NON-SPLITTINGS OF SPEEDABLE SETS

ELLEN S. CHIH

Abstract

We construct a speedable set that cannot be split into speedable sets. This solves a question of Bäuerle and Remmel.

1. Introduction

According to Blum and Marques [3, "[a]n important goal of complexity theory ... is to characterize those partial recursive functions and recursively enumerable sets having some given complexity properties, and to do so in terms which do not involve the notion of complexity." Blum [4] opened fruitful avenues in this direction when he constructed a $\{0,1\}$-valued total recursive function with arbitrarily large speed-up.

Blum and Marques [3] expanded the notion of speedability to recursively enumerable (r.e.) sets. An r.e. set A is speedable if for every recursive function, there exists a program enumerating membership in A faster, by the desired recursive factor, on infinitely many integers. Thus, an r.e. set is nonspeedable if there is an almost everywhere (a.e.) fastest program for it, modulo a recursive factor. Subsequently, Soare 14 gave an "information theoretic" characterization of speedable sets in terms of a well-studied class of r.e. sets. He proved that a set A is speedable if and only if A is not semi-low, namely,

$$
\left\{e: \bar{A} \cap W_{e} \neq \emptyset\right\} \not \not_{T} \emptyset^{\prime}
$$

where W_{e} denotes the $e^{t h}$ r.e. set.
A splitting of an r.e. set A is a pair of disjoint r.e. sets X, Y whose union is A. Given a property P of a set A (e.g. being high, nonrecursive or speedable), it is a natural question to ask whether we can split the set A into a pair X, Y such that both X and Y have property P. If the property is finitely based or can be made finitely based, it seems that we are able to split the set in a way that still preserves the property. For example, the Friedberg Splitting Theorem [8] asserts that every nonrecursive set can be split into two nonrecursive sets. Another example is the Sacks Splitting Theorem [13], which implies that every nonrecursive set can be split into two nonrecursive sets that are also Turing incomparable. If the property is not finitely based (e.g. being high or speedable), there can be obstructions. For example, Lachlan's Nonsplitting Theorem [10] shows that the Sacks Splitting and Density Theorems cannot be combined.

While working with degrees of bases of r.e. vector spaces in 1992, Bäuerle and Remmel 1 raised several questions on the splittings of r.e. sets. In particular, they asked whether every high r.e. set can be split into two high r.e. sets and whether every speedable set can be split into two speedable sets. The first question (on high sets) was negatively answered by Downey and Shore [6]. The second question is the main topic of this paper.

Question 1.1. [1] Can every speedable set be split into two speedable sets?

The answer was thought to be positive for some time. In 1993, Downey, Jockusch, Lerman and Stob [7] proved that every hyper-hyper-simple set can be split into speedable sets, contributing evidence for a positive answer. In 1999, the question was thought to be resolved when Jahn 9 published a proof

[^0]ELLEN S. CHIH
that every speedable set could be split into two speedable sets. His paper was cited [12] as a positive case for other splittings of sets with related complexity properties and cited again 5] for introducing various complexity properties and splittings. However, Downey [private communication] pointed out that the proof in 9 is incorrect.

The main goal of this paper is to construct a speedable set that cannot be split into speedable sets (i.e. to negatively answer Question 1.1). The proof is by a tree construction but there are infinite positive requirements to the left of the true path. In most tree constructions, nodes to the left of the true path are guessing a Π_{2} outcome that is seen to be false so the action to the left settles down and becomes finite. However, in our construction, "settling down" means an infinite positive Π_{1} action, namely, all x (of some particular type) get put into B quickly.

The first section of the paper sets notation and introduces the main theorem of the paper. The second section examines the case where we are dealing with only one split and the third examines the case where we are dealing with two splits. The proof of the main theorem is given in the fourth section. In the final section, we examine various ways the main theorem could be improved.

2. Notation and splittings

Our notation follows [15]. We use the following conventions.
Unless specified otherwise, all sets are assumed to be recursively enumerable (r.e.). Fix the universal standard enumeration of r.e. sets as defined in [15]. Let W_{i} denote the $i^{t h}$ r.e. set in this enumeration. Let $W_{i, s}$ denote the subset of W_{i} as enumerated at the end of stage s. Let $\Phi_{i}(x)$ denote the stage s when x enters W_{i} (i.e. the least s such that $x \in W_{i, s}$). We sometimes refer to Φ_{i} as Φ_{V} where $V=W_{i}$. For α, β that are nodes on our priority tree $T=\Lambda^{<\omega}$, we say that α is to the left of β, written $\alpha<_{L} \beta$ if there is some $\gamma \in T$ and $a, b \in \Lambda$ such that $a<b$ and $\gamma^{\wedge}\langle a\rangle \subseteq \alpha$ and $\gamma^{\wedge}\langle b\rangle \subseteq \beta$ (where $<$ is the ordering on Λ and ${ }^{\wedge}$ denotes concatenation). By the true path, we mean the leftmost path travelled through infinitely often in the construction. By "true" outcome o of α, we mean that o is the outcome of α on the true path.

Definition 2.1. Let A be an r.e. set. A is nonspeedable if and only if there exists some i such that $W_{i}=A$ and a recursive function h such that for all j,

$$
W_{j} \subseteq^{*} A \Rightarrow(\text { a.e. } x)\left[x \in A \Rightarrow \Phi_{i}(x) \leq h\left(x, \Phi_{j}(x)\right)\right]
$$

where \subseteq^{*} is subset mod finite and (a.e. x) is all $x \bmod$ finite.
A set A is speedable if and only if it is not nonspeedable.
By [14], instead of just one enumeration being "optimal", being nonspeedable also implies that every enumeration is optimal. We use this equivalent condition interchangeably:

Definition 2.2. A is nonspeedable if and only if for every i such that $W_{i}=A$ there exists a recursive function h such that for all j,

$$
\begin{equation*}
W_{j} \subseteq^{*} A \Rightarrow(\text { a.e. } x)\left[x \in A \Rightarrow \Phi_{i}(x) \leq h\left(x, \Phi_{j}(x)\right)\right] \tag{*}
\end{equation*}
$$

A splitting of an r.e. set B is a pair of disjoint r.e. sets X, Y whose union is B.
Theorem 2.3. There is a speedable set B such that if X and Y form a split of B, at least one of X or Y is nonspeedable.

By [14, being nonspeedable is equivalent to being semilow and the following corollary follows immediately:

Corollary 2.4. There is a non-semilow set B such that if X and Y form a split of B, at least one of X or Y is semilow.

To construct $B=W_{i}$ to be speedable, we diagonalize against all recursive functions h that could witness $(*)$; i.e. for each recursive h, we build a r.e. $W_{j} \subseteq B$ that witnesses the failure of $(*)$ for h.

To ensure that B cannot be split into speedable sets, if X and Y form a split of B, we first try to ensure that X is nonspeedable. This attempt may interfere with our making B speedable, in which case we see that we have the means to ensure that Y is recursive.

3. One split

We first deal with the case where we are given a split of $B=W_{e}$ recursively in e, i.e. W_{i}, W_{j} are splits of B given by a recursive function f such that $f(e)=(i, j)$.

Lemma 3.1. For every recursive function f, there is a speedable set B such that if X, Y is the split of B given by f, at least one of X or Y is nonspeedable.

Proof. We recursively enumerate B and ensure that B is speedable.
The proof is a tree construction in the sense of [15] (Chapter 14). Nodes work on strategies. For a node α working on a strategy, α builds B_{α} which is intended to be an enumeration of B with a different timescale. B_{\emptyset} is B. α also builds P_{α}, a recursive set which will be used as a pool of numbers. We refer to P_{α} as the pool lower priority nodes use. α uses witnesses from the pool given by the previous node. P_{\emptyset} is ω. A member in a pool can become "used" but does not necessarily have to go into B. One way a number x can become used is if x enters B_{α}. If an number in α 's pool is "unused", α can keep it out of B.

Modulo finite injury, a node can recursively tell which pool it is using. A node can also recursively tell which elements in a pool it can keep out.

By the fixed point theorem, we have some index k such that $B=W_{k}$. We technically want to show that W_{k} is speedable.

Requirements. To build a speedable set, we build an r.e. set B satisfying the following requirements, one for each partial recursive function h :

$$
Q_{h}^{*}:\left(\exists M \subseteq^{*} B\right)\left(\exists^{\infty} x\right)\left(\Phi_{B}(x)>h\left(x, \Phi_{M}(x)\right),\right.
$$

where $\Phi_{B}(x)$ is according to when we put x into B.
As there is at most a recursive difference between when x enters B and when x enters W_{k}, satisfying Q_{h}^{*} shows that W_{k} is speedable.

We do not satisfy Q_{h}^{*} directly. Instead, we satisfy the following:

$$
Q_{h}:\left(\exists M \subseteq^{*} B\right)\left(\exists^{\infty} x\right)\left(\Phi_{B}(x)>h\left(x, \Phi_{M}(x)\right) \vee Y\right. \text { is recursive. }
$$

We work on Q_{h} instead of Q_{h}^{*} as we are unable to achieve the first disjunct if X is speedable. If Y is recursive, we have another node working on Q_{h}.

We try to build a M satisfying $\left(\exists^{\infty} x\right)\left(\Phi_{B}(x)>h\left(x, \Phi_{M}(x)\right)\right.$ by putting x 's into M and keeping them out of B until stage $h\left(x, \Phi_{M}(x)\right)+1$. If we succeed for only finitely many x 's, we conclude that Y is recursive and thus nonspeedable.

To make one of X or Y nonspeedable, we either make Y recursive by some Q-strategy or we make X nonspeedable by satisfying the following requirements for the recursive g defined below and all r.e. sets V (an equivalent to Definition 2.1):

$$
S_{V}:(\exists x)(x \in V \wedge x \notin X) \text { or }(\forall x)\left[x \in V \Rightarrow \Phi_{X}(x) \leq g\left(x, \Phi_{V}(x)\right)\right]
$$

Define $g(x, s)$ to be the least stage t that x enters X or Y if x is in B_{s}. Otherwise, we let $g(x, s)$ equal to 0 . Observe that g is total and recursive.

We also have the following requirements to help the Q-strategies (see Lemma 3.8 for where D_{i} 's are required in the verification):

$$
D_{i}: \Delta_{i} \neq B
$$

Remark. It may seem redundant to have the D strategies when every speedable set is not recursive but showing that the set we build, B, is speedable requires showing that a particular recursive description does not work. Satisfying all of the D strategies shows that B is not recursive and thus this particular recursive description does not work. It is true that we could incorporate this into the Q strategy but we have chosen to separate the strategies in order to not overly complicate the construction.

Outcomes of Q-nodes. A node α working on a Q-strategy has outcomes: ∞ (for infinitely many), c (for cofinitely many) and h. Along the ∞ outcome, infinitely many x 's in M_{α} enter B after stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$. Along the c outcome, cofinitely many x 's in M_{α} enter B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ and we see that we have the means to ensure that Y is recursive. Along the h outcome, h is partial.

Outcomes of S-nodes. A node α working on a S-strategy has outcomes: k (for keep out of B) and s (for (\sharp) where (\sharp) will be defined in the description of the strategy). Along the k outcome, either there is some x in both V and Y or α can keep some element in V out of B. Along the s outcome, α does not achieve $(\exists x)(x \in V \wedge x \notin X)$ and α tries to achieve $x \in X \Rightarrow \Phi_{X}(x) \leq g\left(x, \Phi_{V}(x)\right)$ for all x.

