
ar
X

iv
:1

40
2.

37
47

v1
 [

m
at

h.
L

O
]

 1
6

Fe
b

20
14

THE GENERIC DEGREES OF DENSITY-1 SETS, AND
A CHARACTERIZATION OF THE

HYPERARITHMETIC REALS

GREGORY IGUSA

Abstract. A generic computation of a subset A of N is a compu-
tation which correctly computes most of the bits of A, but which
potentially does not halt on all inputs. The motivation for this con-
cept is derived from complexity theory, where it has been noticed
that frequently, it is more important to know how difficult a type
of problem is in the general case than how difficult it is in the worst
case. When we study this concept from a recursion theoretic point
of view, to create a transitive relationship, we are forced to consider
oracles that sometimes fail to give answers when asked questions.
Unfortunately, this makes working in the generic degrees quite dif-
ficult. Indeed, we show that generic reduction is Π

1

1
−complete.

To help avoid this difficulty, we work with the generic degrees of
density-1 reals. We demonstrate how an understanding of these
degrees leads to a greater understanding of the overall structure of
the generic degrees, and we also use these density-1 sets to provide
a new a characterization of the hyperartithmetical Turing degrees.

1. Introduction

In complexity theory, there has been recent work attempting to rigor-
ously understand and study the phenomenon in which a problem might
be known to have a very high complexity in the traditional sense, and
yet still be very easy to solve in practice. To this end, distinctions are
made between the worst-case complexity of the problem, which is the
usual way to measure the complexity of a problem, the average-case
complexity of the problem [1], which measures the expected amount
of time to solve the problem, and the generic-case complexity of the
problem [4], a measure of how complex the majority of the instances
of the problem are.
The study of generic-case complexity has led to the interesting real-

ization that it is sometimes possible to find the generic-case complexity
of a problem that is not even solvable. For instance, the word prob-
lem for Boone’s group is known to be unsolvable, yet it can be shown
to be generically linear time solvable [4]. This sort of behavior allows

1

http://arxiv.org/abs/1402.3747v1

2 GREGORY IGUSA

for a complexity theoretic analysis of questions which had previously
been outside of the scope of complexity theory. Simultaneously, how-
ever, it calls to light the recursion theoretic question: what can be said
about the generically computable sets, and about generic computation
in general?
Following the notation of Jockusch and Schupp [3] we make the fol-

lowing definitions:

Definition 1.1. Let A be a subset of the natural numbers. Then A
has density 1 if the limit of the densities of its initial segments is 1, or

in other words, if limn→∞
|A∩n|

n
= 1. In this case, we will frequently say

that A is density-1.

The notation in this paper follows the heuristics of [6], but notation
will be defined as it is introduced. A subset of the natural numbers is
often referred to as a real. Note that the intersection of two reals is
density-1 if and only if each of the reals is density-1. (For any ǫ > 0,
once the densities of the initial segments of each of the reals is > 1− ǫ

2
,

the density of their intersection will be > 1 − ǫ.) We will sometimes
use function notation for reals, in which case we say that A(n) = 1
if n ∈ A, and A(n) = 0 if n /∈ A. In longer proofs, parenthetical
comments will frequently be used to provide short proofs of claims in
order to help illustrate the structure of the proofs.

Definition 1.2. A real A is generically computable if there exists a
partial recursive function ϕ with the following properties:

• dom(ϕ) is density-1,
• ran(ϕ) ⊆ {0, 1},
• ϕ(n) = A(n), for all n ∈ dom(ϕ).

Note that this is very different from the following concept.

Definition 1.3. A real A is coarsely computable if there exists a to-
tal recursive function ϕ, whose range is contained in {0, 1} such that
{n |ϕ(n) = A(n)} is density-1.

Thus, a generic computation is a computation which never makes
mistakes, but which occasionally does not give answers, while a coarse
computation is a computation which always gives answers, but some-
times makes mistakes. Neither generic computability nor coarse com-
putability implies the other [3]. The focus of this paper will be on
generic computation (we remind the reader that the motivation for
generic computation is algorithms that, in practice, run faster than
they otherwise should be able to, not algorithms that take shortcuts
and are occasionally inaccurate in order to get answers more quickly.)

DENSITY-1 DEGREES 3

Coarse computation is only presented here to disambiguate, and also
because we will find that the coarsely computable reals have a number
of interesting properties from the point of view of generic computation.
Now, we wish to work our way up to generic degrees, and for this

reason, we first present relativized generic computation.

Definition 1.4. For reals A and B, A is generically B-computable if
A is generically computable using B as an oracle. In this case, we
frequently say B generically computes A.

Notice, however, that this relativized notion of generic computation
is very far from transitive, since information can be “hidden” in a real
in a way that causes it to have a large amount of computing power.

Observation 1.5. There exist reals A, B, and C such that B generi-
cally computes A, C generically computes B, but C does not generically
compute A.

Proof. Let A be any real that is not generically computable. (There
exists such a real because every ϕ is a generic computation of at most
Lebesgue measure zero many reals, and there are only countably many
partial recursive functions.)
Let B be the real such that 2n ∈ B ⇔ n ∈ A (and m /∈ B if m is

not a power of 2.)
Let C = 0, the empty set.
Then, B generically computes A because B computes A, and a com-

putation is also a generic computation. Also, C generically computes
B by the algorithm ϕ where ϕ(m) = 0 if m is not a power of 2. (ϕ does
not reference its oracle, and also ϕ(m) does not halt if m is a power of
2.)
Finally, C does not generically compute A, because A is not generi-

cally computable.
�

Now, we introduce generic reduction, which is a notion of relative
generic computation that has been modified to make it transitive. This
will allow us to discuss the degree structure of the generic degrees, and
will give us a deeper understanding of what it means to generically
compute something, since now the difficulty in generically computing
a real will be precisely measured by its generic computation power.
We will also see in Observation 1.15 that the entire theory of relative
generic computation can be discussed within the structure of generic
reduction, so we do not lose anything.
The basic idea of a generic reduction will be that a generic reduction

from A to B is an algorithm that can use any generic oracle for B to

4 GREGORY IGUSA

generically compute A. A generic oracle for B is an oracle that does
not always respond when asked a question, but that responds (always
correctly) to density-1 many questions about B. For this reason, we
first define what it means for a Turing machine to work with a partial
oracle.

Definition 1.6. Let A be a real. Then a (time-dependent) partial
oracle, (A), for A is a set of ordered triples 〈n, x, l〉 such that:
∃l
(
〈n, 0, l〉 ∈ (A)

)
=⇒ n /∈ A,

∃l
(
〈n, 1, l〉 ∈ (A)

)
=⇒ n ∈ A.

The idea here is that (A) is a partial oracle that, when asked a
question about A, sometimes takes a while before it responds, and
does not always respond. Thus, to “ask” (A) whether or not n ∈ A is
to search (A) for some x, l such that 〈n, x, l〉 ∈ (A). Here, x is thought
of as the answer that (A) gives, and l is thought of as the amount of
time before it gives an answer.
If such x, l exist for n, we say that the oracle halts on n, i.e. (A)(n) ↓,

and that the output of (A) on n is x; otherwise, we say that it does
not halt on n, or (A)(n) ↑. Also, after querying the oracle (initiating a
search for some such x, l) our reductions will be able to do other things
while waiting for the oracle to respond (while running the search in
parallel to other processes.) The “domain” of a partial oracle, written
dom((A)), is the set of n such that (A)(n) ↓.
The words “time-dependent” in the definition refer to the fact that

the original definition [3] is different in that it does not use an l parame-
ter, and the eventual definition of a generic reduction uses enumeration
reductions rather than Turing reductions. The two can be proven to
be equivalent in our setting [2]. We use this definition so that generic
reductions can be formalized using Turing reductions, rather than enu-
meration reductions. This choice streamlines the proofs of several of
our theorems, but it will force us to prove Lemma 2.10, which is ob-
tained for free with the other definition.

Definition 1.7. Let A be a real. Then a generic oracle, (A), for A is
a partial oracle for A such that dom((A)) is density-1.

Note then the following.

Observation 1.8. B generically computes A if and only if B computes
a generic oracle for A.

Proof. If ϕB is a generic computation of A, then we can let 〈n, x, l〉 ∈
(A) if and only if ϕB(n) halts in l steps, with value x. Conversely,
if B computes (A) for some generic oracle, (A), for A, then B can

DENSITY-1 DEGREES 5

generically compute A by ϕB(n) = x where x is the first x found such
that there exists an l with 〈n, x, l〉 ∈ (A). This algorithm halts on
density-1, and gives only correct answers, since (A) is a generic oracle
for A.

�

Definition 1.9. Let A and B be reals. Then, A is generically reducible
to B if there exists a Turing functional ϕ such that for every generic
oracle, (B), for B, ϕ(B) is a generic computation of A. In this case, we
write B ≥g A.

Here, it is important to note that a generic reduction is given by a
uniform way to go from a generic oracle for B to a generic computa-
tion of A. (In other words, the same reduction ϕ must work for every
generic oracle (B).) If we relax this condition, and allow ϕ to depend
on (B), then we get another, provably distinct, transitive notion of
reducibility [2]. Non-uniform generic reduction is somewhat more dif-
ficult to work with, and in this paper, we will focus solely on uniform
generic reduction.
Note that the proof of Observation 1.8 is uniform, which allows us

to conclude that ≥g is a transitive relationship:

Lemma 1.10. If C ≥g B and B ≥g A, then C ≥g A

Proof. Assume C ≥g B and B ≥g A. Then, let (C) be a generic
oracle for C. By assumption, (C) can be used uniformly to generically
compute B. By the uniformity of the proof of Observation 1.8, (C) can
also be used to uniformly compute a generic oracle, (B), for B, and,
by assumption, (B) can be used uniformly to generically compute A.
(The specific (B) that is computed will depend on (C), but any (B)

is sufficient to generically compute A.) �

With transitivity, we may now define the generic degrees in the stan-
dard manner.

Definition 1.11. The generic degrees are the equivalence classes of
reals under the relation (A ≡g B)↔ (A ≥g B ∧ A ≤g B).
As usual, the pre-ordering ≤g on reals induces a partial ordering ≤g

on the generic degrees:
a ≥g b↔ A ≥g B where A and B are elements of a, and b respec-

tively.

Next, we show that the usual join operation induces a degree-theoretic
join in the generic degrees.

Lemma 1.12. Let A and B be reals. Let A⊕ B be the real given by

6 GREGORY IGUSA

(2n ∈ A⊕B ↔ n ∈ A) and (2n+ 1 ∈ A⊕ B ↔ n ∈ B).
Then, A ⊕ B ≥g A, A ⊕ B ≥g B, and, ∀C, if C ≥g A and C ≥g B

then C ≥g A⊕ B.

Proof. The basic idea of the proof is that a subset of N is density-1 if
and only if its even elements are density-1 in the even numbers, and its
odd elements are density-1 in the odd numbers. The proof of this fact
is a straightforward, but somewhat long limit calculation, and will be
omitted.
From this, we deduce that it is easy to go from a generic oracle for

A⊕B to one for each of A, and B, and vice versa.
�

In terms of understanding the generic degrees, one of the most im-
portant features is that the Turing degrees embed naturally into the
generic degrees.

