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INITIAL SEGMENTS OF THE Σ0
2 ENUMERATION DEGREES

HRISTO GANCHEV AND ANDREA SORBI

Abstract. Using properties of K-pairs of sets, we show that every nonzero enumeration
degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements
have all the same jump as a. Some consequences of this fact are derived, that hold in the local
structure of the enumeration degrees, including: There is an initial segment of enumeration
degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree;
every noncappable enumeration degree is high; every nonzero low enumeration degree can
be capped by degrees of any possible local jump (i.e., any jump that can be realized by
enumeration degrees of the local structure); every enumeration degree that bounds a nonzero
element of strictly smaller jump, is bounding; every low enumeration degree below a non
low enumeration degree a can be capped below a.

1. Introduction

Turing reducibility formalizes the notion of relative computability of sets, for which, given
sets A and B of numbers, A is computable relatively to B if there is an algorithm by means of
which any decision procedure for B can be transformed into some decision procedure for A.
Enumeration reducibility is, in turn, a formalization of the idea of relative enumerability of
sets: A is enumerable relatively to B if there is an algorithm that transforms any enumeration
of B into some enumeration of A. Following [12], this intuitive notion is made precise by
defining A to be enumeration reducible to B (or, simply, A e-reducible to B, notation:
A ≤e B) if there is a computably enumerable (or, simply, c.e.) set Φ, such that

A = {x : (∃u)[〈x, u〉 ∈ Φ &Du ⊆ B]}
(Du is the finite set with canonical index u). We usually write in this case A = Φ(B):
thus, every c.e. set defines in this way what is called an enumeration operator (or, simply, e-
operator), i.e. a mapping Φ, from sets of numbers to sets of numbers, taking a set B to the set
Φ(B). Enumeration reducibility gives rise in the usual way to a degree structure De, a poset
whose elements are called enumeration degrees (or, simply, e-degrees): we use the symbol ≤
to denote the partial ordering relation on the e-degrees, whereas the symbol ≤e is reserved
for e-reducibility on sets of numbers; the equivalence relation induced by ≤e will be denoted
by ≡e. The poset De turns out to be an upper semilattice with least element 0e, consisting
of the c.e. sets. On De, one can define a jump operation ′, which maps any e-degree a to
a strictly bigger e-degree a′. Interest in enumeration reducibility is motivated by the fact
that the e-degrees provide a wider context for the Turing degrees: the mapping sending the
Turing degree of a set A to the e-degree of the characteristic function of A (or equivalently,
to the e-degree of A⊕A, where A denotes the complement of A, and ⊕ is the usual operation
of disjoint union of sets of numbers), is an embedding of upper semilattices, preserving the
least element and the jump operation. Recent developments have shown that, under this
embedding, the Turing degrees are first order definable in De (Cai, Ganchev, Lempp, Miller
and Soskova [3]), and the Turing degress below the first Turing jump are first order definable
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2 H. GANCHEV AND A. SORBI

in the local structure Ge, i.e. the poset of the e-degrees below the first e-jump 0′
e (Ganchev

and Soskova [16]). The proofs of these results use the so-called Kalimullin pairs (K-pairs),
introduced by Kalimullin [20].

Definition 1. A pair of sets {A,B} is a K-pair of sets if there is a c.e. set W , such that
A × B ⊆ W and A × B ⊆ W . Moreover if both A and B are not c.e. we shall say that
the K-pair is nontrivial. A pair of e-degrees {a,b} is a K-pair of e-degrees, if there are sets
A ∈ a and B ∈ b, such that {A,B} is a K-pair; the K-pair {a,b} is nontrivial if the K-pair
{A,B} of sets is nontrivial.

K-pairs of e-degrees are the first nontrivial example of a class of e-degrees that is both
arithmetically and degree-theoretically definable. Indeed, it turns out (Kalimullin [20]) that
{a,b} is a K-pair if and only if for every e-degree x,

x = (x ∨ a) ∧ (x ∨ b).

