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CLASSIFICATION THEORY FOR ACCESSIBLE

CATEGORIES

M. LIEBERMAN AND J. ROSICKÝ∗

Abstract. We show that a number of results on abstract ele-
mentary classes (AECs) hold in accessible categories with concrete
directed colimits. In particular, we prove a generalization of a
recent result of Boney on tameness under a large cardinal assump-
tion. We also show that such categories support a robust version
of the Ehrenfeucht-Mostowski construction. This analysis has the
added benefit of producing a purely language-free characterization
of AECs, and highlights the precise role played by the coherence
axiom.

1. Introduction

Classical model theory studies structures using the tools of first order
logic. In an effort to develop classical results in more general logics,
Shelah introduced abstract elementary classes (AECs), a fundamen-
tally category-theoretic generalization of elementary classes, in which
logic and syntax are set aside and the relevant classes of structures are
axiomatized in terms of a family of strong embeddings (see [21]; [3] con-
tains the resulting theory). Accessible categories, on the other hand,
were first introduced by Makkai and Paré in response to the same fun-
damental problem: where earlier work in categorical logic had focused
on the structure of theories and their associated syntactic categories,
with models a secondary notion, accessible categories represented an
attempt to capture the essential common structure of the categories of
models themselves. Despite the affinity of these two ideas, it is only
recently that their connections have begun to be appreciated (see [7]
and [13]). In particular, AECs have been shown to be special acces-
sible categories with directed colimits (i.e. direct limits). We refine
this characterization further, axiomatizing AECs as special accessible
categories with concrete directed colimits; that is, we describe them as
pairs (K, U) where K is an accessible category with directed colimits,
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and U : K → Set is a faithful functor into the category of sets that
preserves directed colimits. For such a pair to be an AEC, it must also
satisfy three additional conditions: all morphisms must be monomor-
phisms, the category must have the property of coherence, and it must
be iso-full. The first condition can be obtained without loss of gener-
ality (see Remark 3.2). Coherence (sometimes known as the ”funny”
axiom for AECs) can, surprisingly, be formulated as a property of the
functor U (see Definition 3.1)—our analysis highlights areas in which
this hypothesis appears to be indispensable, and those in which it can
be set aside entirely. It is more complicated to formulate iso-fullness
as a property of U , but this can also be done: see Remark 3.5 below.
We wish to emphasize that Shelah’s Categoricity Conjecture, which

is the main test question for AECs, is a property of a category K
itself – one does not need U for its formulation. For a category theo-
rist, this question may appear artificial, but it can be reformulated as
an “injectivity property”: the Categoricity Conjecture is equivalent to
the assertion that any λ-saturated object is µ-saturated for all λ < µ

where λ-saturated means being injective with respect to morphisms
between λ-presentable objects (with λ and µ regular cardinals). This
can be quite easily proved assuming the presence of pushouts, which
is a very strong amalgamation property, never present in an AEC—
induced mappings from a putative pushout object will not generally
be monomorphisms, hence cannot be K-morphisms. Given the weaker
hypothesis of amalgamation, one instead relies on constructions in-
volving Galois types, including the element by element construction of
K-morphisms, which often forces one to assume coherence. Grossberg
and VanDieren [10] have succeeded in showing Shelah’s Categoricity
Conjecture for successor cardinals in tame AECs. Recently, Boney
[8] proved that, assuming the existence of a proper class of strongly
compact cardinals, every AEC is tame. In combination with [10], this
implies that, assuming the existence of a proper class of strongly com-
pact cardinals, Shelah’s Categoricity Conjecture in a successor cardinal
is true for AECs. We will introduce tameness for accessible categories
with concrete directed colimits and will show that, assuming the exis-
tence of a proper class of strongly compact cardinals, every accessible
category with concrete directed colimits is tame. In fact this general-
ization of Boney’s theorem follows from an old result of Makkai and
Paré ([15], 5.5.1) about accessible categories. In addition, we begin the
process of extending a fragment of stability theory from AECs to acces-
sible categories with concrete directed colimits, a process which leads
to several useful insights. First, we note that such categories admit
a robust EM-functor—the existence of such a functor in an abstract
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elementary class is one of many results that flow from Shelah’s Pre-
sentation Theorem, which involves both the assumption of coherence
and the reintroduction of language into the fundamentally syntax-free
world of AECs. This is an added benefit: the current study highlights
areas in which coherence can be dispensed with—the existence of EM-
models being a particularly noteworthy example—and those where it
appears to be essential—without coherence, arguments involving the
element-by-element construction of morphisms become problematic, if
not impossible.
On the one hand, this supports the contention that AECs strike