Definition 1.13. For any real X , R(X) is the real defined by:
R(X) = {2mk |m ∈ X, k ∈ N, k is odd}.

In other words, n ∈ R(X) if and only if m ∈ X , where 2m is the
largest power of 2 dividing n.

Proposition 1.14. The map X 7→ R(X) induces an embedding from
the Turing degrees to the generic degrees.

The key idea of this proof is that every piece of information in X is
stretched out over a positive density set in R(X), and so any generic
description of R(X) contains all of the information in X .
The proof of the embedding consists of a proof that having access

to a generic oracle for R(X) is exactly the same as having access to
an oracle for X , and likewise, that the task of generically computing
R(X) is exactly as difficult as the task of computing X . This is the
sense in which the embedding is “natural.”

Proof. If Y ≥T X , then we may generically reduce R(X) to R(Y) by
using a generic oracle for R(Y) to compute Y , and then using Y to
compute X , which we use to compute R(X).
Let (B) be a generic oracle for R(Y). Then, we can use (B) to

compute Y in the following way.
To determine if m ∈ Y we search for a k ∈ N such that (2k+1)2m ∈
R(Y). Our oracle, (B) must eventually give an answer for some such
K, because otherwise its domain would not be density-1. (B) is not
allowed to make any mistakes, and so that answer must also be the
answer to whether or not m ∈ Y .

DENSITY-1 DEGREES 7

Thus, to generically compute R(X) from (B), we use (B) to com-
pute Y , use Y to compute X , and use X to compute R(X). (Note
that for our purposes, we only need to generically compute R(X), but
computing R(X) is just as good.)
Conversely, if R(Y) ≥g R(X), then in particular, Y generically com-

putes R(X). This is because Y can compute a generic oracle for R(Y)
(namely, the oracle that halts everywhere), and any generic oracleR(Y)
can generically compute R(X). So then, to use Y to compute X(m),
we use our generic computation of R(X) to simultaneously attempt to
compute, for each k, whether or not (2k + 1)2m ∈ R(X). The generic
computation must halt on at least one of these, else the domain of the
generic computation is not density-1. When we find some k such that
ϕY ((2k + 1)2m) halts, then we use that output for our computation of
X(m).

�

Note, in particular, that by using this embedding, we are able to
study generic computation in terms of generic reduction.

Observation 1.15. Let A,B be reals. Then R(B) ≥g A if and only if
B generically computes A.

Proof. If R(B) ≥g A then B generically computes A because B can
compute a generic oracle for itself, which can be used to generically
compute A.
Conversely, any generic oracle for R(B) can (uniformly) compute B

(as in the first half of the proof of Proposition 1.14), and so, if B gener-
ically computes A, then any generic oracle for R(B) can generically
compute A by computing B, and then using the generic computation
of A from B.

�

2. Density-1 Reals

2.1. Introduction. Now, to understand the generic degrees, we at-
tempt to understand them from two standpoints. First, we attempt
to answer basic degree-theoretic questions about them such as: Are
there any minimal degrees? Are there minimal pairs of degrees? Does
every nonzero degree have another degree that it is incomparable to?
Second, we use the embedding of the Turing degrees to attempt to
understand the generic degrees in terms of their relationship with the
Turing degrees: How far up and how far down do the Turing degrees
embed in the generic degrees? Can we understand concepts within the
generic degrees in terms of known concepts within the Turing degrees?

8 GREGORY IGUSA

For the question of “how far up do the Turing degrees go?” the
answer is straightforward, which is that they go all the way up.

Observation 2.1. For any real A, R(A) ≥g A. Thus, the embedded
Turing degrees are upward dense in the generic degrees.

Proof. Any generic oracle for R(A) can be used uniformly to compute
A, and so, in particular, to generically compute A. �

The study of how far down the Turing degrees go is, in some sense,
the study of the quasi-minimal generic degrees.

Definition 2.2. A nontrivial generic degree, b, is quasi-minimal if for
every Turing degree a, if b ≥g R(a), then a = 0.

In other words, a quasi-minimal generic degree is a generic degree
that is not generically computable, but is also not above any non-zero
embedded Turing degrees.
Quasi-minimal degrees will be discussed more thoroughly in Section

2.3, when we discuss minimal degrees and minimal pairs in the generic
degrees.
One of the biggest goals of this paper is to discuss the generic degrees

of the density-1 reals, and show how they relate to many questions
concerning the generic degrees in general. To aid our discussion, we
define density-1 generic degrees as generic degrees that have density-1
elements.

Definition 2.3. A generic degree a is density-1 if there is a density-1
real A ∈ a.

The original motivation for studying the density-1 reals is that they,
in some sense, isolate the “new” concept that needs to be addressed
in the generic degrees: A generic oracle sometimes outputs “1,” some-
times outputs “0,” and sometimes does not halt. Furthermore, the
“information” in the generic oracle is somehow contained both in the
outputs that it gives, and also in the places where it does not give
outputs. The density-1 reals isolate this second form of information,
since a generic oracle of a density-1 real can be assumed to never give
any outputs other than “1,” and so can be thought of as having all of
its information contained within its halting set.
The following lemma formalizes the concept that, from the point of

view of generic reduction, the entire information content of a density-1
real can be captured using oracles and computations that only output
“yes” answers when they halt.

DENSITY-1 DEGREES 9

Lemma 2.4. Let A be a density-1 real, and B be any real. Then, the
following hold.
B ≥g A if and only if there exists a Turing functional ϕ which only

outputs 1’s (for any real X and number n, if ϕX(n) ↓, then ϕX(n) = 1),
such that for any generic oracle (B) for B, ϕ(B) is a generic computa-
tion of A.
Also, A ≥g B if and only if there exists a Turing functional ϕ such

that for any generic oracle (A) for A, if dom((A)) ⊆ A, then ϕ(A) is a
generic computation of B.

The primary content of this lemma is that a generic oracle or generic
computation of a density-1 real, A, can, in some sense, be thought of as
an enumeration of a density-1 subset of A. This idea will be formalized
more thoroughly in Lemmas 2.7 and 2.8.

Proof. Let A be a density-1 real, and assume B ≥g A.
Fix ψ such that for any generic oracle (B) for B, ψ(B) is a generic

computation of A. If we modify ψ, and define ϕ so that ϕX behaves
exactly the same way as ψX , except that ϕX(n) diverges whenever
ψX(n) 6= 1, then ϕ will also have the property that for any (B), ϕ(B) is
a generic computation of A, because the outputs that it gives will still
be correct (ϕ’s outputs are a subset of ψ’s outputs), and the domains of
the computations will still be density-1, since for each (B), the domain
of ϕ(B) will be the intersection of A with the domain of ψ(B).
Conversely, if there exists a ϕ as in the statement of the observation,

then that ϕ is a generic reduction from A to B.
For the second part of the observation, assume there exists a ϕ that

generically computes B from any generic oracle for A which outputs
only 1’s. Then it can be modified to generically compute B from any
generic oracle (A) forA in the following manner. A is density-1, and (A)
is a generic oracle, and so the intersection of A with the domain of (A)
must be density-1. So now, we define ψ so that ψX(n) = ϕY (n) where
Y = X \ {〈n, 0, l〉 |n, l ∈ N}. (Intuitively, ψ is the computation that
mimics ϕ, except that it ignores any locations where its oracle outputs
0.) Then, ψ will generically compute B from any generic oracle for A,
because it modifies that oracle to a generic oracle that outputs only
1’s, and then uses ϕ.
Again, the converse is true by definition: If A ≥g B, then there

exists a ϕ which generically computes B from any generic oracle for A.
In particular, ϕ generically computes B from any generic oracle for A
that outputs only 1’s.

�

10 GREGORY IGUSA

Note that for this result, we needed to use the fact that the intersec-
tion of two density-1 reals is density-1. We provided a short proof of
this after Definition 1.1, but here, we will state and prove this obser-
vation clearly, since it will be very relevant to much of our work with
density-1 reals.

Observation 2.5. Let A and B be reals. Then A ∩ B is density-1 if
and only if both A and B are density-1.

Proof. If A∩B is density-1, then each of A and B is density-1, because
it is a superset of a density-1 set.
Conversely, fix some ǫ > 0. We must prove that there is some m

such that ∀n > m |(A∩B)∩n|
n

> 1− ǫ.
If A and B are each density-1, then choose m such that for every

n > m, |A∩n|
n

> 1 − ǫ
2
and |B∩n|

n
> 1 − ǫ

2
. This m suffices for our

purposes, since if anything is missing from (A∩B)∩n, then it is either
missing from A ∩ n, or from B ∩ n.

�

This allows us to prove a few results which will be useful to us, and
will also help illustrate the manner in which density-1 reals are easier
to work with than other reals.

Lemma 2.6. Let A and B be density-1 reals. Assume B ⊆ A. Then
B ≥g A.

Proof. Assume B ⊆ A.
Then B ≥g A via the algorithm ϕ where ϕ(n) = 1 if n ∈ B. This

algorithm only gives correct outputs because B ⊆ A, and it halts on
the intersection of B with the domain of the generic oracle for B, which
is density-1.

�

Lemma 2.7. Let A and B be density-1 reals. Then A ∩ B ≡g A⊕B.

Proof. To show that A ∩ B ≥g A⊕ B, we show that A ∩ B ≥g A, and
that A ∩ B ≥g B. This is true by Lemma 2.6.
Conversely, A ⊕ B ≥g A ∩ B by the algorithm ϕ where ϕ(n) = 1

if 2n and 2n + 1 are both in A ⊕ B. (If we would like, we may also
have ϕ(n) = 0 if either 2n or 2n + 1 is not in A ⊕ B, this would still
be a correct generic reduction, but it is against the philosophy implicit
in Lemma 2.4.) If (C) is a generic oracle for A ⊕ B, then the domain
of ϕ(C) is density-1 because it is the intersection of the domains of the
natural generic computations of A and of B from (C).

�

DENSITY-1 DEGREES 11

Lemma 2.8. Let a and b be density-1 generic degrees. Then b ≥g a

if and only if ∃B ∈ b ∃A ∈ a such that B and A are both density-1,
and B ⊆ A.

Proof. Assume ∃B ∈ b ∃A ∈ a(B ⊆ A), with B and A both density-1.
Then B ≥g A by Lemma 2.7.
Conversely, assume b ≥g a, and let B0 ∈ b, A0 ∈ a, with B0, A0 both

density-1. Let B = B0 ∩ A0, and let A = A0. Clearly, B ⊆ A. Also,
by Lemma 2.7, B ≡g A0 ⊕ B0. Furthermore, A0 ⊕ B0 ≡g B0 because
B0 ≥g A0. Thus, B ∈ b, A ∈ a, and B ⊆ A. �

We use Lemma 2.8 to prove that the density-1 sets are dense in the
generic degrees

Proposition 2.9. Let a and b be density-1 generic degrees. Assume
b >g a. Then there exists a density-1 degree c such that b >g c >g a.

Before we prove this, however, we require a technical result roughly
saying that in generic reductions, we may assume that computations
always give more outputs if they get more inputs.

Lemma 2.10. Let A,B be reals. Then B ≥g A if and only if there is
a ϕ such that the following hold.