The simplicity of the degree-theoretic definition of K-pairs is not a an isolated phenome-
non. In fact all degree-theoretic definitions involving K-pairs turn out to be quite simple
and understandable. For example, the degree-theoretic definition of the jump, given by
Kalimullin [20], says that the jump of an e-degree, say u, is the least degree bounding a
triple {a1, a2, a3}, such that each pair {ai, aj}, for i 6= j, is a nontrivial K-pair relative to u:
in other words, u′ is the least e-degree bounding a triple {a1, a2, a3}, such that ai, aj 6≤ u
and

∀x ≥ u
(
x = (x ∨ ai) ∧ (x ∨ aj)

)
,

for 1 ≤ i < j ≤ 3.
A further analysis by Ganchev and Soskova revealed a degree-theoretic definition of the

jump operation (on nonzero e-degrees), not requiring the relativisation of the notion of K-
pair. This definition relies on the following simple facts. Firstly, the jump of an e-degree x is
the biggest degree containing a set of the form A⊕A, for which the e-degree a of A satisfies
a ≤ x. Secondly, for each nontrivial K-pair {a,b} and every A ∈ a, the e-degree a of A
satisfies b ≤ a. Finally, for every non c.e. set X, with e-degree x, there is a K-pair {a, a},
for which a ≤ x and a ∨ a is the degree of X ⊕X. Thus the jump of a nonzero e-degree x
is the biggest degree, which is the least upper bound of a nontrivial K-pair {a,b}, such that
a ≤ x.

Note that the second property used above yields that for every nontrivial K-pair {a, a},
if A ∈ a and A ∈ a for some set A, then the pair {a, a} is maximal, i.e. for every K-pair
{b1,b2}, if a ≤ b1 and a ≤ b2, then a = b1 and a = b2. Now, this, combined with the
third property, yields that the images of the nonzero Turing degrees under the standard
embedding of the Turing degrees DT in De are least upper bounds of nontrivial maximal
K-pairs. On the other hand it turns out that the least upper bounds of nontrivial K-pairs
are images of Turing degrees (Cai, Ganchev, Lempp, Miller and Soskova [3], and Ganchev
and Soskova [16]), so that an e-degree x is the image of a nonzero Turing degree under the
standard embedding of DT in De if and only if x = a∨a for some nontrivial maximal K-pair
{a, a}.

Kalimullin pairs turn out to be very useful also in the context of the local structure Ge of the
e-degrees. Most of the literature on the subject of e-degrees is dedicated to the investigation
of Ge. A lot of results have been obtained so far, including but not only: the degrees in Ge
are exactly the e-degrees of the Σ0

2 sets (Cooper [5]); the degrees in Ge are dense (Cooper [5]);
there are noncuppable nonzero degrees (Cooper, Sorbi and Yi [10]); every nonzero degree
containing a ∆0

2 set is cuppable (Cooper, Sorbi and Yi [10]); there are noncappable degrees
strictly below 0′

e (Cooper and Sorbi [9]); every finite lattice is embeddable preserving both
0 and 1 (Lempp and Sorbi [22]); a decidable necessary and sufficient condition for extension
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of embeddings of finite partial orders (Lempp, Slaman and Sorbi [23]); every nonzero degree
bounds a nonsplitting degree (Kent and Sorbi [21]); 0′

e is splittable over every degree a < 0′
e

containing a ∆0
2 set (Arslanov and Sorbi [1]); there is a degree a < 0′

e, such that 0′
e is not

splittable over a (Soskova [28]).
Typically these results are proven by very complex and sophisticated priority arguments.

They shed light on the structural properties of Ge, but nevertheless they do not answer any
natural question about the definability in Ge of arithmetically definable classes of degrees,
such as: the degrees containing ∆0

2 sets (usually referred to as ∆0
2 e-degrees); the degree not

containing ∆0
2 sets (usually referred to as properly Σ0

2 e-degrees); the degrees that do not
bound any nonzero ∆0

2 e-degree (usually referred to as downwards properly Σ0
2 e-degrees);

the degrees that are not bounded by any ∆0
2 e-degree different from 0′

e (usually referred to
as upwards properly Σ0

2 e-degrees); the degrees whose n-th jump is equal to the n-th jump
of 0e (usually referred to as lown e-degrees; the low 1 e-degrees are usually called low); the
degrees whose n-th jump is equal to the n + 1-st jump of 0e (usually referred to as highn

e-degrees; the high1 e-degrees are usually called high).
In this context, K-pairs once again play a very important role. K-pairs turn out to be

definable in Ge (Ganchev and Soskova [14]) by the very formula defining them in the global
structure of the e-degrees (Cai, Miller, Lempp and Soskova [4]). Thus, once again, K-pairs are
the first example of an arithmetically definable class of degrees which is first order definable
in Ge. From the definability of K-pairs in Ge and the fact that the images of the Turing
degrees under the standard embedding of DT in De are exactly the least upper bounds of
maximal K-pairs, it follows that the class of the images of Turing degrees in Ge is definable
in Ge.

