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DEFINABLE HENSELIAN VALUATIONS

FRANZISKA JAHNKE AND JOCHEN KOENIGSMANN

Abstract. In this note we investigate the question when a henselian valued field carries
a non-trivial ∅-definable henselian valuation (in the language of rings). This is clearly
not possible when the field is either separably or real closed, and, by the work of Prestel
and Ziegler, there are further examples of henselian valuedfields which do not admit a
∅-definable non-trivial henselian valuation. We give conditions on the residue field which
ensure the existence of a parameter-free definiton. In particular, we show that a henselian
valued field admits a non-trivial henselian∅-definable valuation when the residue field is
separably closed or sufficiently non-henselian, or when the absolute Galois group ofthe
(residue) field is non-universal.

1. Introduction

In a henselian valued field (K, v), many arithmetic or algebraic questions can be re-
duced, via the henselian valuationv, to simpler questions about the value groupvK and
the residue fieldKv. By the celebrated Ax-Kochen/Ershov Principle, in fact, if the residue
characteristic is 0, ‘everything’ can be so reduced: the 1st-order theory of (K, v) (as valued
field) is fully determined by the 1st-order theory ofvK (as ordered abelian group) and of
Kv (as pure field). In that sense the valuation (with its two accompanying structuresvK
andKv) ‘knows’ everything aboutK, especially the full 1st-order theory ofK as pure field,
or, as one may call it, thearithmeticof K.

Conversely, in all natural examples, and, as we will see, in most others as well, a
henselian valuationv is so intrinsic toK that it is itself encoded in the arithmetic ofK,
or, to make this notion precise, that its valuation ringOv is 1st-order definable inK. Well
known examples are the classical fieldsQp andC((t)) with their valuation rings

Zp = {x ∈ Qp | ∃y 1+ px2 = y2} (for p , 2)
C[[ t]] = {x ∈ C((t)) | ∃y 1+ tx2 = y2}

Note that the second example uses the parametert. This is not necessary though: one can
also find a parameter-free definition ofC[[ t]] in C((t)); however, as observed in [CDLM13],
it can no longer be an existential definition: otherwise the definition would go up the tower
of isomorphic fields

C((t)) ⊆ C((t1/2!)) ⊆ C((t1/3!)) ⊆ . . .

thus leading to a 1st-order definition of a non-trivial valuation subring of the algebraically
closed fieldC((t1/∞)) =

⋃

nC((t1/n!)), contradicting quantifier eliminiation (every definable
subset is finite or cofinite).
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ThatC[[ t]] is∅-definable inC((t)) follows from the more general fact that every henselian
valuation with non-divisible archimedean value group is∅-definable ([Koe04]). This has
recently been generalized to non-divisible regular value groups (those elementarily equiv-
alent to archimedean ordered groups, see [Hon14]). Note that there are also several recent
preprints which discuss∅-definability of a range of henselian valuations using only for-
mulae of ‘simple’ quantifier type (i.e. definitions involving ∀-,∃-,∀∃ or ∃∀-formulae). To
learn more about these exciting developments, we refer the reader to [CDLM13], [AK13],
[Feh13] and [Pre14].

In this paper we will develop two new, fairly general criteria, one on the residue field
and one on the absolute Galois groupGK of K to guarantee∅-definability of (in the first
case a given, in the second case, at least some) henselian valuation onK. It is well-known
that separably and real closed fields admit no definable henselian valuations. Furthermore,
by the work of Prestel and Ziegler ([PZ78],§7) there are henselian valued fields which
are neither separably nor real closed and which do not admit any ∅-definable henselian
valuation. It is thus a natural question to ask which conditions on a henselian valued field
(K, v) ensure thatv is ∅-definable or thatK admits at least some∅-definable henselian
valuation. In the present work, we focus on parameter-free definitions as a definition of a
henselian valuation with parameters need not ensure the existence of a definable henselian
valuation in elementarily equivalent fields. Note that there are also examples of henselian
valuations which are not even definable with parameters (see[DF96], Theorem 4.4). The
only known examples of henselian fields which admit no parameter-definable henselian
valuations at all are separably and real closed fields.

The paper is organized as follows. In the next section, we discuss the main tools
which we require. We recall the definition ofp-henselian valuations and the canonical
(p)-henselian valuation. Building on work of the second author (see [Koe95]), the authors
have shown that the canonicalp-henselian valuationvp

K is typically definable (Theorem
3.1 in [JK14]). We show that it is furthermore henselian iff it is coarser than the canonical
henselian valuation.

The third section contains the main results of this paper. Webegin by giving conditions
on the residue field to make a henselian valuation definable. The first criterion says that
the henselian valuationv on K is ∅-definable if, for some primep, Kv allows a separable
extensionL with L , L(p) that does not allow ap-henselian valuation (Theorem 3.6,
cf. section 2 for the definition ofL(p) and p-henselian). We deduce from this that any
henselian valuation with finitely generated, hilbertian, PAC or simple but not separably
closed residue field is∅-definable. We use a similar method to show that a henselian valued
field (K, v) whereKv is separably or real closed, butK isn’t, admits some∅-definable
henselian valuation.

