
BAR RECURSION AND PRODUCTS OF SELECTION FUNCTIONS

MARTÍN ESCARDÓ AND PAULO OLIVA

Abstract. We show how two iterated products of selection functions can both be used in conjunction with
system T to interpret, via the dialectica interpretation and modified realizability, full classical analysis. We also
show that one iterated product is equivalent over system T to Spector’s bar recursion, whereas the other is T-
equivalent to modified bar recursion. Modified bar recursion itself is shown to arise directly from the iteration
of a different binary product of ‘skewed’ selection functions. Iterations of the dependent binary products are
also considered but in all cases are shown to be T-equivalent to the iteration of the simple products.

§1. Introduction. Gödel’s [13] so-called dialectica interpretation reduces the consis-
tency of Peano arithmetic to the consistency of the quantifier-free calculus of function-
als T. In order to extend Gödel’s interpretation to full classical analysis PAω + CA,
Spector [18] made use of the fact that PAω + CA can be embedded, via the negative
translation, into HAω + ACN + DNS. Here PAω and HAω denote Peano and Heyting
arithmetic, respectively, formulated in the language of finite types, and

CA : D f NÑB@nN( f (n)Ø A(n))
is full comprehension,

ACN : @nNDxX A(n, x)Ñ D f@nA(n, f n)
is countable choice, and

DNS : @nN  B(n)Ñ   @nB(n),
is the double negation shift, with A(n) and A(n, x) standing for arbitrary formulas, and
B(n) ” Dx A(n, x). Since HAω + ACN, excluding the double negation shift, has a
straightforward (modified) realizability interpretation [20], as well as a dialectica inter-
pretation [1, 13], the remaining challenge is to give a computational interpretation to
DNS.

A computational interpretation of DNS was first given by Spector [18], via the di-
alectica interpretation. Spector devised a form of recursion on well-founded trees,
nowadays known as Spector bar recursion, and showed that the dialectica interpreta-
tion of DNS can be witnessed by such kind of recursion. A computational interpreta-
tion of DNS via realizability only came recently, first in [2], via a non-standard form
of realizability, and then in [4, 5], via Kreisel’s modified realizability. The realizability
interpretation of DNS makes use of a new form of bar recursion, termed modified bar
recursion.

It has been shown in [5] that Spector’s bar recursion is definable in system T ex-
tended with modified bar recursion, but not conversely, since Spector’s bar recursion
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is S1-S9 computable in the model of total continuous functionals, but modified bar
recursion is not.

In the present paper we revisit these functional interpretations of classical analysis
from the perspective of the newly developed theory of selection functions [8, 9, 10, 11,
12]. Selection functionals are functionals of type (X Ñ R)Ñ X, for arbitrary finite types
X, R. We think of mappings p : X Ñ R as generalised predicates, and of functionals
ε : (X Ñ R) Ñ X as witnessing, when possible, the “non-emptiness” of any given
such predicate. For instance, if R = B is the set of booleans, Hilbert’s ε-constant can
be viewed as a selection function. Just as ε-terms in Hilbert’s calculus can be used to
define the existential quantifier, so can any selection function ε : (X Ñ R)Ñ X be used
to define a generalised quantifier φ : (X Ñ R)Ñ R as

φ(p) R
= p(ε(p)).

Moreover, just like the usual quantifiers DX and @Y can be nested to produce a quanti-
fier on the product space XˆY, so can generalised quantifiers and selection functions.
We prefer to think about the nesting of selection functions (and quantifiers) as a prod-
uct operation, since it transforms selection functions over spaces X and Y into a new
selection function on the product space XˆY (cf. [11]).

In this article we define two different iterations of the binary product of selection
functions, one which we call implicitly controlled and the other which we call explicitly
controlled (cf. also [12]) and show that:
‚ Modified bar recursion is T-equivalent to the implicitly controlled product of se-

lection functions.
‚ Spector’s bar recursion is T-equivalent to the explicitly controlled product of se-

lection functions.
‚ The two different products can be used to interpret DNS directly via modified

realizability and the dialectica interpretation, respectively.
‚ The implicitly controlled product of selection functions is strictly stronger than

the explicitly controlled one.
‚ Apparently stronger iterations of the dependent products are in fact T-equivalent

to the iterations of the simple products.

§2. Preliminaries. Before we present our main results, let us first define the formal
systems used, and give an introduction to our recent work on selection functions.

2.1. Heyting arithmetic HAω and system T. In this section we define the formal
systems used to prove the inter-definability results. These include Heyting arithmetic
in all finite types and extensions including bar induction and a continuity principle.

DEFINITION 2.1 (Finite types). The set of all finite types T are defined inductively as
‚ B (booleans) and N (integers) are in T
‚ If X and Y are in T then XˆY (product) and X Ñ Y (functions) are in T
‚ If X is in T then X˚ (finite sequence) is in T .

We will also make informal use of the following type construction: Given a sequence of types
(Xi)iPN we also consider ΠiPNXi and ΠiănXi as types. The main purpose of this is to make the
constructions more readable, since we can keep track of the positions which are being changed.
A formal extension of system T with such type construction has been considered by Tait [19],
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hence we also hope that our presentation below will extend smoothly to a more general setting1,
although in this paper we focus on the standard version of system T.

We use X, Y, Z for variables ranging over the elements of T . We often write ΠiXi for
ΠiPNXi, and also ΠiěkXi for ΠiXi+k.

Let HAω be usual Heyting arithmetic in all finite types with a fully extensional treat-
ment of equality, as in the system E-HAω of [20]. Its quantifier-free fragment is the
usual Gödel’s system T, also extended with sequence types. Gödel’s primitive recur-
sion for each sequence of types (Xi)iPN P T is given by

R f g0
X0= g

R f g(n + 1)
Xn+1
= f n(R f gn)

where R has finite type Πn(Xn Ñ Xn+1) Ñ X0 Ñ ΠiXi. We also assume that we
have a constant 0X of each finite type X, and the usual constructors and destructors
such as xtX , sYy : X ˆ Y and πi(xs

X0
0 , sX1

1 y) = si, where i = t0, 1u, for instance. For the
newly introduced sequence types we have that if t : ΠiXi then ti : Xi; and if t : Xi then
λi.t : ΠiXi. If s : ΠiănXi, we write si : Xi for the i-th element of the sequence, for i ă n.
If s : Πiăn(Xi ˆ Yi) is a sequence of pairs, we write s0 : ΠiănXi and s1 : ΠiănYi for the
projection of the sequence on the first and second coordinates, respectively. If α has
type ΠiPNXi we use the following abbreviations

αn ” λi.α(i + n), (the n-left shift of α, hence αn : ΠiXi+n)

qn(α) ” q(αn), (so qn : ΠiXi Ñ R if q : ΠiXi+n Ñ R)

α[k, n] ” xα(k), . . . , α(n)y, (finite segment from position k to n)

[α](n) ” α[0, n´ 1], (initial segment of α of length n)

α, n ” xα(0), . . . , α(n´ 1), 0, 0, . . .y, (infinite extension of [α](n) with 0’s)

where in the last case the type of 0 at the i-th coordinate is the same type of α(i).
We use ˚ for all forms of concatenation. For instance, if x has type Xn and s has type

ΠiănXi then s ˚ x is the concatenation of s with x, which has type Πiăn+1Xi. Similarly,
if x has type X0 and α has type ΠiXi+1 then x ˚ α has type ΠiXi. Given a functional
q : ΠiXi Ñ R and a finite sequence s : ΠiănXi we write qs : ΠiěnXi Ñ R for the function
λα.q(s ˚ α). When s = xxywe write qs as simply qx.

Given a finite sequence s and an infinite sequence α let us write s @ α for the “over-
writing” of s on α, i.e. (s @ α)(i) equals si if i ă |s| and equals α(i + |s|) otherwise.

In the following we shall assume that certain types are discrete. Semantically, in the
model of total continuous functionals, discreteness means that singletons are open or
that all points are isolated. Syntactically, the following grammar produces discrete
types in that model (along with compact types) [8].

1If the reader prefers, however, she can assume that in a sequence of types (Xi)iďN all Xi are equal X,
replacing infinite sequence types ΠiPNXi with N Ñ X, and finite sequence types ΠiănXi with X˚.



4 MARTÍN ESCARDÓ AND PAULO OLIVA

DEFINITION 2.2 (Discrete and compact types). Define the two subsets of T inductively
as follows:

compact ::= B | compactˆ compact | discrete Ñ compact

discrete ::= B | N | discreteˆ discrete | discrete˚ | compact Ñ discrete.

In this paper we work with a model independent notion of definability. Formally,
given a term t in system T, we view an equation F(x) = t(F, x) as defining or specify-
ing a functional F. We do not worry whether such an equation has a solution in any
particular model of HAω, or whether it is unique, when it has a solution.

DEFINITION 2.3. We say that a functional G is T-definable from a functional F (written
G ďT F) over a theory S if there exists a term s in system T such that s(F) satisfies the
defining equation of G provably in S . We say that F and G are T-equivalent over S , written
F =T G, if G ěT F and F ěT G.

When stating in a theorem or proposition that G is T-definable in F, we will explicitly
write after the theorem/proposition number the theory S that is needed for the verifi-
cation. In a few cases this theory will be an extension of HAω with some the following
three principles: Spector’s condition

SPEC : @ωΠiXiÑN@αΠiXiDn(ω(α, n) ă n),
the axiom of continuity

CONT : @qΠiXiÑR@αDn@β([α](n)
ΠiănXi= [β](n)Ñ q(α) R

= q(β))

with R discrete, and the scheme of relativised bar induction

BI :

$

’

’

’

’

&

’

’

’

’

%

S(x y)
^

@αPS DnP([α](n))
^

@s P S(@x[S(s ˚ x)Ñ P(s ˚ x)]Ñ P(s))

,

/

/

/

/

.