Further, according to a result by Ganchev and Soskova [13], every nonzero ∆0
2 degree

bounds a nontrivial K-pair, so that the downwards properly Σ0
2 e-degrees are exactly the

degrees that do not bound nontrivial K-pairs. On the other hand every low e-degree does
not bound any downwards properly Σ0

2 degree, whereas every non low e-degree, which is
the image of a Turing degree, bound s a downwards properly Σ0

2 degree (Giorgi, Sorbi and
Yang [17]). Thus x ∈ Ge is the image of a low Turing degree if and only if x is the least
upper bound of a nontrivial maximal K-pair, and further for every 0e < y < x, y bounds a
nontrivial K-pair. Note that for the moment it is not known whether the class of low Turing
degrees is definable in the local structure of the Turing degrees. Thus the above definition
is a clear evidence of the advantages of considering the Turing degrees in the wider context
of the e-degrees.

Finally let us mention that, using the structural properties of K-pairs, Ganchev and
Soskova [15] have managed to prove that true arithmetic is interpretable in Ge and hence the
first order theory of the upper semilattice Ge is as complex as possible. This said, it is clear
that Kalimullin pairs have turned out to be one of the most powerful tools for studying the
e-degrees, and their local structure.

In this paper, we use a simple theorem onK-pairs (Theorem 5), to derive as straightforward
and immediate corollaries, some new and somewhat unexpected results on the local structure
of the e-degrees, including: Theorem 6 (every level of the high/low hierarchy of the local
structure of the e-degrees contains an interval of the form (0e, a], for some nonzero a ∈ Ge:
in particular, with the exception of the level of the low e-degrees, every such interval consists
entirely of downwards properly Σ0

2 e-degrees); Corollary 7 (there is a nontrivial initial segment
of e-degrees, whose nonzero elements are all high); Corollary 8 (there is a nonsplitting high
e-degree); Corollary 9 (every noncappable e-degree is high); Corollary 13 (every e-degree that
bounds a nonzero e-degree of strictly smaller jump, is bounding; hence the nonzero degrees
below a nonbonding degree have all the same jump as the nonbonding e-degree itself). In
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other cases, we obtain new and very simple proofs of nontrivial extensions of known results,
whose original proofs were very complicated and sometimes used complex priority arguments,
including (references to the original papers containing the results that have been extended
are given in the text): Corollary 14 (for every possible local jump, every low e-degree caps
with some e-degree having that jump); Corollary 16 (every low e-degree below a non low a
can be capped below a).

2. Background

Our terminology and notations are standard. For an excellent introduction to the e-degrees
and their local structure, the reader is referred to Cooper’s survey paper [6]. We only recall
the definition of the jump operation, and the basic properties of K-pairs of sets. More
technical definitions are postponed to Section 4, where and when are specifically needed.

For every set of numbers A let

EA = {e : e ∈ Φe(A)},

where {Φe : e ∈ ω} is the standard listing of the e-operators, and define

A′ = EA ⊕ EA.

This allows us to introduce a well defined jump operation in the e-degrees, namely if a
is the e-degree of A, then one defines a′ to be the e-degree of A′. The local structure
Ge = {a : a ≤ 0′

e} partitions, under ≡e, the Σ0
2 sets. The classes of highn and lown e-degrees,

with n ≥ 1, introduced in Section 1, form the so-called high/low hierarchy of the e-degrees
in the local structure, which parallels the much studied high/low hierarchy in the Turing
degrees, see e.g. Cooper’s textbook [7, Definition 12.1.1]. A left-open interval of e-degrees
is a set of the form (a,b] = {c ∈ De : a < c ≤ b}; an initial segment I of e-degrees is
nontrivial if I 6= ∅, and I 6= {0e}.

2.1. Properties of K-pairs. K-pairs of sets (see Definition 1) have the following basic
properties, proved by Kalimullin [20] (item (5) comes from [20, Theorem 2.6]; (3) and (4)
are in [20, Proposition 2.7]; (2) follows from (5)):

(1) If A is a c.e. set, then {A,B} is a K-pair for every set B;
(2) Given a set A, the sets B for which {A,B} is a K-pair form an ideal with respect to

the preorder relation ≤e. In other words, if

IA = {B | {A,B} is a K-pair},

then
(a) B ∈ IA & C ≤e B =⇒ C ∈ IA,
(b) B ∈ IA & C ∈ IA =⇒ B ⊕ C ∈ IA;

(3) If {A,B} is a nontrivial K-pair, then A ≤e B and B ≤e A;
(4) If {A,B} is a nontrivial K-pair and W is the c.e. set from the definition, then

A ≤e W ⊕B and B ≤e W ⊕ A;
(5) {A,B} is a K-pair if and only if

(∀X)(∀Y )[Y ≤e X ⊕ A & Y ≤e X ⊕B =⇒ Y ≤e X].