the appropriate balance between structure and generality, and are thus
ideally suited for the development of abstract classification theory. On
the other, it sheds light on the extent to which classification theory
can be developed in a more general (and more category-theoretically
natural) setting.
The authors wish to acknowledge the anonymous referee, whose feed-

back has led to noteworthy improvements in this paper. Thanks are
also due to John Baldwin, who provided valuable input at many stages
of the writing process.

2. Accessible categories with directed colimits

Accessible categories were introduced in [15] as categories closely con-
nected with categories of models of infinitary (Lκ,λ) theories. Roughly
speaking, an accessible category is one that is closed under certain di-
rected colimits, and whose objects can be built via certain directed
colimits of a set of small objects. To be precise, we say that a category
K is λ-accessible, λ a regular cardinal, if it closed under λ-directed col-
imits (i.e. colimits indexed by a λ-directed poset) and contains, up to
isomorphism, a set A of λ-presentable objects such that each object
of K is a λ-directed colimit of objects from A. Here λ-presentability
functions as a notion of size that makes sense in a general, i.e. non-
concrete, category: we say an object K is λ-presentable if its hom-
functor K(K,−) : K → Set preserves λ-directed colimits. Put another
way, K is λ-presentable if for any morphism f : K → M with M a λ-
directed colimit 〈φα : Mα → M〉, f factors essentially uniquely through
one of the Mα, i.e. f = φαfα for some fα : K → Mα. We typically
write finitely accessible and finitely presentable in place of ω-accessible
and ω-presentable, respectively: the category of groups, for example,
is finitely accessible and an object is finitely presentable if and only if
it is finitely presented in the usual sense. Detailed treatments of gen-
eral accessible categories can be found in [15] or [2]—we here develop
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the theory of accessible categories satisfying progressively stronger and
more recognizably model-theoretic conditions.
For each regular cardinal κ, an accessible category contains, up to

isomorphism, only a set of κ-presentable objects. Any object K of a λ-
accessible category is κ-presentable for some regular cardinal κ. Given
an object K, the smallest cardinal κ such that K is not κ-presentable
is called the presentability rank of K. This notion is particularly well
behaved in case the accessible category has all directed colimits, not
merely the λ-directed ones (see [7] 4.2):

Statement 2.1. If K has directed colimits then the presentability rank
κ of any object K is a successor cardinal, i.e. κ = |K|+. We say that
|K| is the size of K.

These sizes play a role analogous to that of the cardinalities of un-
derlying sets in AECs.
If λ < µ, then any λ-directed colimit is µ-directed, but a λ-accessible

category K need not be µ-accessible. For this one needs a finer relation,
λ E µ (see [2] 2.12). This technical issue disappears, however, if K has
all directed colimits: we can replace E with ≤ (see [7] 4.1). Moreover,
if a functor F : K → L between λ-accessible categories with directed
colimits preserves λ-directed colimits and λ-presentable objects then
F also preserves µ-presentable objects for all µ > λ. Without directed
colimits, we have this only if λ E µ.
The process of developing a fragment of model theory within acces-

sible categories began in [18]. Certain essential properties of AECs are
fundamentally diagrammatic, and are adopted without change. For
example, we say that an accessible category K satisfies the amalgama-
tion property if any pair of morphisms f : K → L, g : K → M can be
completed to a commutative diagram