/

/

/

/

-

Ñ P(x y),

where S(s) and P(s) are arbitrary predicates in the language of HAω, and α P S and
s P S are shorthands for @nS([α](n)) and S(s) respectively. We note that SPEC follows
from CONT, but it also holds in the model of strongly majorizable functionals [7].

2.2. Selection functions and generalised quantifiers. In [11, 12] we have studied
the properties of functionals having the type (X Ñ R)Ñ R, and called these generalised
quantifiers. When R = B we have that (X Ñ B) Ñ B is the type of the usual logical
quantifiers @, D. We also showed that some generalised quantifiers φ : (X Ñ R) Ñ R
are attainable, in the sense that for some selection function ε : (X Ñ R)Ñ X, we have

φp = p(εp)

for all (generalised) predicates p. In the case when φ is the usual existential quantifier,
for instance, ε corresponds to Hilbert’s epsilon term. Since the types (X Ñ R) Ñ R
and (X Ñ R) Ñ X will be used quite often, we abbreviate them as KRX and JRX,
respectively. Moreover, when R is fixed, we often simply write KX and JX, omitting
the subscript R. In [11] we also defined products of quantifiers and selection functions.

DEFINITION 2.4 (Product of selection functions and quantifiers). Given generalised quan-
tifiers φ : KX and ψ : KY, define the product quantifier (φb ψ) : K(XˆY) as

(φb ψ)(pXˆYÑR)
R
= φ(λxX .ψ(λyY.p(x, y))).
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Also, given selection functions ε : JX and δ : JY, define the product selection function (ε b
δ) : J(XˆY) as

(εb δ)(pXˆYÑR)
XˆY
= (a, b(a))

where

a X
= ε(λxX .p(x, b(x)))

b(xX)
Y
= δ(λyY.p(x, y)).

One of the results we obtained is that the product of attainable quantifiers is also
attainable. This follows from the fact that the product of quantifiers corresponds to the
product of selection functions, as made precise in the following lemma.

LEMMA 2.5 ([11], Lemma 3.1.2). Let R be fixed. Given a selection function ε : JX, define
a quantifier ε : KX as

εp = p(εp).

Then for ε : JX and δ : JY we have εb δ = εb δ.

Given a finite sequence of selection functions or quantifiers, the two binary products
defined above can be iterated so as to give rise to finite products of selection functions
and quantifiers. We have shown that such a construction also appears in game theory
(backward induction), algorithms (backtracking), and proof theory (interpretation of
the infinite pigeon-hole principle) – see [11] for details.

In the following (Sections 3 and 4) we will describe two possible ways of iterating
the binary product of selection function an infinite, or unbounded, number of times.

§3. Explicitly Controlled Product. The finite product of selection functions of Def-
inition 2.4 can be infinitely iterated in two ways. The first, which we define in this
section is via an explicitly controlled iteration, which we will show to correspond to
Spector’s bar recursion. In the following section we also define an implicitly controlled
iteration, which we will show to correspond to modified bar recursion.

DEFINITION 3.1 (eps). Let ε : Πk JXk be a sequence of selection functions. Define their ex-
plicitly controlled infinite product as

epsl
n(ε)(q)

ΠiXi+n
=

#

0 if l(q(0)) ă n

(εn b epsl
n+1(ε))(q) otherwise,

where q : ΠiXi+n Ñ R and l : R Ñ N. We call l the length function since it controls the
length of the recursive path. Unfolding the definition of b we can write the defining equation
of eps as

epsl
n(ε)(q)

ΠiXi+n
=

#

0 if l(q(0)) ă n

c ˚ epsl
n+1(ε)(qc) otherwise,

(eps)

where c = εn(λx.epsl
n+1(ε)(qx)).

The next lemma (essentially Lemma 1 of [18]) states one of the most crucial properties
of this product of selection functions.
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LEMMA 3.2 (HAω + (eps)). Let α = epsl
n(ε)(q). Then, for all i : N

α = [α](i) ˚ epsl
n+i(ε)(q[α](i)).

PROOF. By induction on i. If i = 0 this follows by the definition of α. Assume this
holds for i, we wish to show it also holds for i + 1. Consider two cases.

If l(q[α](i)(0)) = l(q(α, i)) ă n + i then

(i) epsl
n+i(ε)(q[α](i)) = 0

and hence

(ii) α
(IH)
= [α](i) ˚ epsl

n+i(ε)(q[α](i))
(i)
= α, i = α, i + 1.

Therefore,

(iii) l(q(α, i + 1))
(ii)
= l(q(α, i)) ă n + i ă n + i + 1.

Hence, by (iii) we have

(iv) epsl
n+i+1(ε)(q[α](i+1)) = 0.

So

α
(ii)
= α, i + 1

(iv)
= [α](i + 1) ˚ epsl

n+i+1(ε)(q[α](i+1)).

On the other hand, if l(q[α](i)(0)) = l(q(α, i)) ě n + i, then

α
(IH)
= [α](i) ˚ epsl

n+i(ε)(q[α](i)) = [α](i) ˚ c ˚ epsl
n+i+1(ε)(q[α](i)˚c),

so that α(i) = c. Hence α = [α](i + 1) ˚ epsl
n+i+1(ε)(q[α](i+1)). %

An immediate consequence of the lemma above is that it allows us to calculate the
i-th element of the infinite sequence epsl

n(ε)(q) (see also Theorem 3.8 for another im-
portant consequence).

COROLLARY 3.3 (HAω + (eps)). For all n and i

epsl
n(ε)(q)(i)

Xn+i
=

#

0 if l(qt(0)) ă n + i

εn+i(λx.epsl
n+i+1(ε)(qt˚x)) otherwise,

where t = [epsl
n(ε)(q)](i).

PROOF. Let α = epsl
n(ε)(q) so that t = [epsl

n(ε)(q)](i) = [α](i). By Lemma 3.2 we
have that α(i) = epsl

n+i(ε)(qt)(0). Hence, by (eps) we have the desired result. %

The fact that eps exists in the model of total continuous functionals, and is in fact
uniquely characterized by its defining equation, can be seen as follows. First, note that
the epsl

n(ε)(q) is an infinite sequence, say α : ΠiXi+n. Intuitively, at each recursive call
the functional q gets information about one more element of its input sequence. As-
suming continuity we will have that l ˝ q : ΠiXi+n Ñ N will eventually always return
a fixed value, no matter what the rest of the input sequence is. This means that as n
increases we will eventually have l(q(0)) ă n. It is perhaps surprising that such a func-
tional also exists in the model of strongly majorizable functionals [7], which contains
discontinuous functionals! Following the construction of Bezem [7] one can prove this
directly, but this result will also follow from our result that eps is T-definable from
Spector’s bar recursion (Section 3.3).
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We also define the corresponding explicitly controlled product of quantifiers as fol-
lows:

DEFINITION 3.4 (epq). Let φ : ΠkKXk be a sequence of quantifiers. Their explicitly con-
trolled infinite product is defined as

epql
n(φ)(q)

R
=

#

q(0) if l(q(0)) ă n

(φn b epql
n+1(φ))(q) otherwise,

where q : ΠiXi+n Ñ R and l : R Ñ N. Unfolding the definition of the binary product of
quantifiers we have

epql
n(φ)(q)

R
=

#

q(0) if l(q(0)) ă n

φn(λxXn .epql
n+1(φ)(qx)) otherwise.

(epq)

Howard (proof attributed to Kreisel) shows in Lemma 3C of [14] that assuming Spec-
tor’s bar recursion one can prove Spector’s stopping condition SPEC. It is easy to see
that the form of bar recursion used by Howard is also an instance of epq and hence we
obtain:

LEMMA 3.5. HAω + (epq) $ SPEC.

We now show that epq and eps are T-equivalent. That epq is T-definable in eps has
been recently shown in [16]. Hence, it remains to show that epq defines eps. The proof
makes use of the fact that each selection function ε defines a quantifier, as φ(p) =
p(ε(p)) (cf. Lemma 2.5). In order to define eps for the types (Xi, R) we shall use epq for
the types (Xi, R1) with R1 = ΠiXi.

LEMMA 3.6 (HAω + BI + SPEC). Let R1 = ΠiXi. Given εi : JRXi and q : ΠiXi Ñ R
define

φ
ε,q
i (pXiÑR1)

R1
= p(εi(λxXi .q(p(x)))).(1)

Defined also the sequence of functions f n = λα.0ΠiănXi ˚ α. Then (with q : ΠiěnXi Ñ R so
qn : ΠiXi Ñ R)

epq
l˝qn

n+1(φ
ε,qn

)(( f n)x) = (0 ˚ xXn)@ epq
l˝(qx)n+1

n+1 (φε,(qx)n+1
)( f n+1).

PROOF. By bar induction BI and the axiom SPEC. We take S(s) = true and

epq
l˝qn

n+|s|+1(φ
ε,qn

)(( f n)x˚s) = (0 ˚ x)@ epq
l˝(qx)n+1

n+|s|+1 (φε,(qx)n+1
)(( f n+1)s)

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

P(s)

where s : Πnăiďn+|s|Xi.