• For any generic oracle, (B), for B, ϕ(B) is a generic computa-
tion of A.
• For any C, if anything generically reduces to C via ϕ, then for
any partial oracles (C)0 and (C)1, if dom((C)0) ⊆ dom((C)1),
and (C)1 ↾ dom((C)0) = (C)0 (with (C)0 and (C)1 regarded as
partial functions), then dom(ϕ(C)0) ⊆ dom(ϕ(C)1), and ϕ(C)1 ↾

dom(ϕ(C)0) = ϕ(C)0 .

We call such a ϕ a “more-is-more” functional, since having more in-
formation from the oracle never results in computing fewer things from
the output. (Note that in Jockusch and Schupp’s definition of generic
reduction [3], all generic reductions are via more-is-more functionals.)

Proof. Certainly, if there is a ϕ as in the statement of the lemma,
then B ≥g A, because the first bulletpoint ensures that ϕ is a generic
reduction of A to B.
Conversely, assume that B ≥g A via ψ. Then, define ϕX as follows.
Think of X as a partial oracle, and consider all partial oracles Y that

agree with X (i.e., so that Y does not give any outputs that X does
not give). For any such Y , if ψY (n) = x then ϕX(n) = x. (If there are
multiple such Y s for which ψY (n) is defined, then use the first such Y
that is found.)

12 GREGORY IGUSA

Note then that, first of all, if X is a generic oracle for B, then ϕX

is a generic computation for A, because every Y that is used will be
a partial oracle for B, and any finite portion of a partial oracle for
B can be extended to a generic oracle for B, and so ψY cannot make
any mistakes when generically computing A. Anything that ψX would
output, will also be outputted by ϕX , and so the domain of ϕX will be
density-1.
Also, ϕ satisfies the “more is more” requirement of the lemma, be-

cause if (C)0 and (C)1 are as in the lemma, then any Y that agreed
with (C)0 would also agree with (C)1, and so ϕ(C)1 would halt any-
where that ϕ(C)0 would halt. If anything generically reduces to C via
ϕ, then in particular, ϕ(C)1 must agree with ϕ(C)0 anywhere that they
both halt.

�

Now we move on to prove Proposition 2.9

Proof. Use Lemma 2.8 to fix density-1 sets B ⊆ A in b and a respec-
tively. We build a real C such that B ⊆ C ⊆ A. This guarantees
that C is density-1 and that B ≥g C ≥g A. The main difficulty in the
construction will be ensuring that C �g B, and A �g C.
Note that it is not necessary to ensure that B ≥T C, and indeed,

this will probably not be the case.
The basic idea of the proof is that C will alternate between copying

B until it forces one instance of A not computing it, and copying A
until it forces one instance of it not computing B. By the end of the
construction, there will be no ϕ via which A could compute C, or via
which C could compute B.

At stage 2e, we have some finite approximation σ2e to C, and we
wish to extend it to ensure that C will not generically reduce to A via
ϕe.
The first thing that we ask is whether ϕe is a functional that only

outputs 1’s when it halts. If not, then we do not have to do anything,
since C will be density-1 by the end of the construction, so by Lemma
2.4, if there is a reduction from C to A, then there is a reduction that
only outputs 1’s.
Next, we ask whether it is true that for every generic oracle (A),

for A, ϕ
(A)
e is a generic computation of A. If not, then we do not

have to do anything, since C will be a density-1 subset of A, so any
generic computation of C that only outputs 1’s must also be a generic
computation of A.

DENSITY-1 DEGREES 13

If so, then there must be some number n, and some generic oracle,

(A), for A such that ϕ
(A)
e (n) = 1, but n /∈ B. Otherwise, A ≥g B via ϕe.

(We are assuming that ϕ
(A)
e halts on density-1, and only outputs 1’s, so

the only thing that could prevent it from being a generic computation
of B is if it outputs a 1 when it is not supposed to.)
By the usual argument, there must be infinitely many such n (be-

cause otherwise we could modify ϕe to not halt on those n, which is
not possible, because we know that A �g B.) So we can choose one
such n that is larger than |σ2e|, and extend our approximation to C to
be equal to B up to and including that n.
This ensures that it is not true that A ≥g C via ϕe, since n /∈ C, but

ϕ
(A)
e (n) = 1.

At stage 2e+ 1, we have some finite approximation σ2e+1 to C, and
we wish to extend it so that B does not generically reduce to C via ϕe.
The first thing we ask is whether ϕe is a more-is-more functional. If

not, then we do not need to do anything, since, by Lemma 2.10, if there
is a reduction from B to C, then there is a reduction via a more-is-more
functional.
Next, we ask whether it is true that for every generic oracle (B),

for B, with dom((B)) ⊆ B, ϕ
(B)
e is a generic computation of B. If the

answer is “no,” then we do not have to do anything: C will contain B,
so every such generic oracle for B will, in fact, also be a generic oracle

for C. Thus if any of the ϕ
(B)
e is not a generic computation of B, then

B will definitely not reduce to C via ϕe.
If the answer is “yes,” then it must be true that for some n, ϕA

e (n) 6=

B(n). Otherwise, A ≥g B because for any (A), ϕ
(A)
e never gives incor-

rect outputs about B. (Notice that any generic oracle for A actually is
a superset of some generic oracle for B, so since ϕe is a more-is-more

functional, for any (A), the domain of ϕ
(A)
e is density-1.)

Similarly, if we let A1 be the real that agrees with σ2e+1 up to |σ2e+1|,
and agrees with A after that, then there must also be some n /∈ B, such
that ϕA1

e A(n) = 1 because otherwise A1 ≥g B. This is not possible,
since A1 ≡g A. (Recall that A1 is a finite modification of A.) We extend
our approximation to C to match A until we have copied enough to
make ϕC

e (n) 6= B(n) for some n.
This ensures that it is not true that C ≥g B via ϕe.

Once we have completed ω-many stages, we will have ensured that,
for each e, if ϕe only outputs 1’s, then it does not witness A ≥g C,
and also, if ϕe is a more-is-more reduction, then it does not witness

14 GREGORY IGUSA

C ≥g B. Thus, by Lemmas 2.4 and 2.10, A �g C and C �g B. Hence,
because B ⊆ C ⊆ A, we have that that B >g C >g A.
Let c be the generic degree of C.

�

We can strengthen this result to split A over B.

Proposition 2.11. Let a and b be density-1 generic degrees. Assume
b >g a. Then there exist density-1 degrees c and d such that b >g c >g

a, b >g d >g a, and c⊕ d = b.

Proof. The basic idea of this proof is that we will mimic the previous
construction, but we will ensure that C ∩ D = B, which will ensure
that C ⊕ D ≡g B by Lemma 2.7. We may also, if we desire, ensure
that C ∪ D = A, which we will do, just for symmetry, but this does
not ensure that a is the infimum of c and d in the generic degrees.
We will assume familiarity with the proof of Proposition 2.9.

As before, fix density-1 sets B ⊆ A in b and a respectively.
At stage 2e, we have some finite approximations σ2e to C, and τ2e

to D, and we wish to extend them so that C does not generically
reduce to A via ϕe, and so that B does not generically reduce to D
via ϕe. (Notice here that we are satisfying requirement 2e for C, but
requirement 2e+ 1 for D.)

We accomplish this by having C copy B until for some (A), ϕ
(A)
e

incorrectly computes some bit of C. We simultaneously have D copy

A until for some (D), ϕ
(D)
e incorrectly computes some bit of B.

(If one of the strategies satisfies its objective before the other one
does, then it continues to copy the set that it is copying until the other
strategy has satisfied its own objective.) If one of the strategies does
not need to act, then both strategies only wait for the one that needs
to act to satisfy its objective. If neither strategy needs to act, then we
simply move on to stage 2e+1. (Again, this cannot be done uniformly,
but that is fine, because we do not need either C orD to be computable
from B, but just for them both to be generically computable from B.
This is guaranteed since both C and D contain B.)
At stage 2e + 1, we have C copy A and D copy B in a manner

analogous to what we did at stage 2e.
At the end of the construction, we have that C ∩ D = B, and so

C ⊕D ≡g B. We have also forced that C �g B,D �g B,A �g C, and
A �g D. So we may let c, and d be the generic degrees of C, and D,
respectively.

�

DENSITY-1 DEGREES 15

2.2. Bounding Hyperarithmetic Reals. Now, that we have estab-
lished some techniques for working with density-1 degrees, we seek to
prove Theorem 2.15, which says that for any real A, the Turing degree
of A is hyperarithmetic if and only if there is some density-1 B such
that B ≥g R(A). For our purposes, the most useful characterization
of the hyperarithmetic reals is that is that the hyperarithmetic reals
are precisely the reals that can be computed from any sufficiently fast
growing function.

Theorem 2.12. (Solovay) [7]
Let A be a real. Then A is hyperarithmetic if and only if there is a

function f , and a Turing functional ϕ such that for every function g
dominating f , ϕg is a computation of A. In this case, we say that f is
a modulus of computation for A.
(Here, g dominates f if and only if ∀n, g(n) ≥ f(n). In this case,

we sometimes write g ≫ f .)

Here, A is hyperarithmetic if and only if there is a recursive ordinal
α such that A ≤T 0α, the αth jump of 0. Equivalently, as shown by
Kleene, A is hyperarithmetic if and only if it is ∆1

1 (i.e., definable by
both a Σ1

1 formula and a ∆1
1 formula in the language of second order

arithmetic.) See [5] for a more thorough explanation of the subject.
In this paper, however, we will only need the characterization of the
hyperarithmetic reals in terms of fast growing functions, so we do not
present the other two characterizations in detail, and Theorem 2.12
may be treated as a definition.
The easier direction of our argument will be showing that anything

computable from a sufficiently fast growing function, f , can be coded
into a density-1 set, A, in such a way that any generic oracle for A can
recover a function that dominates f .

Proposition 2.13. Let A be any hyperarithmetic real. Then there is
a density-1 real B such that B ≥g R(A).

The idea of this proof is that, if f is a fast growing function, we may
define B so that B is density-1, but the density of B approaches 1 very
slowly. If we do this, then any generic oracle, (B), for B will have its
density approach 1 at most as quickly as B’s density does, and thus
(B) will be able to compute a function that dominates f . (B) can then
use that function to compute A.

Proof. By Theorem 2.12, there is a function f , and a Turing functional
ϕ such that for any g, if ∀n g(n) ≥ f(n), then ϕg is a computation of
A.

16 GREGORY IGUSA

Let f , ϕ be as above. Replacing f with a faster growing function if
necessary, we may assume f is an increasing function.
Let B be any density-1 real such that for every n andm, if n < f(m),

then |B∩n|
n

< 1 − 2−m. Such a real can be constructed by the simple
algorithm, in which for each n, we decide whether n goes into B after
determining B ∩ n. We make this decision based on: n goes into B

if and only if putting it in to B would not cause |B∩(n+1)|
n+1

to go above

1− 2−m, where m is the smallest m such that f(m) > n+ 1. (Since f
is an increasing function, such an m exists.)
When B is defined in this manner, it will have density 1 because, as

n gets large, the restrictions on putting elements into B get weaker.
Thus, for any fixed value of m, we will eventually stop requiring that
|B∩(n+1)|

n+1
< 1 − 2−m. Then, once n becomes large enough, |B∩(n+1)|

n+1

will be greater than 1 − 2−m. (We need n to be sufficiently large
that whatever happened earlier is negligible, and also that adding or

removing n from B will not change |B∩(n+1)|
n+1

by more than 2−(m+1).)