L // N

K

f

OO

g
// M

OO

We say K satisfies the joint embedding property if for any two objects
K,L in K there is an object N with morphisms K → N and L → N .
More importantly, [18] introduces a number of essentially model-

theoretic notions and arguments, particularly those involving satura-
tion and weak stability. For a regular cardinal λ, an object K of a
category K is said to be λ-saturated if it is injective with respect to
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morphisms between λ-presentable objects. This means that for any
morphisms f : A → K and g : A → B where A and B are λ-presentable
there is a morphism h : B → K such that hg = f . In the category
of models of a (finitary) first-order theory and elementary embeddings,
this notion coincides with the usual one. In an abstract elementary
class, it coincides with λ-model homogeneity.
[18] also introduces weak λ-stability for accessible categories, which

forms the crux of the argument for the existence of monster objects—
large, highly saturated objects—in accessible categories with directed
colimits and amalgamation. We give the argument in some detail, as it
has not heretofore been developed in this generality. As in AECs, we
must assume the existence of arbitrarily large cardinals λ with λ<λ = λ,
which follows from either GCH or the existence of a proper class of
strongly inaccessible cardinals. As in discussions of monster models in
the AEC literature, too, we note that monster objects are used largely
as a convenient shorthand, and can typically be written out of proofs,
albeit at some cost in length and comprehensibility.
The central idea is that any accessible category with directed colim-

its and amalgamation is weakly stable in many cardinalities, and that
weak stability in sufficiently large cardinals guarantees the existence
of highly saturated objects. In particular, in any weakly µ-stable µ-
accessible category with directed colimits and the amalgamation prop-
erty, any µ+-presentable object admits a morphism to a µ+-presentable
µ-saturated object (see [18] Remark 4(2)). Crucially, Proposition 2 as-
serts that if K is a λ-accessible category and λ E µ is a regular cardinal
greater then the number of morphisms between λ-presentable objects
of K then K is weakly µ<µ-stable. If K has all directed limits, λ E µ

can be weakened to λ ≤ µ, and the two results would combine to give
a ready supply of monster objects. There is an important gap in that
proof of Proposition 2, however, which we now fill: as long as µ<µ = µ,
the argument goes through as written. Provided we assume that there
are a proper class of such cardinals, we have the promised abundance of
monsters. To be precise, after this correction, [18] yields the following

Statement 2.2. Let K be an accessible category with directed colimits
and the amalgamation property and assume that there are arbitrarily
large regular cardinals λ such that λ<λ = λ. Then there are arbitrarily
large regular cardinals λ such that any λ+-presentable object K admits
a morphism g : K → L to a λ+-presentable λ-saturated object L.
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In a λ-accessible category having directed colimits and the joint em-
bedding property, any two λ+-presentable λ-saturated objects are iso-
morphic (see [18] Theorem 2). The proof of this theorem yields the
following

Statement 2.3. Let K be a λ-accessible category with directed colim-
its and the joint embedding property and g1 : K1 → L, g2 : K2 → L be
morphisms from λ+-presentable objects to λ+-presentable λ-saturated
objects. Then any morphism f : K1 → K2 extends to an isomorphism
s : L → L such that sg1 = g2f .

Remark 2.4. The λ-saturated objects of size λ thus obtained are our
monster objects.