The next part discusses a second, Galois-theoretic criterion for the existence of a∅-
definable henselian valuation on a (non-separably- and non-real-closed) henselian valued
field K (Theorem 3.15). It says that ifK is henselian andGK is non-universal, that is,
that not every finite group is a subquotient ofGK , thenK admits some∅-definable non-
trivial henselian valuation. In most cases, we will in fact define the canonical henselian
valuation onK. This generalizes old results by Neukirch, Geyer and Pop on henselian
fields with prosolvableGK . One class of examples is given by henselian NIP fields of
positive characteristic.

These two criteria, one on the residue field of a given henselian valuationv on K, and
one onGK in the presence ofsomehenselian valuation onK, are fairly independent. One
easily finds examples of the first kind whereGK is universal and examples where it isn’t.
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Similarly, there are henselian fieldsK with non-universalGK where every henselian val-
uation onK satisfies the criterion on the residue field and such where none of them does.
What is common between the two criteria, however, is the method of proof which in either
case depends on a careful analysis when, on a fieldK, the canonicalp-henselian valuation
vp

K is already henselian. Although many fields have universal absolute Galois groups, the
best known ones are hilbertian fields and PAC fields with non-abelian free absolute Galois
group. Hence some of the main examples of henselian valued fields for which the second
criterion fails are covered by the first one.

2. Henselian and p-henselian valuations

2.1. The canonical henselian valuation.We call a fieldK henselianif it admits some
non-trivial henselian valuation. For any fieldK, there is acanonical henselian valuation
on K. In this section, we recall the definition and discuss some ofits properties. We use
the following notation: For a valued field (K, v), we denote the valuation ring byOv, the
residue field byKv, the value group byvK and the maximal ideal bymv. For an element
a ∈ Ov, we writea to refer to its image inKv.

Theorem 2.1(á la F.K. Schmidt). If a field admits two independent non-trivial henselian
valuations, then it is separably closed.

Proof. [EP05], Theorem 4.4.1. �

One can deduce from this that the henselian valuations on a field form a tree: Divide
the class of henselian valuations onK into two subclasses, namely

H1(K) = { v henselian onK | Kv , Kvsep}

and
H2(K) = { v henselian onK | Kv = Kvsep} .

A corollary of the above theorem is that any valuationv2 ∈ H2(K) is finer than any
v1 ∈ H1(K), i.e.Ov2 ( Ov1, and that any two valuations inH1(K) are comparable. Further-
more, if H2(K) is non-empty, then there exists a unique coarsestvK ∈ H2(K); otherwise
there exists a unique finestvK ∈ H1(K). In either case,vK is called thecanonical henselian
valuation. Note that ifK is not separably closed and admits a non-trivial henselian valua-
tion, thenvK is also non-trivial.

As we will usually define henselian valuations on finite Galois extensions later on, we
often use the fact that coarsenings ofvK remain henselian when restricted to subfields of
finite index:

Theorem 2.2([EP05], Theorem 4.4.4). Let (L,w) be a valued field, and assume that L is
not separably closed and that w is a (not necessarily proper)coarsening of vL. If K ⊂ L is
a subfield such that L/K is finite, then v= w|K is a coarsening of vK .

2.2. p-henselianity. Throughout this section, letK be a field andp a prime.

Definition. We define K(p) to be the compositum of all Galois extensions of K of p-power
degree. A valuation v on K is called p-henselianif v extends uniquely to K(p). We call K
p-henselianif K admits a non-trivial p-henselian valuation.

Clearly, this definition only imposes a condition onv if K admits Galois extensions of
p-power degree.

Proposition 2.3([Koe95], Propositions 1.2 and 1.3). For a valued field(K, v), the follow-
ing are equivalent:
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(1) v is p-henselian,
(2) v extends uniquely to every Galois extension of K of p-power degree,
(3) v extends uniquely to every Galois extension of K of degree p,
(4) for every polynomial f∈ Ov which splits in K(p) and every a∈ Ov with f̄ (a) = 0

and f̄ ′(a) , 0, there existsα ∈ Ov with f(α) = 0 andα = a.

As for fields carrying a henselian valuation, there is again acanonicalp-henselian val-
uation, due to the following analogue of Theorem 2.1:

Theorem 2.4([Brö76], Corollary 1.5). If K carries two independent non-trivial p-hense-
lian valuations, then K= K(p).

We again divide the class ofp-henselian valuations onK into two subclasses,

Hp
1 (K) = { v p-henselian onK | Kv , Kv(p) }

and

Hp
2 (K) = { v p-henselian onK | Kv = Kv(p) } .