Outcomes of D-nodes. A node α working on a D-strategy has outcomes: a (for act) and d (for diverge). Along the a outcome, $\Delta_{i}(x)$ converges and equals 0 and α would like to put x into B. Along the d outcome, $\Delta_{i}(x)$ diverges or $\Delta_{i}(x)$ converges and does not equal 0 and α tries to keep x out of B.

Priority Tree. Fix a recursive ordering of the Q - and S-requirements.
Let $\Lambda=\{\infty, c, h, k, s, a, d\}$ with ordering $\infty<c<h<k<s<a<d$. The tree is a subset of $\Lambda^{<\omega}$ and is built by recursion as follows:

Assign the highest priority Q_{h} requirement to the empty node and let ∞, c and h be its successors. Assume that we assigned a requirement to $\beta=\alpha \upharpoonright(|\alpha|-1)$, which we call the β-requirement. We now assign a requirement to α. If c is the last node of α, assign β-requirement to α and let its successors be ∞ and h.

Suppose c appears in α and is not the last node of β : If the β-requirement is a D-requirement, assign the highest priority Q-requirement that has not been assigned so far and let its successors be ∞ and h. If the β-requirement is a Q-requirement, assign the highest priority D-requirement that has not been assigned so far and let its successors be a and d.

Suppose c does not appear in α : If the β-requirement is a Q-requirement, assign the highest priority D-requirement that has not been assigned so far and let its successors be a and d. If the β-requirement is a D-requirement, assign the highest priority S-requirement that has not been assigned so far and let its successors be k and s. Otherwise, assign the highest priority Q-requirement that has not been assigned so far and let its successors be ∞, c and h.

Observe that we only allow ∞ and h to be successors for Q-requirement nodes that appear after an instance of c. we will prove in the verification (Lemma 3.8) that on the true path, if the c outcome occurs, all Q_{h}-nodes α after it must achieve: $(\exists \infty x)\left(\Phi_{B}(x)>h\left(x, \Phi_{M_{\alpha}}(x)\right)+1\right)$ for M_{α} that α builds if h is not partial.

Dynamics of the construction. We now describe exactly how the Q_{h} nodes α and the S nodes achieve their goals. At a typical stage of the construction, we will need to consider the configurations as indicated by Figure 1 below. At α, Q_{h} will attempt to pick a witness, wait for a delay determined by h, and put the element into its local version of B, giving this to β for it to process in a like fashion, assuming that β is a $Q_{h^{\prime}}$ node. (Strictly speaking, this is likely a $\beta^{\prime} \subset \beta$.) Eventually all such Q nodes process x and it will enter B. We refer this as x entering B the slow way.

Now, it could be that a S-node might care about x and interrupt this procedure. There are two ways this can occur. First some S node ν of higher priority than α discovers $x \in V_{\nu}[s]$. Then, ν can see a global win and will restrain x with priority ν. We will allow this to happen even if ν is strictly left of the current approximation to the true path. An inductive argument will show that such restrains with a ν-node injuring the action of α with $\nu<_{L} \alpha$ can happen at most finitely often.

Figure 1. The dynamics between the Q - and S-strategies.

The most important new idea in this construction is that other S nodes can affect the action of α. We will allow η nodes for $S_{V_{i}}$ for $\alpha^{\wedge}\langle\infty\rangle \subseteq \eta$ to also pull witnesses from α. This will only be allowed if such a node η is active, meaning that we have actually visited it at some stage $s^{\prime}<s$. If these η nodes prevent α from satisfying the first conjunct of Q_{h} (i.e. cofinitely many x 's go into B before stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$), we can give a proof that Y is recursive. The construction does the following. If an active η sees such an x then η immediately puts x into B and α makes sure that the next such x must be large. Notice that the hypothesis of the S node being correct implies that x must enter X and not Y. Thus, assuming that the c outcome is the true outcome for α, no small number can enter Y since we can ensure that pulled numbers that enter B are from a set that is disjoint from Y.

The point is the following. The only place (small) numbers that enter B will come from will be from those nodes extending $\alpha^{\wedge}\langle c\rangle$. If η above saw these numbers before they reached α in their upward climb, then η would simply restrain them and win forever. Hence they can only be pulled by η after they reach α. The relevant x always enters X. Then we will reset the sizes of numbers so that we get a recursive description of Y.

The reader should note that if $\alpha^{\wedge}\langle\infty\rangle$ is not on the true path, then we will only visit η 's extending $\alpha^{\wedge}\langle\infty\rangle$ finitely often so the correct outcome of α is c. This outcome has a version of Q_{h} attached which will succeed in meeting h since we know that such η cannot pull the element before they get to α.

It is important to note that there are no S requirements below the c outcome since if c is the true outcome, we have a proof that Y is recursive. If α is on the true path and c is the outcome of α on the true path, Π_{2} (in Figure 1) reflects the fact that infinitely often, we assign numbers to go into M_{α} and Σ_{2} (in Figure 1) reflects the fact that only finitely many numbers stay in M_{α} long enough to see h defined.

As an S-strategy can become infinite positive, the Q - and D-strategies cannot be infinite negative. Furthermore, the Q - and D-strategies cannot have negative restraint that effect S-strategies. Negative restraints that go up and drop down, such as in the minimal pair construction, are also not allowed.

We now turn to the formal details.
Convention. We use the following convention for labeling an element "used" or "unused" at α and at stage s. If an element becomes used, it is used forever. If an element is picked by a D-strategy, it is used. If an element is picked by an S-strategy, it is used. If an element goes into B_{α}, it is used. For a Q-strategy, a picked element is still "unused" (see step (1) of the strategy for Q_{h}) but becomes used when put into M_{α} or into B_{α} (see step $2(\mathrm{~b})$ of the strategy for Q_{h}).

This convention is needed in the verification (see Lemma 3.4) to prove that for every node α, if an element x is unused and in α 's pool, x does not go into B while α restrains x.

In the following strategies, we work on a node α whose predecessor is β. α uses the pool given by its predecessor, denoted by P_{β}. Recall that the pool of the empty set is ω and recall that $B_{\emptyset}=B$.

Strategy for D_{i}. Takes parameters: $\left(B_{\beta}, P_{\beta}\right)$. Outputs parameters $\left(B_{\alpha}, P_{\alpha}\right)=\left(B_{\beta}, P_{\beta} \backslash x_{\alpha}\right)$.
Pick an unused witness $x_{\alpha} \in P_{\beta}$. Keep x_{α} out of B and wait for $\Delta_{i}\left(x_{\alpha}\right)$ to converge to 0 . If it does, put x_{α} into B_{β}.

If an element x enters B_{α}, put x into B_{β} unless D_{i} is assigned to the h outcome, in which case we put x into B_{η} (where η is β 's predecessor). Define P_{α} to be $P_{\beta} \backslash x_{\alpha}$ and $B_{\alpha}=B_{\beta}$.

Note that x_{α} may have to enter other sets before entering B.
Strategy for S_{V}. Takes parameters: $\left(B_{\beta}, P_{\beta}\right)$. Outputs parameters $\left(B_{\alpha}, P_{\alpha}\right)=\left(B_{\beta}, P_{\beta} \backslash x_{\alpha}\right)$ or $=\left(B_{\beta}, P_{\beta}\right)$.

Below, we go through steps (1) - (4) to find a witness x_{α} in V that can be permanently be kept out of X either by action of α, by action of a higher priority node or by existence of an x already in $V \cap Y$. Step (3)(b) is allows an S-node to grab and restrain any element x before x reaches a higher priority node in its upward climb. Step (3)(b) also stops such x, if chosen, from continuing in its upward climb.

While x_{α} has not been defined, go through the following steps in order. Upon defining x_{α}, continue to define B_{α} and P_{α} as below.
(1) Ask whether there is some x in $V \cap Y$. If so, let x_{α} be the least such x and continue to define P_{α} and B_{α} as below. Note that S_{V} is satisfied as $V \nsubseteq X$.
(2) Ask whether there is a γ working on a S-strategy such that x_{γ} is defined and $x_{\gamma} \in V$. If so, let $x_{\alpha}=x_{\gamma}$ and restrain lower priority requirements from putting x_{α} into B. Note that if α permanently restrains x_{α}, S_{V} is satisfied as x_{α} witnesses $(\exists x)(x \in V \wedge x \notin B)$, hence $V \nsubseteq X$.
(3) Look for a γ working on a D-strategy with $x_{\gamma} \in V$ as follows.
(a) Ask whether there is a higher priority γ already restraining $x_{\gamma} \in V$. If so, let $x_{\alpha}=x_{\gamma}$. Note that if γ permanently restrains $x_{\gamma}=x_{\alpha}$, then S_{V} is satisfied as x_{α} witnesses $(\exists x)(x \in V \wedge x \notin B)$ hence $V \nsubseteq X$ as in case (2). If γ is reset, we reset x_{α} as well.
(b) Ask whether there is some weaker priority γ such that x_{γ} is not in B and not in B_{δ} for any δ of higher priority than α. If so, let $x_{\alpha}=x_{\gamma}$ and restrain lower priority nodes η from putting x_{α} into B_{ξ} where ξ is η 's predecessor. Reset the γ node (so that if we travel to the γ node again, it chooses another witness). Note that if α permanently restrains x_{α}, S_{V} is satisfied as x_{α} witnesses $(\exists x)(x \in V \wedge x \notin B)$, hence $V \nsubseteq X$ as in case (2).
(4) Ask whether there is an unused $x \in V \cap P_{\beta}$. If so, let x_{α} be the least such x and restrain lower priority requirements from putting x_{α} into B. Note that if α permanently restrains x_{α}, S_{V} is satisfied as x_{α} witnesses $(\exists x)(x \in V \wedge x \notin B)$, hence $V \nsubseteq X$ as in case (2).
While (1) - (4) do not hold, commit to:
When x enters V, put x into B immediately.
With (\sharp), if x enters V at stage s, it must enter B at stage s so $\Phi_{X}(x)=g\left(x, \Phi_{V}(x)\right)$. Thus, S_{V} is satisfied (by satisfaction of its second disjunct).

If an element enters B_{α}, put it into B_{β}. If x_{α} is undefined, let $P_{\alpha}=P_{\beta}$. Otherwise, let $P_{\alpha}=P_{\beta} \backslash x_{\alpha}$. In either case, let $B_{\alpha}=B_{\beta}$.

Strategy for Q_{h}. Takes parameters: $\left(B_{\beta}, P_{\beta}\right)$. Builds parameters: $R_{\alpha}, M_{\alpha}, P_{\alpha}^{\infty}, B_{\alpha}^{c}$. Outputs parameters $\left(B_{\alpha}, P_{\alpha}\right)= \begin{cases}\left(B_{\beta}, P_{\alpha}^{\infty}\right) & \text { if outcome is } \infty \\ \left(B_{\alpha}^{c}, R_{\alpha}\right) & \text { if outcome is } c \\ \left(B_{\beta}, R_{\alpha}\right) & \text { if outcome is } h\end{cases}$

To explain, R_{α} is a recursive set, B_{α}^{c} is an r.e. set and P_{α}^{∞} is a recursive set.

Recall (see section, Dynamics of the construction) that in the c outcome, we need to ensure that Y is a recursive set. To achieve this, we ensure that Y is contained in a recursive subset of B (namely, $B \backslash R_{\alpha}$) so Y is the split of a recursive set and thus Y is recursive.