We say that a category is large if it is not equivalent to a small
category. For accessible categories, this entails that there exist objects
with arbitrarily large presentability ranks—much like, in the model-
theoretic context, the assumption of arbitrarily large models. For large
categories of models of Lκ,ω, downward Löwenheim-Skolem theorem
implies the existence of models of all sizes starting from some cardinal.
Motivated by this, [7] called a category K LS-accessible if it is an
accessible category for which there is a cardinal λ such that K has
objects of all sizes µ ≥ λ. Any LS-accessible category is large. The
smallest cardinal λ such that K is µ-accessible for all regular cardinals
µ ≥ λ and has objects of all sizes µ ≥ λ will be denoted λK.
Any large finitely accessible category is LS-accessible. This follows

from [15] 3.4.1 which shows that any large finitely accessible category
K admits an analogue of the Ehrenfeucht-Mostowski functor: a faithful
functor E : Lin → K preserving directed colimits, where Lin is the cat-
egory of linearly ordered sets and order preserving injective mappings.
In fact, following [7] 4.4, E preserves sizes starting from some cardi-
nal, thereby ensuring LS-accessibility. It is not known whether every
large accessible category with directed colimits admits an EM-functor
(and is consequently LS-accessible), although [7] contains a couple of
results in this direction. We give another partial result here, proving
that this is true if, as in AECs, the morphisms in K are assumed to be
monomorphisms. To begin:

Proposition 2.5. Let K be an accessible category with directed colimits
whose morphisms are monomorphisms. Then there is a faithful functor
F : L → K preserving directed colimits with L finitely accessible.

Proof. Let K be a λ-accessible category with directed colimits and C be
its representative full subcategory consisting of λ-presentable objects;
this means that any λ-presentable object ofK is isomorphic with C ∈ C.
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Let L be a free completion of C under directed colimits. Then L is
finitely accessible (see [2] 2.26) and, since K has directed colimits, there
is a functor F : Ind(C) → K preserving directed colimits. It suffices to
show that F is faithful. Consider two distinct morphisms f, g : K → L

in K. Then there are morphisms f ′, g′ : A → B in C and morphisms
u : A → K, v : B → L such that fu = vf ′ and gu = vg′. Since F

is faithful on C (because it is the identity on C), Ff ′, F g′ are distinct.
Since Fv is a monomorphism, Ff, Fg are distinct. �

Remark 2.6. Any finitely accessible category L is Lκ,ω-axiomatizable
and the functor F is surjective on objects. Consequently, Proposition
2.5 may be regarded as an analogue of Shelah’s Presentation Theorem
for AECs: omitting types can be expressed in Lκ,ω, and the reduct
involved in the Presentation Theorem is surjective on models in the
AEC.

Corollary 2.7. Any large accessible category with directed colimits
whose morphisms are monomorphisms is LS-accessible.

Proof. If K is a large accessible category with directed colimits whose
morphisms are monomorphisms then L in 2.5 is large as well. Following
[15], 3.4.1, there is a faithful functor E : Lin → L preserving directed
colimits. The composition FE : Lin → K is faithful and preserves
directed colimits. Following [7], 4.4, FE preserves sizes starting from
some cardinal. Thus K is LS-accessible. �

Remark 2.8. This yields the promised EM-functor: given any accessi-
ble category with directed colimits K whose morphisms are monomor-
phisms, there is a faithful functor from Lin to K that preserves directed
colimits and sufficiently large sizes. Note that the proof of its existence
relies neither on coherence nor on the Presentation Theorem, in con-
trast to AECs.

3. Accessible categories with concrete directed colimits

We now begin to add the structure necessary to develop a mean-
ingful classification theory for accessible categories, beginning with the
essential step of systematically associating sets with the objects of our
categories. In particular, we say that (K, U) is an accessible category
with concrete directed colimits if K is an accessible category with di-
rected colimits and U : K → Set is a faithful functor to the category
of sets preserving directed colimits.
Any large accessible category with concrete directed colimits is LS-

accessible (see [7] 4.12). While one would not go far wrong in thinking
of UK as the “underlying set” of an object K, it is important to note
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that the size of K in K, as defined in Statement 2.1, need not corre-
spond to the cardinality of UK. That is, sizes need not be preserved by
U . If, however, U reflects split epimorphisms—whenever U(f)g = id
then fg′ = id for some g′—it does in fact preserve sizes starting from
some cardinal (see [7] 4.3 and 3.7). The smallest cardinal λ ≥ λK with
this property will be denoted by λU . This means that K has objects of
all sizes µ ≥ λU and these sizes are equal to cardinalities of underlying
sets.
There is a more familiar condition that will achieve the same effect:

it suffices to assume (K, U) satisfies a generalization of the coherence
axiom for AECs.