Property (5) of K-pairs of sets shows that the property of being a K-pair of e-degrees is
first order definable in the structure of the e-degrees De, as remarked in Section 1.
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3. The theorem

In this section we state and prove (Theorem 5) the main result of the paper, namely, every
nonzero e-degree a bounds a nontrivial principal ideal whose nonzero elements have all the
same jump as a.

We begin by using properties (2a), (3), and (4), of K-pairs of sets, in order to prove that
if {a,b} form a nontrivial K-pair of e-degrees, then a′ = b′.

Proposition 2. Let {A,B} be a nontrivial K-pair of sets. Then A′ ≡e B
′.

Proof. Fix a nontrivial K-pair {A,B}. Since A ≡e EA and B ≡e EB, by property (2a) we
have that {EA, EB} is a nontrivial K-pair. Let W be a c.e. set such that EA × EB ⊆ W
and EA×EB ⊆ W . According to properties (3) and (4) we have respectively EA ≤e EB and
EA ≤e W ⊕ EB. Hence

A′ = EA ⊕ EA ≤e W ⊕ (EB ⊕ EB) ≤e ∅′ ⊕B′ ≤e B
′.

Analogously, B′ ≤e A
′, so that A′ ≡e B

′. 2

Corollary 3. Let a be a half of a nontrivial K-pair of e-degrees. Then for every nonzero
e-degree c ≤ a, we have c′ = a′.

Proof. Let {a,b} be a nontrivial K-pair of e-degrees and let us fix a nonzero e-degree c ≤ a.
According to property (2a), {c,b} is also a nontrivial K-pair. Now applying Proposition 2
we obtain

a′ = b′ = c′.

2

Next, we recall the following result from Ganchev and Soskova [16], and Cai, Ganchev,
Lempp, Miller and Soskova [3]:

Theorem 4. For every nonzero e-degree x there is an e-degree a, which is a half of a
nontrivial K-pair and such that a′ = x′.

Proof. We sketch the proof: for full details, see Ganchev and Soskova [16] and Cai, Ganchev,
Lempp, Miller and Soskova [3]. For a given set A let us denote by LA the collection of
the codes of all finite binary strings that are lexicographically less than the characteristic
function of A, denoted by χA, i.e.

LA = {σ ∈ 2<ω | σ <L χA}.
Further, by RA we shall denote the complement of LA. The sets LA and RA have the
following properties:

(i) LA ≤e A, RA ≤e A;
(ii) LA ⊕RA ≡e A⊕ A;
(iii) {LA, RA} is a K-pair; moreover LA ×RA ⊆ WL and LA ×RA ⊆ WL, where

WL = {〈σ1, σ2〉 ∈ 2<ω × 2<ω | σ1 <L σ2 ∨ σ2 ⊂ σ1}.
Coming back to the proof of the theorem, suppose first that x is low. Then x is a ∆0

2 degree
so that it bounds a nontrivial K-pair (this has been proved by Kalimullin [20, Theorem 4.3]),
each side of which is low.

Now let x′ > 0′
e. Fix a set X ∈ x. Consider the sets LEX

and REX
as defined above.

Applying property (ii), we obtain

X ′ = EX ⊕ EX ≡e LEX
⊕REX

≤e L
′
EX

On the other hand by property (i) LEX
≤e X, so that L′

EX
≤e X

′. Thus

X ′ ≡e L
′
EX
.
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Finally, neither LEX
nor REX

is c.e., for otherwise we would have LEX
⊕REX

≤e ∅′, contra-
dicting ∅′ 6≤e X

′.
Thus {LEX

, REX
} is a nontrivial K-pair, such that LEX

≤e X and L′
EX
≡e X

′. 2

Theorem 5. Every nonzero e-degree a bounds a nontrivial initial segment of e-degrees whose
nonzero elements have all the same jump as a.

Proof. A direct application of Theorem 4 and Corollary 3. 2

4. Applications to the local structure

Now we turn to some applications of Theorem 5 to the local theory of the e-degrees.