Also recall that in the c outcome, pulled numbers have to enter X and such (small) numbers have to come from nodes below $\alpha^{\wedge}\langle c\rangle$ and reach α in their upward climb. The role R_{α} plays is to provide a pool of elements for these numbers so pulled numbers only come from R_{α} (but do not have to be contained in a version of R_{α} that has been reset). Furthermore, we ensure that $B \cap R_{\alpha}$ only consists of these pulled numbers, which enter X in the c outcome. Thus in the c outcome, $Y \subseteq B \backslash R_{\alpha}$ and we will ensure that $B \backslash R_{\alpha}$ is recursive.

In order to ensure that $B \cap R_{\alpha}$ only consists of pulled numbers in the c outcome, R_{α} can be reset as numbers that are not pulled and enter B cannot be in R_{α}. In the ∞ outcome, R_{α} is reset infinitely many times.

The role of P_{α}^{∞} is the following: As the construction tries to ensure that $B \backslash R_{\alpha}$ is recursive and can potentially reset R_{α} infinitely often, we need a pool of elements for the ∞ outcome, namely, P_{α}^{∞}. P_{α}^{∞} will only increase when we see another witness for the ∞ outcome so as long as we ensure that $\left(B \backslash R_{\alpha}\right) \cap \overline{P_{\alpha}^{\infty}}$ is recursive, $B \backslash R_{\alpha}$ is recursive in the c outcome as P_{α}^{∞} is finite. In the ∞ outcome, P_{α}^{∞} will be recursive and infinite.

Now, we explain the intuition behind steps (1) - (4) below: Step (1) builds R_{α} and step (2) builds M_{α}.

Step (3) looks at the case where x has entered M_{α} (i.e. x has reached α in its upward climb) and no node has pulled x. In (3)(a), we put x into B_{β} to let x continue in its upward climb. In 3(b), we add another element to P_{α}^{∞} as we see another instance of $\left(\exists^{\infty} x\right)\left(\Phi_{B}(x)>h\left(x, \Phi_{M_{\alpha}}(x)\right)+1\right)$. We also reset R_{α} as x is not a pulled number but is in R_{α} and we only want $B \cap R_{\alpha}$ to contain pulled numbers. We put all elements in M_{α} into B at this step as these elements are no longer in the R_{α} after the reset. This is part of our attempt to ensure that $B \backslash R_{\alpha}$ is recursive.

In step (4), we put all unused elements below x that are in $\overline{R_{\alpha}} \cap \overline{P_{\alpha}^{\infty}}$ into B. This step forces later witnesses to be large and in particular, bigger than x.

Now we formally state steps (1) - (4):
(1) Pick an unused witness $x \in P_{\beta}$. Put x into $R_{\alpha} . x$ is subject to steps (2) and (3). Note that x does not necessarily have to enter M_{α}.
(2) While x is not in M_{α},
(a) Restrain x from entering M_{α} until it enters B_{α}^{c} (by the action of lower priority nodes).
(b) If x goes into B_{α}^{c}, put x into M_{α}.
(3) If x enters M_{α},
(a) If the current stage is greater than $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ and x has not entered B_{β}, put x into B_{β}.
(b) If x is successfully is kept out of B until stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$, we do the following: Pick an unused witness y in $P_{\beta} \cap \overline{R_{\alpha}}$. Put y in P_{α}^{∞} and extend P_{α}^{∞} 's recursive description up to y, i.e. if an arbitrary $z \leq y$ is in P_{α}^{∞} at the current stage, the description says z is in and if z is not in P_{α}^{∞} at the current stage, the description says z is out. Reset R_{α} and put all elements in M_{α} into B (since these elements are no longer in our current R_{α}).
(4) Put in all unused elements in $\{y: y<x\} \cap \overline{R_{\alpha}} \cap \overline{P_{\alpha}^{\infty}}$ into B.

If we have the c outcome, $P_{\alpha}=R_{\alpha}$ and $B_{\alpha}=B_{\alpha}^{c}$. If we have the ∞ outcome, $P_{\alpha}=P_{\alpha}^{\infty}$ and $B_{\alpha}=B_{\beta}$.

Observe that we would like to achieve:
(\dagger) If x enters M_{α}, x is kept out of B until stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$.
If (\dagger) is achieved for infinitely many x 's, Q_{h} is satisfied. Recall we use ∞ outcome to denote that infinitely many x 's achieve (\dagger). Thus in the ∞ outcome, Q_{h} is satisfied.

Construction. We call a node working on a S-strategy active at stage s if the node has acted at some stage $t<s$ and has not been cancelled (or reset).

At stage s, define δ_{s} (an approximation to the true path) by recursion as follows. Suppose that $\delta_{s} \upharpoonright e$ has been defined for $e<s$. Let α be the last node of $\delta_{s} \upharpoonright e$. We now define $\delta_{s} \upharpoonright(e+1) \supseteq \delta_{s} \upharpoonright e$.
(1) If α is a Q-node, look to see if it is waiting for a number x to go into B_{β} (where β is α 's predecessor), i.e. there is some x in M_{α} that has not entered B_{β}. If so, look to see if an active node η to to the left or below $\alpha^{\wedge}\langle\infty\rangle$ would like to put x in (or keep x out if η is to the left). Let η act. If there are no remaining numbers that α is waiting on, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle c\rangle$. Otherwise, look to see if there is some z in the remaining numbers such that $h\left(z, \Phi_{M_{\alpha}}(z)\right)$ has converged and our current stage is greater than $h\left(z, \Phi_{M_{\alpha}}(z)\right)+1$. If so, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle\infty\rangle$. If not and some x was pulled, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle c\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle h\rangle$.
(2) If α is a S-node, look to see if x_{α} has been defined. If so, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle k\rangle$. Otherwise, go through steps (1) - (4) in the strategy for S_{V}. If one of (1) - (4) holds and we can define x_{α}, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle k\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle s\rangle$.
(3) If α is a D-node, look to see whether $\Delta_{i}\left(x_{\alpha}\right)$ has converged and equals 0 . If so, let $\delta_{s} \upharpoonright$ $(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle a\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle d\rangle$.
Reset nodes to the right of δ_{s} and let active S-nodes to the left of δ_{s} or below the ∞ outcome for one of the nodes in δ_{s} act. At substage $t \leq s$, let $\delta_{s} \upharpoonright t$ act according to its description in the strategies above, i.e. $\delta_{s} \upharpoonright t$ enumerates numbers in its sets and extends their definitions.

Verification. Recall that the true path denotes the leftmost path traveled through infinitely often by the construction. β is α 's predecessor unless stated otherwise.
Lemma 3.2. For α on the true path working on a D-requirement, we only reset x_{α} at most finitely many times. For α on the true path working on a Q-requirement, $M_{\alpha} \subseteq^{*} B$.
Proof. Let α be a node on the true path. We travel to the left of α at most finitely often in the construction so in the limit, there are only finitely many higher priority active S-strategies. Now, consider only the stages after which we do not go to the left of α.

Suppose that α is working on a D-requirement. At any stage s, we only reset x_{α} due to a higher priority active S-strategy. We only reset x_{α} at most once per every given S-strategy due to 3 (b) and thus we only reset x_{α} at most finitely many times.

Suppose that α is working on a Q-requirement. We only restrict x in M_{α} from entering B due to a higher priority active S-strategy. We only restrict at most one element per every given S-strategy due to $3(\mathrm{~b})$ and thus $M_{\alpha} \subseteq^{*} B$.

The next lemma proves that if an x has started on its upward climb, it either reaches B or is reset. The next lemma also shows that if x has started on its upward climb, this action must be initiated by a D-node.
Lemma 3.3. If x_{α} is picked for a node α on the true path and α puts x_{α} into B_{β}, it is either reset or put into B. For $\alpha \neq \emptyset$, if x is put in B_{α} by a lower priority node, x was picked as a witness for a lower priority node γ working on a D-strategy.
Proof. Suppose that x_{α} is never reset. Consider only the stages after which we do not go to the left of α. By assumption, x_{α} is put into B_{β}. We now prove on the true path that if x_{α} enters B_{γ} for $\gamma \subseteq \alpha$ then x_{α} enters B by an S-strategy or x_{α} enters B_{δ} where δ is γ 's predecessor. Suppose that x_{α} enters B_{γ} for $\gamma \subset \alpha$. If x_{α} is grabbed by an active S-node to the left, it is put in B. If γ is working on a S-requirement, γ either puts x_{α} into B by (\sharp) or puts x_{α} into B_{δ}. If γ is working on a D-requirement, γ puts x_{α} into B_{δ}. If γ is working on a Q-requirement, either x was put into B_{δ} as $B_{\delta}=B_{\gamma}$ if α extends the ∞ or h outcome of γ or γ puts x_{α} into M_{γ} as x_{α} is not reset and thus is not being restrained by another strategy. γ then puts x_{α} into B_{δ} at step (3)(a) or B if $x_{\alpha} \notin R_{\alpha}$ at step (3)(b) of the Q-strategy. The only other possibility is that x_{α} is grabbed by an active S-node to the left and put into B. Thus it follows that x_{α} enters B.

By inspection of strategies, if x is put in B_{α} by a lower priority node, x must come from a lower priority node γ working on a D-strategy as the Q - and S-strategies do not pick elements and put them into B_{η} for any η. The only elements D-strategies γ put into B_{η} for any η are the witnesses x_{γ} they chose.

Lemma 3.4. For every node α, if $x \in P_{\beta}$ is unused and is not reset as a witness, x does not go into B while α is restraining x.
Proof. This follows by inspection of strategies and induction. Let x be an arbitrary unused element in P_{β} and let s be the stage that we choose x to be kept out of B. By our convention of unused/used, x is used after stage s.

Let γ be another node on the tree and let δ be its predecessor.
If γ is working on a D-strategy, it only puts x_{γ} or a number put into B_{γ} by its successor into B_{δ}. γ cannot pick x as x_{γ} before stage s as x would then be a used witness at stage s. Thus, $x_{\gamma} \neq x$. γ cannot pick x as x_{γ} at some stage $t>s$ as x_{γ} must be unused when chosen. The same reasoning shows that x cannot be put into B_{γ} by its successor as such a number comes from a lower priority D-node by the previous lemma.

If γ is working on a S-strategy, it only puts elements into B due to the (\sharp) requirement. If $x_{\alpha} \in V$, γ would either reset x_{α} by step (2) or (3) in S 's strategy, set $x_{\gamma}=x_{\alpha}$ or have already defined $x_{\gamma} \neq x_{\alpha}$.

If γ is working on a Q-strategy, it either puts elements into B at step (4) or puts elements from M_{γ} into B_{δ} or B at step (3). At step (4), γ only puts unused elements into B to make B recursive on the complement of R_{γ}. If an arbitrary y goes into M_{γ}, it must enter B_{γ} first. By the previous lemma, y must be a x_{η} for a lower priority D-node η. η cannot pick x as x_{η} before stage s as x would be a used witness at stage s. Thus $x_{\eta} \neq x$ by assumption. η cannot pick x at some stage $t>s$ as x_{η} must be unused when chosen.

Lemma 3.5. Let α be a node on the true path and let s be the least stage such that the true path does not go to the left of α after stage $s . P_{\alpha}$ is either infinite at stage s or for infinitely many stages $t>s$, there are be unused elements added to P_{α} at stage t.
Proof. By induction and inspection of strategies. If α is working on a D-requirement or S-requirement, $P_{\alpha}=P_{\beta} \backslash x_{\alpha}$ or $=P_{\beta}$.

If α is working on a Q-requirement and its outcome is $c, P_{\alpha}=R_{\alpha} . \alpha$ adds elements to R_{α} infinitely often at step (1) and does not reset R_{α} after s. If the outcome for α is ∞, α adds an element to P_{α}^{∞} infinitely often at step (3)(b). Since $P_{\alpha}=P_{\alpha}^{\infty}$ for the ∞ outcome, we are done.