Definition 3.1. Let (K, U) be an accessible category with concrete
directed colimits. We say that K is coherent if for each commutative
triangle

UA
U(h)

//

f
""❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉ UC

UB

U(g)

<<③③③③③③③③③③③③

there is f : A → B in K such that U(f) = f .

If all morphisms in K are monomorphisms, U reflects split epimor-
phisms if and only if it is conservative, i.e. if it reflects isomorphisms
([7] 3.5). Coherence is a much stronger condition—if we are concerned
only with the preservation of sizes, we can get away with less.
Without any loss of generality, we can pass from accessible categories

with concrete directed colimits to accessible categories with concrete
directed colimits whose morphisms are concrete monomorphisms, i.e.
monomorphisms preserved by U .

Remark 3.2. (1) Let (K, U) be an accessible category with concrete
directed colimits. Consider a pullback

K
U // Set

K0

G

OO

U0

// Emb(Set)

OO

where Emb(Set) is the category of sets and monomorphisms. Then
(K0, U0) is an accessible category with concrete directed colimits (see
[15] 5.1.6 and 5.1.1) whose morphisms are monomorphisms preserved
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by U0. The functor G is faithful and preserves directed colimits. More-
over, (K0, U0) is coherent provided that (K, U) is coherent. Thus, for
(K, U) coherent, G preserves presentability ranks starting from some
cardinal.
(2) If K is large then K0 is large as well and, following 2.8, there is

an EM-functor E : Lin → K0. The composition GE is the EM-functor
for K.

Remark 3.3. Assume that there are arbitrarily large regular cardinals
λ such that λ<λ = λ. Let (K, U) be a large accessible category with con-
crete directed colimits, the amalgamation property and the joint em-
bedding property and whose morphisms are concrete monomorphisms.
Let K be a λ-saturated λ+-presentable object with λU ≤ λ. We will
show that |K| = λ. Thus, following 2.2, K contains arbitraily large
saturated objects.
Let A be an object of size λ. Then A is a colimit of a smooth chain

of cardinality λ consisting of λ-presentable objects (see [19], Lemma
1). Since K is λ-saturated, there is a morphism h : A → K. Since h is
a concrete monomorphism, we have

|K| = |UK| ≥ |UA| = |A| = λ.

Thus |K| = λ.

Lemma 3.4. Any abstract elementary class is a coherent accessible
category with concrete directed colimits.

Proof. Let K be an abstract elementary class. Then there is a finitary
signature Σ such that K is a subcategory of the category Emb(Σ) of Σ-
structures whose morphisms are substructure embeddings. Moreover,
the inclusion K → Emb(Σ) preserves directed colimits and, whenever
fg and f are morphisms in K then g is a morphism in K. Since the
forgetful functor U : Emb(Σ) → Set is coherent and preserves directed
colimits, its restriction to K has the same properties. �

The precise relationship between AECs and accessible categories was
clarified in [13] and [7]. Recall that an accessible category with directed
colimits whose morphisms are monomorphisms is equivalent to an ab-
stract elementary class if and only if it admits a coherent iso-full em-
bedding into a finitely accessible category preserving directed colimits
and monomorphisms ([7])—roughly speaking, an ambient category of
structures. We will improve on this characterization by giving an en-
tirely language-independent description of AECs, axiomatized entirely
in terms of properties of K and U : K → Set. Among other things,
this shows that a coherent accessible category with concrete directed
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colimits whose morphisms are monomorphisms preserved by U is very
close to being an abstract elementary class.
To achieve this, we note that U : K → Set itself determines a

canonical signature ΣK for working with (K, U):

Remark 3.5. Let (K, U) be a λ-accessible category with concrete di-
rected colimits whose morphisms are monomorphisms preserved by U .
For a finite cardinal n we denote by Un the functor

Set(n, U(−)) : K → Set .