As before, one can deduce that any valuationv2 ∈ Hp
2 (K) is finer than anyv1 ∈ Hp

1 (K),
i.e. Ov2 ( Ov1, and that any two valuations inHp

1 (K) are comparable. Furthermore, if
Hp

2 (K) is non-empty, then there exists a unique coarsest valuation vp
K in Hp

2 (K); otherwise
there exists a unique finest valuationvp

K ∈ Hp
1 (K). In either case,vp

K is called thecanonical
p-henselian valuation. Again, if K is p-henselian andK , K(p) holds, thenvp

K is also
non-trivial.

Note that unlike henselianity, beingp-henselian does not go up arbitrary algebraic ex-
tensions, as a superfield might have far more extensions ofp-power degree. Nevertheless,
similar to Theorem 2.2, sometimesp-henselianity goes down:

Proposition 2.5. Let K be a field, K, K(p). Assume that L is a normal algebraic exten-
sion of K, where L is p-henselian and L, L(p). If

(1) K ⊆ L ( K(p) or
(2) L/K is finite

then K is p-henselian.

Proof. 1.: See [Koe03], Proposition 2.10.
2.: AssumeK is not p-henselian, and letv be a valuation onK. By the first part of the
proposition,v has infinitely many extensions toK(p): If there were onlyn extensions ofv
to K(p), then there would be someL′ ⊃ K finite, L′ ( K(p), such thatv hadn extensions
to L′. The normal hull ofL′ and thusK would bep-henselian.
Now assumeL = K(a1, . . . , am) finite and normal, thenK(p)(a1, . . . , am) ⊆ L(p). If w is
a valuation onL, thenv = w|K has infinitely many prolongations toK(p). As v has only
finitely many prolongations toL, and all these are conjugate,w must have infinitely many
prolongations toK(p)(a1, . . . , am) and hence toL(p). �

For any valued field,p-extensions of the residue field lift top-extensions of the field.

Proposition 2.6([EP05], Theorem 4.2.6). Let (K, v) be a valued field and p a prime. If
Kv , Kv(p), then K, K(p).
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2.3. Defining p-henselian valuations.In this section, we recall a Corollary of the Main
Theorem in [JK14] which is used in all of our proofs in later sections.

When it comes to henselian valued fields, real closed fields always play a special role.
By o-minimality, no real closed field admits a definable henselian valuation, and there are
real closed fields which admit no henselian valuations (likeR) whereas others do (like
R((tQ))). These difficulties are reflected by 2-henselian valuations on Euclidean fields. A
field K is calledEuclideanif [ K(2) : K] = 2. Any Euclidean field is uniquely ordered,
the positive elements being exactly the squares. If a Euclidean field has no odd-degree
extensions, then it is real closed. In particular, there is an Lring-sentenceρ such that any
field K with K , K(2) modelsρ iff it is non-Euclidean. Note that Euclidean fields are the
only fields for whichK(p) can be a finite proper extension ofK.

Theorem 2.7(Corollary 3.3 in [JK14]). Let p be a prime and consider the class of fields

K =
{

K
∣

∣

∣ K p-henselian, withζp ∈ K in casechar(K) , p
}

There is a parameter-freeLring-formulaφp(x) such that

(1) if p , 2 or Kv2 is not Euclidean, thenφp(x) defines the valuation ring of the
canonical p-henselian valuation vp

K , and
(2) if p = 2 and Kv2 is Euclidean, thenφp(x) defines the valuation ring of the coarsest

2-henselian valuation v2∗K such that Kv2∗K is Euclidean.

The existence of such a uniform definition of the canonicalp-henselian makes sure that
the different cases split into elementary classes:

Corollary 2.8. The classes of fields

K1 =
{

K
∣

∣

∣ K p-henselian, withζp ∈ K in casechar(K) , p and vpK ∈ Hp
1 (K)

}

and

K2 =
{

K
∣

∣

∣ K p-henselian, withζp ∈ K in casechar(K) , p and vpK ∈ Hp
2 (K)

}

are elementary classes inLring.

Proof. The class
{

K
∣

∣

∣ K p-henselian, withζp ∈ K in case char(K) , p
}

is an elementary class inLring by Corollary 2.2 in [Koe95]. The sentence dividing the
class into the two elementary subclasses is the statement whether the residue field of the
valuation defined byφp(x) as in Theorem 2.7 admits a Galois extension of degreep. Note
that if p = 2 andKv2 is Euclidean, bothv2

K andv2
K∗ are elements ofHp

1 (K). �

Remark. When one is only interested in defining henselian valuations, one can usually
avoid to consider the special case of a Euclidean residue field: If (K, v) is a henselian
valued field, K not real closed and Kv Euclidean, then – similarly to Proposition 2.6 –
K is also real, so i< K. Now K(i) is a ∅-interpretable extension of K, and the unique
prolongation w of v to K(i) has a non-Euclidean residue field, namely Kv(i). Thus, in
order to get a parameter-free definition of v, it suffices to define w without parameters on
K(i).