(i) @αDj P([α](j)). By SPEC, for any α : ΠiąnXi there is a point j such that

(l ˝ qn)(0ΠiănXi ˚ x ˚ [α](j) ˚ 0) = l(q(x ˚ [α](j) ˚ 0))
ă n + j + 1.

For such j and s = [α](j) it is easy to see that P(s) holds as both sides of P(s) are equal
to 0 ˚ x ˚ s ˚ 0.
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(ii) @s(@yP(s ˚ y)Ñ P(s)). Let s be such that @yP(s ˚ y); we show P(s). We can assume
that

(l ˝ qn ˝ ( f n)x˚s)(0) = (l ˝ (qx)
n+1 ˝ ( f n+1)s)(0) ě n + |s|+ 1,

as otherwise the proof can be carried out as in case (i) above. Hence, we calculate

epq
l˝qn

n+|s|+1(φ
ε,qn

)(( f n)x˚s)

(epq)
= φ

ε,qn

n+|s|+1(λy.epq
l˝qn

n+|s|+2(φ
ε,qn

)(( f n)x˚s˚y)

(1)
= epq

l˝qn

n+|s|+2(φ
ε,qn

)(( f n)x˚s˚c)

(IH)
= (0 ˚ x)@ epq

l˝(qx)n+1

n+|s|+2 (φε,(qx)n+1
)(( f n+1)s˚c)

(˚)
= (0 ˚ x)@ epq

l˝(qx)n+1

n+|s|+2 (φε,(qx)n+1
)(( f n+1)s˚c̃)

(1)
= (0 ˚ x)@ φ

ε,(qx)n+1

n+|s|+1 (λy.epq
l˝(qx)n+1

n+|s|+2 (φε,(qx)n+1
)(( f n+1)s˚y))

(epq)
= (0 ˚ x)@ epq

l˝(qx)n+1

n+|s|+1 (φε,(qx)n+1
)(( f n+1)s)

where
c = εn+|s|+1(λy.qn(epq

l˝qn

n+|s|+2(φ
ε,qn

)(( f n)x˚s˚y)))

c̃ = εn+|s|+1(λy.(qx)n+1(epq
l˝(qx)n+1

n+|s|+2 (φε,(qx)n+1
)(( f n+1)s˚y)))

so that (˚) c = c̃ follows directly from the induction hypothesis @yP(s ˚ y). %

We are now ready to show that eps is T-definable from epq. The proof presented here
is essentially the same as Spector’s proof that his restricted form of bar recursion SBR
follows from the general form BR (cf. Section 3.3).

THEOREM 3.7 (HAω + BI). epq ěT eps.

PROOF. Let φ
ε,q
n and f n be as defined in Lemma 3.6. We claim that eps can be defined

from epq as

(i) epsl
n(ε)(q)

ΠiXi+n
= (epq

l˝qn

n (φε,qn
)( f n))n.

We consider two cases.
If l(q(0ΠiěnXi )) ă n then we also have l(qn(0ΠiXi )) ă n. Therefore

epsl
n(ε)(q)

(i)
= (epq

l˝qn

n (φε,qn
)( f n))n (epq)

= ( f n(0))n = 0ΠiXi+n .
On the other hand, if l(q(0ΠiěnXi )) ě n then l(qn(0ΠiXi )) ě n and hence:

epsl
n(ε)(q)

(i)
= (epq

l˝qn

n (φε,qn
)( f n))n

(epq)
= (φ

ε,qn

n (λxXn .epq
l˝qn

n+1(φ
ε,qn

)(( f n)x)))n

(1)
= (epq

l˝qn

n+1(φ
ε,qn

)(( f n)c))n

L3.6
= ((0 ˚ c)@ epq

l˝(qc)n+1

n+1 (φε,(qc)n+1
)( f n+1))n

= c ˚ (epq
l˝(qc)n+1

n+1 (φε,(qc)n+1
)( f n+1))n+1

(i)
= c ˚ epsl

n+1(ε)(qc)



BAR RECURSION AND PRODUCTS OF SELECTION FUNCTIONS 9

where

c = εn(λxXn .qn(epq
l˝qn

n+1(φ
ε,qn

)(( f n)x)))

L3.6
= εn(λxXn .qn((0 ˚ x)@ epq

l˝(qx)n+1

n+1 (φε,(qx)n+1
)( f n+1)))

= εn(λxXn .(qx)n+1(epq
l˝(qx)n+1

n+1 (φε,(qx)n+1
)( f n+1)))

= εn(λxXn .qx(epq
l˝(qx)n+1

n+1 (φε,(qx)n+1
)( f n+1))n+1)

(i)
= εn(λxXn .qx(epsl

n+1(ε)(qx))).

%

3.1. Dialectica interpretation of classical analysis. In order to find witnesses for
the dialectica interpretation of DNS, and hence full classical analysis, Spector arrived
at the following system of equations

n N
= ωα,

α(n) X
= εn(p),

p(α(n)) R
= qα,

(2)

where εn : JRX and q : (N Ñ X) Ñ R and ω : (N Ñ X) Ñ N are given and n : N and
α : N Ñ X and p : X Ñ R are the unknowns. We now show how eps can be used to
solve Spector’s equations. We first solve a slightly different set of equations, and as a
corollary we obtain a solution to Spector’s original one.

THEOREM 3.8 (HAω + (eps)). Let q : ΠiXi Ñ R and l : R Ñ N and ε : Πi JRXi be given.
Define

α = epsl
0(ε)(q)

pn(x) = epsl
n+1(ε)(q[α](n)˚x).

For n ď l(q(α)) we have

α(n) Xn= εn(pn)

pn(α(n))
R
= qα.

PROOF. This is essentially Spector’s proof (cf. lemma 11.5 of [15]). Assume n ď

l(q(α)). We first argue that n ď l(q(α, n)). Otherwise, assuming n ą l(q(α, n)) =
l(q[α](n)(0)) we would have, by Lemma 3.2, that α = α, n. And hence, by extensionality,
n ą l(q[α](n)(0)) = l(q(α)) ě n, which is a contradiction.

Hence, assuming n ď l(q(α)) we have n ď l(q(α, n)) and hence

α(n) C3.3
= εn(λx.epsl

n+1(ε)(q[α](n)˚x)) = εn(pn).

For the second equality, we have



10 MARTÍN ESCARDÓ AND PAULO OLIVA

pn(α(n)) = epsl
n+1(ε)(q[α](n+1))

= q[α](n+1)(epsl
n+1(ε)(q[α](n+1)))

= q([α](n + 1) ˚ epsl
n+1(ε)(q[α](n+1)))

L3.2
= q(α).

%

COROLLARY 3.9. For any given q : XN Ñ R and ω : XN Ñ N and sequence of selection
functions εn : JRX (of common type JRX) there are α : N Ñ X and p : X Ñ R satisfying the
system of equations (2).

PROOF. Let R1 = RˆN, and let π0 : RˆN Ñ R and π1 : RˆN Ñ N denote the
first and second projections. Define

q1(α) R1
= xq(α), ω(α)y

ε1n(pXÑR1)
X
= εn(λxX .π0(p(x))).

so q1 : (N Ñ X)Ñ R1 and ε1n : JR1X. Let

α
XN

= eps
π1
0 (ε1)(q1)

p1n(xX)
R1
= eps

π1
n+1(ε

1)(q1[α](n)˚x).

Assume n ď ω(α) = π1(q1(α)). By Theorem 3.8 we have

α(n) X
= ε1n(p1n)

p1n(α(n))
R1
= q1α.

Finally, let n = ω(α) and p(x) = π0(p1n(x)). Then it is easy to check that α and p satisfy
the desired equation, e.g. α(n) = ε1n(p1n) = εn(π0 ˝ p1n) = εn(p). %

3.2. Dependent variants of eps and epq. In the dialectica interpretation of DNS
given above (Section 3.1), the selection functions εn do not depend on the history of
choices already made. Thus, it was sufficient to use an iteration of the simple product
of selection functions. Nevertheless, Spector bar recursion and modified bar recursion
are normally formulated in the most general form, where selection functions at point n
have access to the values Xi for i ă n.

In the same vein, in previous papers [9, 11] we have considered generalisations of
the product of selection functions, where a selection function (or a quantifier) at stage
n can have access to the previously computed values. We called these the dependent
product of selection functions and quantifiers.

DEFINITION 3.10 (Dependent product of selection functions and quantifiers). Given a
quantifier φ : KX and a family of quantifiers ψ : X Ñ KY, define the dependent product quan-
tifier (φbd ψ) : K(XˆY) as

(φbd ψ)(pXˆYÑR)
R
= φ(λxX .ψ(x, λyY.p(x, y))).

Also, given a selection function ε : JX and a family of selection functions δ : X Ñ JY, define
the dependent product selection function (εbd δ) : J(XˆY) as

(εbd δ)(pXˆYÑR)
XˆY
= (a, b(a))
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where
a X

= ε(λxX .p(x, b(x)))

b(x) Y
= δ(x, λyY.p(x, y)).

As done for the simple product of selection functions and quantifiers, we can also
iterate the dependent products as follows:

DEFINITION 3.11 (EPQ and EPS). Given a family of quantifiers

φ : Πk(ΠiăkXi Ñ KXk),

define their dependent explicitly controlled product (denoted EPQ) as

EPQl
s(φ)(q)

R
=

#

q(0) if l(q(0)) ă |s|

(φs bd (λxX|s| .EPQl
s˚x(φ)))(q) otherwise.

Unpacking the definition of the binary dependent product bd this is equivalent to

EPQl
s(φ)(q)

R
=

#

q(0) if l(q(0)) ă |s|

φs(λxX|s| .EPQl
s˚x(φ)(qx)) otherwise.