4.1. The jump hierarchy. Our first application shows that for every possible jump of
a local e-degree, there is a nonempty left-open interval (0e, a] of e-degrees, all having that
jump. Thus, every level of the high/low hierarchy of the local theory of the e-degrees contains
a nonempty left-open interval of e-degrees. In particular, with the exception of the level L1

of the high/low hierarchy (i.e., the level of the low e-degrees), every such left-open interval
consists entirely of downwards properly Σ0

2 e-degrees. (As a corollary of a stronger result,
the fact that every non low e-degree bounds a downwards properly Σ0

2 degree, was observed
also by Harris [18].) More precisely we have the following:

Theorem 6. Let x ∈ Ge be a nonzero e-degree. Then there is an e-degree 0e < a ≤ x, such
that, for every 0e < c ≤ a, c′ = x′. Moreover, if x is not low, then a is downwards properly
Σ0

2.

Proof. Fix an e-degree x ∈ Ge. The first part of the claim of the theorem is a paraphrase
of Theorem 5. For the second part, recall that every nonzero ∆0

2 e-degree bounds a nonzero
low e-degree (see McEvoy and Cooper [24, Theorem 7]): so, if x is not low, then no nonzero
a ≤ x can contain ∆0

2 sets. 2

We would like to emphasize the following somewhat surprising corollary:

Corollary 7. There is a nontrivial initial segment of e-degrees whose nonzero elements are
high e-degrees.

Proof. Take x to be high. Then by Theorem 5 there is a ≤ x, such that (0e, a] consists of
high e-degrees. 2

Recall that an e-degree a is said to be nonsplitting, if there is no pair of smaller e-degrees
whose join is a. Then the following results holds:

Corollary 8. There is a high nonsplitting e-degree.

Proof. This follows from Corollary 7, together with the fact that every nonzero Σ0
2 e-degree

bounds a nonzero nonsplitting e-degree (see Kent and Sorbi [21]). 2

Notice that this gives an elementary difference between the high e-degrees and the high
Turing degrees, for which it is known, that every high Turing degree is join-reducible, see
Posner [25], in fact the join of two minimal degrees, see Ellison and Lewis [11].

4.2. Capping and noncapping. Recall that a pair {a,b} of nonzero e-degrees in Ge is a
minimal pair if the infimum a ∧ b = 0e. An e-degree a caps (or, is capping) if a = 0e, or
there exists b such that {a,b} is a minimal pair. Finally, a degree x ∈ Ge is noncappable if it
is not half of a minimal pair. The existence of incomplete (i.e., 6= 0′

e) noncappable e-degrees
was proved by Cooper and Sorbi [9].

As another application of Theorem 6 we obtain the following property of noncappable
e-degrees.
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Corollary 9. Let x ∈ Ge be a noncappable degree. Then x bounds an e-degree of every
possible local jump. In particular x is high.

Proof. Let x ∈ Ge be a noncappable e-degree. Fix any jump b′ of an element b ∈ Ge, and by
Theorem 6 let a ∈ Ge be such that the interval (0e, a] consists entirely of e-degrees having
jump b′. Since x is noncappable, the pair {x, a} is not minimal and hence there is a nonzero
e-degree c such that c ≤ a and c ≤ x. By the choice of a, one has that c has the same jump
as b. 2

In particular, we have the following corollary.

Corollary 10. If x ∈ Ge is not high, then x caps.

Proof. Immediate, by contraposition. 2

The inclusion of the noncappale e-degrees in the high e-degrees is a proper inclusion, since
it is known that there exist capping high e-degrees, in fact minimal pairs of high e-degrees,
see e.g. Sorbi, Wu and Yang [26], or diamonds formed by a low and a high e-degree, see
Sorbi, Wu and Yang [27]. However this proper inclusion is also an immediate consequence
of Theorem 6, as shown in the following corollary:

Corollary 11. There exists a high a such that all c ∈ (0e, a] are high and cappable.

Proof. Consider a high x, and let a ≤ x be as in Theorem 6. Then all nonzero c ≤ a are
high. Now, if 0e < c ≤ a, then c caps with every d that is not high, as c and d can not
bound a nonzero e-degree. 2

For the following corollary, recall that an e-degree a is noncuppable if there is no incomplete
e-degree b such that a∨b = 0′

e. The existence of nonzero noncuppable e-degrees was proved
by Cooper, Sorbi and Yi [10].