However, the same argument does not work for p-henselian valuations, as there is no
strong enough analogue of Theorem 2.2. Thus, for completeness’ sake, we give Theorem
2.7 in its full generality.
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2.4. p-henselian valuations as henselian valuations.Let K be a henselian field andp a
prime such thatK , K(p) holds. As any henselian valuation is in particularp-henselian,
we have eithervp

K ⊇ vK or vp
K ( vK . In the first case,vp

K is henselian. As we will make use
of this fact several times later, we note here that this is in fact an equivalence:

Observation 2.9. Let K be a henselian field with K, K(p) for some prime p. Then vp
K is

henselian iff vp
K coarsens vK .

Proof. Any coarsening of a henselian valuation – likevK – is henselian. Conversely, as-
sume thatvp

K is henselian and a proper refinement ofvK . Then, by the definition ofvK ,
we getvp

K ∈ H2(K) and hencevK ∈ H2(K). In this case,vp
K has a proper coarsening with

p-closed residue field, contradicting the definition ofvp
K . �

3. Main results

3.1. Conditions on the residue field. We first want to show that we can use the canonical
p-henselian valuation to define any henselian valuation which has notp-henselian residue
field.

Proposition 3.1. Let(K, v) be a non-trivially henselian valued field and p a prime. Assume
that the residue field Kv is not p-henselian and that Kv, Kv(p). If p = 2, assume further
that Kv is not Euclidean. Then v is∅-definable.

Proof. Let p and (K, v) be as above. If char(K) , p, we assumeζp ∈ K for now.
Note thatK , K(p) (Proposition 2.6). Thus,K is p-henselian. We claim thatvp

K = v. As
v is henselian, it is in particularp-henselian and hence comparable tovp

K . SinceKv is not
p-henselian,vp

K is a coarsening ofv, as otherwisevp
K would induce ap-henselian valuation

on Kv ([EP05], Corollary 4.2.7). Assumevp
K is a proper coarsening ofv. Then we get

v ∈ Hp
2 (K) and henceKv = Kv(p), contradicting our assumption onKv. This proves the

claim.
For p = 2, we get from our assumption thatKv2

K = Kv is not Euclidean. Thus,vp
K is

henselian and∅-definable by Theorem 2.7.
In case char(K) , p andK does not contain a primitivepth root of unity, we consider

K′ = K(ζp). As this is a∅-definable extension ofK, it suffices to define the – by henselian-
ity unique – prolongationv′ of v to K′. SinceK′v′ is a finite normal extension ofKv of
degree at mostp− 1, it still satisfiesK′v′ , K′v′(p) and is furthermore notp-henselian by
Proposition 2.5. Nowv′ is ∅-definable as above, and thus so isv. �

Morally speaking, the proposition says that if we have a henselian valued field (K, v)
such that the residue field is ‘far away’ from being henselian, thenv is ∅-definable. Hence
we will now consider well-known classes of examples of non-henselian fields and prove
that any henselian valuation with such a residue field is∅-definable.

Example. Let k be a finite field. Then Gk � Ẑ, in particular k, k(p) holds for all primes
p. Note that k is not Euclidean sincechar(k) > 0. As k admits no non-trivial valuations,
k is also not p-henselian. Now by Proposition 3.1, if(K, v) is a non-trivially henselian
valued field with Kv= k, then v is∅-definable.

Probably the best known example of a non-henselian field are the rationals. One way
of showing that the rationals admit no non-trivial henselian valuation is via Hilbert’s Ir-
reducibility Theorem: No hilbertian field is henselian (seeLemma 15.5.4 in [FJ08]). We
will now show by a similar proof that furthermore any henselian valued field with hilber-
tian residue field satisfies the assumption of the above proposition. First, we recall the
definition of hilbertianity.
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Definition. Let K be a field and let T and X be variables. Then K is calledhilbertianif for
every polynomial f∈ K[T,X] which is separable, irreducible and monic when considered
as a polynomial in K(T)[X] there is some a∈ K such that f(a,X) is irreducible in K[X].

Note thatHilbert’s Irreducibility Theoremstates thatQ is hilbertian.
Examples of hilbertian fields include all infinite finitely generated fields, in particular

number fields and function fields over finite fields.

Lemma 3.2. If K is a hilbertian field then K, K(p) for any prime p. Furthermore, K is
neither Euclidean nor p-henselian.

Proof. If K is hilbertian, thenK is not Euclidean andK , K(p) holds for any primep by
Corollary 16.3.6 in [FJ08]. Let us first treat the case char(K) , p. We may then assume
thatK contains a primitivepth root of unity asK(ζp) is again hilbertian, and ifK(ζp) was
p-henselian then so would beK by Proposition 2.5.