Lemma 3.6. Each D_{i} requirement is satisfied.

Proof. Let α be a node on the true path that is working on the D_{i} requirement and by Lemma 3.2, let s be the least stage such that x_{α} is not reset. If $\Delta_{i}\left(x_{\alpha}\right)$ does not converge or does not equal 0 , the x_{α} does not enter B by Lemma 3.4 and the requirement is satisfied.

Now assume that $\Delta_{i}\left(x_{\alpha}\right)$ converges and is equal to 0 . In the construction, the α-strategy puts x_{α} into B_{γ} where γ is its predecessor. As x_{α} does not reset after stage s, x_{α} is put into B by Lemma 3.3 and the requirement is satisfied.
Lemma 3.7. Either every S_{V} requirement is satisfied (and X is nonspeedable) or Y is nonspeedable.
Proof. Suppose that c appears on the true path. Let α be the node on the true path whose outcome is c and let Q_{h} be the requirement that α is working on. As α 's outcome is c, cofinitely many x 's in M_{α} enter B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$. Thus, higher priority requirements $S_{V_{i}}$ must grab cofinitely many elements of M_{α} and put them into B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ due to (\sharp). In this case, we have the following equation: $B \cap R_{\alpha}=M_{\alpha} \cap R_{\alpha}=\left(V_{0} \cup \cdots \cup V_{i}\right) \cap R_{\alpha}=X \cap R_{\alpha}$ (modulo finitely many elements). The last equality comes from (1) in the strategy for S_{V} (i.e. we commit to (\sharp) only if there is no x in both V and Y). By inspection of the Q_{h} strategy, we see that B is made recursive outside of R_{α} by step (4). Y is a split of this recursive part of B and thus it is recursive. Therefore Y is nonspeedable.

Suppose that c does not appear on f. By construction of the tree, for every S_{V} requirement, there is a node on the true path working it. By inspection of the strategy for S_{V}, either one of (1) - (4) holds or it commits to (\sharp) for cofinitely many stages in the construction. If it commits to (\sharp), we have that whenever x enters V, x enters B immediately. Therefore $g(x, s)=g\left(x, \Phi_{V}(x)\right)=\Phi_{X}(x)$ by the definition of g and thus S_{V} is satisfied.

If (1) holds, S_{V} is satisfied as $V \cap Y \neq \emptyset$ and $X \cap Y=\emptyset$. Thus $V \nsubseteq X$.
If (2) or (3) holds, a number in V is permanently kept out of B by the proof of Lemma 3.5. Thus $V \nsubseteq B$ and so $V \nsubseteq X$ and the requirement is satisfied.

If (4) holds, a number in V is permanently kept out of B by Lemma 3.5. Thus $V \nsubseteq B$ and so $V \nsubseteq X$ and the requirement is satisfied.

Lemma 3.8. Each Q_{h} requirement is satisfied.
Proof. Let α be the first node on the true path f that is working on Q_{h}.
If c does not appear on f, each node α that is working on a Q_{h} strategy has outcome ∞ (or h) and thus there are infinitely many x 's that are kept out of B until stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ or h is partial. Therefore, each Q_{h} is satisfied.

Suppose that c appears on f. If α appears before the c outcome and its successor is not c, we know its outcome is ∞ or h and thus its requirement is satisfied. If α 's outcome is c, the next node γ on the true path works on the same requirement Q_{h}. Now suppose x enters M_{γ} at stage s. Such an x must exists. If no x ever enters M_{γ} from some point on, B would be recursive contradicting Lemma 3.6. Let $\eta \leq_{L} \alpha$ be working on a S-requirement. η cannot lie below the c outcome by construction of the priority tree. If η lies to the left or above the c outcome, η either restrains x permanently or has already restrained another element out permanently by $(3)(\mathrm{b})$ in the strategy for S_{V}. By the proof of Lemma 3.3, there are only finitely many such active η 's that restrain numbers from M_{γ} and each η only restrains one number. If $x \in M_{\gamma}$ eventually enters B, it enters B at stage \geq the stage it enters B_{δ} (where δ is γ 's predecessor) by Lemma 3.3. Thus $\Phi_{B}(x)>h\left(x, \Phi_{M_{\gamma}}(x)\right)$ for infinitely many x 's. By Lemma 3.2, $M_{\gamma} \subseteq^{*} B$ so Q_{h} is satisfied. If α appears after γ, the same reasoning as the previous case shows that $\Phi_{B}(x)>h\left(x, \Phi_{M_{\alpha}}(x)\right)$ for infinitely many x 's and $M_{\alpha} \subseteq^{*} B$ by Lemma 3.2.

This ends the verification for the one split case.
In the one split case, we are either successful at making X nonspeedable by satisfying S-requirements or successful at concluding that Y is nonspeedable from the failure of an Q_{h} at satisfying its requirement using M_{α}. When working with more than one split, we would like to conclude that one of Y_{0}, Y_{1}, \ldots is nonspeedable in the latter case. However, there could be V_{i} 's for different pairs of splits (e.g. we could have various V_{i} 's for X_{0} and various V_{j} 's for X_{1}) so the equation in R_{α} could involve more than one X (e.g. X_{0}, X_{1}, X_{2}).

To overcome this difficulty, we switch which side of the split we are making nonspeedable (e.g. from X_{i} to Y_{i}). Let Z_{i} be the side of the split we are making nonspeedable. In the case that α fails to satisfy its requirement, switching Z_{i} will give us some progress on higher priority requirements. In the proof of the one split case, having the equation: $B \cap R_{\alpha}=M_{\alpha} \cap R_{\alpha}=\left(V_{0} \cup \cdots \cup V_{i}\right) \cap R_{\alpha}=X \cap R_{\alpha}$ (modulo finitely many elements) gave us progress on higher priority requirements by allowing us to conclude that Y is nonspeedable. As equations of such form are important for showing that we have made progress on higher priority requirements for the two split and general case, we give the following definition:

Definition 3.9. By equation in $R_{\alpha}, B=M_{\eta}=V_{i_{0}} \cup \ldots \cup V_{i_{k}}=Z_{l_{0}} \cup \ldots \cup Z_{l_{n}}$ (where α, η are arbitrary nodes and i_{0}, \ldots, i_{k} and l_{0}, \ldots, l_{n} are arbitrary numbers), we mean that the following holds: $B \cap R_{\alpha}=M_{\eta} \cap R_{\alpha}=\left(V_{i_{0}} \cup \ldots \cup V_{i_{k}}\right) \cap R_{\alpha}=\left(Z_{l_{0}} \cup \ldots \cup Z_{l_{n}}\right) \cap R_{\alpha}$.

If the context is clear, we may drop "in R_{α}.".

4. Two splits

In this section, we work with the case where we are recursively given two splits: X_{0}, Y_{0} and X_{1}, Y_{1}. We refer to Z_{i} as half of the split we are making nonspeedable.

Recall that in the one split case, we are either successful at making X nonspeedable by satisfying S requirements or successful at concluding that Y is nonspeedable from the failure of an Q_{h} at satisfying its requirement using M_{α} and the equation in R_{α} (see Definition 3.9) that its failure implies. However when working with two splits, there could be V_{i} 's for different pairs of splits (e.g. we could have various V_{i} 's for X_{0} and various V_{j} 's for X_{1}) so the equation in R_{α} could involve X_{0} and X_{1}.

To overcome this obstruction, we use the following idea: If M_{α} fails to satisfy its requirement (and we have an equation in R_{α} as before e.g. $X_{0} \cup X_{1}=B$), we switch Z_{1} from X_{1} to Y_{1}. If another M_{γ} fails to satisfy its requirement where $\gamma \supseteq \alpha$, we have an equation in R_{γ}, e.g. $X_{0} \cup Y_{1}=B$. We also switch Z_{0} from X_{0} to Y_{0} and reset Z_{1} back to X_{1}. From these equations together and since $R_{\gamma} \subseteq R_{\alpha}$, we can conclude the following equation in $R_{\gamma}: X_{0}=B$. If we continue to see more nodes $\nu \supseteq \gamma$ fail to satisfy its requirement using M_{ν}, our method of switching the value of Z_{i} lets us conclude $Y_{0}=B$ in some $R_{\eta} \subseteq R_{\gamma}$ (for some node η). This will allow us to prove that only a fixed number of switchings can occur. These switchings will be explained in detail in the proof.

Lemma 4.1. For any two recursive functions f, g, there is a speedable set B such that if X_{0}, Y_{0} is the split of B given by f and X_{1}, Y_{1} is a split of B given by g then for each i, at least one of X_{i} or Y_{i} is nonspeedable.
Proof. The proof is by a tree construction like in the one split case.
Requirements. To make B speedable, we have similar requirements Q_{h} as in the one split case:

$$
Q_{h}:\left(\exists M \subseteq^{*} B\right)\left(\exists^{\infty} x\right)\left(\Phi_{B}(x)>h\left(x, \Phi_{M}(x)\right) \vee \text { switch some } Z_{i}\right.
$$

Switching some Z_{i} is a form of progress on higher priority strategies just as concluding that Y is nonspeedable was a form of progress for the one split case.

To make X_{i} or Y_{i} nonspeedable, we have the following requirements:

$$
S_{i}:\left(\exists g_{i}\right)(\exists x)\left(x \in V \wedge x \notin Z_{i}\right) \text { or }\left[x \in Z_{i} \Rightarrow \Phi_{Z_{i}}(x) \leq g_{i}\left(x, \Phi_{V}(x)\right)\right]
$$

and its subrequirements, where g_{i} is as defined below:

$$
S_{i, V}:(\exists x)\left(x \in V \wedge x \notin Z_{i}\right) \text { or }\left[x \in Z_{i} \Rightarrow \Phi_{Z_{i}}(x) \leq g_{i}\left(x, \Phi_{V}(x)\right)\right]
$$

Let $g_{i}(x, s)$ be the least t that x enters X_{i} or Y_{i} if x is in B_{s}. Otherwise, we define $g_{i}(x, s)$ to be 0 . Observe that g is total and recursive. We also require S_{i} to have a higher priority than S_{j} iff $i<j$. We occasionally drop the i subscript if the context is clear.

We refer to S_{i} as the parent requirement of $S_{i, V}$.
Again, we have the D_{i} requirements as before to help the Q-requirements.
Strategies. The strategies for $Q-, S$ - and D-requirements are the same as before except for the following differences:
(1) Each α node has a current Z_{i}^{α} that it is working on. Each Z_{i}^{α} is initially defined to be X_{i} but may switch to Y_{i} in the course of the construction.
(2) The strategy for $S_{i, V}$ is the same as the strategy for S_{V} in the one split case except that instead of X and Y, we have Z_{i}^{α} and the other half of the $i^{t h}$ pair.

Outcomes. Each node α working on a D-strategy has outcomes: a (for acts) and d (for diverge). On the a outcome, $\Delta_{i}(x)$ converges and equals to 0 and α would like to put x into B. Along the d outcome, either $\Delta_{i}(x)$ diverges or is not equal to 0 .

Each node α working on a Q-strategy has outcomes: ∞, c and h. Along the ∞ outcome, infinitely many x 's in M_{α} enter B after stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$. Along the c outcome, cofinitely many x 's in M_{α} enter B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ and we switch Z_{i}. Along the h outcome, we see that h is partial.