Then, from any generic oracle (B) for B, we can define a function g,

where g(m) is the first number n such that we see that |B∩ dom((B))∩n|
n

≥
1−2−m. For every m, g(m) is defined because the density of (B) must
approach 1, so there must be some least n0 such that for all n1 ≥ n0,
|B∩dom((B))↾n1|

n1
> 1 − 2m, and so there must be some n ≥ n0 where we

see that |B∩ dom((B))∩n|
n

≥ 1− 2−m. (Note that, since (B) only provides
an enumeration of its domain, the first such n that we find might not
be the smallest such n. Generic oracles sometimes take a long time to
give their answers, so we slowly increase the values of n that we check
while waiting for the oracle to converge on all inputs less than n.)
Since B∩dom((B)) ⊆ B, we have that for every m, g(m) ≥ f(m), so

we may compute A, and therefore compute (and generically compute)
R(A) via n ∈ A↔ ϕg(n) = 1.

�

The other direction of our argument is more subtle, because, as we
will see in Proposition 2.17, there is no way to code an arbitrary density-
1 real within a modulus of computation. Instead, we are forced to work
both with our algorithm, and with the real being computed.

Proposition 2.14. Let A be a real, and suppose B is a density-1 real
such that B ≥g R(A). Then A is hyperarithmetic.

The basic idea of the construction is that we use B to generate a
function such that from any faster growing function, one can gener-
ate a binary tree of density-1 oracles that includes B. (The function

DENSITY-1 DEGREES 17

generated is not the same as the function from Proposition 2.13. This
function’s purpose is in some sense dual to the purpose of the previous
function.)
Once we have this class of oracles, we have them engage in a process

that can be visualized as voting in pairs until they can find one leader
who is strong-willed enough to make them vote unanimously. The
oracle B is able to make them vote unanimously, so eventually they
will find such a leader. Also, B is not corruptible, so when they find
such a leader, even if that leader is not B, that leader will have B’s
support, and so in particular, that leader will lead the oracles to the
correct conclusion.

Proof. By assumption, let A be a real, B a density-1 real, and ϕ a
Turing functional such that B ≥g R(A) via ϕ.
By Theorem 2.12, we must prove that there is a function f , and

a Turing functional ψ such that for any g, if g >> f , then ψg is a
computation of A.
Let f be the function where f(m) is the smallest number such that

∀n > f(m), |B∩n|
n

> 1 − 2−m. Then we claim that from any g that
dominates f , we can uniformly compute A.
The basic idea of the construction is that from any such g, we can

get a lower bound on the rate at which the density of B goes to 1. We
then consider all density-1 oracles whose density goes to 1 at at least
this fast. (We use g to build a tree of possibilities for B that includes
B, but also only includes paths that are density-1.) Then, to get an
answer from our collection of oracles we have them work together in
pairs in a way that ensures that whatever answer we get is an answer
that has been approved by B.
Let g be a function such that for all m, g(m) ≥ f(m). Replacing g

by a faster growing function if necessary, we may assume that g is an
increasing function. (Replace g with g̃, where g̃(m) = max(g(m), g̃(m−
1) + 1).)
Define Tg ⊆ 2<ω to be the tree such that σ ∈ Tg if and only if

∀n,m, if n > g(m), and if n ≤ |σ|, then #{k<n | σ(k)=1}
n

> 1− 2−m. The
important facts about Tg are that every path through Tg is density-1,
B is a path through Tg, and that Tg is uniformly recursive in g.
The first fact holds because g provides a lower bound on the rate at

which the density of a path must go to 1, and the paths through Tg
all respect that lower bound. The second fact holds because, by the
definition of f , B is a path through Tf , and faster growing functions
provide larger trees, not smaller ones. The third fact holds because the
definition is uniform in g (and the apparently unbounded quantifiers

18 GREGORY IGUSA

over n and m are bounded by g(m) < n ≤ |σ|. Since g is an increasing
function, a bound on g(m) is a bound on m.)
To determine whether n ∈ A, we search for a real X0 such that

for every X that looks like it might be a path through T , if we let
YX = X0 ∩X , and let (YX) be the partial oracle for YX that only halts
on the elements of YX , (and that halts immediately if it halts,) then
for some odd value of k, ϕ(YX)(2nk) halts, and such that all of those
computations (ranging over different reals X) halt and give the same
answer. Then n ∈ A if and only if that answer is “1.”
Such an X0 exists because B is such a real. (If we let X0 = B, then

for every X , if X is a path through T , then (YX) is a generic oracle
for B, and so ϕ(YX) must be a generic computation of R(A), and thus
it must halt on 2nk for some odd k. This is observed at some finite
stage by the usual compactness argument — Every X must either at
some finite height fall out of T , or at some finite stage, with some finite
portion of itself, provide a correct answer by having ϕ(YX)(2nk) halt.
Note that since all of this happens at a finite stage, we do not need
to search over all uncountably many potential values of X0, but rather
only over all potential finite initial segments of X0, so the search for
X0 can be conducted effectively.)
Furthermore, the answer given when X0 is found must be correct,

because B is a path through Tg. Thus is always one of the eligible
values for X , so for any X0, (YB) is a generic oracle for B. Thus, ϕ(YB)

cannot give any incorrect outputs for R(A).
Thus, once again, intuitively speaking, B is smart enough to force

every X to give the correct vote, so a consensus must eventually be
reached. No X0 is able to force B to vote incorrectly, so any reached
consensus must be a correct one. We use g only to build a population
of density-1 sets that includes B as a member.

�

We may now conclude the main theorem of this section.

Theorem 2.15. A real A is hyperarithmetic if and only if there is a
density-1 real B such that B ≥g R(A).

Proof. This follows directly from Propositions 2.13 and 2.14.
�

We also mention a somewhat useful corollary that we get from the
proof of Proposition 2.14.

Corollary 2.16. Let B be a density-1 real, and assume that there is a
recursive lower bound on the rate at which the density of B approaches
1. Then B is quasi-minimal.

DENSITY-1 DEGREES 19

Here, a recursive lower bound is a recursive function h : N → [0, 1]

such that limn→∞ h(n) = 1 and for every n, and every k ≥ n, |B∩k|
k
≥

h(n).

Proof. Let B and h be as in the statement of the corollary.
Let A be a real, and assume that B ≥g R(A).
Let f be the function where f(m) is the smallest number such that

∀n > f(m), |B∩n|
n

> 1− 2−m.
Let g be the function such that g(m) is the smallest n for which

h(n) > 1− 2−m.
Then, g ≫ f , so by the proof of Proposition 2.14, g computes A.

Also, g is recursive because h is recursive, and g is defined recursively
in h. Therefore, A is recursive, because it can be computed from a
recursive function.
Thus, for any A, if B ≥g R(A), then A is recursive, and so B is

quasi-minimal.
�

Before we move on to discuss questions of the structure of the generic
degrees, we call attention to the asymmetry in our proof of Theo-
rem 2.15.
The proof of Proposition 2.13 shows that for any f , there is a density-

1 real B, such that any generic oracle for B can uniformly compute a
function that dominates f . Thus, the entire content of f , as a modulus
of computation, can be captured by a density-1 real, as a generic oracle.
We show here that the converse is not true, so density-1 generic

degrees, in some sense, are more powerful than moduli of computation,
but this cannot be seen from the Turing degrees that they can compute.

Proposition 2.17. There exists a density-1 real, A, such that for every
f : N→ N, and every ϕ, there is a g ≫ f such that ϕg is not a generic
computation of A.

To prove Proposition 2.17, we require a number of technical lem-
mas concerning the specifics of how a reduction from a modulus of
computation to a density-1 generic degree must work. The proof is
somewhat long, in part because we will be required to somehow di-
agonalize against all possible moduli of computation — an inherently
uncountable set. We first introduce a modified version of more-is-more
functionals that to works with oracles which are fast growing functions,
rather than with partial oracles.

Definition 2.18. Let ϕ be a functional that outputs only 1’s (as in
Lemma 2.4). Then ϕ is a bigger-is-less functional if for any functions
g, h, if h≫ g, then dom(h) ⊆ dom(g).

20 GREGORY IGUSA

Lemma 2.19. Let A be a density-1 real, and let f be a function such
that there is a ϕ so that for every g ≫ f , ϕg is a generic computation
of A.
Then there exists a bigger-is-less functional ψ, which only outputs

1’s (as in Lemma 2.4) such that ∀g if g ≫ f , then ψg is a generic
computation of A.

Proof. We first use Lemma 2.4 to replace ϕ with a ϕ that outputs only
1’s when it halts.
To modify this ϕ to a ψ which is a bigger-is-less functional, we define

ψ so that ψg(n) searches over all h≫ g for some h such that ϕh(n) = 1,
and if it finds such an h, then ψg(n) = 1. Otherwise, ψg(n) does not
halt.
First, note that if there is an h ≫ g, such that ϕh(n) = 1, then

eventually this will be learned, since only a finite amount of h is used
in the computation, and there are only countably many initial segments
of functions that dominate g, and so ψ can emulate ϕ on all of these
in parallel.
Second, note that if h≫ g, then dom(h) ⊆ dom(g). This is because

the set of functions that dominate h is a subset of the set of functions
which dominate g (since ≫ is a transitive relationship.)
Finally, we show that for all g ≫ f , ψg is a generic computation of

A. To show this, we must show two things. First we must show that
dom(ψg) is density-1, and second, we must show that dom(ψg) ⊆ A.
We know dom(ψg) is density-1 because it contains dom(ϕg) (because

g ≫ g, according to our definition of ≫.) Also, dom(ψg) ⊆ A because,
for any h≫ g, h also dominates f . Then, ϕh is a generic computation
of A, and so, in particular, if ϕh(n) = 1, then n ∈ A.

�

Definition 2.20. Let S be a real. Then we say that S is sparse by
design if for every n, |S ∩ [5n, 5n+1 − 1]| ≤ 2n+1.

In other words, a sparse by design real is allowed to have at most
2 of the first 4 numbers, 4 of the next 16 numbers, 8 of the next 64
numbers, and so on.

Lemma 2.21. If N \ A is sparse by design, then A is density-1.

Proof. The proof is a straightforward limit calculation.

If 5m ≤ n ≤ 5m+1, then |A∩n|
n
≥ n−2m+2

n
≥ 5m−2m+2

5m
. (This is because

A is missing at most 2+ 4+ · · ·+2m+1 = 2m+2− 2 many elements less
than 5m+1.)

Since limm→∞
5m−2m+2

5m
= 1, we may conclude that limn→∞

|A∩n|
n

= 1.
�

DENSITY-1 DEGREES 21

The basic idea of these sparse by design sets is that they will give
us a tool for generating sufficiently many sufficiently general density-1
sets that we can diagonalize against all possible functions, but they are
also sufficiently structured that we can cut and paste them together
conveniently. The next lemma will give us the tool that we need to cut
them into smaller sparse sets.