Let v be a non-trivial valuation onK. Choosem ∈ mv \ {0} and consider the irreducible
polynomial f (T,X) = Xp +mT − 1 in K(T)[X]. If K is hilbertian, there exists ana ∈ K×

such thatf (a,X) is irreducible inK[X]. Furthermore, by exercise 13.4 in [FJ08],a may
be chosen inOv. But now f (a,X) splits in K(p), and has a simple zero inKv. Hence by
Proposition 2.3,v cannot bep-henselian.

In case char(K) = p, the same argument as above applies to the polynomialf (T,X) =
Xp + X +mT− 2. �

Combining Theorem 2.7 with Lemma 3.2, we also get:

Corollary 3.3. Let (K, v) be a henselian valued field such that Kv is hilbertian. Then v is
∅-definable.

Example. For any number field K and any ordered abelian groupΓ, the power series
valuation on K((Γ)) is ∅-definable.

Another well-known class of fields which are not henselian are non-separably closed
PAC fields. As in general – unlike hilbertian fields – PAC fieldsdo not need to admit any
Galois extensions of prime degree, we give a suitable generalization of Proposition 3.1.
Any non-separably closed PAC field has a finite Galois extension which is still PAC and
which admits in turn Galois extensions of prime degree. Thismotivates the following

Definition. Let K be a field. We call Kvirtually not p-henselianif p | #GK and there is
some finite Galois extension L of K with L, L(p) such that L is not p-henselian.

Note that ifK , K(p), thenK is virtually not p-henselian iff it is not p-henselian by
Proposition 2.5. We will now show a PAC fieldK is virtually not p-henselian for any
primep with p | #GK . First, we show that a PAC fieldK with K , K(p) is notp-henselian
using the same method as one uses to show that such a field is nothenselian (see [FJ08],
Corollary 11.5.5).

Lemma 3.4 (Kaplansky-Krasner forp-henselian valuations). Assume that(K, v) is a p-
henselian valued field and take f∈ K[X] separable,deg(f ) > 1, such that f splits in K(p).
Suppose for eachγ ∈ vK there exists some x∈ K such that v( f (x)) > γ. Then f has a zero
in K.

Proof. Without loss of generality we may assume thatf is monic and that deg(f ) = n > 0.
Write

f (X) =
n
∏

i=1

(X − xi)
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for xi ∈ K(p). Takeγ > n ·max{v(xi − x j) | 1 ≤ i < j ≤ n} and choosex ∈ K such that

v( f (x)) =
n
∑

i=1

v(x− xi) > γ.

Hence for somej with 1 ≤ j ≤ n we getv(x − x j) > γ/n. If x j < K, then there is some
σ ∈ Gal(K(p)/K) such thatσ(x j) , x j . Thus, we get

v(x− σ(x j)) = v(σ(x− x j)) = v(x− x j) >
γ

n
,

where the last equality holds asv is p-henselian. Therefore

v(x j − σ(x j)) ≥ min{v(x j − x), v(x− σ(x j))} >
γ

n
which contradicts the choice ofγ. Hence we concludex j ∈ K, so f has a zero inK. �

Lemma 3.5. Let K be a field and p a prime. If K is PAC and p-henselian, then wehave
K = K(p).

Proof. Assume thatK is PAC andp-henselian. We show thatK = K(p) holds. Take
f ∈ K[X] a separable, irreducible polynomial with deg(f ) > 1 splitting inK(p). It suffices
to show that for allc ∈ K× there exists anx ∈ K such thatv( f (x)) ≥ v(c), as thenf has a
zero inK.

Consider the curveg(X,Y) = f (X) f (Y) − c2. Considerg(X,Y) as a polynomial over
Ksep[Y]. Eisenstein’s criterion ([FJ08], Lemma 2.3.10(b)) applies over this ring to any
linear factor off (Y), thusg(X,Y) is absolutely irreducible. AsK is PAC, there existx, y ∈
K such thatf (x) f (y) = c2. Thus, eitherv( f (x)) ≥ v(c) or v( f (y)) ≥ v(c) holds. �

As being PAC passes up to algebraic extensions, any PAC fieldK is in particular not
virtually p-henselian for all primesp | #GK . Furthermore, as real closed fields are not
PAC, no PAC field is Euclidean.

We now give a stronger version of Proposition 3.1. The main difference is that the we
drop the assumption on the residue field to admit a Galois extension ofp-power degree for
some primep.

Theorem 3.6. Let (K, v) be a non-trivially henselian valued field with p| #GKv, and if
p = 2 assume that Kv is not Euclidean. If Kv is virtually not p-henselian then v is∅-
definable on K.

Proof. If Kv is virtually not p-henselian andKv , Kv(p), thenv is ∅-definable by Propo-
sition 3.1.

In caseKv = Kv(p), by assumption there is ap-henselian finite Galois extensionL of
Kv with L , L(p). As Kv is not Euclidean,L is also not Euclidean. By Proposition 2.5,
we may assume thatL contains a primitivepth root of unity in case char(Kv) , p. Let
[L : Kv] = n.