(EPQ)

Moreover, given a family of selection functions

ε : Πk(ΠiăkXi Ñ JXk),

define their dependent explicitly controlled product (denoted EPS) as

EPSl
s(ε)(q)

ΠiX|s|+i
=

#

0 if l(q(0)) ă |s|

(εs bd (λxX|s| .EPSl
s˚x(ε)))(q) otherwise.

Similarly, unfolding the definition of bd the defining equation for EPS is equivalent to

EPSl
s(ε)(q)

ΠiX|s|+i
=

#

0 if l(q(0)) ă |s|

c ˚ EPSl
s˚c(ε)(qc) otherwise

(EPS)

where c = εs(λx.EPSl
s˚x(ε)(qx)).

Clearly eps is T-definable from EPS. We now show that in fact eps and EPS are T-
equivalent. In Theorem 3.13 we will make use of the following construction. Given
α : Πiěn(ΠkăiXk Ñ Xi) and s : ΠkănXk define αs : ΠiěnXi by course-of-values as

αs(i)
Xn+i
= α(i)(s ˚ [αs](i)).(3)

Clearly, given a finite sequence t : ΠiP[n,m](ΠkăiXk Ñ Xi) we can perform the same
construction to obtain a ts : ΠiP[n,m]Xi.

LEMMA 3.12 (HAω). (d ˚ α)s = d(s) ˚ (α)s˚d(s), where d : ΠkănXk Ñ Xn.

PROOF. Straightforward. %

Finally, given q : ΠiěnXi Ñ R define qs : Πiěn(ΠkăiXk Ñ Xi)Ñ R as

qs(α)
R
= q(αs).

THEOREM 3.13 (HAω). eps ěT EPS.
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PROOF. To define EPS of type (Xk, R) we use eps of type (ΠiăkXi Ñ Xk, R). Given
selection functions εs : JX|s| define ε̃k : J(ΠiăkXi Ñ Xk) as

(i) ε̃k(P(ΠiăkXiÑXk)ÑR)
ΠiăkXiÑXk= λsΠiăkXi .εs(λyXk .P(λt.y)).

Note that the infinite (simple) product of the selection functions ε̃k has type

epsl
n(ε̃) : J(Πiěn(ΠkăiXk Ñ Xi))

where l : R Ñ N. We claim that EPS can be defined from eps as

(ii) EPSl
s(ε)(q

ΠiXi+|s|ÑR)
ΠiXi+|s|
= (epsl

|s|(ε̃)(q
s))s,

where s : Πkă|s|Xk. Let us show that EPS as defined above satisfies the defining equa-
tion (EPS). Consider two cases:
If l(q(0)) ă |s| then l(qs(0)) = l(q(0)) ă |s|. Hence, by the definition of (¨)s

EPSl
s(ε)(q)

(ii)
= (epsl

|s|(ε̃)(q
s))s (eps)

= (0)s = 0.

On the other hand, if l(q(0)) ě |s| then l(qs(0)) = l(q(0)) ě |s|. Hence

EPSl
s(ε)(q)

(ii)
= (epsl

|s|(ε̃)(q
s))s

(eps)
= (d ˚ epsl

|s|+1(ε̃)((q
s)d))

s

L3.12
= d(s) ˚ (epsl

|s|+1(ε̃)((q
s)d))

s˚d(s)

L3.12
= d(s) ˚ (epsl

|s|+1(ε̃)((qd(s))
s˚d(s)))s˚d(s)

(˚)
= c ˚ (epsl

|s˚c|(ε̃)((qc)s˚c))s˚c

(ii)
= c ˚ EPSl

s˚c(ε)(qc),

where d = ε̃|s|(λ f .(qs) f (epsl
|s|+1(ε̃)((q

s) f ))) and c = εs(λx.qx(EPSl
s˚x(ε)(qx)) so that

(˚)

d(s) = ε̃|s|(λ f .(qs) f (epsl
|s|+1(ε̃)((q

s) f )))(s)
(i)
= εs(λx.(qs)λt.x(epsl

|s|+1(ε̃)((q
s)λt.x)))

L3.12
= εs(λx.(qx)s˚x(epsl

|s|+1(ε̃)((qx)s˚x)))

= εs(λx.qx(epsl
|s˚x|(ε̃)((qx)s˚x))s˚x)

(ii)
= εs(λx.qx(EPSl

s˚x(ε)(qx))

= c.
%

REMARK 3.14. Note that a similar construction does not work in the case of quantifiers,
since there is no λ-term (in the pure simply typed λ-calculus) of type (X Ñ KY) Ñ K(X Ñ

Y), for arbitrary X and Y. Nevertheless, it will follow from our results that the explicitly
controlled iteration of the simple product of quantifiers epq is T-equivalent to the explicitly
controlled iteration of the dependent product of quantifiers EPQ (cf. summary of results in
Figure 1).
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3.3. Relation to Spector’s bar recursion. As we have shown in Theorem 3.8, which
is essentially Spector’s solution, the explicitly controlled product of selection functions
eps can also be used to give a computational interpretation of classical analysis. When
presenting his solution in [18], Spector first formulates a general “construction by bar
recursion” as

BRω
s (φ)(q)

R
=

#

qs(0) if ωs(0) ă |s|

φs(λxX|s| .BRω
s˚x(φ)(q)) otherwise,

(BR)

where φs : KRX|s|, q : ΠiXi Ñ R and ω : ΠiXi Ñ N. This is usually referred to as Spec-
tor’s bar recursion, but we argue that this is misleading. We show that BR is closely
related to the product of quantifiers EPQ, whereas the special case of this used by Spec-
tor is equivalent to the (dependent) product of selection functions EPS, which we have
shown to be equivalent to eps (Section 3.2).

REMARK 3.15. In fact, Spector’s definition seems slightly more general than BR as defined
here, since in Spector’s definition q might also depend on the length of the sequence s. As we
show in Lemma 5.7, however, it is possible to reconstruct |s| from the sequence s ˚ 0 if s is the
point where Spector’s condition first happens.

THEOREM 3.16 (HAω + BI). BR ěT EPQ.

PROOF. In order to define EPQ of type (Xi, R) we use BR of the same type (Xi, R).
BR and EPQ have very similar definitions, except that in BR the stopping condition
is given directly on the current sequence s ˚ 0, whereas in EPQ a “length” function
l : R Ñ N is used so that the stopping condition involves the composition l ˝ q. Hence,
in order to define EPQ from BR it is essentially enough to take ω = l ˝ q, taking care
of the fact that the types of q in EPQ and BR are slightly different as q in EPQ takes a
“shorter” input sequence starting at point |s|. We show that EPQ defined as

(i) EPQl
s(φ)(q) = BR

l˝q|s|
s (φ)(q|s|)

satisfies the equation (EPQ). Consider two cases.

If (l ˝ q|s|)s(0) = l(q(0)) ă |s| then

EPQl
s(φ)(q)

(i)
= BR

l˝q|s|
s (φ)(q|s|)

(BR)
= (q|s|)s(0) = q(0).

On the other hand, if (l ˝ q|s|)s(0) = l(q(0)) ě |s| then

EPQl
s(φ)(q)

(i)
= BR

l˝q|s|
s (φ)(q|s|)

(BR)
= φs(λxX|s| .BR

l˝q|s|
s˚x (φ)(q|s|))

(˚)
= φs(λxX|s| .BR

l˝(qx)|s˚x|

s˚x (φ)((qx)|s˚x|)

= φs(λxX|s| .EPQl
s˚x(φ)(qx))

where

(˚) BR
l˝q|s|
s˚x (φ)(q|s|) = BR

l˝(qx)|s˚x|

s˚x (φ)((qx)|s˚x|)

can, as in Lemma 3.6, be proved by bar induction BI and axiom SPEC, since

q|s|(s ˚ x ˚ α) = (qx)|s˚x|(s ˚ x ˚ α).
Finally, recall that HAω + (BR) $ SPEC (Lemma 3C of [14]). %
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Spector, however, explicitly says that only a restricted form of BR is used for the dialec-
tica interpretation of (the negative translation of) countable choice. It is this restricted
form that we shall from now on call Spector’s bar recursion:

DEFINITION 3.17 (Spector’s bar recursion). Spector’s bar recursion [18] is the recursion
schema

SBRω
s (ε)

ΠiXi= s @

#

0 if ωs(0) ă |s|

SBRω
s˚c(ε) otherwise,

where c
X|s|
= εs(λxX|s| .SBRω

s˚x(ε)), and where εs : JΠiXi X|s| and ω : ΠiXi Ñ N.

We now show that Spector’s bar recursion is T-definable from the explicitly con-
trolled product of selection functions EPS. It will follow from other results that they
are in fact T-equivalent (see Figure 1).

THEOREM 3.18 (HAω). EPS ěT SBR.

PROOF. To define SBR of type (Xi) we use EPS of type (Xi, (ΠiXi)ˆN). EPS and
SBR have very similar definitions, except that EPS has an extra argument q : Πiě|s|Xi Ñ

R. We can obtain SBR from EPS by simply taking q(α) to be the identity function plus
the stopping value ω(α). So, the length function l : R Ñ N can be taken to be the
second projection. The details are as follows: Let R = (ΠiXi)ˆN. Given ω : ΠiXi Ñ

N and εs : JΠiXi X|s|, define

l(rR)
N
= π1(r)

qω(αΠiXi )
R
= xα, ω(α)y

ε̃s(pX|s|ÑR)
X|s|
= εs(π0 ˝ p).