Lemma 2.22. Let ϕ be a bigger-is-less functional. Let S be a sparse
set, and let S = S0∪S1. Assume there exists an f such that dom(ϕf)∩S
is empty. Let n be minimal such that f(0) = n for some such f .
Let ni be minimal such that ∃f dom(ϕfi) ∩ Si is empty.
Then, either n0 = n or n1 = n.

Proof. We first mention that n0 and n1 are both defined, because, if
dom(ϕf)∩S is empty, dom(ϕf) also does not intersect either S0 or S1.
Thus, there exists an f for each of those sets, and so there is a smallest
value for f(0). Also, since any f that works for S also works for S0

and S1, we have that n0 ≤ n and n1 ≤ n.
We now prove the lemma by contradiction.
Assume n0 < n and n1 < n.
For each i, fix fi such that fi(0) = ni, and dom(ϕfi) ∩ Si is empty.
Then, define f so that, for each m, f(m) = max{f0(m), f1(m)}.
Now, we claim that dom(ϕf) ∩ S is empty.
To prove this, note that ϕ is a bigger-is-less functional, so in partic-

ular, since f ≫ fi, we have that, for each i, dom(ϕf)∩Si is empty. So,
because S = S0 ∪ S1, dom(ϕf) ∩ S is empty.
Thus, there is an f with f(0) = max{f0(0), f1(0)} < n such that

dom(ϕf) ∩ S is empty, contradicting our definition of n.
�

We are now ready to prove Proposition 2.17, but to help clarify the
construction, we first present the strategy for dealing with a single ϕ.
Combining these constructions will be straightforward, since we are in
no way confined to working uniformly.

Lemma 2.23. Let ϕ be a bigger-is-less functional. Then, either there is
a sparse by design set S such that for every f dom(ϕf)∩S is nonempty,
or there is a g so that for any h≫ g, dom(ϕh) is empty.

Proof. Throughout this proof, the variable S is assumed to only range
over sets that are sparse by design.
Let ϕ be a bigger-is-less functional, and assume that for every S,

there is an f so that dom(ϕf) ∩ S is empty. We will now build a g
such that for any h ≫ g, dom(ϕh) is empty. We build g by finite
approximation.

22 GREGORY IGUSA

To build g, we first prove the following statement.

Claim: If m ∈ N, and σ is a finite partial function, with dom(σ) = m,
and if ∀S ∃f(f ↾ m = σ) ∧ (dom(ϕf) ∩ S is empty),
then, there exists an n such that ∀S ∃f(f ↾ m = σ) ∧ (f(m) = n) ∧
(dom(ϕf) ∩ S is empty).

Proof of Claim: Assume m ∈ N, dom(σ) = m, ∀S ∃f(f ↾ m = σ) ∧
(dom(ϕf) ∩ S is empty).
For each sparse by design S, let nS be the smallest n such that
∃f(f ↾ m = σ) ∧ (f(m) = n) ∧ (dom(ϕf) ∩ S is empty).
Then, we claim that {nS} is a bounded set.
If not, fix a sequence Si such that nSi

≥ i.
Now, we will use Lemma 2.22 to cut and paste the Si together into a

new sparse by design set T such that nT is undefined, which contradicts
our assumption on σ.
To do this, for each Si, let the “first half” of Si be the union, over

all k, of the first 2k many elements of Si ∩ [5k, 5k+1 − 1], and let the
second half of Si be the rest of the elements of Si. Let Ti,0 be equal to
either the first half, or the second half of Si, whichever one will make
nTi,0

= nSi
. (One of these will work, by Lemma 2.22.)

(It is possible that the second half is dramatically smaller than the
first half, or even empty. Also, if, for some k, Si did not have 2k

elements of [5k, 5k+1− 1], then just put all of those elements into Ti,0.)
The idea now is to continue to cut the Si in half, and then to paste

together half of one, one fourth of another, one eighth of the next, and
so on. Unfortunately, the Ti,0 each have at most one element between
1 and 4, and since we cannot cut this one element in half, we use the
pigeonhole principle to get them to all agree on which first element to
use.
So now, we put all of T0,0 into T , and then, by the pigeonhole prin-

ciple, fix m0 ∈ [1, 4] such that there are infinitely many i such that
either m0 ∈ Ti,0, or Ti,0 ∩ [1, 4] is empty. Then, remove the other Ti,0
from our list, and also remove T0,0 from the list, and define Si,0 to be
the ith set that is left on the list.
We are now ready to cut each of our sets in half a second time, and

just allow m0 to be in both halves.
We now formalize this argument.

Fix k.
Assume that we have a sequence of sets Si,k−1, i ∈ N, such that for

each i, nSi,k−1
≥ i+ k. Assume also that for l < k we have numbers ml

DENSITY-1 DEGREES 23

such that for each i, l, Si,k−1 ∩ [5
l, 5l+1 − 1] ⊆ {ml}. Also, assume that

for l ≥ k, |Si,k−1 ∩ [5l, 5l+1 − 1]| ≤ 2l+1−k

Then, there exists a sequence of sets Si,k, i ∈ N, and a number mk,
such that the following things hold. (1) For each i, nSi,k

≥ (i+ k+ 1).

(2) For each i, and each l ≤ k, Si,k∩ [5
l, 5l+1−1] ⊆ {ml}. (3) For each

l > k, |Si,k ∩ [5l, 5l+1 − 1]| ≤ 2l−k.
The proof is effectively the same as for the case with k = 0, and

Si,−1 = Si, but we present it here for completeness
For each i, let the “stage k first half” of Si,k−1 be the union, over

all l ≥ k, of the first 2l−k many elements of Si,k−1 ∩ [5l, 5l+1 − 1], and
let the second half of Si be the rest of the elements of Si. Let Ti,k be
equal to either the stage k first half, or the stage k second half of Si,
whichever one will make nTi,k

= nSi,k−1
.

(The “first halves” of the sets as defined here will not have any
elements less than 5k, but that is not a problem for us.)
Note now that for each l > k, i, |Ti,k ∩ [5l, 5l+1 − 1]| ≤ 2l−k.
Then, by the pigeonhole principle, fix mk ∈ [5k, 5k+1 − 1] such that

there are infinitely many i such that eithermk ∈ Ti,k, or Ti,k∩[5
k, 5k+1−

1] is empty. Then, remove the other Ti,k from our list, and also remove
T0,k from the list, and define Si,k to be the ith set that is left on the
list.
Then, we may conclude the following.

(1) For each i, nSi,k
≥ i+ k+1 because Si,k = Tj,k for some j > i, and

nTj,k
= nSj,k−1

by construction.

(2) For each i, l ≤ k, Si,k ∩ [5
l, 5l+1 − 1] ⊆ {ml} because that was how

we chose the Si,k as a subsequence of the Ti,k.
(3) For each l > k, |Si,k ∩ [5

l, 5l+1− 1]| ≤ 2l−k because of the way that
we cut the Si,k−1 in half when building the Ti,k.
This concludes the proof of our claim.

Now, we construct T by simply letting T be the union, over all k, of
the T0,k that we used in our construction. We claim two things. First,
T is a sparse by design set. Second, nT is undefined.
To show that T is sparse by design, we show that for each l, |T ∩

[5l, 5l+1 − 1]| ≤ 2l+1. This is because, for each k ≤ l, |T0,k ∩ [5l, 5l+1 −
1]| ≤ 2l−k. Also, for each k > l, T0,k ∩ [5l, 5l+1 − 1] ⊆ {ml}. Thus,
|T ∩ [5l, 5l+1 − 1]| ≤ 1 + 1 + 2 + · · ·+ 2l = 2l+1.
To show that nT is undefined, note that for each k ∈ N , T0,k ⊆ T

and that nT0,k
= nS0,k

≥ k + 1. Then, nT ≥ nT0,k
because any f that

does not halt on any of T also does not halt on T0,k. Thus, for every
k ∈ N, nT > k. So nT cannot be any natural number, and thus is
undefined.

24 GREGORY IGUSA

This provides us the contradiction that we need in order to prove
that {nS} is a bounded set.

Thus, we may conclude that if m ∈ N, and σ is a finite partial
function, with dom(σ) = m, and
if ∀S ∃f(f ↾ m = σ) ∧ (dom(ϕf) ∩ S is empty),
then, there exists an n such that ∀S ∃f(f ↾ m = σ) ∧ (f(m) = n) ∧
(dom(ϕf) ∩ S is empty).

We are now ready to define the function g by induction.
Start with σ being the empty string, and at each stage s, let σ be

the portion of g that has been constructed so far, and let g(s) be the
n that is given to us by this claim.
We claim that dom(ϕg) is empty.
To show this, let n > 0, and assume n ∈ dom(ϕg). Let S = {n}.

It is clear that S is sparse by design. Let σ be the initial segment
of g including all of the numbers that were queried by ϕ during the
computation of ϕg(n). Let m = dom(σ). By construction of g, ∃f(f ↾

m = σ) ∧ (dom(ϕf) ∩ S is empty), but this is a contradiction, because
for any f , if f ↾ m = σ then ϕf(n) ↓, because it is equal to g on the
part of g that was queried to make ϕg(n) ↓.
Thus, dom(ϕg) is empty, and we have proved the lemma.

�

We are now ready to prove Proposition 2.17.
The basic idea of the proof is to build A by splitting N into infin-

itely many pieces, each of positive density. Each piece will be used to
diagonalize against a specific ϕ using Lemma 2.23.

Proof. For each e, we will build a real Ae, and then we will let A be
the real given by (2n + 1)2e ∈ A ←→ n ∈ Ae. Note that A will be
density-1 if and only if each Ae is density-1.
(If Ae is not density-1, then there is some ǫ > 0 so that the liminf

of its initial segment densities is 1 − ǫ. Then the liminf of the initial
segment densities of A must be ≤ 1− 2−eǫ. The converse is similar.)
Now, for each e, we will construct Ae to ensure that there is no f

such that ∀g ≫ f ϕg
e is a generic computation of A. By Lemma 2.19,

we need only concern ourselves with bigger-is-less functionals, so if ϕe

is not a bigger-is-less functional, then we simply let Ae = N.
If ϕe is a bigger-is-less functional, then let ψe be the functional where

ψX
e (n) = ϕX

e ((2n+1)2e). Note then that if ϕg
e is a generic computation

of A, then ψg
e is a generic computation of Ae. Note also that ψe is also

a bigger-is-less functional.

DENSITY-1 DEGREES 25

Thus, we may use Lemma 2.23 to show that either there is a sparse
by design set S such that for every f dom(ψf

e) ∩ S is nonempty, or
there is a g so that for any h≫ g, dom(ψh

e) is empty.
In the first case, let Ae be N \Se, where Se is the set S that is given

to us by the lemma. Then for every f dom(ψf
e) ∩ Se is nonempty, and

so, for any f , ψf
e is not a generic computation of Ae, since it halts

somewhere outside of Ae, and we require that bigger-is-less functionals
only output 1’s when they halt. Thus, we have ensured that, for any
f , ϕf

e is not a generic computation of A.
In the second case, let Ae = N, and let ge be the function g that is

given to us by the lemma. For any f , ψf
e is not a generic computation

of Ae, because sup(f, ge) ≫ ge. Thus, by the lemma, dom(ψ
sup(f,ge)
e)

is empty, and thus ψ
sup(f,ge)
e is not a generic computation of Ae. Also,

sup(f, ge) ≫ f , so there is a g ≫ f such that ψg
e is not a generic

computation of Ae. Therefore, ϕ
g
e is also not a generic computation of

A.
Thus, we have built an A where, for every bigger-is-less ϕ, for every

f : N→ N, there is a g ≫ f such that ϕg is not a generic computation
of A, and so, by Lemma 2.19, for every ϕ, and every f , there is a g ≫ f
such that ϕg is not a generic computation of A.