Consider any finite Galois extensionM of K, with w the unique prolongation ofv to M
such thatMw = L holds. As before,w is ∅-definable onM (sincew = vp

M as in the proof of
Proposition 3.1) and hence, by interpretingM in K using parameters, so is its restrictionv
to K.

Thus, it remains to show that a definition can be found withoutparameters. The inter-
pretation of Galois extensions of a fixed degree ofK can be done uniformly with respect
to the parameters (namely the coefficients of a minimal polynomial generating the exten-
sion). By Theorem 2.7, the definition of thep-henselian valuations on these can also be
done uniformly. To make sure that the residue field of the canonical p-henselian valuation
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of a finite Galois extension ofK corresponds to a fieldL as described above, we need to
restrict to extensionsM of K with vM

p ∈ Hp
1 (M). By Corollary 2.8, this is a∅-definable

condition. Hence we get the desired definition by
⋂
(

Ovp
M
∩ K
∣

∣

∣

∣

K ⊆ M Galois, [M : K] = n, M , M(p), M not p-henselian,

ζp ∈ M if char(M) , p, vp
M ∈ Hp

1 (M)
)

.

�

As an immediate consequence, we have the following

Corollary 3.7. Let p be a prime and let K be a field such that p| #GK and that K is
virtually not p-henselian. If p= 2, assume that K is not Euclidean. Then the power series
valuation is∅-definable on K((Γ)), for any ordered abelian groupΓ.

Combining Theorem 3.6 with Lemma 3.5, we get:

Corollary 3.8. Let(K, v) be a henselian valued field such that Kv is PAC and not separably
closed. Then v is∅-definable.

Another application of Theorem 3.6 are henselian valued fields with simple residue
fields. We call a fieldsimpleif Th(K) is simple in the sense of Shelah (see [Wag00] for
some background on simplicity). In a simple theory, no orderings with infinite chains are
interpretable. Thus, no simple field admits a definable valuation. Hence, by Theorem 2.7,
simple fields cannot bep-henselian for any primep. As all Galois extensions of a simple
field are interpretable inK and thus again simple, any non-separably closed simple fieldK
is not virtually p-henselian for anyp with p | #GK . Thus, we get the following

Corollary 3.9. Let (K, v) be a henselian valued field such that Kv is simple and not sepa-
rably closed. Then v is∅-definable.

Real closed and separably closed residue fields.In all our definitions of henselian valu-
ations we showed so far that a given henselian valuationv on a fieldK coincided with both
the canonical henselian valuationvK and the canonicalp-henselian valuationvp

K for some
prime p. However, it can happen that somevp

K is henselian, but a proper coarsening of a
given henselian valuationv. In this casevp

K is again henselian and∅-definable. An example
for this are henselian valued fields with separably closed residue field:

Theorem 3.10.Let K be a field which is not separably closed. Assume that K is henselian
with respect to a valuation with separably closed residue field. Then K admits a non-trivial
∅-definable henselian valuation.

Proof. We show first thatGK is pro-soluble. IfK is henselian with respect to a valuation
with separably closed residue field, thenvK has also separably closed residue field. Letw
be the prolongation ofvK to Ksep. Recall that there is an exact sequence

Iw −→ GK −→ GKvK

whereIw denotes the inertia group ofw overK (see [EP05], Theorem 5.2.7). Hence, asIw

is pro-soluble (see [EP05], Lemma 5.3.2), so isGK .
Thus, there is some primep with K , K(p). But nowvp

K is indeed a (not necessarily
proper) coarsening ofvK : Otherwise, the definition ofvp

K would imply KvK , KvK(p).
If K contains a primitivepth root of unity or char(K) = p, thenvp

K is ∅-definable and
henselian. Else, we consider the∅-definable extensionK(ζp). Then the canonical henselian
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valuation onK(ζp) still has separably closed residue field, thereforevp
K(ζp)|K gives a∅-

definable henselian valuation onK. �

Corollary 3.11. Let K be a field and assume that K is not real closed. If K is henselian
with respect to a valuation with real closed residue field, then K admits a non-trivial∅-
definable henselian valuation.

Proof. If (K, v) is henselian andKv is real closed, consider the unique prolongationw of v
to L = K(i). The residue fieldLw is separably closed, so L admits a∅-definable henselian
valuation by Theorem 3.10. Asv is the restriction ofw to K, v is also∅-definable onK. �

3.2. Henselian fields with non-universal absolute Galois groups. In this section, we
will give a Galois-theoretic condition to ensure the existence of a non-trivial∅-definable
henselian valuation on a henselian field.

The following group-theoretic definition is taken from [NS07].

Definition. Let G be a profinite group. We say that G isuniversalif every finite group
occurs as a continuous subquotient of G.