Configuration	Node	Value of Z_{0}	Value of Z_{1}	Equation in $R_{\text {node }}$
0	before β	X_{0}	X_{1}	no equation by assumption
1	β	X_{0}	Y_{1}	$X_{0} \cup X_{1}=B$
2	α	Y_{0}	X_{1}	$X_{0} \cup Y_{1}=B$
3	δ	Y_{0}	Y_{1}	$Y_{0} \cup X_{1}=B$
4	γ	Y_{0}	Y_{1}	$Y_{0} \cup Y_{1}=B$

Figure 2. A table summarizing the possible switching that can occur for the two split case. The "Value of $Z_{0}\left(\right.$ or $\left.Z_{1}\right)$ " for configuration n refers to the value of Z_{0}^{ν} $\left(Z_{1}^{\nu}\right)$ for nodes ν between the node for configuration n and the node for configuration $n+1$. An equation in $R_{\text {node }}$ for configuration n refers to R_{η} where η is the value of the node for configuration n.

Figure 3. In this figure, we assume that there is no node with true outcome c above γ except for β, α and δ. Assuming that this figure signifies a portion of the true path, the dashed edges between nodes represents the true path in between the two nodes.

Each node α working on a S_{i}-strategy has a blank outcome. In the general case, it is important to keep track of the overall timing of when x 's from V 's enter B due to actions of $S_{i, V}$ strategies. Here, S_{i} keeps track of the state of its child nodes.

Each node α working on a $S_{i, V}$-strategy has outcomes: k and s. Along the k outcome, either there is some x in both V and Y or α can keep some element in V out of B. Along the s outcome, α cannot achieve $(\exists x)(x \in V \wedge x \notin X)$ and we try to achieve $x \in X \Rightarrow \Phi_{X}(x) \leq g\left(x, \Phi_{V}(x)\right)$ for all x.

Switchings of Z_{0}^{α} and Z_{1}^{α}. The new ingredient in the two split case that goes beyond the one split case is our way of assigning Z_{i}^{α} to each node α so that if we get an equation in R_{α} from the c outcome, the equation in R_{α} gives us progress on higher priority strategies. In the one split case, we proved that we could eventually get Y to be recursive. Here, the situation is more complicated and we switch the Z_{0} and Z_{1} so that we can obtain a contradiction from getting too many c outcomes for different nodes on the same path.

The main idea is the following: A c outcome for a Q-node causes a switch of the highest indexed Z_{i} that is equal to X_{i} and resets all higher indexed (for $k>i$) sets Z_{k} to X_{k}. If such a Z_{i} does not exist, we do not switch anything. We will prove in the verification that such a Z_{i} will always exist for c outcomes on the true path (see Lemma 4.3). Switching at some node α effects Z_{i}^{γ} for $\gamma \supseteq \alpha$ unless a switching occurs at a later node $\nu \supseteq \alpha$.

Now, we assume that $\beta \subseteq \alpha \subseteq \delta \subseteq \gamma$ are on the true path with true outcome c (as in Figure 3 above). We also assume that there is no other Q_{h} requirement node with true outcome c between them and β is the first node on the true path working on a Q_{h}-requirement with true outcome c and so Z_{0}^{β} and Z_{1}^{β} are equal to their initial values, X_{0} and X_{1} respectively. In other words, we assume that $\beta, \alpha, \delta, \gamma$ are the first, second, third and fourth node (respectively) on the true path with true outcome c. The possibilities are the following (summarized in Figure 2 above):
(1) As c is the true outcome of β, we have the following equation in R_{β} as in the one split case: $X_{0} \cup X_{1}=B$. We switch Z_{1} from X_{1} to Y_{1}.
(2) As c is the true outcome of α, we have the following equation in R_{α} as in the one split case: $X_{0} \cup Y_{1}=B$. We switch Z_{0} from X_{0} to Y_{0} and reset Z_{1}, i.e. switch Z_{1} from Y_{1} back to X_{1}.
(3) As c is the true outcome of δ, we have the following equation in R_{δ} as in the one split case: $Y_{0} \cup X_{1}=B$. We switch Z_{1} from X_{1} to Y_{1}.
(4) (cannot occur on the true path) As c is the true outcome of γ, we have the following equation in R_{γ} as in the one split case: $Y_{0} \cup Y_{1}=B$. We do not switch anything.
Possibility (4) cannot occur due to the following reasoning: Suppose for a contradiction that possibility (4) occurs. As $\beta \subseteq \alpha \subseteq \delta \subseteq \gamma$, we have $R_{\beta} \supseteq R_{\alpha} \supseteq R_{\delta} \supseteq R_{\gamma}$. Therefore, we have the following equations in $R_{\gamma}: X_{0} \cup X_{1}=B, X_{0} \cup Y_{1}=B, Y_{0} \cup X_{1}=B$ and $Y_{0} \cup Y_{1}=B$. The first two equations implies the following equation in $R_{\gamma}: X_{0}=B$. The last two equations implies the following equation in $R_{\gamma}: Y_{0}=B$. The satisfaction of some D_{i} requirement on a node after γ puts some element x into $B \cap R_{\gamma}$ as requirements being satisfied by nodes on the true path after $\gamma^{\wedge}\langle c\rangle$ only take witnesses from R_{γ}. However, this would mean that x enters both X_{0} and Y_{0} by the two equations in R_{γ} : $X_{0}=B$ and $Y_{0}=B$. This is a contradiction because X_{0} and Y_{0} are disjoint as X_{0} and Y_{0} form a split of B.

Priority Tree. Fix a recursive ordering of the D-, Q - and S-requirements, respectively, where S_{i} is of higher priority of than $S_{i, V}$.

Let $\Lambda=\{\infty, c, h, k, s, a, d\}$ with ordering $\infty<c<h<k<s<a<d$. The tree is a subset of $\Lambda^{<\omega}$.
We define by recursion a function G such that G assigns to each α the list of Z_{0}^{α} and Z_{1}^{α} it is working on in the construction (e.g. $G(\alpha)=\left(X_{0}, Y_{1}\right)$). We also keep track of two lists $L_{1}(\alpha)$ and $L_{2}(\alpha)$ for each node. L_{1} keeps track of the S-requirements that have appeared so far (but gets reset at every appearance of a c outcome) and L_{2} keeps track of S-requirements that need to be repeated and we remove a requirement from this list once it has been repeated.

We assign requirements to nodes as well as define G, L_{1}, L_{2} by recursion at the same time. For the empty node, assign the highest priority Q_{h} requirement to α. Let $G(\emptyset)=\left(X_{0}, X_{1}\right)$ and let $L_{1}(\emptyset)=L_{2}(\emptyset)=\emptyset$. Suppose that we have assigned a requirement to $\beta=\alpha \upharpoonright(|\alpha|-1)$, which we will call the β requirement and defined $G(\beta), L_{1}(\beta)$ and $L_{2}(\beta)$. We now assign a requirement to α and define $G(\alpha), L_{1}(\alpha)$ and $L_{2}(\alpha)$.

Defining $G(\alpha)$. Ask whether β is a node working on some Q_{h} with successor c. If not, let $G(\alpha)$ be $G(\beta)$. If so, let k be 1 if X_{1} appears in $G(\beta)$ and let k be 0 otherwise. We have the following possibilities:
(1) If $k=0$ and Y_{0} appears in $G(\beta)$, define $G(\alpha)$ to be $G(\beta)$.
(2) If $k=0$ and X_{0} appears in $G(\beta)$, define $G(\alpha)$ to be $\left(Y_{0}, X_{1}\right)$.
(3) If $k=1$, define $G(\alpha)$ to be $G(\beta)$ with X_{1} switched to Y_{1}, i.e. if $G(\beta)=\left(Z^{\prime}, X_{1}\right)$ then define $G(\alpha)$ to be $\left(Z^{\prime}, Y_{1}\right)$.

Defining $L_{1}(\alpha)$ and $L_{2}(\alpha)$. Ask whether β is a node working on some Q_{h} with successor c. If so, let $L_{2}(\alpha)=L_{1}(\beta)$ and set $L_{1}(\beta)=\emptyset$. Otherwise, ask whether β is a node working on some S requirement. If so, let $L_{1}(\alpha)$ be $L_{1}(\beta)$ with β 's requirement affixed at the end. If $L_{2}(\beta)$ is not empty and this S-requirement is in $L_{2}(\beta)$, let $L_{2}(\alpha)$ be $L_{2}(\beta)$ with this S-requirement removed. Otherwise, let $L_{1}(\alpha)=L_{1}(\beta)$ and let $L_{2}(\alpha)=L_{2}(\beta)$.

Assigning a requirement to α. If the β-requirement is an Q-requirement with outcome c, assign the β-requirement to α and let its successors be ∞, c and h.

Otherwise, check if $L_{2}(\alpha)$ is empty or not. If $L_{2}(\alpha)$ is not empty, assign the highest priority S requirement in $L_{2}(\alpha)$ to α. If this requirement is a S_{i}-requirement, let its successor be the blank outcome and if this requirement is a S_{V}-requirement, let its successors be k and s.

If $L_{2}(\alpha)$ is empty, we assign a requirement to α based on the type of requirement assigned to β requirement: If the β-requirement is a Q-requirement, assign the highest priority D-requirement that has not been assigned so far and let its successors be a and d. If the β-requirement is a D-requirement, assign the highest priority S-requirement that has not been assigned so far and let its successors be k and s if it is a S_{V} requirement and let its successor be the blank outcome if it is a S_{i} requirement. Otherwise, assign the highest priority Q-requirement that has not been assigned so far and let its successors be ∞, c and h.

Construction. We call a node working on a S-strategy active at stage s if the node has acted at some stage $t<s$ and has not been cancelled (or reset).

At stage s, define δ_{s} (an approximation to the true path) by recursion as follows. Suppose that $\delta_{s} \upharpoonright e$ has been defined for $e<s$. Let α be the last node of $\delta_{s} \upharpoonright e$. We now define $\delta_{s} \upharpoonright(e+1) \supseteq \delta_{s} \upharpoonright e$.
(1) If α is a Q-node, look to see if it is waiting for a number x to go into B_{β}, i.e. there is some x in M_{α} that has not entered B_{β}. If so, look to see if an active node η to to the left or below $\alpha^{\wedge}\langle\infty\rangle$ would like to put x in (or keep x out). Let η act. If there are no remaining numbers that α is waiting on, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle c\rangle$. Otherwise, look to see if there is some z in the remaining numbers such that $h\left(z, \Phi_{M_{\alpha}}(z)\right)$ has converged and our current stage is greater than $h\left(z, \Phi_{M_{\alpha}}(z)\right)+1$. If so, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle\infty\rangle$. If not and some x was pulled, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle c\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle h\rangle$.
(2) If α is a S_{V}-node, look to see if x_{α} has been defined. If so, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle k\rangle$. Otherwise, go through steps (1) - (4) in the strategy for S_{V}. If one of (1) - (4) holds and we can define x_{α}, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle k\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle s\rangle$.
(3) If α is a D-node, look to see whether $\Delta_{i}\left(x_{\alpha}\right)$ has converged and equals 0 . If so, let $\delta_{s} \upharpoonright$ $(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle a\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle d\rangle$.
Reset nodes to the right of δ_{s} and let active S-nodes to the left of δ_{s} or below the ∞ outcome for one of the nodes in δ_{s} act. At substage $t \leq s$, let $\delta_{s} \upharpoonright t$ act according to its description in the strategies above, i.e. $\delta_{s} \upharpoonright t$ enumerates numbers in its sets and extends their definitions.

Verification. Recall that the true path denotes the leftmost path traveled through infinitely often by the construction.
Lemma 4.2. For every node α, if x is an unused witness in P_{β} and is not reset as a witness, x does not go into B while α is restraining x. For every node α, if $x_{\alpha}=x_{\gamma}$ for another node γ, we can successfully keep x_{α} out of B. If α is on the true path, $M_{\alpha} \subseteq^{*} B$. If α is on the true path, we only reset its witness finitely many times.