Define

(i) SBRω
s (ε)

ΠiXi= s ˚ EPSl
s(ε̃)((qω)s).

If ωs(0) ă |s| then l((qω)s(0)) = ωs(0) ă |s| and hence

SBRω
s (ε)

(i)
= s ˚ EPSl

s(ε̃)((qω)s)
(EPS)
= s ˚ 0

= s @ 0.

On the other hand, if ωs(0) ě |s| then also l((qω)s(0)) ě |s| and we have

SBRω
s (ε)

(i)
= s ˚ EPSl

s(ε̃)((qω)s)
(EPS)
= s ˚ c ˚ EPSl

s˚c(ε̃)((qω)s˚c)

(˚)
= s ˚ d ˚ EPSl

s˚d(ε̃)((q
ω)s˚d)

(i)
= SBRω

s˚d(ε)

where c = ε̃s(λx.(qω)s˚x(EPSl
s˚x(ε̃)((qω)s˚x))) and d = εs(λx.SBRω

s˚x(ε)) so that (˚)
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c = ε̃s(λx.(qω)s˚x(EPSl
s˚x(ε̃)((qω)s˚x)))

def qω , ε̃s
= εs(λx.s ˚ x ˚ EPSl

s˚x(ε̃)((qω)s˚x))

(i)
= εs(λx.SBRω

s˚x(ε)) = d.
%

§4. Implicitly Controlled Product. We have seen in Section 3 above that the explic-
itly controlled iterated product of selection functions is sufficient to witness the dialec-
tica interpretation of the double negation shift (and hence, classical countable choice).
In this section we show that when interpreting this same principle via modified real-
izability, one seems to need an unrestricted or, as we we shall call it, implicitly controlled
infinite product of selection functions.

DEFINITION 4.1 (ips). The implicitly controlled product of a sequence of selection func-
tions ε : Πk JXk is defined as

ipsn(ε)
J(ΠiXi+n)

= εn b ipsn+1(ε).

Unfolding the definition of b, this is the same as

ipsn(ε)(q)
ΠiXi+n
= εn(λx.qx(ipsn+1(ε)(qx)))

looooooooooooooomooooooooooooooon

c

˚ ipsn+1(ε)(qc).(ips)

We call the above infinite product implicitly controlled because under the assumption
of continuity for q : ΠiXi+n Ñ R, for discrete R, the bar recursive calls eventually ter-
minate.

REMARK 4.2. As shown in section 5.6. of [11], an implicitly controlled product of quanti-
fiers ipq

ipqn(φ) = φn b ipqn+1(φ)

does not exist. It is enough to consider the case when R = Xi = N. Let φn(p) = 1 + p(0)
and q be any function. Assuming the equation above, it follows by induction that for all n

ipq0(φ)(q) = n + ipqn(φ)(q0n),

where 0n = x0, 0, . . . , 0y, with n zeros; which implies ipq0(φ)(q) ě n, for all n.

4.1. Realizability interpretation of classical analysis. We now describe how ips can
be used to interpret the double negation shift (and hence countable choice) via mod-
ified realizability. As discussed in the introduction, a computational interpretation
of full classical analysis can be reduced to an interpretation of the double negation
shift DNS. Given that the formula A(n) (in DNS) can be assumed to be of the form
Dx B(n, x), DNS is equivalent to

@n((A(n)ÑK)Ñ A(n))Ñ (@nA(n)ÑK)Ñ @nA(n).

That is because, for A(n) ” Dx B(n, x), we have both KÑ A(n) and KÑ @nA(n) in
minimal logic. Moreover, since the negative translation brings us into minimal logic,
falsity K can be replaced by an arbitrary Σ0

1-formula R. This is known as the (refined)
A-translation [6], and is useful to analyse proofs of Π0

2 theorems in analysis. Recall that
we are using the abbreviation
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JR A = (A Ñ R)Ñ A.
The resulting principle we obtain is what we shall call the J-shift

J-shift : @nJR A(n)Ñ JR@nA(n).
DNS is then the particular case of the K-shift

K-shift : @nKR A(n)Ñ KR@nA(n),
when R =K; considering the other type construction

KR A = (A Ñ R)Ñ R.
One advantage of moving to the J-shift is that A(n) now can be taken to be an arbitrary
formula, not necessarily of the form Dx B(n, x). Hence the principle J-shift is more
general than DNS. We analyse the logical strength of the principle J-shift in more detail
in [10], where a proof translation based on the construction JR A is also defined. Our
proof of the following theorem is very similar to that of [4, Theorem 3]. We assume
continuity and relativised bar induction as formulated in Section 2.1.

THEOREM 4.3 (HAω + BI + CONT). ips0 modified realizes J-shift.

PROOF. Given a term t and a formula A we write “t mr A” for “t modified realizes
A” (see [20] for definition). Assume that

εn mr (A(n)Ñ R)Ñ A(n),

q mr @nA(n)Ñ R.
Let

P(s) ” s ˚ ips|s|(ε)(qs) mr @nA(n)

S(s) ” @nă|s| (sn mr A(n)).
We show P(x y) by bar induction relativised to the predicate S. Let us write α P S as
an abbreviation for @n([α](n) P S). The first assumption of BI (i.e. S(x y)) is vacuously
true. We now prove the other two assumptions.

(i) @α P S Dk P([α](k)). Given α P S let k be a point of continuity of q on α. Let r := qα.
By CONT we have q([α](k) ˚ β) = r, for all β. By the assumptions on α and q we have
that r mr R. We must show that for all n

([α](k) ˚ ipsk(ε)(λβ.r))(n) mr A(n),

If n ă k this follows directly from the assumption α P S. In case n ě k we must show
εn(λx.c) mr A(n), which follows from the assumptions on εn and r.

(ii) @s P S(@x[S(s ˚ x) Ñ P(s ˚ x)] Ñ P(s)). Assume @x[S(s ˚ x) Ñ P(s ˚ x)] with s P S.
We must prove P(s), i.e.

s ˚ ips|s|(ε)(qs) mr @nA(n).

Unfolding the definition of ips|s| (cf. (ips)) this is equivalent to

s ˚ c ˚ ips|s|+1(ε)(qs˚c) mr @nA(n)
looooooooooooooooooooomooooooooooooooooooooon

P(s˚c)

.

where c = ε|s|(λx.qs˚x(ips|s|+1(ε)(qs˚x))). Since s P S, by the bar induction hypothesis
it is enough to show that c mr A(|s|), i.e.

ε|s|(λx.qs˚x(ips|s|+1(ε)(qs˚x)))mr A(|s|)
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so that also s ˚ c P S. By the assumption on ε|s|, the above follows from

λx.qs˚x(ips|s|+1(ε)(qs˚x))mr A(|s|)Ñ R.

Finally, by the assumption on q the above is a consequence of

s ˚ x ˚ ips|s|+1(ε)(qs˚x) mr @nA(n)
loooooooooooooooooooooomoooooooooooooooooooooon

P(s˚x)

,

for x mr A(|s|), which follows from the (bar) induction hypothesis. %

4.2. Dependent variant of ips. Consider also the implicitly controlled dependent
product of selection functions.

DEFINITION 4.4 (IPS). Let ε : Πk(ΠiăkXi Ñ JXk). Define the dependent implicitly
controlled product of selection functions (denoted IPS) as

IPSs(ε)
J(ΠiX|s|+i)

= εs bd (λxX|s| .IPSs˚x(ε)).(IPS)

Again (similar to Section 3.2), it is clear that IPS is a generalisation of ips. We now
show that the proof that IPS is T-definable from ips can be easily adapted to show that
also ips is T-equivalent to its dependent variant IPS. In fact, in the case of ips and IPS the
proof is slightly simpler since we do not have to worry about the stopping condition
and the length function l.

THEOREM 4.5 (HAω). ips ěT IPS.

PROOF. Let ε̃k be as defined in Theorem 3.13. Note that the infinite (simple) product
of selection functions applied to ε̃ has type

ipsn(ε̃) : J(Πiěn(ΠkăiXk Ñ Xi)).
We claim that IPS can then be defined from ips as

(i) IPSs(ε)(qΠjXj+|s|ÑR)
ΠjXj+|s|
= (ips|s|(ε̃)(qs))s

where s : Πkă|s|Xk and (¨)s is as defined in (3). We have

IPSs(ε)(q)
(i)
= (ips|s|(ε̃)(qs))s

(ips)
= (d ˚ ips|s|+1(ε̃)((qs)d))

s

L3.12
= d(s) ˚ (ips|s|+1(ε̃)((qs)d))

s˚d(s)

L3.12
= d(s) ˚ (ips|s|+1(ε̃)((qd(s))

s˚d(s)))s˚d(s)

(˚)
= c ˚ (ips|s˚c|(ε̃)((qc)s˚c))s˚c

(i)
= c ˚ IPSs˚c(ε)(qc)

where, as in Theorem 3.13, we can show that (˚) d(s) = c for
d = ε̃|s|(λ f .(qs) f (ips|s|+1(ε̃)((qs) f )))

c = εs(λx.(qx)(IPSs˚x(ε)(qx)).
%
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4.3. Relation to modified bar recursion. The proof that ips interprets full classical
analysis, via modified realizability, is very similar to the one given in [4, 5] that modified
bar recursion MBR interprets full classical analysis. In this section we show how MBR
corresponds directly to the infinite iteration of a different form of binary product of
selection functions. We also show (cf. Section 5.1) that this different product when
iterated leads to a form of bar recursion (MBR) which is nevertheless T-equivalent to
IPS.