�

We have shown that there are density-1 generic degrees whose generic
information cannot be recovered from a sufficiently fast growing func-
tion. Thus, density-1 generic degrees can, in some sense, be thought of
as a generalization of fast growing functions.
We now move on to discuss the structure of the generic degrees as a

whole, and to see how questions about the density-1 degrees fit in to
the larger picture.

2.3. Structure of the generic degrees. The main purpose of this
section is to address the following two questions about generic degrees.

Question 1. Do there exist minimal degrees in the generic degrees?

In other words, is there a generic degree a such that a >g 0, and for
all generic degrees b, if a ≥g b >g 0, then a = b?

Question 2. Do there exist minimal pairs in the generic degrees?

In other words, do there exist generic degrees a and a such that
a >g 0, b >g 0, and for all generic degrees c, if a ≥g c, and a ≥g c,
then c = 0?

26 GREGORY IGUSA

To aid in our discussion, we also present an open question concerning
the degrees of the density-1 sets, which will turn out to be relevant to
Questions 1 and 2.

Question 3. Is it true that for every nonzero generic degree b there
exists a nonzero density-1 generic degree a such that b ≥g a?

We will see that a “yes” answer to Question 3 would imply that the
answer to Question 1 is no, and that a “no” answer to Question 3 would
imply that the answer to Question 2 is yes.
Before we do this, we give a brief overview on what is known about

the degrees that have a density-1 degree below them. In a previous pa-
per [2], we showed that there are no minimal pairs for generic compu-
tation (not generic reduction.) Translated into the language of generic
reduction, this can be phrased as follows.

Theorem 2.24. (I.) [2]
Let A,B be nonrecursive reals. Then R(A) and R(B) do not form

a minimal pair in the generic degrees.

An analysis of the proof, however, yields a stronger result that is
also more relevant to the current discussion.

Proposition 2.25. (I.) [2]
Let A,B be nonrecursive reals. Then there is a C such that C is

density-1, C is not generically computable, R(A) ≥g C, andR(B) ≥g C.

In fact, an easy generalization of the argument from [2] can be used
to strengthen Proposition 2.25 to work for any finite set of nonrecursive
reals.
Proposition 2.25 gives us an immediate corollary concerning the

quasi-minimal generic degrees.

Corollary 2.26. Let b be any non-quasi-minimal generic degree. Then
there is a density-1 quasi-minimal generic degree a such that b ≥g a.

This, in particular, shows that a counterexample to Question 3 would
necessarily be a quasi-minimal generic degree.

Proof. Let b be a non-quasi-minimal generic degree. Let c be a nonzero
Turing degree such that b ≥g R(c). Let C ∈ c.
Then, by a result of classical recursion theory, C is half a minimal

pair, so there is a nonrecursive real D such that C and D form a
minimal pair in the Turing degrees. (For any X , if C ≥T X and
D ≥T X , then X is recursive.)
By Proposition 2.25, we can choose a density-1 real A such that A

is not generically computable, R(C) ≥g A, and R(D) ≥g A. Let a be

DENSITY-1 DEGREES 27

the generic degree of A. Then, b ≥ c ≥ a, and also a is density-1. It
remains to show that a is quasi-minimal.
If not, then fix X nonrecursive such that R(X) ≤g A. but then,
R(C) ≥g A ≥ R(X), and also R(D) ≥g A ≥ R(X). Since R induces
an embedding of the Turing degrees into the generic degrees, we get
that C ≥T X and D ≥T X . This contradicts that C and D form a
minimal pair in the Turing degrees, and so X could not have existed,
and so a is quasi-minimal.

�

Thus, there are a fair number of quasi-minimal generic degrees, and,
in fact, many of them are density-1. Next, we indicate how a resolution
to Question 3 would allow us to resolve either Question 1 or Question
2.
Showing that a positive resolution to Question 3 gives a negative

resolution to Question 2 is the easy half, since it is a direct application
of Proposition 2.9.

Proposition 2.27. If for every nonzero generic degree b there exists
a nonzero density-1 generic degree a such that a ≤g b, then there are
no minimal degrees in the generic degrees.

Proof. Let b be a generic degree, and assume that there exists a nonzero
density-1 generic degree a such that a ≤g b.
Then, 0 is a density-1 generic degree (because N is generically com-

putable, and density-1). So by Proposition 2.9, there exists a density-1
generic degree c, such that a >g c >g 0. Thus, b >g c >g 0, and so b
is not a minimal generic degree.

�

The other half is slightly more subtle, but the argument is basically
a modification of the usual construction of a minimal pair in the Tur-
ing degrees, together with the realization that a counterexample to
Question 3 would have exactly the property that we require in order
to adapt the construction to our situation.

Proposition 2.28. If there exists a nonzero generic degree b such that
there is no nonzero density-1 generic degree a with a ≤g b, then b is
half of a minimal pair in the generic degrees.

Proof. Let B ∈ b. We will build a real C such that R(C) and B form a
minimal pair for generic reduction, or in other words, so that if B ≥g D,
and C generically computes D, then D is generically computable.
We build C by finite approximation.
We have one stage for each e, and one stage for each 〈i, j〉.

28 GREGORY IGUSA

At stage e, we ensure that C is not computed by ϕe in the usual
manner. (We have a τ which is our current approximation to C. We
ask whether there exists an n > |σ| such that ϕe(n) ↓, and if there does,
then we extend τ so that τ 6= ϕe(n). If there does not exist such an n,
then in particular ϕe is not total, so we do not need to to anything to
ensure that C is not computed by ϕe.)
At stage 〈i, j〉, we have an approximation τ for C, and we need to

ensure that if D generically reduces to B via ϕi, and if D is generically
computable from C via ϕj, then D is generically computable.
(As a reminder, being generically computable from C is equivalent to

being generically reducible to R(C). Also, being generically equivalent
to 0 equivalent to being generically computable.)
The first thing that we ask is whether there is any extension τ̃ of τ ,

and any generic oracle (B) for B such that for some n, ϕ
(B)
i (n) 6= ϕτ̃

j (n).

If there is, then we extend τ to τ̃ , thereby ensuring that ϕC
j cannot

be a generic computation of any real that generically reduces to B
via ϕi. (This is because neither computation is allowed to make any

mistakes, and so in particular, if ϕ
(B)
i , and ϕτ̃

j are trying to be generic
computations of the same real, then they are not allowed to disagree
with each other anywhere.)
If there is no such τ̃ , then we ask whether there is any D, such that

D generically reduces to B via ϕi. (In other words, we ask whether it

is true that for every generic oracle (B), for A, dom
(
ϕ
(B)
i

)
is density-1,

and whether it is true that the ϕ
(B)
i all agree wherever they halt. If

either of these is false, then there cannot be any D that generically
reduces to B via ϕi.) If there is no such D, then, again, we do not need
to do anything at stage 〈i, j〉.
If there is no such τ̃ , and if there does exist such a D, then we

may generically compute any D that generically reduces to B via ϕi,
and that also is generically computable from C via ϕj by the following
algorithm. The basic idea of the algorithm will be that it halts on a
subset of the halting set of ϕi, and gives only the outputs given by ϕj

applied to extensions of τ .
The key thing to notice here is that the union, over all generic or-

acles (B), for B, of the domains of ϕ
(B)
i is a density-1 set that gener-

ically reduces to B. This is witnessed by the algorithm, ψ, that
halts wherever ϕi halts, and that outputs a 1 wherever it halts. So
ψX(n) ↓⇐⇒ ϕX(n) ↓⇐⇒ ψX(n) = 1. (Let A be the union, over all

generic oracles, (B), for B, of the domains of the ϕ
(B)
i . Then, for each

DENSITY-1 DEGREES 29

(B), dom
(
ϕ
(B)
i

)
is a density-1 set. Also, it is clearly a subset of A, and

so ψ(B) is a generic computation of A.)
Thus, by the hypothesis on B, A is generically computable (since it is

a density-1 set, and B ≥g A), and so A contains a density-1 r.e. subset,
W . (By Lemma 2.4, a density-1 set is generically computable if and
only if it contains a density-1 r.e. subset, since a generic computation
of A that only outputs 1’s actually is the same thing as an enumeration
of a density-1 subset of A.)
Now, we define ψ so that ψ(n) ↓ if and only if n ∈ W and there exists

a τ̃ extending τ such that ϕτ̃
j (n) ↓. In this case, we let ψ(n) = ϕτ̃

j (n)
for the first such τ̃ that we find.
This is a generic computation of any D that we are concerned with,

because the halting set is contained in the union of the halting sets

of the ϕ
(B)
i , and the fact that we couldn’t diagonalize means that the

output that we found from our τ̃ using ϕj must be the same as that

given by ϕ
(B)
i . This value must be correct, since we are assuming that

D reduces to B via ϕi.
�

Combining Propositions 2.27 and 2.28 gives us a free corollary con-
cerning the generic degrees.

Corollary 2.29. If there exist minimal generic degrees, then there exist
minimal pairs of generic degrees. In fact, any minimal generic degree
is half of a minimal pair in the generic degrees.

This is simply because the answer to Question 3 must either be “yes,”
or “no.”
This seems trivial, since the only way for Corollary 2.29 to be false

would be if there were a single minimal generic degree that was below
all the other nontrivial generic degrees. In the Turing degrees, it is easy
to show that any nontrivial Turing degree has another Turing degree
that is incomparable to it, but we do not have a proof that this is true
in the generic degrees. It seems highly unlikely for the generic degrees
to have an “hourglass” shape, with a non-minimal generic degree that
is comparable to all others, but we do not currently have a method of
ruling this out.

Question 4. Does there exist a generic degree a such that for every
generic degree b, either a ≥g b, or b ≥g a?

Note that such an a would necessarily be quasi-minimal.

Observation 2.30. If there is a generic degree that is comparable to
all other generic degrees, then that generic degree is quasi-minimal.

30 GREGORY IGUSA

Proof. Let a be a generic degree that is comparable to all other generic
degrees. Let A ∈ a, and let A ≥g R(B). We must show that B is
recursive.
Note that if A ≥g R(B), then A ≥T B. (It is easy for A to compute

a generic oracle for itself, and any generic oracle for A can generically
compute R(B), and so can compute B.) If B is nonrecursive, then
we can choose C to be Turing incomparable to both A, and B. Then
A �g R(C), since A �T C, and A �g R(C), since C �T B. Therefore,
we cannot have R(C) ≥g A ≥g R(B).
Thus, if A ≥g R(B), then B must be recursive, and so, a must be

quasi-minimal.
�

3. Π1
1-completeness

We finish by proving that generic reduction is Π1
1-complete.