Proof. The proof follows the same reasoning as in the one split case.
Lemma 4.3. There cannot be more than three nodes with true outcome c on the true path.
Proof. Suppose otherwise and let $\beta \subseteq \alpha \subseteq \delta \subseteq \gamma$ be the first four nodes on the true path with outcome c. By our scheme of switching between X and Y, we obtain the following equations: $X_{0} \cup X_{1}=B$ (in R_{β}), $X_{0} \cup Y_{1}=B$ (in R_{α}), $Y_{0} \cup X_{1}=B$ (in R_{δ}) and $Y_{0} \cup Y_{1}=B$ (in R_{γ}). By our choice of β, α, δ and γ, we have $R_{\beta} \supseteq R_{\alpha} \supseteq R_{\delta} \supseteq R_{\gamma}$ and thus all of these equations are true in R_{γ}. The first two
equations give the following equation in $R_{\gamma}: X_{0}=B$ and the last two equations give the following equation in $R_{\gamma}: Y_{0}=B$. At some stage, the satisfaction of some D_{i} requirement puts some element x into $B \cap R_{\gamma}$ as requirements being satisfied by nodes on the true path after the c outcome of γ only take witnesses from R_{γ}. However, this would mean that x enters both X_{0} (from the equation in R_{γ} : $X_{0}=B$) and Y_{0} (from the equation in $R_{\gamma}: Y_{0}=B$). As X_{0} and Y_{0} are disjoint, we have obtained our contradiction.

Lemma 4.4. We only switch Z_{0} and Z_{1} finitely many times on the true path.
Proof. This follows immediately from the previous lemma as the construction does not switch the value of Z_{0} or Z_{1} unless it meets a c outcome.

Lemma 4.5. On the true path, for every requirement, there is a node that works on it.
Proof. It suffices to show that there exists an α on the true path such that for all $\nu \supseteq \alpha$ on the true path, $L_{2}(\alpha)$ is empty. Let γ be an arbitrary node and let δ be the successor of γ. By construction of L_{2}, either L_{2} is a finite set or is empty. $L_{2}(\gamma)$ is not empty if and only if $L_{2}(\delta)$ is not empty or δ is a node working on a Q_{h} requirement with outcome c. The latter case can only occur less than three times by Lemma 4.3. The former case only occurs finitely many times as the cardinality of the value of L_{2} strictly decreases as we go down a path unless we met another node working on a Q_{h} requirement with outcome c. However, there are only finitely many such nodes on the true path so the lemma follows by setting α to be the first node such that $L_{2}(\alpha)$ is empty and no nodes after α has the c outcome on the true path.

Lemma 4.6. For all i, the D_{i} requirement is satisfied.
Proof. This follows by Lemma 4.2 and similar reasoning as in the one split case.
Lemma 4.7. S_{0} and S_{1} are both satisfied.
Proof. If we never switch the value of Z_{0} to Y_{0} on the true path, we never reset the $S_{0, V}$ strategies and as there is a node working on $S_{0, V}$ for every V on the true path, the S_{0} requirement is satisfied. If we do switch, we finish switching at some stage s by Lemma 4.4. We do not reset the value of Z_{0} for S_{0} strategies again after we finish switching so there is a node working on $S_{0, V}$ with the final value of Z_{0} for every V on the true path and thus the S_{0} requirement is satisfied by Lemma 4.5 and by our scheme of repeating S_{V}-requirements using list L_{2}.

The same reasoning works for S_{1} as well. By Lemma 4.4, Z_{1} finishes switching at some stage t by Lemma 4.4. We do not reset the value of Z_{1} for S_{1} strategies again after we finish switching so there is a node working on $S_{1, V}$ with the final value of Z_{1} for every V on the true path and thus the S_{1} requirement is satisfied.

Lemma 4.8. For all h, Q_{h} is satisfied.
Proof. This follows from Lemma 4.3. As there can only be three nodes on the true path with outcome c, some α on the true path working on Q_{h} must get the ∞ outcome, i.e. there are infinitely many elements in M_{α} that are kept out of B until stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$.

5. The general case

In this section, we prove Theorem 2.3.
We would like to use the same line of argument as in the two split case where having too many equations (as in the sense of Definition 3.9) leads to a contradiction. Here, we are dealing with infinitely many splits. During the construction, various sets will be proven to be recursive and various switchings will occur. The worry is that this may fill up the whole universe and then there would be no way to make B speedable or even nonrecursive. Lemma 5.5 is devoted to establishing that such a situation does not occur.

Proof of Theorem 2.3. We deal with all possible splits of B. Recursively order all pairs X_{i}, Y_{i} of disjoint r.e. subsets of B. As before, we let Z_{i} be the split we are currently trying to make nonspeedable. To start, Z_{i} is X_{i}. For each node α, the priority tree assigns which $Z_{i} \alpha$ is working on.

Requirements. We have Q_{h} requirements like in the one split case:

$$
Q_{h}:\left(\exists M \subseteq^{*} B\right)\left(\exists^{\infty} x\right)\left(\Phi_{B}(x)>h\left(x, \Phi_{M}(x)\right) \vee \text { switch some } Z_{i}\right.
$$

Switching some Z_{i} is a form of progress on higher priority strategies just as concluding that Y is nonspeedable was a form of progress for the one split case.

We have S-requirements to make Z_{i} nonspeedable:

$$
S_{i}:\left(\exists g_{i}\right)(\forall r . e . V) \text { either } V \nsubseteq Z_{i} \text { or }\left[x \in Z_{i} \Rightarrow \Phi_{Z_{i}}(x) \leq g_{i}\left(x, \Phi_{V}(x)\right)\right]
$$

and their subrequirements, $S_{i, V}$:

$$
S_{i, V}:(\exists x \in V) x \notin Z_{i} \text { or }(\forall x)\left(x \in Z_{i} \Rightarrow \Phi_{Z_{i}}(x) \leq g_{i}\left(x, \Phi_{V}(x)\right)\right)
$$

We refer to S_{i} as the parent requirement of $S_{i, V}$.
We define g_{i} at the parent node working on S_{i}. We also require S_{i} to have a higher priority than S_{j} iff $i<j$. We occasionally drop the i subscript if the context is clear.

Again, we have the D_{i} requirements as before to help the Q-requirements.
Strategies. Let $f_{i}(x, s)$ be the least y greater than every $h(x, t)$, where h belongs to a higher priority Q_{h} that does not have the h outcome and greater than every $g_{j}(x, t)$ where g_{j} belongs to a higher priority S_{j} for all $t \leq s$. Let $g_{i}(x, s)$ be the least y greater than $f_{i}(x, s)$ and also greater than the least stage t that x enters either X_{i} or Y_{i} if x has entered $B_{f_{i}(x, s)}$. This definition of g_{i} is needed in the verification to show that if α is a Q-node, child nodes for lower priority S_{i} requirements cannot injure α (see first paragraph of the proof of Lemma 5.3).

The strategies for $Q_{h}, S_{i, V}$ and D_{i} are the same as in the one and two split cases except that the $S_{i, V}$ strategy has the following differences:
(1) Each node α has its version of the $Z_{i}^{\alpha}, f_{i}^{\alpha}, g_{i}^{\alpha}$, determined by the priority tree. Instead of X and Y in the strategy for S_{V} in the one split case, we work on Z_{i}^{α} and the other side of the split for $S_{i, V}$.
(2) The (\sharp) commitment we use for the general case in the $S_{i, V}$ requirement is:

When x enters V at stage s, we put x into B at stage $f_{i}(x, s)$.
Switching of the Z_{i}^{α} and reduction to the n-split case. At an Q-node α, we will prove in the verification that any equation obtained in R_{α} will only involve Z_{i} 's where i is such that the S_{i} requirement is assigned to a node above α. We will only introduce new splits to be considered only after α 's requirement has been satisfied by a ∞ outcome (i.e. until some node assigned to α 's requirement gets the ∞ outcome, we do not assign any new S_{i}-requirement to any node on this path).

Let α be an arbitrary node on the tree working on some Q_{h}-requirement and let Z_{0}, \ldots, Z_{n} be a listing of Z_{i} 's such that the S_{i} requirement is assigned to some node above α.

The switching of the Z_{i}^{α} is similar to the two split case. A c outcome for a Q-node causes a switch of the highest indexed Z_{i} that is equal to X_{i} and rests all higher indexed (for $k>i$) sets Z_{k} and X_{k}. The reasoning behind this switching is to systematically switch so that if we just look at Z_{0}, \ldots, Z_{l} and all of the switches have occurred concerning Z_{0}, \ldots, Z_{l}, we obtain equations $Z_{0} \cup \ldots \cup Z_{l}=B$ for every combination of values for Z_{0}, \ldots, Z_{l}. This is necessary for proving that we can make B speedable.

A typical situation is as in Figure 4 below. There are nodes working on the same Q_{h} requirement and as in the two split case, the Q_{h} requirement is continually being assigned to nodes along this path until one of the nodes γ working on this Q_{h} requirement gets an ∞ outcome. Until γ appears, all nodes appearing after α on this path are working on a same fixed number of splits as α. If γ never appears, the situation for nodes appearing after α is as in the n-split case. Like in the 2 split case, we can argue as in Lemma 4.3 that we obtain a contradiction from having too many equations resulting from too many nodes working on the Q_{h} requirement with outcome c. Thus, γ has to appear.

Figure 4. Assuming that this figure signifies a portion of the true path, a dotted line signifies that the true path does not go this way and the dashed edges between nodes signifies the true path in between the two nodes. Here, we assume that all Q-nodes on the true path between ν and γ that work on the same Q_{h} requirement as α has true outcome c. Technically, there are other nodes working on S-requirements between α and δ and δ and ν but we have not included them in the picture.

Outcomes. Each node α working on a D-strategy has outcomes: a (for acts) and d (for diverge). On the a outcome, $\Delta_{i}(x)$ converges and equals to 0 and α would like to put x into B. Along the d outcome, either $\Delta_{i}(x)$ diverges or is not equal to 0 .

Each node α working on a Q-strategy has outcomes: ∞, c and h. Along the ∞ outcome, infinitely many x 's in M_{α} enter B after stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$. Along the c outcome, cofinitely many x 's in M_{α} enter B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ and either we have the means to conclude that Z_{i} is nonspeedable or we switch Z_{i}. Along the h outcome, we see that h is partial.

Each node α working on a S_{i}-strategy has outcomes: split or finite. Along the split outcome, we see that X_{i} and Y_{i} form a split of B and define f_{i} and g_{i} for the child-nodes of S_{i} to work on. Along the finite outcome, we see that X_{i} and Y_{i} do not form a split of B. Under the finite outcome, there are no child nodes of S_{i}.

Each node α working on a $S_{i, V}$-strategy has outcomes: k and s. Along the k outcome, either there is some x in both V and Y or α can keep some element in V out of B. Along the s outcome, α cannot achieve $(\exists x)(x \in V \wedge x \notin X)$ and we try to achieve $x \in X \Rightarrow \Phi_{X}(x) \leq g\left(x, \Phi_{V}(x)\right)$ for all x.

Priority Tree. Recursively order $D-, Q$ - and the S-requirements.
Fix a recursive ordering of the $D-, Q$ - and S-requirements where S_{i} is of higher priority of than $S_{i, V}$.