DEFINITION 4.6. Given a function ε P (X Ñ R)Ñ XˆY and a selection function δ P JY
define a selection function ε b̃ δ P J(XˆY) as

(ε b̃ δ)(p) XˆY
= ε(λx.p(x, b(x)))

where b(x) Y
= δ(λy.p(x, y)). We shall also consider a dependent version b̃d of the product

where δ : X Ñ JY and b(x) = δ(x, λy.p(x, y)).

The above construction shows how a mapping of type (X Ñ R) Ñ X ˆ Y can be
extended to a selection function on the product space, given a selection function on
Y. We shall use this with X = Xn and Y = ΠiXi+n+1, so that we obtain a selection
function in J(ΠiXi+n).

DEFINITION 4.7 (mbr). Let εn : (Xn Ñ R) Ñ ΠiXi+n and ε = (εn)nPN. Define the
iterated skewed product mbr as

mbrn(ε)
J(ΠiXi+n)

= εn b̃mbrn+1(ε).

Unfolding the definition of b̃ we have

mbrn(ε)(q)
ΠiXi+n
= εn(λx.qx(mbrn+1(ε)(qx)).(mbr)

Define also the dependent iterated skewed product MBR

MBRs(ε)
J(ΠiXi+|s|)

= εs b̃d (λx.MBRs˚x(ε)),

where in this case εs : (X|s| Ñ R)Ñ ΠiXi+|s|. Again, unfolding the definition of b̃ we have

MBRs(ε)(q)
ΠiXi+|s|
= εs(λx.qx(MBRs˚x(ε)(qx)).(MBR)

We name this mbr and MBR because we will show this is essentially modified bar recursion
as defined in [4, 5].

We think of ε as a sequence of skewed selection functions. The idea is that sometimes
a witness for Xk is automatically a witness for all types Xi for i ě k. In such cases,
a selection function εn : (Xn Ñ R) Ñ Xn gives rise to a skewed selection function
εn : (Xn Ñ R) Ñ ΠiěnXi, so that the more intricate product of selection functions
(Definition 2.4) can be replaced by the simpler product given in Definition 4.6.

Similarly to IPS and EPS (Sections 3.2 and 4.2), we now show that the simple iterated
skewed product mbr is T-equivalent to its dependent variant MBR. Given a sequence of
types Xi let us define the new sequence

Yj ” Bˆ (ΠiăjXi Ñ ΠkXk+j).

The intuition for the construction below is the same as the one used to show that eps
T-defines EPS (Theorem 3.13), except that here we need an extra boolean flag as the
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whole result of the skewed selection function will be returned on the first position of
the output. The flag is used so that functions querying such sequences can know which
are proper values and which are dummy values. Let us first define the construction
(¨)[s] : ΠiYi+|s| Ñ ΠiXi+|s| that given α : ΠiYi+|s| is defined as

α[s](i)
Xi+|s|
=

$

&

%

g(s ˚ [α[s]](n))(i´ n) if Dn ď i(α(n) = xtt, gy)

0 if @n ď i(α(n) = xff, . . .y)

where in the first case n is the greatest n ď i such that α(n) is of the form xtt, gy. Finally,
for q : ΠiXi+|s| Ñ R we define

q[s](α) R
= q(α[s])

so q[s] : ΠiYi+|s| Ñ R; and for x : Xj define x̂ : Yj as

x̂ = xtt, λsΠiăjXi .xxXj , 0Xj+1 , 0Xj+2 , . . .yy.

LEMMA 4.8 (HAω). (q[s])x̂ = (qx)[s˚x].

PROOF. By course-of-values induction on i we have (x̂ ˚ α)[s](i) = (x ˚ α[s˚x])(i).
Hence (x̂ ˚ α)[s] = x ˚ α[s˚x] and

(q[s])x̂(α) = q((x̂ ˚ α)[s]) = qx(α
[s˚x]) = (qx)

[s˚x](α).

%

THEOREM 4.9 (HAω). mbr ěT MBR.

PROOF. In order to define MBR of type (Xi, R) we use mbr of type (Yj, R). For
εs : (Xj Ñ R)Ñ ΠkXk+j, where s : ΠiăjXi, define ε̃ j : (Yj Ñ R)Ñ ΠkYk+j as

(i) ε̃ j(PYjÑR)(k)
Yk+j
=

$

&

%

xtt, λtΠiăjXi .εt(λxXj .P(x̂))y if k = 0,

xff, 0Πiăj+kXiÑΠiXi+j+ky if k ą 0.

By the definition of (¨)[s] and definition (i) it is easy to check that

(ii) (ε̃|s|(P))[s] = εs(λx.P(x̂)).

We claim that MBR can be defined from mbr as

(iii) MBRs(ε)(qΠiXi+|s|ÑR)
ΠiXi+|s|
= (mbr|s|(ε̃)(q[s]))[s].

We have

MBRs(ε)(q)
(iii)
= (mbr|s|(ε̃)(q[s]))[s]

(mbr)
=

(
ε̃|s|(λ f Y|s| .(q[s]) f (mbr|s|+1(ε̃)((q[s]) f )))

)[s]
(ii)
= εs(λxX|s| .(q[s])x̂(mbr|s|+1(ε̃)((q[s])x̂)))

L4.8
= εs(λxX|s| .qx(

(
mbr|s˚x|(ε̃)((qx)[s˚x])

)[s˚x]
))

(iii)
= εs(λxX|s| .qx(MBRs˚x(ε)(qx))).

%
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We now show that a slight generalisation of modified bar recursion [4, 5] is T-
equivalent to the iterated product of skewed selection functions. Define MBR1 as

MBR1s(ε)(q)
ΠiXi= s ˚ εs(λxX|s| .q(MBR1s˚x(ε)(q)))(MBR’)

where q : ΠiXi Ñ R and εs : (X|s| Ñ R) Ñ ΠiX|s|+i. MBR1 is a generalisation of mod-
ified bar recursion (as defined in [4], cf. lemma 2) to sequence types. If all Xi = X we
have precisely the definition given in [4, 5].

THEOREM 4.10 (HAω + BI + CONT). MBR =T MBR1.

PROOF. For one direction, let q : ΠiXi Ñ R and s : ΠiănXi and define

(i) MBR1s(ε)(q)
ΠiXi= s ˚MBRs(ε)(qs).

Unfolding definitions we have

MBR1s(ε)(q)
(i)
= s ˚MBRs(ε)(qs)

(MBR)
= s ˚ εs(λxX|s| .qs˚x(MBRs˚x(ε)(qs˚x)))

= s ˚ εs(λxX|s| .q(s ˚ x ˚MBRs˚x(ε)(qs˚x)))

(i)
= s ˚ εs(λxX|s| .q(MBR1s˚x(ε)(q))).

For the other direction, let q : ΠiXi+|s| Ñ R. Define

(ii) MBRs(ε)(q)
ΠiXi+|s|
= MBR1

x y
(λt.εs˚t)(q).

We then have

MBRs(ε)(q)
(ii)
= MBR1

x y
(λt.εs˚t)(q)

(MBR1)
= εs(λxX|s| .q(MBR1x(λt.εs˚t)(q)))
(˚)
= εs(λxX|s| .qx(MBR1

x y
(λt.εs˚x˚t)(qx)))

(ii)
= εs(λxX|s| .qx(MBRs˚x(ε)(qx))),

where (˚) MBR1x˚r(λt.εs˚t)(q) = x ˚MBR1r(λt.εs˚x˚t)(qx) can be proven by bar induc-
tion on the sequence r, assuming continuity of q (cf. Lemma 3.6). %

COROLLARY 4.11. Gandy’s functional Γ is T-equivalent to MBR with Xi = N for all
i P N.

PROOF. It has been shown in [5] that the Γ functional is T-equivalent to MBR1 of
lowest type. It remains to observe that the equivalence of Theorem 4.10 respects the
types. %

QUESTION 4.12. It should be mentioned that in [2] yet another form of bar recursion is
used for the interpretation of the double negation shift (although they also use modified bar
recursion when dealing with dependent choice). We refer to this different bar recursion as the
bbc functional. Thomas Powell [17] has recently shown that bbc is T-equivalent to IPS (see
also [3]).
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§5. Further Inter-definability Results. In this section we prove three further inter-
definability results, namely ips ě mbr, MBR ě IPS and IPS ě EPQ.

THEOREM 5.1 (HAω). ips ěT mbr.