Note that for a fieldK, GK is non-universal iff there is somen ∈ N such that the sym-
metric groupSn does not occur as a Galois group over any finite Galois extension of K
(and then noSm with m ≥ n will occur). The connection between non-universal absolute
Galois groups and henselianity is given by the following statement:

Theorem 3.12([Koe05], Theorem 3.1). Let K be a field and let L and M be algebraic
extensions of K which both carry non-trivial henselian valuations. Assume further that GL
is non-trivial pro-p and GM non-trivial pro-q for primes p< q. Let v and w be (not neces-
sarily proper) coarsenings of the canonical henselian valuations on L and M respectively,
and, if p= 2 and Lv is real closed, assume v to be the coarsest henselian valuation on L
with real closed residue field. Then either GK is universal or v|K and w|K are comparable
and the coarser valuation is henselian on K.

Example. All of the following profinite groups are non-universal:

(1) pro-abelian groups,
(2) pro-nilpotent groups,
(3) pro-soluble groups,
(4) any group G such that p∤ #G for some prime p.

Non-abelian free profinite groups are of course universal, and so are absolute Galois
groups of hilbertian fields.

Now we can use Theorem 3.12 to deduce henselianity fromp- andq-henselianity:

Proposition 3.13. Suppose GK is non-universal, and K(p) , K , K(q) for two primes
p < q. In case p= 2, assume further that K is not Euclidean. If K is p- and q-henselian,
then K is henselian.

Proof. Consider the henselizationL′ (respectivelyM′) of K with respect to the canonical
p-henselian valuationvp

K (the canonicalq-henselian valuationvq
K) on K. Then defineL to

be the fixed field of ap-Sylow subgroup ofGL′ , andM accordingly.
Claim: L is not separably closed.
Proof of Claim: We need to show thatL′ is not p-closed. But ifα ∈ K(p) has degree

pn overK, then – asvp
K is p-henselian –α is moved by some element ofD(K(p)/K). As

decomposition groups behave well in towers, we getα < L.
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In casep = 2, the same argument shows thatL is also not real closed. SinceL is p-
henselian andGL is pro-p, L is also henselian, and likewise isM. Now we consider the
canonical henselian valuationsvL on L and the canonical henselian valuationvM on M.
If p = 2 andLvL is real closed, we replacevL by the coarsest henselian valuation onL
with real closed residue field. AsL is not real closed, this is again a non-trivial henselian
valuation.

By Theorem 3.12, the restrictionsvL|K andvM |K are comparable and the coarser one is
henselian. AsL and M are algebraic extensions ofK, none of the restrictions is trivial.
HenceK is henselian. �

Proposition 3.14. Let GK be non-universal. Assume that there are two primes p< q with
p, q | #GK and such that K(p) , K , K(q) holds. If K is henselian, then K is henselian
with respect to a non-trivial∅-definable valuation.

Proof. As long as we define a coarsening ofvK without parameters, we may assume that
ζp, ζq ∈ K if char(K) , p or q respectively: The only special case is whenp = 2 andK
is Euclidean andGK(i) is pro-q. ThenK(i) already containsζq and thusvK(i)q = vK(i) is
a non-trivial∅-definable henselian valuation onK(i). In this case, its restriction toK is
non-trivial∅-definable henselian valuation onK.

So now assumeζp, ζq ∈ K. In particular, in casep = 2, K is not formally real and so
Kv2

K cannot be Euclidean. All these extensions still have non-universal absolute Galois
groups.

As K is henselian, it is in particularp- andq-henselian. We consider the canonicalp-
henselian (q-henselian) valuationvp

K (vq
K respectively) onK. If vp

K or vq
K is henselian, then

we have found a∅-definable henselian valuation.
But this must always be the case: Assume that neithervp

K nor vq
K is henselian. Then

vK is a proper coarsening ofvp
K , and thusKvK is p-henselian and satisfiesKvK , KvK(p).

Similarly, KvK is q-henselian andKvK , KvK(q) holds. Therefore, by Proposition 3.13,
KvK is henselian. This contradicts the definition ofvK . �

We can now prove our main result on henselian fields with non-universal absolute Galois
group.

Theorem 3.15. Let K be henselian, and assume that GK is non-universal. If K is neither
separably nor real closed, then K admits a∅-definable henselian valuation. If KvK is
neither separably nor real closed, then vK is ∅-definable.

Proof. By assumption,K is neither separably nor real closed. IfK is henselian andKvK is
separably closed (respectively real closed), thenK admits a∅-definable henselian valuation
by Theorem 3.10 (respectively Corollary 3.11). Thus, we mayassume from now on that
KvK is neither separably nor real closed.