Let $\Lambda=\{\infty, c, h$, split, finite, $k, s, a, d\}$ with ordering $\infty<c<h<$ split $<$ finite $<k<s<a<$ d. The tree is a subset of $\Lambda^{<\omega}$.

As in the two split case, we define by recursion a function G such that G assigns to each α the list of Z_{i}^{α} 's it is working on in the construction (e.g. $G(\alpha)=\left(X_{0}, Y_{1}, X_{2}\right)$). As in the two split case, we also keep track of two lists $L_{1}(\alpha)$ and $L_{2}(\alpha)$ for each node. L_{1} keeps track of the S-requirements
that have appeared so far (but gets reset at every appearance of a coutcome) and L_{2} keeps track of S-requirements that need to be repeated.

We assign requirements to nodes as well as define G, L_{1}, L_{2} by recursion at the same time. For the empty node, assign the highest priority Q_{h} requirement to α. Let $G(\emptyset)=\left(X_{0}, X_{1}\right)$ and let $L_{1}(\emptyset)=L_{2}(\emptyset)=\emptyset$. Suppose that we have assigned a requirement to $\beta=\alpha \upharpoonright(|\alpha|-1)$, which we will call the β requirement and defined $G(\beta), L_{1}(\beta)$ and $L_{2}(\beta)$. We now assign a requirement to α and define $G(\alpha), L_{1}(\alpha)$ and $L_{2}(\alpha)$.

Defining $G(\alpha)$. Ask whether β is a node working on some Q_{h} with successor c. If so, let k be the largest index such that X_{k} appears in $G(\beta)$ and let $\overrightarrow{Z_{0}}$ and $\overrightarrow{Z_{1}}$ be such that $G(\beta)=\overrightarrow{Z_{0}} X_{k} \overrightarrow{Z_{1}}$. Note that we will prove that k always exists if α is on the true path. If k does not exist, define $G(\alpha)$ to be $G(\beta)$. If k exists, define $G(\alpha)$ to be $G(\beta)$ with X_{k} switched to Y_{k} and X_{i} 's and Y_{i} 's in $\overrightarrow{Z_{1}}$ reset to be X_{i} i.e. $G(\alpha)=\overrightarrow{Z_{0}} Y_{k} \overrightarrow{X_{1}}$ where $\overrightarrow{X_{1}}$ is the X-side of the splits in $\overrightarrow{Z_{1}}$. If β is not working on some Q_{h} with successor c, ask whether β is a node working on some S_{i}. If so, let $G(\alpha)$ be $G(\beta)$ with X_{i} appended to the end of $G(\beta)$'s list. If not, define $G(\alpha)$ to be $G(\beta)$.

Defining $L_{1}(\alpha)$ and $L_{2}(\alpha)$. Ask whether β is a node working on some Q_{h} with successor c. If so, let $L_{2}(\alpha)=L_{1}(\beta)$ and set $L_{1}(\beta)=\emptyset$. Otherwise, ask whether β is a node working on some S requirement. If so, let $L_{1}(\alpha)$ be $L_{1}(\beta)$ with β 's requirement affixed at the end. If $L_{2}(\alpha)$ is not empty and this S-requirement is in $L_{2}(\alpha)$, let $L_{2}(\alpha)$ be $L_{2}(\beta)$ with this S requirement removed. Otherwise, let $L_{1}(\alpha)=L_{1}(\beta)$ and let $L_{2}(\alpha)=L_{2}(\beta)$.

Assigning a requirement to α. If the β-requirement is an Q-requirement with outcome c, assign the β-requirement to α and let its successors be ∞, c and h.

Otherwise, check if $L_{2}(\alpha)$ is empty or not. If $L_{2}(\alpha)$ is not empty, assign the highest priority S requirement in $L_{2}(\alpha)$ to α. If this requirement is a S_{i}-requirement, let its successors be the split and finite outcomes and if this requirement is a S_{V}-requirement, let its successors be k and s.

If $L_{2}(\alpha)$ is empty, we assign a requirement to α based on the type of requirement assigned to β requirement: If the β-requirement is a Q-requirement, assign the highest priority D-requirement that has not been assigned so far and let its successors be a and d. If the β-requirement is a D-requirement, assign the highest priority S-requirement that has not been assigned so far and such that β does not extend the finite outcome for a node assigned to the parent requirement of this S-requirement (if this S-requirement is not the parent requirement itself) and let its successors be k and s if it is a S_{V} requirement and let its successors be split and finite if it is a S_{i} requirement. Otherwise, assign the highest priority Q-requirement that has not been assigned so far and let its successors be ∞, c and h.

Construction. We call a node working on a S-strategy active at stage s if the node has acted at some stage $t<s$ and has not been cancelled (or reset).

At stage s, define δ_{s} (an approximation to the true path) by recursion as follows. Suppose that $\delta_{s} \upharpoonright e$ has been defined for $e<s$. Let α be the last node of $\delta_{s} \upharpoonright e$. We now define $\delta_{s} \upharpoonright(e+1) \supseteq \delta_{s} \upharpoonright e$.
(1) If α is a Q-node, look to see if it is waiting for a number x to go into B_{β}, i.e. there is some x in M_{α} that has not entered B_{β}. If so, look to see if an active node η to to the left or below $\alpha^{\sim}\langle\infty\rangle$ would like to put x in (or keep x out). Let η act. If there are no remaining numbers that α is waiting on, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle c\rangle$. Otherwise, look to see if there is some z in the remaining numbers such that $h\left(z, \Phi_{M_{\alpha}}(z)\right)$ has converged and our current stage is greater than $h\left(z, \Phi_{M_{\alpha}}(z)\right)+1$. If so, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle\infty\rangle$. If not and some x was pulled, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle c\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle h\rangle$.
(2) If α is a S_{V}-node, look to see if x_{α} has been defined. If so, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle k\rangle$. Otherwise, go through steps (1) - (4) in the strategy for S_{V}. If one of (1) - (4) holds and we can define x_{α}, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle k\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle s\rangle$.
(3) If α is a S_{i}-node, look to see if X_{i} and Y_{i} seem to form a split of B. If so, let $\delta_{s} \upharpoonright(e+1)=$ $\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle$ split \rangle. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle$ finite \rangle.
(4) If α is a D-node, look to see whether $\Delta_{i}\left(x_{\alpha}\right)$ has converged and equals 0 . If so, let $\delta_{s} \upharpoonright$ $(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle a\rangle$. Otherwise, let $\delta_{s} \upharpoonright(e+1)=\left(\delta_{s} \upharpoonright e\right)^{\wedge}\langle d\rangle$.
Reset nodes to the right of δ_{s} and let active S-nodes to the left of δ_{s} or below the ∞ outcome for one of the nodes in δ_{s} act. At substage $t \leq s$, let $\delta_{s} \upharpoonright t$ act according to its description in the strategies above, i.e. $\delta_{s} \upharpoonright t$ enumerates numbers in its sets and extends their definitions.

Verification. Recall that the true path denotes the leftmost path travelled through infinitely often. In the following lemmas, we may drop "in R_{α} " when referring to an equation. In the proofs below, we only deal with a sequence of equations in R_{α} where α 's are on the same path. As $R_{\alpha} \subseteq R_{\beta}$ if $\beta \subseteq \alpha$, these equations in different R_{α} 's are true in their intersection (see Lemma 5.4). We also drop the superscript α when referring to Z_{i}^{α} as the version of Z_{i} we refer to will be clear from context. The first few lemmas lead to proving that there is a node working on every requirement on the true path.

Lemma 5.1. For every node α, if x is an unused witness in P_{β} and is not reset as a witness, x does not go into B while α is restraining x. For every node α, if $x_{\alpha}=x_{\gamma}$ for another node γ, we can successfully keep x_{α} out of B. If α is on the true path, $M_{\alpha} \subseteq^{*} B$. If α is on the true path, we only reset its witness finitely many times.

Proof. The proof follows the same reasoning as in the one split case.
The next few lemmas use the following definition.
Definition 5.2. If α working on Q_{h} has outcome c, we are unable to achieve (\dagger) in the Q_{h} requirement for infinitely many x 's. Thus $S_{i, V_{j}}$ strategies must put cofinitely many of these x 's into B before stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ due to (\sharp). Let $S_{i_{0}, V_{j_{0}}}, \cdots, S_{i_{k}, V_{j_{k}}}$ be a listing of the S-strategies involved (i.e. the active S-nodes below the ∞ outcome of α). We only commit to (\sharp) when there is no x in both V and the other half of B, in which case $V_{j_{0}} \cup \cdots \cup V_{j_{k}}=Z_{i_{0}} \cup \cdots \cup Z_{i_{k}}$. Therefore, modulo finitely many elements we have the following equation in $R_{\alpha}: B=M=V_{j_{0}} \cup \cdots \cup V_{j_{k}}=Z_{i_{0}} \cup \cdots \cup Z_{i_{k}}$. We refer to an equation in $R_{\alpha}: B=X_{i_{0}} \cup \cdots \cup X_{i_{j}} \cup Y_{k_{0}} \cup \cdots \cup Y_{k_{l}}$ as an equation obtained from the c outcome if we obtained this equality directly in the way described above. We refer to an equation in $R_{\alpha}: B=X_{i_{0}} \cup \cdots \cup X_{i_{j}} \cup Y_{k_{0}} \cup \cdots \cup Y_{k_{l}}$ as an reduced equation if equations obtained from the c outcome imply it.

Lemma 5.3. Let α be a node working on the Q_{h} requirement. If α 's outcome is c, the equation obtained from the c outcome can only involve $S_{i, V}$ requirements where S_{i} is of higher priority than Q_{h}.
Proof. If S_{i} lies below or to the right of α, the lemma follows by our construction of $g_{i}(x, s)$. We only need $x \in M_{\alpha}$ to stay out of B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ which is strictly less than $g_{i}\left(x, \Phi_{V}(x)\right)$ for x 's such that $\Phi_{M_{\alpha}}(x) \leq \Phi_{V}(x)$. This is why we need our definition of g_{i}.

Now let γ be a node on to the left of α working on a $S_{i, V}$ requirement with its parent node to the left of α. We now prove that $S_{i, V}$ cannot be involved in the equation we obtain from α 's c outcome. To occur in the equation, $S_{i, V}$ must commit to (\sharp) and some $x \in M_{\alpha}$ is put in B before $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$ by $S_{i, V} . x$ only enters $B_{\beta}($ for $\beta \subset \alpha)$ after stage $h\left(x, \Phi_{M_{\alpha}}\right)+1$ so x has not entered B_{β} at stage $\Phi_{V}(x)$. By our assumption that $S_{i, V}$ is to the left of α so $S_{i, V}$ would not commit to (\sharp) as x is a potential witness it can keep out.

In particular, Lemma 5.3 shows that for every node α working on a Q_{h} outcome, the equations obtained from the c outcome only involves a fixed number of Z_{i} 's.

The next lemma shows that if we have several equations obtained from the c outcome (of γ_{i} 's) along some path and $\gamma_{i} \subseteq \alpha$, then the reduced equation from these equations is true in R_{α}.
Lemma 5.4. Let α be on the true path. If we obtain a reduced equation from equations obtained by the c outcome for nodes $\gamma \subseteq \alpha$ then the reduced equation is true of the intersections mentioned in the equation in R_{α}.

Proof. Every equation obtained by a c outcome for γ is an equation in R_{γ}. As $R_{\gamma} \subseteq R_{\alpha}$, equations in R_{γ} are also equations in R_{α}. If we have true equations in R_{α} and we deduce an equation from it, the deduced equation is true in R_{α}. Thus, the reduced equation is true of the intersections mentioned in the reduced equation in R_{α}.