PROOF. Given a type X let us denote by X1 the type Bˆ X. In order to define mbr
of type (Xi, R) we use ips of type (ΠjX1i+j, R). The main idea for the construction is
to turn a skewed selection function into a proper selection function as follows. Given
εi : (Xi Ñ R)Ñ ΠjXi+j we define ε̃i : J(ΠjX1i+j) as

(i) ε̃i( f ΠjX1i+jÑR
)

ΠjX1i+j
= λj.xff, εi(λxXi . f (x̂))(j)y,

where

x̂(j) =

#

xtt, xXiy if j = 0

xtt, 0Xi+jy if j ą 0.
Intuitively, the booleans B = ttt, ffu are used to distinguish between values returned
by εi and those values x̂ passed into a recursive call.
Given α : Πk(ΠjX1j+i+k) we define α̃ : ΠjXj+i as

α̃(j)
Xj+i
=

#

(α(j)(0))1 if @kă j ((α(k)(0))0 = tt

(α(k)(j´ k))1 if Dkă j ((α(k)(0))0 = ff,
where k = µk ă j (α(k)(0))0 = ff. The construction α̃ receives as input a matrix
α : ΠiΠjěiX1j and produces a sequence ΠjXj as follows: As long as the value α(j) is
some x̂ (boolean flag will be tt) we filter out the x; once we reach a value returned by
an εk (boolean will be ff) then we return the whole sequence returned by the skewed
selection function εk. Hence, given a q : ΠjXi+j Ñ R we define q̃ : Πk(ΠjX1i+k+j) Ñ R
as q̃(α) = q(α̃) where, Clearly

(ii) q̃x̂(β) = Ą(qx)(β).
We claim that mbr can be defined as

(iii) mbri(ε)(q)
ΠjXi+j
= (

(
ipsi(ε̃)(q̃)

)ΠkΠjX1i+k+j(0))1

where εi : (Xi Ñ R) Ñ ΠjXi+j and q : ΠjXi+j Ñ R. Recall that given a sequence
β : Πiăn(Xi ˆYi) we write β1 : ΠiănYi for the projection of the sequence on the second
coordinates. We have

mbri(ε)(q)
(iii)
= (ipsi(ε̃)(q̃)(0))1

(ips)
= (ε̃i(λα

ΠjX1i+j .q̃α(ipsi+1(ε̃)(q̃α))))1

(i)
= εi(λxXi .q̃x̂(ipsi+1(ε̃)(q̃x̂)))

(ii)
= εi(λxXi . Ą(qx)(ipsi+1(ε̃)(

Ą(qx))))

(iv)
= εi(λxXi .qx((ipsi+1(ε̃)(

Ą(qx))(0))1))

(iii)
= εi(λxXi .qx(mbri+1(ε)(qx)))

using that

(iv) β̃ = (ipsi+1(ε̃)(
Ą(qx))(0))1, for β = ipsi+1(ε̃)(

Ą(qx)).
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%

5.1. MBR ě IPS. We now show that the implicitly controlled dependent product of
selection functions IPS is T-definable from (and hence T-equivalent to) modified bar
recursion MBR. Since in our proof we need to work with infinite sequences of finite
sequences (of arbitrary length), the use of the infinite product type ΠiXi in here is
unhelpful. The problem is that keeping track of indices would imply introducing the Σ
type to record the length of each finite sequence. Although this can be done, it would
require much more of dependent type theory than we have assumed so far. Hence,
for this section only we work with selection functions of a fixed type (X Ñ R) Ñ X.
Similarly, skewed selection functions will have type (Y Ñ R)Ñ YN.

Let X+ denote non-empty finite sequences of elements of type X. We make use of
the following two mappings G : X Ñ X+ and F : (X+)N Ñ XN where

G(x) = xxy
F(α) = concatenation of non-empty finite sequences α(i)’s.

For the definition of F it is important that we are considering non-empty sequences, as
otherwise such concatenation operation would not be defined in general. Consider two
variants G˚ : X˚ Ñ (X+)˚ and F˚ : (X+)˚ Ñ X˚, where G˚ is the function G applied
pointwise to a given finite sequence, and F˚ is the concatenation of a finite sequence of
non-empty finite sequences.

LEMMA 5.2. The following can be easily verified:
(i) F(λi.G(vi))(i) = vi and F˚(G˚(s)) = s, where vi : X and s : X˚.

(ii) F˚(s ˚ t) = F˚(s) ˚ F˚(t), where s, t : (X+)˚.

(iii) F˚(G˚(s) ˚ t) = s ˚ F˚(t), where s : X˚ and t : (X+)˚.

Given selection functions εs : JRX define, by course-of-values, skewed selection func-
tions of type

νr : (X+ Ñ R)Ñ (X+)N,

where r : (X+)˚, as

νr(PX+ÑR)(i) X+

= G(εF˚(r˚ti)(λxX .P(x(F˚ti) ˚ xy)))

with ti (X+)˚
= [νr(PX+ÑR)](i).

LEMMA 5.3. If F˚(r) = F˚(r1) then νr(P)(i) = νr1(P)(i).

PROOF. Directly from Lemma 5.2 (ii) since F˚(r ˚ ti) = F˚(r) ˚ F˚(ti). %

Now, given a functional q : XN Ñ R define q̃ : (X+)N Ñ R as

q̃(α) R
= q(Fα).

Again, it is easy to see that:

LEMMA 5.4. (q̃)xsy
(X+)N

= Ą(qs), where s : X+.

PROOF. (q̃)xsy(α) = q(F(xsy ˚ α)) = q(F˚(xsy) ˚ F(α))) = qs(Fα) = Ą(qs)(α). %
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LEMMA 5.5 (HAω + BI + CONT). If F˚(s) = F˚(s1) then

MBRs(ν)(q̃) = MBRs1(ν)(q̃).

PROOF. Define the predicate

P(t(X+)˚) ” F˚(s ˚ t) = F˚(s1 ˚ t)Ñ MBRs˚t(ν)(q̃t) = MBRs1˚t(ν)(q̃t).

We show P(x y) by bar induction BI (assuming CONT).
(i) @αDkP([α](k)). Given α, by CONT let k be such that q̃[α](k) is a constant function, say
q̃[α](k)(β) = r, for all β. Assuming F˚(s ˚ [α](k)) = F˚(s1 ˚ [α](k))

MBRs˚[α](k)(ν)(q̃[α](k)) = νs˚[α](k)(λy.q̃[α](k)˚y(MBRs˚[α](k)˚y(ν)(q̃[α](k)˚y)))

= νs˚[α](k)(λy.r)
L5.3
= νs1˚[α](k)(λy.r)

= νs1˚[α](k)(λy.q̃[α](k)˚y(MBRs1˚[α](k)˚y(ν)(q̃[α](k)˚y)))

= MBRs1˚[α](k)(ν)(q̃[α](k)).

(ii) @t(@xP(t ˚ x)Ñ P(t)). Let t be such that @xP(t ˚ x). Assuming F˚(s ˚ t) = F˚(s1 ˚ t),
and noting that this implies F˚(s ˚ t ˚ y) = F˚(s1 ˚ t ˚ y), we have

MBRs˚t(ν)(q̃t) = νs˚t(λy.q̃t˚y(MBRs˚t˚y(ν)(q̃t˚y)))

(IH)
= νs˚t(λy.q̃t˚y(MBRs1˚t˚y(ν)(q̃t˚y)))

L5.3
= νs1˚t(λy.q̃t˚y(MBRs1˚t˚y(ν)(q̃t˚y)))

= MBRs1˚t(ν)(q̃t).

%

We can now show that IPS of type (X, R) is T-definable from MBR of type (X+, R).

THEOREM 5.6 (HAω + BI + CONT). MBR ěT IPS.

PROOF. Define IPS from MBR as

IPSs(ε)(q)
XN

= F(MBRG˚(s)(ν)(q̃))

where ν (and q̃) is defined from ε (q, respectively) as above. We show that IPS as defined
above satisfies its defining equation. Let

‚ ti = [νG˚s(λy.q̃y(MBR(G˚s)˚y(ν)(q̃y)))](i)
‚ ri = [IPSs(ε)(q)](i).
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We first show that (:) F˚(ti) = ri. By course-of-values assume F˚(tj) = rj for j ă i,
then

F˚(ti)(j) X+

= F˚([νG˚s(λy.q̃y(MBR(G˚s)˚y(ν)(q̃y)))](i))(j)
L5.2(i)
= εF˚((G˚s)˚tj)(λx.q̃x(F˚tj)˚xy(MBR(G˚s)˚x(F˚tj)˚xy(ν)(q̃x(F˚tj)˚xy)))

L5.2(iii)
= εs˚F˚(tj)(λx.q̃x(F˚tj)˚xy(MBR(G˚s)˚x(F˚tj)˚xy(ν)(q̃x(F˚tj)˚xy)))

L5.4
= εs˚F˚(tj)(λx. Čq(F˚tj)˚x(MBR(G˚s)˚x(F˚tj)˚xy(ν)( Čq(F˚tj)˚x)))

(IH)
= εs˚rj(λx.Ćqrj˚x(MBR(G˚s)˚xrj˚xy(ν)(Ćqrj˚x)))

L5.5
= εs˚rj(λx.Ćqrj˚x(MBRG˚(s˚rj˚x)(ν)(Ćqrj˚x)))

= εs˚rj(λx.qrj˚x(F(MBRG˚(s˚rj˚x)(ν)(Ćqrj˚x))))

= εs˚rj(λx.qrj˚x(IPSs˚rj˚x(ε)(qrj˚x)))

= (ri)(j).

We then have

IPSs(ε)(q)(i)
X
= F(MBRG˚(s)(ν)(q̃))(i)

= F(νG˚s(λyX+
.q̃y(MBR(G˚s)˚y(ν)(q̃y))))(i)

L5.2(i)
= εF˚((G˚s)˚ti)(λx.q̃x(F˚ti)˚xy(MBR(G˚s)˚x(F˚ti)˚xy(ν)(q̃x(F˚ti)˚xy))))

L5.2(ii)
= εs˚F˚(ti)(λx.q̃x(F˚ti)˚xy(MBR(G˚s)˚x(F˚ti)˚xy(ν)(q̃x(F˚ti)˚xy))))

(:)
= εs˚ri (λx.q̃xri˚xy(MBR(G˚s)˚xri˚xy(ν)(q̃xri˚xy))))

L5.4
= εs˚ri (λx.Ćqri˚x(MBR(G˚s)˚xri˚xy(ν)(Ćqri˚x))))

= εs˚ri (λx.qri˚x(F(MBR(G˚s)˚xri˚xy(ν)(Ćqri˚x))))
L5.5
= εs˚ri (λx.qri˚x(F(MBRG˚(s˚ri˚x)(ν)(Ćqri˚x))))

= εs˚ri (λx.qri˚x(IPSs˚ri˚x(ε)(qri˚x))).