In this case,vK is the finest henselian valuation onK and thusKvK is not henselian.
Furthermore, there is some primep with p | #GKvK . Assume first thatGKvK is pro-p, then
it follows thatKvK , KvK(p) and thusK , K(p) (Proposition 2.6). In particular,vK must
be a coarsening ofvp

K . But if vK was a proper coarsening ofvp
K , thenKvK would bep-

henselian and hence – asGKvK is pro-p – henselian or real closed. Since we have assumed
thatKvK is neither real closed nor henselian, we getvK = vp

K . As in previous proofs (see
for example the proof of 3.14), we may assumeζp ∈ K if char(K) , p, sovK is ∅-definable.

Now consider the case that there are (at least) two primesp < q with p, q | #GKvK .
Thus, alsop, q | #GK holds. IfKvK(p) , KvK , KvK(q), then – using Proposition 2.6 once
more – we haveK(p) , K , K(q). By the proof of Proposition 3.14, one ofvp

K andvq
K is
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henselian. Sayvp
K is henselian, then we getvK ⊂ vp

K by Observation 2.9. ButvK is also a
coarsening ofvp

K , asKvK , KvK(p). Thus, we concludevK = vp
K , and hencevK is again

∅-definable.
Finally, if there are two primesp, q | GKvK , but KvK = KvK(p) or KvK = KvK(q), we

want to consider finite Galois extensionsL of KvK with L(p) , L , L(q). Let M be a
finite Galois extension ofK, and letw be the unique prolongation ofvK to M. Note that
GM is again non-universal and, asMw is still neither separably nor real closed,w = vM

holds. If Mw(p) , Mw , Mw(q), thenw is ∅-definable onM by vp
M or vq

M as above. Say
w = vp

M. As w is in particularq-henselian andMw , Mw(q), we getw ⊃ vq
m. Thus, in any

case the finest common coarsening ofvp
M andvq

M is equal to the coarser one of the two and
furthermore∅-definable and henselian.

Now we fix an integern such that there is a Galois extensionM of K (containingζp and
ζq if necessary) such thatMw(p) , Mw , Mw(q). Just like in the proof of 3.6, we get a
parameter-free definition ofv by
⋂

(

(Ovp
M
· Ovq

M
) ∩ K

∣

∣

∣ K ⊆ M Galois, [M : K] = n, M(p) , M , M(q),

ζp ∈ M if char(M) , p, ζq ∈ M if char(M) , q, vp
M ∈ Hp

1 (M), vq
M ∈ Hq

1(M)
)

.

�

Remark. In fact, it suffices to assume for the proof of the above theorem that K is t-
henselian rather than henselian. This is a generalization of henselianity introduced in
[PZ78]. Like henselianity, t-henselianity goes up to finite extensions and implies p-hense-
lianity for any prime p. These are the only properties of henselianity needed in the proof.
In particular, we get that any field with a non-universal absolute Galois group which is
elementarily equivalent to a henselian field is in fact henselian itself (since a∅-definable
henselian valuation gives rise to a non-trivial henselian valuation on any field with the
same elementary theory). Thus, for any field with a non-universal absolute Galois group,
henselianity is an elementary property inLring.

Our Galois-theoretic condition is moreover also a condition on the residue field.

Observation 3.16.Let (K, v) be a henselian valued field. Then GK is non-universal iffGKv

is non-universal.

Proof. Recall the exact sequence

Iv −→ GK −→ GKv.

If GK is non-universal, then some finite group does not appear as a Galois group over any
finite extension ofK, and hence the same holds forKv.
On the other hand, ifGKv is non-universal, there is somen0 ∈ N such that neitherSn nor
An (for n ≥ n0) occur as a subquotients ofGKv. As Iv is soluble,Sn (for n ≥ max{5, n0}) is
not a subquotient ofGK , either. �

In particular, we can use the observation to define a range of power series valuations.

Corollary 3.17. Let K be a field with GK non-universal. LetΓ be a non-trivial ordered
abelian group, and assume thatΓ is non-divisible in case that K is separably or real closed.
Then there is a∅-definable non-trivial henselian valuation on K((Γ)). If K is not henselian
and neither separably nor real closed, then the power seriesvaluation is definable.
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Proof. The first statement is immediate from the previous Observation and Theorem 3.15.
The second also follows from Theorem 3.15: IfK is not henselian, then the power series
valuation is exactly the canonical henselian valuation. �

One example of fields with non-universal absolute Galois group are NIP fields of posi-
tive characteristic. We call a field NIP if Th(K) is NIP in the sense of Shelah (see [Adl08]
for some background on NIP theories). In [KSW11] (Corollary4.5), the authors show
that if K is an infinite NIP field of characteristicp > 0, thenp ∤ #GK . Thus, we get the
following

Corollary 3.18. Let (K, v) be a non-trivially henselian valued field, K not separably
closed. If

• K is NIP andchar(K) > 0, or
• Kv is NIP andchar(Kv) > 0,

then K admits a non-trivial∅-definable henselian valuation.

Proof. The first statement follows from Theorem 3.15. The second statement is now a
consequence of Observation 3.16. �
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