The following lemma shows that if α is on the true path, in defining $G(\alpha), k$ always exists.
Lemma 5.5. Let α be a node working on a Q_{h} requirement. Let S_{0}, \ldots, S_{i} be a listing of all higher priority S-requirements. We cannot get an equation from the c outcome of α on the true path of the form $Y_{i_{0}} \cup \cdots \cup Y_{i_{k}}=B$ where $\left\{i_{0}, \ldots, i_{k}\right\} \subseteq\{0, \ldots, i\}$.
Proof. We prove the lemma by induction on i.
For $i=0$, suppose by contradiction that we could obtain such an equation, i.e. we obtain the equation in $R_{\alpha}, Y_{0}=B$. By our scheme of switching between X and Y, we must have also obtained the equation in $R_{\gamma}: X_{0}=B$ for some $\gamma \subseteq \alpha$. At some stage, the satisfaction of some D_{i} requirement puts some element x into $B \cap R_{\alpha} \cap R_{\gamma}$ as requirements being satisfied by nodes on the true path after the two equations both appear only take witnesses from $R_{\alpha} \cap R_{\gamma}$. However, this would mean that x enters both X_{0} (from the equation in $R_{\gamma}: X_{0}=B$ for some $\gamma \subseteq \alpha$) and Y_{0} (from the equation in R_{α} : $Y_{0}=B$ for some $\gamma \subseteq \alpha$). As X_{0} and Y_{0} are disjoint, we have obtained our contradiction.

For $i+1$, suppose by contradiction that we could obtain such an equation. By our scheme of switching between X and Y, we obtain all equations of length $i+2$ involving all combinations of Z_{0}, \ldots, Z_{i+1} (from the c outcome), i.e. we have $Z_{0} \cup \ldots \cup Z_{i} \cup X_{i+1}=B$ and $Z_{0} \cup \ldots \cup Z_{i} \cup Y_{i+1}=B$ for every combination of values for Z_{0}, \ldots, Z_{i}. For a fixed combination of values, the two equations $Z_{0} \cup \ldots \cup Z_{i} \cup X_{i+1}=B$ and $Z_{0} \cup \ldots \cup Z_{i} \cup Y_{i+1}=B$ imply the reduced equation in $R_{\alpha}: Z_{0} \cup \ldots \cup Z_{i}=B$ as X_{i+1} and Y_{i+1} are disjoint. As we are considering all combinations of Z_{0}, \ldots, Z_{i}, we have our contradiction by inductive hypothesis.

From Lemma 5.5, we see that we are always able to switch one of the Z_{i} 's.
Lemma 5.6. For every i, we only switch Z_{i} finitely many times.
Proof. By induction on i. Let s be the least stage such that all of the higher priority Z_{i} 's do not switch again. We prove that once Z_{i} switches, it cannot switch back again. Whenever a higher priority Z_{j} switches, we switch Z_{i} back to X_{i} so at stage s, Z_{i} is defined to be X_{i}. If Z_{i} never switches to Y_{i}, we are done. Otherwise, Z_{i} switches from X_{i} to Y_{i}. The only reason why Z_{i} would switch back to X_{i} would be because some smaller indexed set switched and thus it cannot switch back after s.
Lemma 5.7. On the true path, for every requirement, there is a node that works on it.
Proof. It suffices to show that each Q_{h} strategy is not repeated infinitely often. Every Q_{h} strategy is only repeated when it has a c outcome. By Lemma 5.3 , we obtain an equation only involving $S_{i, V}$ strategies that come from higher priority S_{i} 's. Thus, whenever we have a c outcome, we have obtain an equation involving a fixed number of Z^{\prime} 's: Z_{0}, \cdots, Z_{k}. By Lemma 5.5, we are always able to switch some Z from an X to a Y. By the previous lemma, we can only switch every Z_{i} finitely many times. Therefore, we cannot have a c outcome occur infinitely often and must go to the ∞ outcome.
Lemma 5.8. For all i, the D_{i} requirement is satisfied.
Proof. This follows by Lemma 5.1 and similar reasoning as in the one split case.
Lemma 5.9. For all i, S_{i} is satisfied.
Proof. If we never switch to a Y_{i} after all of the higher priority Z_{j} 's have finished switching, we do not reset the $S_{i, V}$ strategies. If we do switch, we finish switching at some stage s by Lemma 5.6. We do not reset the S_{i} strategies again after we finish switching so there is a node working on $S_{i, V}$ for every V on the true path and thus the S_{i} requirement is satisfied.
Lemma 5.10. For all h, Q_{h} is satisfied.

Proof. By the previous lemmas. Eventually Z_{i} 's stop switching and some α on the true path working on Q_{h} must get the ∞ outcome, i.e. there are infinitely many elements in M_{α} that are kept out of B until stage $h\left(x, \Phi_{M_{\alpha}}(x)\right)+1$.

6. FURTHER GENERALIZATIONS AND QUEStions

One way to generalize Theorem 2.3 is to look generalizations of being semilow (as semilow is equivalent to being nonspeedable). A particularly interesting generalization is that of the notion of semilow $_{1.5}$.
Definition 6.1. A r.e. set A is semilow ${ }_{1.5}$ if and only if

$$
\left\{e: W_{e} \cap \bar{A} \text { infinite }\right\} \leq_{1} \text { Inf. }
$$

Semilow $_{1.5}$ sets occur when studying the lattice of r.e. sets. Maass [11] showed that if A is cofinite then A is semilow ${ }_{1.5}$ if and only if $\mathcal{L}^{*}(A) \cong$ eff \mathcal{E}^{*} (where $\mathcal{L}(A)$ is the lattice of r.e. supersets of A and \mathcal{E} is the lattice of r.e. sets. The * denotes that we quotient out by the finite sets).

Semilow $_{1.5}$ sets also have a characterization using complexity theoretic notions closely related to nonspeedable sets. Instead of studying the property of having just one a.e. fastest program, Bennison and Soare [2] defined the notion of a type 1 c.e. complexity sequence, which is informally a sequence of lower bounds for all running times of programs for A (with some finite flexibility). They showed that a set has a type 1 c.e. complexity sequence if and only if it is semi-low ${ }_{1.5}$.

One question to examine is whether we can replace semilow with semilow ${ }_{1.5}$ in the statement of the main theorem. In fact, a stronger statement holds [7]. Maximal sets are not semilow ${ }_{1.5}$ but have the property that if X and Y form a split of a maximal set and neither is recursive, then both X and Y are semilow ${ }_{1.5}$. We give a brief proof for completeness.
Lemma 6.2. For B maximal, if X and Y form a split of B (and neither is recursive), for every r.e. $W, W-X$ infinite if and only if $W \cap Y$ is infinite.
$W \cap Y$ being infinite is a Π_{2}^{0} property so by Lemma $6.2, X$ (and by symmetry, Y) is semilow ${ }_{1.5}$.
Proof of Lemma 6.2. (\Leftarrow) is immediate as X and Y are disjoint. For the other direction, assume that $W-X$ is infinite for some r.e. W. By maximality, we must have $W \cap \bar{B}$ finite or $\bar{W} \cap \bar{B}$ finite. If we have $W \cap \bar{B}$ finite, then $W \cap Y$ is infinite as $W-X$ is infinite. If we have $\bar{W} \cap \bar{B}$ finite, we show that $W \cap Y$ cannot be finite by contradiction. Suppose that it were finite. Then the complement of Y is equal to $X \cup W \cup(\bar{W} \cap \bar{B})$ minus the finitely many elements in $W \cap Y$. As X and W are r.e. and $\bar{W} \cap \bar{B}$ is finite, the complement of Y is r.e. thus Y is recursive, contradicting the assumption that neither X nor Y is recursive.

The following corollary follows immediately:
Corollary 6.3. There is a non-semilow $w_{1.5}$ set B such that if X and Y form a split of B then at least one of X or Y is semilow $w_{1.5}$.

A further generalization of the notion of being semilow is the notion of being semilow ${ }_{2}$:
Definition 6.4. An r.e. set B is semilow ${ }_{2}$ if and only if $\left\{e: W_{e} \cap \bar{B}\right.$ infinite $\} \leq_{T} \emptyset^{\prime \prime}$.
We can ask whether the main theorem generalizes to semilow ${ }_{2}$ sets:
Question 6.5. Is there a non-semilow ${ }_{2}$ set B such that if X and Y form a split of B then at least one of X or Y is semilow 2 ?

Work in progress suggests that the answer to Question 6.5 is yes.
We can also ask the following related question on low sets:
Question 6.6. [7] Is there a non-low r.e. set B such that if X and Y form a non-trivial split of B, then both X and Y are low?

Work in progress suggests that the answer to Question 6.6 is also yes.

References

[1] Frank A. Bäuerle and Jeffrey B. Remmel. On speedable and levelable vector spaces. Ann. Pure Appl. Logic, 67(1$3): 61-112$, 1994. A selection of papers presented at the symposium "Logic at Tver '92" (Tver', 1992).
[2] Victor L. Bennison and Robert I. Soare. Some lowness properties and computational complexity sequences. Theoret. Comput. Sci., 6(3):233-254, 1978.
[3] M. Blum and I. Marques. On complexity properties of recursively enumerable sets. J. Symbolic Logic, 38:579-593, 1973.
[4] Manuel Blum. A machine-independent theory of the complexity of recursive functions. J. Assoc. Comput. Mach., 14:322-336, 1967.
[5] S. Barry Cooper and Sergey S. Goncharov, editors. Computability and models. The University Series in Mathematics. Kluwer Academic/Plenum Publishers, New York, 2003. Perspectives east and west.
[6] R. G. Downey and Richard A. Shore. Splitting theorems and the jump operator. Ann. Pure Appl. Logic, 94(1-3):45-52, 1998. Conference on Computability Theory (Oberwolfach, 1996).
[7] Rod Downey and Michael Stob. Splitting theorems in recursion theory. Ann. Pure Appl. Logic, 65(1):106, 1993.
[8] Richard M. Friedberg. Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. J. Symb. Logic, 23:309-316, 1958.
[9] Michael A. Jahn. Implicit measurements of dynamic complexity properties and splittings of speedable sets. J. Symbolic Logic, 64(3):1037-1064, 1999.
[10] Alistair H. Lachlan. A recursively enumerable degree which will not split over all lesser ones. Ann. Math. Logic, 9(4):307-365, 1976.
[11] Wolfgang Maass. Characterization of recursively enumerable sets with supersets effectively isomorphic to all recursively enumerable sets. Trans. Amer. Math. Soc., 279(1):311-336, 1983.
[12] Roland Sh. Omanadze. Splittings of effectively speedable sets and effectively levelable sets. J. Symbolic Logic, 69(1):143-158, 2004.
[13] Gerald E. Sacks. On the degrees less than 0^{\prime}. Ann. of Math. (2), 77:211-231, 1963.
[14] Robert I. Soare. Computational complexity, speedable and levelable sets. J. Symbolic Logic, 42(4):545-563, 1977.
[15] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated sets.

Department of Mathematics, University of California, Berkeley, 737 Evans Hall \#3840, Berkeley, CA 94720-3840 USA

E-mail address: echih@math.berkeley.edu

[^0]: The author would like to thank Leo Harrington and Theodore Slaman for their helpful comments, insightful discussions, corrections, numerous helpful advice and for carefully reading through a draft of this paper and for their suggestions on presentation and improving clarity. The author would also like to thank Rod Downey for bringing the problem to attention and an anonymous referee for useful suggestions on an earlier version of the paper. The author was partially supported by the National Science Foundation under grant number DMS-1301659.