Corollary 12. Every noncappable e-degree bounds a noncuppable e-degree.

Proof. This follows from Corollary 9, and the fact that every high e-degree bounds a non-
cuppable e-degree, see Giorgi, Sorbi and Yang [17]. 2

4.3. Bounding and nonbounding minimal pairs. An e-degree a bounds a minimal pair
if there exist b, c ≤ a such that {b, c} is a minimal pair: an e-degree is bounding, if it
bounds a minimal pair. Bounding e-degrees have been studied in McEvoy and Cooper [24],
and in Cooper, Li, Sorbi and Yang [8]: in this latter paper it is proved that every nonzero
∆0

2 e-degree bounds a minimal pair.

Corollary 13. In Ge, if a′ � b′ and b 6= 0e then there exists c ≤ a such that c′ = a′ and
{b, c} is a minimal pair.

Proof. Given a,b as in the statement of the corollary, by Theorem 6 let 0e < c ≤ a be such
that all the nonzero elements below c have the same jump as a. Then {b, c} is clearly a
minimal pair, as {b, c} can not bound a nonzero e-degree. 2

The following particular case of the previous corollary can be seen as a generalization of a
result in Badillo and Harris [2], stating that there is a nonzero low e-degree that caps with
a nonzero low e-degree and a high e-degree:

Corollary 14. For every possible jump of an element in Ge, every low e-degree caps with
some nonzero e-degree having that jump.

Proof. Let a ∈ Ge, and let b be a low e-degree: we may assume that b is nonzero, as
by definition 0e caps with every e-degree. We distinguish two cases: if a is low, then by
Kalimullin [19, Theorem 2], b caps with a nonzero ∆0

2 e-degree, and hence (as every nonzero
∆0

2 e-degree bounds a nonzero low e-degree, see [24]), caps with a nonzero low e-degree, which
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has the same jump as a. On the other hand, if a is not low, then a′ � b′: by Corollary 13,
we conclude that there is some c having the same jump as a, and forming a minimal pair
with b. 2

Corollary 15. In Ge, if a nonzero a is either low, or bounds an e-degree of strictly smaller
jump, then a is bounding.

Proof. Let a be nonzero. If a is low then we can use the fact that every nonzero low e-degree
is bounding, see [8]. If a bounds an e-degree b such that b′ < a′, then by Corollary 13 there
is a c ≤ a such that {b, c} form a minimal pair. 2

An immediate consequence of Corollary 15 is the following extension of a theorem in
McEvoy and Cooper [24], stating that if a is ∆0

2 and high, then for every nonzero low b ≤ a
there exists c ≤ a such that {b, c} form a minimal pair.

Corollary 16. In Ge, if a is not low, then for every nonzero low b ≤ a there exists c ≤ a
such that {b, c} form a minimal pair.

Our last corollary shows that the nonzero e-degrees below a nonbounding one have all
the same jump: the existence of nonzero nonbounding e-degrees (i.e., e-degrees bounding no
minimal pairs) was proved by Cooper, Li, Sorbi and Yang [8].

Corollary 17. In Ge, if a is nonbounding, then the left-open interval (0e, a] consists of
elements having all the same jump.

Proof. Suppose that a is a nonzero nonbounding e-degree, and there exists 0e < b ≤ a, such
that b′ 6= a′: then a′ � b′. By Corollary 13, there exists c ≤ a such that {b, c} is a minimal
pair, so a is bounding, contrary to the assumptions. 2

5. Conclusion

Kalimullin pairs have turned out to be a powerful tool for obtaining simple and elegant
proofs of nontrivial strucural properties and definability results in the structure of the e-
degrees. A clear evidence for this is the proof of the existence of a nontrivial initial segment
whose nonzero elements are high e-degrees, given in Corollary 7. Although there are already
several papers investigating K-pairs, in our opinion, the full potential of the Kalimullin pairs
has not yet been achieved. Indeed, the results obtained so far suggest that K-pairs might
be used in order to define in Ge the high e-degrees, the ∆0

2 e-degrees and the images of the
c.e. Turing degrees under the standard embedding of the Turing degrees in De. The last class
mentioned is the most likely to be definable in Ge, since it is definable in the global structure
of the e-degrees (Cai, Ganchev, Lempp, Miller and Soskova [3]). We strongly encourage the
researchers interested in Turing and enumeration reducibility to study thoroughly Kalimullin
pairs and to introduce them in their toolbox.
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