Directed colimits preserving subfunctors of Un will be called finitary
relation symbols interpretable in K and natural transformations h :
Un → U will be called finitary function symbols interpretable in K (cf.
[17]). Since they are both determined by their restrictions to the full
subcategory Kλ of K consisting of λ-presentable objects, there is only
a set of such symbols. They form the signature ΣK, which we call the
canonical signature of K. We get a canonical functor G : K → Str(ΣK)
into ΣK-structures where morphisms are homomorphisms.
Given a bijection f : UA → UB, we get bijections fn : (UA)n →

(UB)n. Assume that R(f) is a bijection for each R and hBf
n = fhA

for each h above. This means that f : GA → GB is an isomorphism.
We say that K is iso-full if f = U(f) for each such f .
There is a largest subsignature Σ0 of ΣK such that the induced func-

tor G0 : K → Str(Σ0) has image in Emb(Σ0) (because this property
is closed under union of subsignatures and is satisfied by the empty
signature). Now, (K, U) is an abstract elementary class if and only if
G0 is iso-full.

Remark 3.6. (1) If (K, U) is an abstract elementary class then λU is
its Löwenheim-Skolem number.
(2) We say that an accessible category (K, U) with concrete directed

colimits is finitely coherent if for each f : UA → UB with the property
that for any finite set X and any mapping a : X → UA there are
h : B → C and g : A → C with U(h)fa = U(g)a, f carries a K-
morphism, i.e., f = U(f) for some f : A → B.
Any finitely coherent accessible category with concrete directed col-

imits is coherent. We now show that an abstract elementary class with
the amalgamation property is finitary in the sense of [11] if and only if
the corresponding (K, U) is finitely coherent.
Let K be finitary and consider f : UA → UB such that for any

finite set X and any mapping a : X → UA there are h : B → C

and g : A → C with U(h)fa = U(g)a. Then f carries a K-morphism
and thus (K, U) is finitely coherent. Conversely, let (K, U) be finitely
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coherent. Then K is finitary in the sense of [14], which is equivalent,
assuming the amalgamation property, to being finitary in the sense of
[11].

4. Galois types

Galois types were introduced for AECs by Shelah (cf. [8]) and his
definition can be translated directly into the framework of accessible
categories with concrete directed colimits.

Definition 4.1. Let (K, U) be an accessible category with concrete
directed colimits. A type is a pair (f, a) where f : M → N and
a ∈ UN .
The types (f0, a0) and (f1, a1) are called equivalent if there are mor-

phisms h0 : N0 → N and h1 : N1 → N such that h0f0 = h1f1 and
U(h0)(a0) = U(h1)(a1).

Assuming the amalgamation property we get an equivalence relation.
As in AECs, the resulting equivalence classes are called Galois types. In
the remainder of the paper, we make the following blanket assumption:

Assumption 4.2. All categories satisfy the amalgamation and joint
embedding properties.

In many of the results that follow, beginning with the following
lemma, we invoke the existence of a monster objects in our category.
In each case, we clearly indicate the large cardinal assumption required
to ensure their existence: per Remark 2.4, it suffices to assume there
is a proper class of cardinals λ with λ<λ = λ.

Lemma 4.3. Suppose there is a proper class of cardinals λ with λ<λ =
λ. Let (K, U) be an accessible category with concrete directed colimits.
Then types (f0, a0) and (f1, a1) are equivalent if and only if there is
a λ-saturated, λ+-presentable object L (for some regular cardinal λ),
morphisms g0 : N0 → L, g1 : N1 → L and an isomorphism s : L → L

such that sg0f0 = g1f1 and U(sg0)(a0) = U(g1)(a1).