The definition we use for generic reduction is intrinsically Π1
1, since

it involves a universal quantifier over all generic oracles. This makes
it very difficult to run the constructions that we want to, since the
techniques of recursion theory are often poorly suited to dealing with
quantifiers over uncountable sets. Indeed, this is one of the primary
reasons that most of our work concerns the generic degrees of density-1
sets — it is somewhat easier to work with density-1 subsets of a given
set than with partial oracles with density-1 domain.
By showing that ≥g is Π1

1
-complete, we show that there is no way

for this quantifier over generic oracles to be replaced by quantifiers over
naturals, and that generic reduction is, in some sense, as complicated
as it seems.
We show that ≥g is Π1

1
-complete by showing that from any tree

T ⊆ ωω, we can use the jump of that tree to uniformly find A and
B such that A ≥g B if and only if T is well-founded. This gives
a Borel reduction of well-foundedness to generic reducibility, proving
that generic reducibility is Π1

1
-complete.

Theorem 3.1. There exists an algorithm which, given a tree T ⊆ ωω,
uses T ′ as an oracle to compute a pair of reals A and B such that
A ≥g B if and only if T is well-founded. Thus, ≥g is Π1

1
-complete.

The proof will consist of three parts.
In the first part, we describe the intended reduction from A to B.

The reduction will have the property that an infinite path through T
corresponds to a method of creating a generic oracle for A that does
not generically compute B via the intended reduction. Every node of
the path will be able to be translated into another drop in the density

DENSITY-1 DEGREES 31

of the domain of the computation without a corresponding drop in the
density of the domain of the oracle.
In the second part, we build A and B to ensure that no reduction

other than the intended reduction will work. During this second part,
we do not need to work effectively, but rather we have access to T ′.
Finally, we verify that our construction works. If T is well-founded,

this will be clear, because the intended reduction will function as it
is designed to. If T is ill-founded, we will need to show that for any
potential generic reduction ϕ, there is a generic oracle for A that ei-
ther makes ϕ give a false answer somewhere, or makes dom(ϕ) not be
density-1. During this third part, we are not forced to work effectively
in anything, and indeed, the generic oracles that we build would be
quite difficult to compute.
The proof is somewhat bogged down in notation, but during the

proof, we will attempt to explain the notation as it appears.

Proof. Part 1

Let T ⊆ ωω.
For each σ ∈ T , there will be a single bit bσ ∈ {0, 1}.
We will code bσ into A in a manner so that any partial oracle for A

which cannot recover bσ must have its density drop below 1 − 2−|σ|−2

at least once as a result.
We will code bσ into B in a manner so that if a computation cannot

compute bσ, then the domain of that computation will have its density
drop below 1

2
as a result.

The intention of this is that if there is an infinite path Q through T ,
we will be able to produce a generic oracle for A that omits bσ for every
σ on P , and that therefore cannot generically compute B, because it is
missing infinitely many pieces of information, and each missing piece
of information forces there to be another instance of the computation’s
domain’s density dropping below 1

2
.

Unfortunately, this creates a problem. There could theoretically be
a generic oracle for A that chooses a collection of σ’s of increasing
lengths from different paths of T , and omits each of the corresponding
bσ’s. Potentially this might be unable to generically compute B even
if the tree is well-founded.
For this reason, we need to also introduce a method for propagating

information down the tree: if σ ≺ τ , and bσ is known, then it should
be easy to deduce what bτ is. That way, removing the knowledge of
an entire branch will still have the original desired effect, but removing
bits of information from different branches will be much more difficult
than previously.

32 GREGORY IGUSA

However, if we want to be able to remove information along a path,
we need to make sure that our procedure for propagating information
downward along T does not also cause information to propagate upward
along T . Else, if Q is a path through T , σ ≺ τ , σ ≺ Q, and τ ⊀ Q,
then bσ could be deduced from bτ , so we would not be able to selectively
remove only the information along Q from A.
For each σ ∈ T , for each m < |σ|, we create a procedure to deduce

bσ from 〈bσ0
, ..., bσm

〉, where σ−1 = σ, and σi+1 is the immediate pre-
decessor of σi. This procedure is coded in a way so that if a partial
oracle for A does not know the procedure, then its density must drop
below 1− 2|σm|+2 as a result. The procedure is also coded in a way so
that knowing bσ and knowing the procedure does not necessarily allow
us to deduce any of the bσi

.
The actual coding is as follows:

Consider the sets Pi = {n ∈ N | 2i ≤ n < 2i+1}.
In B, for each σ ∈ ωω, uniformly choose an i, and code bσ into Pi.

(If n ∈ Pi, then n ∈ B ↔ bσ = 1.) If σ /∈ T , then bσ = 0.
This will ensure that a generic computation of B must compute all

but finitely many of the bσ, since omitting a finite number of Pi is only
a finite omission, but no density-1 set can avoid infinitely many Pi.

We define A to be equal to Ã⊕R(T), where Ã is built as follows.

We will use some of the Pi to code the values of the bσ in Ã, and use

the rest to code deduction procedures in Ã.
For each σ ∈ ωω, uniformly choose an (even) i, and code bσ into the

last 1
2|σ| of Pi. (If n is one of the last 2i−|σ| many elements of Pi, then

n ∈ Ã↔ bσ = 1. If n is a smaller element of Pi then n /∈ Ã.)
Uniformly choose a Pi (with i odd) for each sequence 〈σ,m, τ, j, k〉

such that σ ∈ ωω, m < |σ|, τ ∈ 2m, j ∈ {0, 1}, k ∈ N. Call it Pσ,m,τ,j,k.
Then, to deduce bσ from the sequence 〈bσ0

, ..., bσm
〉, we use the following

formula.

bσ = j ⇐⇒ ∃n∃k n ∈ Ã ∩ Pσ,m,〈bσ0 ,...,bσm〉,j,k

When we actually build Ã, we will ensure that for exactly one value of k,
we put the last 1

2|σ|−m−1

∣∣Pσ,m,〈bσ0 ,...,bσm〉,j,k

∣∣many elements of Pσ,m,〈bσ0 ,...,bσm〉,j,k

into Ã.
For a fixed value of 〈σ,m, τ〉, the set of all Pσ,m,τ,j,k is known as the

deduction procedure coding bσ from its m+1 predecessors. The deduc-
tion procedure operates under true assumptions if τ = 〈bσ0

, ..., bσm
〉,

and it operates under false assumptions if τ 6= 〈bσ0
, ..., bσm

〉.
The idea here is that knowing 〈bσ0

, ..., bσm
〉 will direct you to the

correct place to look for the value of bσ. Once you know where to

DENSITY-1 DEGREES 33

look, you simply search until you find an answer. If you try to search
for the value of bσ using incorrect values for 〈bσ0

, ..., bσm
〉, then you

might get the correct answer, you might get the incorrect answer, and
you might get no answer. Because of this, knowing bσ gives little to
no information about 〈bσ0

, ..., bσm
〉. However, if we wish to remove a

deduction procedure from an oracle, we only need to remove the place
where it actually gives an answer, i.e., the last 2i

2|σ|−m−1 many elements
of Pi for some i. The size is calibrated so that removing a deduction
procedure whose shortest element is τ is just as difficult as removing
the knowledge of what bτ is.
Given that A and B are each built in the manner just described, a

generic oracle for A is able to generically compute B by the following
algorithm.

Let (A) be a generic oracle for A.
To determine whether or not n ∈ B, we first determine which Pi n

is in. Then we determine which bσ is coded into that Pi. Then, since
A ≥g R(T), we can use (A) to determine whether or not σ ∈ T . If no,
then n /∈ B. If yes, then we attempt to determine the value of bσ as
follows.
We define the sentence “(A) can determine the value of bσ.” by in-

duction on |σ|.

Let Pi be the set assigned to code bσ in to Ã. Then, if (A) gives
an output on one of the last 2i−|σ| many elements of Pi, then (A) can
determine the value of bσ, and that value is the value of the output
that we found.
The other way that (A) can determine the value of bσ is with our

deduction procedures. If there is some m < |σ| such that (A) can
determine the values of bτ for τ equal to one of the m + 1 immediate
predecessors of σ, and if (A) also includes the value of A in the location
where the corresponding deduction procedure has a 1, then the deduc-
tion procedure allows (A) to determine the value of bσ just as when we
described the deduction procedures.

If T is well-founded, then for any generic oracle (A), for A, there will
only be finitely many σ such that (A) cannot determine the value of
bσ. The proof is as follows.
Let (A) be a generic oracle for A. Assume there are infinitely many

σ such that (A) cannot determine the value of bσ. Let T̃ ⊆ ωω be
the smallest subtree of T containing all of the σ such that (A) cannot

determine the value of bσ. Then, T̃ is well-founded, because it is con-
tained in T , which is well-founded. Also, it is infinite, by assumption.

34 GREGORY IGUSA

Thus, it must have at least one node where it branches infinitely. Call
the first such node σ0.
From each of those countably many branches, choose a minimal node

σ such that the generic oracle cannot determine the value of bσ. (For

i > 0, let σi be an extension of the ith branch of T̃ such that (A) cannot
determine the value of bσi

, but for any τ , if σ0 ≺ τ ≺ σi, then (A) can
determine the value of bτ .)
Then, we claim that the domain of (A) must have its density drop

below 1− 2−|σ0|−3 infinitely often.
The reason for this is that, for any given i, if σi is an immediate

successor to σ0, then the generic oracle must have its density drop
below 1− 2−|σ0|−3 to not know the value of bσi

. (This is by the manner
in which the bσi

are directly coded into A.) Otherwise, by assumption
on σi, we know that the generic oracle can determine the values of the
bτ for all of the τ that satisfy σ0 ≺ τ ≺ σi. Thus, since the first of
those τ has length |σ0| + 1, the deduction procedure that allows us to
determine bσi

from those bτ is coded in a way so that if the generic
oracle cannot recover that deduction procedure, then its density must
drop below 1− 2−|σ0|−3.
Each of these things is coded in a different place, so the domain of

the generic oracle has its density drop below 1−2−|σ0|−3 infinitely often.
Therefore, the domain is not density-1, so (A) is not a generic oracle,
providing a contradiction.
Thus, if T is well-founded, then any generic oracle can (uniformly)

recover all but finitely many of the bσ, and therefore all but finitely
many of the bits of B. Thus, A ≥g B.

Part 2

In this part, we construct Ã (and therefore A, and B, where these
are defined according to the construction outlined in Part 1). While
we do this, we ensure that if T is ill-founded, then A �g B.
If T is ill-founded, then the intended reduction will not work as

a generic reduction. Thus, the main purpose of this section will be
ensuring that any reduction that “cheats” infinitely often occasionally
makes mistakes, and therefore cannot be used to generically reduce B to
A, since a generic reduction is never allowed to give incorrect outputs.
(Here, “cheating” simply means guessing at the values of bσ without
having solid evidence as to why those guesses should be correct.)
For those who like to think about constructions in terms of forcing,

we will be building a generic with respect to the poset implicitly defined
in Part 1, except with the additional caveats that on the “incorrect”
deduction procedures, we are only allowed to encode them giving one

DENSITY-1 DEGREES 35

output, giving the other output, or giving no output. Furthermore,
our conditions are allowed to include restrictions of the form in the
following paragraph.
One of our key techniques will be to fix a finite set of numbers,

and demand that for any n in that set, any deduction procedure that
operates under false assumptions about any bσ with |σ| = n does not
produce any answers. (More formally, for any n0 in that set, and
any σ0, σ1, with σ0 ≺ σ1, and |σ0| = n0, |σ1| = n1 > n0, for any
m ≥ n1 − n0 − 1, for any τ such that τ(n1 − n0 − 1) 6= bσ0

, for any j,

and k, Pσ1,m,τ,j,k ∩ Ã is empty.)

