, € HP(M), v, € H(M)).

O

Remark. In fact, it syfices to assume for the proof of the above theorem that K is t-
henselian rather than henselian. This is a generalizatibmenselianity introduced in
[PZ78]. Like henselianity, t-henselianity goes up to finite exterssand implies p-hense-
lianity for any prime p. These are the only properties of lediasity needed in the proof.

In particular, we get that any field with a non-universal ahge Galois group which is
elementarily equivalent to a henselian field is in fact héasatself (since a)-definable
henselian valuation gives rise to a non-trivial henseliauation on any field with the
same elementary theory). Thus, for any field with a non-us@l@bsolute Galois group,
henselianity is an elementary property{iang.

Our Galois-theoretic condition is moreover also a condiba the residue field.

Observation 3.16.Let (K, v) be a henselian valued field. Ther @ non-universalff Gk,
is non-universal.

Proof. Recall the exact sequence
ly, — Gk — Gyy.

If Gk is non-universal, then some finite group does not appear adas@roup over any
finite extension oK, and hence the same holds #v.

On the other hand, Gk, is non-universal, there is sonmg € N such that neithes,, nor
A, (for n > ng) occur as a subquotients Gk,. As I, is soluble S, (for n > max5, ng}) is
not a subquotient B, either. O

In particular, we can use the observation to define a rangewépseries valuations.

Corollary 3.17. Let K be a field with g non-universal. LeTl" be a non-trivial ordered
abelian group, and assume tHais non-divisible in case that K is separably or real closed.
Then there is &-definable non-trivial henselian valuation or((K)). If K is not henselian
and neither separably nor real closed, then the power sefidsation is definable.
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Proof. The first statement is immediate from the previous Obseywathd Theorefn 3.15.
The second also follows from Theorém 3.15Klfis not henselian, then the power series
valuation is exactly the canonical henselian valuation. O

One example of fields with non-universal absolute Galoisigrare NIP fields of posi-
tive characteristic. We call a field NIP if TK{] is NIP in the sense of Shelah (see [AdI08]
for some background on NIP theories). In [KSW11] (Corolldr$), the authors show
that if K is an infinite NIP field of characteristip > 0, thenp { #Gk. Thus, we get the
following

Corollary 3.18. Let (K,v) be a non-trivially henselian valued field, K not separably
closed. If

e Kis NIP andcharK) > 0, or
e Kvis NIP andcharKv) > 0,

then K admits a non-triviad-definable henselian valuation.

Proof. The first statement follows from Theordm 3.15. The secongstant is now a
consequence of Observation 3.16. O
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