%

5.2. IPS ě EPQ. It has been shown in [5] that BR is T-definable from modified bar re-
cursion. Here we simplify that construction and use it to show that EPQ is T-definable
from IPS. Moreover, we make explicit the assumption SPEC which is used in [5]. First
we prove that (the totalisation of) Spector’s search functional is definable in Gödel’s sys-
tem T.

LEMMA 5.7 (HAω). The totalisation of Spector’s search functional
µsc(ω)(α) = least n(ω(α, n) ă n)

is T-definable. More precisely, there exists a term χ in Gödel’s system T such that the following
is provable in HAω

Dn(ω(α, n) ă n)Ñ (ω(α, χωα) ă χωα^@i ă χωα(ω(α, i) ě i)).
In particular,

HAω + SPEC $ (ω(α, n) ă n)^@i ă n(ω(α, i) ě i)
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where n = χωα.

PROOF. We show how the unbounded search in µsc can be turned into a bounded
search. Abbreviate An(ω, α) = (ω(α, n) ă n). Consider the following construction,
given α : ΠiXi define αω : ΠiXi as

αω(i) =

#

0Xi if Dkď i + 1 Ak(ω, α)

α(i) otherwise.
Assume Dn(ω(α, n) ă n). Let n be the least number such that An(ω, α) holds. Then it is
easy to see that αω = α, n´ 1. Because n is least, we must have that ω(αω) ě n´ 1, and
hence n ď ω(αω) + 1. Therefore, ω(αω) + 1 serves as an upper bound on the search
µsc, i.e. χωα = µn ď ω(αω) + 1 (ω(α, n) ă n). %

The construction above shows that Spector’s search functional can be made total in
system T, so that whenever it is well-defined for inputs ω and α the term χ indeed
computes the correct value.

THEOREM 5.8. EPQ is T-definable from IPS over HAω + SPEC. However, EPQ is not
T-definable from IPS, even over HAω + BI + CONT.

PROOF. First, note that combining the results above we have the equivalences IPS =T
MBR and EPQ =T BR, over HAω +BI+CONT. Hence, that IPS is not T-definable from
EPQ, even over HAω +BI+CONT, follows from fact that MBR is not S1-S9 computable
in the model of total continuous functions while BR is (see [5]).
In order to show IPS ěT EPQ we use the search operator χ of the above lemma. Define

χ+k(ω)(α) = µi ď χ(λβ.ω(β)´ k)(α) (ω([α](i)) ă i + k),
where ω(β)´ k is the cut-off subtraction. By Lemma 5.7 we have that n = χ+k(ω)(α)
is the least such that ω([α](n))´ k ă n. But since ω([α](i))´ k ă i implies ω([α](i)) ă
i + k, we have that, provably in HAω + SPEC,
(i) ω([α](n)) ă n + k and @i ă n(ω([α](i)) ě i + k), for n = χ+k(ω)(α).

Let ψs : KRX|s| be a given family of quantifiers. We first turn each quantifier ψs : KRX|s|,
where s : Πiă|s|Xi, into a a selection function ψ̃t of type JR(X|t| Z R) as2

(ii) ψ̃t(F(X|t|ZR)ÑR)
X|t|ZR
= injR(ψť(λxX|t| .F(injX|t|x)))

where t : Πiă|t|(Xi Z R), and ˇ(¨) : Πiăn(Xi Z R)Ñ ΠiănXi is defined as

(š)i
Xi=

#

xi if si = injXi
(xi)

0Xi otherwise.

We will also make use of the dual operation ˜(¨) : ΠiănXi Ñ Πiăn(Xi Z R) that maps
injX(¨) pointwise on a given sequence. Clearly we have
(iii) ˇ̃s = s and s̃ ˚ injX|s|(x) = Ąs ˚ x, for s : ΠiănXi.

Note that both construction ˇ(¨) and ˜(¨) can similarly defined on infinite sequences as
well. Hence, given s : ΠiăkXi and q : ΠiXi+k Ñ R and l : R Ñ N let us define the
function ql,s : Πiěk(Xi Z R)Ñ R as

2We are here making use of the sum type X Z Y, which can be implemented as Bˆ X ˆ Y, since we
assume all types are inhabited, with injX : X Ñ XZY and injY : Y Ñ XZY the standard injections.
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(iv) ql,s(αΠi(Xi+kZR))
R
=

#

q([α̌](n) ˚ 0) if @iăn (α(i) P Xi+k)

a if Diăn (α(i) P R),

where n = χ+|s|(l ˝ q)(α̌) and α(µiăn (α(i) P R)) = injR(a). Intuitively, when ql,s reads
an input sequence α : Πi(Xi+|s| Z R) it finds the first point n where l(q(α̌, n)) ă n + |s|.
If all values in α up to that point are Xi values it means this α was generated by a
sequence of bar recursive calls until the stopping condition was reached, and hence
we must apply the outcome function q to the sequence up to that point. Otherwise, it
means that the bar recursive calls have already reached the leaves of the bar recursion
(i.e. the stopping conditions) and we are now backtracking and calculating the values
of intermediate notes, i.e. computations of the R-values. In which case the first such
value is then returned. We claim that EPQ defined as

(v) EPQl
s(ψ)(q

ΠiXi+|s|ÑR)
R
= ql,s(IPSs̃(ψ̃)(ql,s))

satisfies equation (EPQ). Consider two cases.

If l(q(0)) ă |s| then, by (i), n = χ+|s|(l ˝ q)(β) = 0, for any β. Hence, by (iv), we have
that ql,s(β) = q(0), again for any β. Therefore,

EPQl
s(ψ)(q)

(v)
= ql,s(IPSs̃(ψ̃)(ql,s))

= q(0).

On the other hand, if l(q(0)) ě |s| then, again by (i), n = χ+|s|(l ˝ q)(β) ą 0, for any β.
This implies both

(vi) ql,s(c ˚ β) = r, for c = injR(r) and arbitrary β, and

(vii) ql,s(d ˚ β) = (qx)l,s˚x(β), for d = injX|s|(x) and arbitrary β.

Hence

EPQl
s(ψ)(q)

(v)
= ql,s(IPSs̃(ψ̃)(ql,s))

(IPS)
= ql,s(c ˚ IPSs̃˚c(ψ̃)((ql,s)c))

(ii),(vi)
= ψˇ̃s(λx.(ql,s)injX|s| (x)(IPSs̃˚injX|s| (x)(ψ̃)((ql,s)injX|s|(x)

)))

(iii)
= ψs(λx.(ql,s)injX|s| (x)(IPS

Ąs˚x(ψ̃)((q
l,s)injX|s|(x)

)))

(vii)
= ψs(λx.(qx)l,s˚x(IPS

Ąs˚x(ψ̃)((qx)l,s˚x)))

(v)
= ψs(λx.EPQl

s˚x(ψ)(qx))

where c = ψ̃s̃(λx.IPSs̃˚x(ψ̃)((ql,s)x)). %

REMARK 5.9. As shown in [14] (cf. also Lemma 3.5), if one extends system T with Spector’s
bar recursion, one can actually prove SPEC. Hence, the result above says that in all models of
system T where EPQ could exist, it indeed does whenever IPS also exists. We leave it as an
open question whether IPS already defines EPQ without assuming SPEC.

§6. Summary of Results. Figure 1 gives a diagrammatic picture of the results pre-
sented above. We use a full-line-arrow to represent that the inter-definability holds
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Gamma
(type 0)

MBRips mbr

IPS

EPQ

epq

eps EPS

SBR

BR

Thm 3.13

Equivalence classes

Thm 3.18

Thm 4.9Thm 5.1

trivial

Thm 5.6

Cor 4.11

Thm 5.8

Thm 3.16

trivial

Thm 3.7

[17]
HA! definability

Assume BI

Assume SPEC

Assume BI + CONT

FIGURE 1. Diagram of inter-definability results

over HAω, whereas a dotted-line-arrow indicates that extra assumptions are needed.
We have used extra assumptions in four cases. In Theorems 3.7 and 3.16 we made
use of bar induction BI; in Theorem 5.8 we use SPEC; and in Theorem 5.6 we seem
to need both bar induction BI and the axiom of continuity CONT. It is an interesting
open question whether any of these four results can be shown in HAω alone, or under
weaker assumptions.

Given that CONT implies SPEC, our results show that over the theory HAω + BI +
CONT the different forms of bar recursion considered here fall into two distinct equiv-
alence classes with respect to T-definability.
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[1] J. AVIGAD and S. FEFERMAN, Gödel’s functional (“Dialectica”) interpretation, Handbook of proof theory
(S. R. Buss, editor), Studies in Logic and the Foundations of Mathematics, vol. 137, North Holland, Amster-
dam, 1998, pp. 337–405.

[2] S. BERARDI, M. BEZEM, and T. COQUAND, On the computational content of the axiom of choice, The
Journal of Symbolic Logic, vol. 63 (1998), no. 2, pp. 600–622.

[3] U. BERGER, A computational interpretation of open induction, Proceedings of the 19th annual IEEE sym-
posium on logic in computer science (F. Titsworth, editor), IEEE Computer Society, 2004, pp. 326–334.
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