The actual construction is as follows.
At the beginning of stage s, there is some number f(s) such that

we have determined the values of bσ for every σ such that |σ| < f(s),
and for no other σ. For every σ with |σ| < f(s), and every deduction

procedure for computing bσ, we have determined the values of Ã on
the entire deduction procedure. (That is, if |σ| < f(s), then we have

determined whether or not n ∈ Ã for every n in any Pσ,m,τ,j,k.) We also
have some finite set of numbers n such that we maintain a restriction
saying that for any n in that set, any deduction procedure that operates
under false assumptions about any bσ with |σ| = n does not produce

any answers. We have not determined the values of Ã on any other
deduction procedures.
At this point, we have one single functional, ϕs, that we need to

diagonalize against. This means that we either must ensure that there

will be some generic oracle (A) for A such that ϕ
(A)
s does not have

density-1 domain, or we must ensure that there is some generic oracle

(A) for A such that ϕ
(A)
s incorrectly computes B at some number.

The first question that we ask is whether there any way of extending
our definition of Ã to make ϕA

s produce an incorrect computation for
B. (We remind the reader that T is fixed, and B depends entirely on

A, so determining the value of Ã also determines the values of A and B,
and so determines whether or not ϕA

s produces any incorrect compu-
tations for B. Also, we only need to diagonalize against more-is-more
reductions, so we may assume that having more information about the
oracle always produces more outputs, and never produces different out-
puts, and thus, if any generic oracle for A produces incorrect results,
then the full oracle for A produces incorrect results.)
If ϕA

s can be made to produce any incorrect computation for B,
then we make that extension, and this guarantees that when we are

done constructing Ã, (and therefore A and B,) it will not be true that

36 GREGORY IGUSA

A ≥g B. After that, we extend Ã arbitrarily in order to meet the
hypotheses on what the construction should look like at the beginning
of a stage. (This involves finding the largest number c such that bσ is
defined for a σ with |σ| = c, or such that some deduction procedure

for such a σ is defined somewhere, and extending the definition of Ã
arbitrarily to all other bτ ’s and deduction procedures for bτ ’s of equal
or lesser length.)
If ϕA

s cannot be made to produce any incorrect computations for B,

then we extend our definition of Ã such that for every σ with |σ| = f(s),
bσ = 0. More importantly, we restrict every deduction procedure that
computes such a bσ and that operates under false assumptions to not
give any answers. (i.e., to be empty.) We allow all the correct deduction
procedures to give correct answers immediately. Finally, we insist that
for the rest of the construction, for every deduction procedure that
operates under a false assumption about the value of bσ for any σ with
|σ| = f(s), that deduction procedure does not give any answers.
This completes the construction. (The second option will certainly

happen infinitely often, and so Ã will be defined everywhere after ω
many steps.)

Part 3

Finally, we prove that if T is ill-founded, then A �g B. To do this,
we must demonstrate that for any ϕ that had not been able to be
extended to make a false claim about B, there exists a generic oracle,
(A), for A such that ϕ(A) does not have density-1 domain. (At the end
of Part 1, we verified that if T is well-founded, then A ≥g B. Also, if ϕ
had been able to be extended to make a false claim about B, we would
have done that, and then it would certainly not witness A ≥g B.)
We remind the reader that in this part of the proof, we are allowed to

work omnisciently, and in particular we will be allowed to know every
choice that was made in Part 2, and also to know an example of an
infinite path through T .
Assume T is ill-founded. Let Q be an infinite path through T . As-

sume that at stage s of the construction ϕA
s could not have been made

to produce any incorrect computations for B.
Let s0 = s, and for each i > 0, let si be the ith stage t after stage

s such that ϕA
t was not able to be made to produce any incorrect

computations for B at stage t. Let σi be the initial segment of Q such
that |σi| = si.
Now, we define (A) to be the oracle for A that does not give answers

on the coding locations of any of the bσi , and also does not include

DENSITY-1 DEGREES 37

the answers (the 1’s) from any of the deduction procedures used for
deducing bσ0 , or from any of the deduction procedures used for deducing
bσi , unless those deduction procedures have sufficiently large m values
that they depend on bσi−1 .

Then we claim that (A) is a generic oracle for A, and that ϕ
(A)
s does

not have density-1 domain.
To show that (A) is a generic oracle for A, we show that the set of

places where (A) does not give answers is density-0.
There are finitely many (in fact, at most one) σi of each possible

length. Also, for each length n, there is at most one deduction proce-
dure whose answers we erased whose shortest queried string has length
n. This is because only the correct deduction procedures give any an-
swers that need to be erased, and because we only erase deduction
procedures that do not require knowledge of the previous bσi . There-
fore the pieces of information that we excluded from (A) were coded
into smaller and smaller portions of the corresponding Pj . Thus, for
every m, there is a last j such that the last 1

2m
of Pj was excluded from

(A), and after that point, the density of the domain of (A) never again
drops below 1

2m−1 . (Also, it goes above
1

2m−1 by the end of Pj+1.)

Finally, we show that ϕ
(A)
s does not give outputs in any of the loca-

tions where the bσi are coded in B.
The proof of this fact is that, for any i, any finite subset of the

information in (A) is a partial oracle that could be extended to a partial
oracle for a different set A1 which would also be consistent with the
requirements imposed at the beginning of stage s of the construction,
and such that the value of bσi in A1 was different from the value of bσi

in A. (This statement will be proved by induction shortly.) Therefore,

if ϕ
(A)
s gives any outputs on any of the the bσi , then at stage s, we would

have been able to extend our condition on A to a condition specifying
enough of A1 to cause ϕs to produce an incorrect computation for B,
contradicting our assumption on ϕs.

We conclude our proof by proving, by induction on i, that any fi-
nite subset of the information in (A) is a partial oracle that could be
extended to a partial oracle for a different set A1 which would also be
consistent with the requirements imposed at the beginning of stage s
of the construction, and such that the value of bσi in A1 was different
from the value of bσi in A.
Recall that by the construction of Ã, and by the assumption on σi,

for every i, bσi = 0

Case 1: i = 0

38 GREGORY IGUSA

Assume that we have seen a finite number of the pieces of informa-
tion in (A). Then we have not seen any of the locations where bσ0 is
coded, and we have also seen nothing but 0’s from all of the deduction
procedures for computing bσ0 . At stage s, the value of bσ0 had not
yet been decided, and there were no conditions yet on the deduction
procedures for computing bσ0 , except for the requirements that certain
deduction procedures that operated under false assumptions were not
allowed to give any outputs. Furthermore, none of the deduction pro-
cedures operating under false assumptions about bσ0 ever give answers.
Therefore, it would be consistent with what we have seen so far of

(A) and with the requirements imposed at the beginning of stage s
to have bσ0 equal to 1, and then to fill in A1 with bσ0 = 1, and with
the deduction procedures that compute bσ0 having 1’s in the correct
locations in the next coding sets that we have not yet looked at.
Since none of the deduction procedures that operated under the as-

sumption bσ0 = 1 have given answers in the finite amount of (A) that
we have seen, we may freely extend them in A1 to give correct outputs
in A1. (Notice that this is consistent with the conditions imposed on
the construction at the beginning of stage s, because the condition that
those deduction procedures never give outputs was imposed at the end
of stage s.)
Case 2: i > 0
Assume again that we have seen a finite number of the pieces of

information in (A). Then, again, we have not seen any of the locations
where bσi is coded, and we have also seen nothing but 0’s from all
except a few of the deduction procedures for computing bσi . Among
these deduction procedures, the only ones from which we have seen
any 1’s are those which operate under true assumptions, and which
also depend on the value of bσi−1 .
By induction, it is consistent (both with what we have seen of (A),

and with the condition on the construction at stage s) that bσi−1 could
have the opposite of its actual value. Thus, it would be consistent to
fill in A1 to have the incorrect value for bσi−1 , and then to also have
the incorrect value for bσi , and then to have the “relevant” deduction
procedure then place 1’s into the next relevant location. (Here, rele-
vant means operating under the assumptions that are true of A1, but
potentially false of A0.)
Again, this does not contradict any of our requirements, since none

of the deduction procedures that use bσi = 1 have given any outputs
yet, so the ones that operate under assumptions that are correct in A1

can still be made to give outputs which are correct in A1.
This concludes our proof of Π1

1
-completeness of ≥g.

DENSITY-1 DEGREES 39

�

We briefly mention one thing about this proof.
The fact that a deduction procedure operating under false assump-

tions about bσi never gives incorrect answers is very important. This
is what allows us to ensure that it is consistent with any finite oracle
that bσi has the opposite value. However, it is also important that those
deduction procedures never give correct answers, because otherwise it
might be possible to deduce the value of bσi+1 without knowing the
value of bσi , simply by seeing every possible deduction procedure for
bσi+1 give the same answer. It is also important that sometimes, incor-
rect deduction procedures can give correct answers, because otherwise,
seeing a deduction procedure give a correct answer would tell us that
all of its assumptions were correct, and it is also important that some-
times incorrect deduction procedures give incorrect answers, because
otherwise, seeing any answer from any deduction procedure would be
sufficient to know that the answer was correct. By using all three sorts
of deductions (incorrect, correct, and nonresponsive), we have enough
leeway to ensure that if the opponent is clever enough to avoid making
mistakes, then we can force him to not give answers.

References

[1] Yuri Gurevich, Average case completeness, J. Comput. System Sci. 42 (1991),
no. 3, 346–398, Twenty-Eighth IEEE Symposium on Foundations of Computer
Science (Los Angeles, CA, 1987).

[2] Gregory Igusa, Nonexistence of minimal pairs for generic computability, To
appear in J. Symbolic Logic, see also http://arxiv.org/abs/1202.2560.

[3] Carl G. Jockusch, Jr. and Paul E. Schupp, Generic computability, Turing de-

grees, and asymptotic density, J. Lond. Math. Soc. (2) 85 (2012), no. 2, 472–490.
[4] Ilya Kapovich, Alexei Miasnikov, Paul Schupp, and Vladimir Shpilrain,

Generic-case complexity, decision problems in group theory, and random walks,
J. Algebra 264 (2003), no. 2, 665–694.

[5] Gerald E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin, 1990. MR 1080970 (92a:03062)

[6] Robert I. Soare, Recursively enumerable sets and degrees, Perspectives in Math-
ematical Logic, Springer-Verlag, Berlin, 1987, A study of computable functions
and computably generated sets.

[7] Robert M. Solovay, Hyperarithmetically encodable sets, Trans. Amer. Math. Soc.
239 (1978), 99–122.

http://arxiv.org/abs/1202.2560

	1. Introduction
	2. Density-1 Reals
	2.1. Introduction
	2.2. Bounding Hyperarithmetic Reals
	2.3. Structure of the generic degrees

	3. 11-completeness
	References