Proof. Sufficiency is evident because sg0, g1 provide h0, h1. Assume
that the types are equivalent via h0 : N0 → N and h1 : N1 → N .
There is a regular cardinal λ such that K is λ-accessible, weakly λ-
stable andM,N0, N1, N are λ-presentable. Following 2.2 and 2.3, there
is a λ-saturated and λ+-presentable object L equipped with morphisms
g0 : N0 → L, g1 : N1 → L and g : N → L and isomorphisms s0, s1 :
L → L such that g0f0 = g1f1, s0g0 = gh0 and s1g1 = gh1. Then
U(s0g0)(a0) = U(s1g1)(a1) and thus U(s−1

1 s0g0)(a0) = U(g1)(a1). �
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Remark 4.4. In fact, in the situation of 3.4, s exists for any given g0
and g1.

5. Tameness

Like Galois types, tameness can be easily redefined in the framework
of accessible categories with concrete directed colimits.

Definition 5.1. Let (K, U) be an accessible category with concrete
directed colimits and κ a regular cardinal. We say that K is κ-tame
if for two non-equivalent types (f, a) and (g, b) there is a morphism
h : X → M with X κ-presentable such that the types (fh, a) and
(gh, b) are not equivalent.
K is called tame if it is κ-tame for some regular cardinal κ.

Recall that a cardinal κ is called strongly compact if, for any set S,
every κ-complete filter over S can be extended to a κ-complete ultra-
filter over S (see [12]). In what follows (C) will denote the existence of
a proper class of strongly compact cardinals.

Theorem 5.2. Assuming (C), any accessible category with concrete
directed colimits is tame.

Proof. Let K be an accessible category with concrete directed col-
imits and let L2 be the category of quadruples (f0, f1, a0, a1) where
f0 : M → N0, f1 : M → N1, a0 ∈ UN0 and a1 ∈ U(N1). Let L1

be the category of configurations (f0, f1, a0, a1, h0, h1) from 4.1. Then
both L1,L2 are accessible and the forgetful functor G : L1 → L2 is
accessible as well. It is easy to see that the full image of G is a sieve,
i.e., for a morphism (u, v) : (g0, g1) → (f0, f1) with (f0, f1) ∈ G(L1) we
have (g0, g1) ∈ G(L1). Following [15] 5.5.1, the full image of G is κ-
accessible and closed under κ-directed colimits in L2 for some strongly
compact cardinal κ. We will show that K is κ-tame.
Consider (f0, f1, a0, a1) such that the types (f0, u, a0) and (f1u, a1)

are equivalent for any u : X → M , X κ-presentable. Thus all quadrup-
les (f0u, f1u, a0, a1) belong to the full image ofG and, since (f0, f1, a0, a1)
is their κ-filtered colimit, it belongs to this full image as well. Thus the
types (f0, a0) and (f1, a1) are equivalent. Hence K is κ-tame. �

As a consequence, we get the main result of [8].

Corollary 5.3. Assuming (C), any AEC is tame.

As noted in [5] and [8], the sensitivity of Theorem 5.2 and Corol-
lary 5.3 to set theory is genuine: assuming V = L, the AEC of exact
sequences constructed in Section 2 of [5] is not tame.
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6. Saturation

Definition 6.1. Let (K, U) be an accessible category with concrete
directed colimits. We say that a type (f, a) where f : M → N is
realized in K if there is a morphism g : M → K and b ∈ U(K) such
that (f, a) and (g, b) are equivalent.
Let λ be a regular cardinal. We say that K is λ-Galois saturated

if for any g : M → K where M is λ-presentable and any type (f, a)
where f : M → N there is b ∈ U(K) such that (f, a) and (g, b) are
equivalent.

In AECs with amalgamation, of course, this corresponds to the
usual definition. In that case, λ-Galois saturation is equivalent to λ-
model homogeneity or, in the language of [18] and Section 2 above,
λ-saturation. This equivalence also holds in our more general context,
by an argument thinly generalizing that of [8]:

Proposition 6.2. Suppose there is a proper class of cardinals λ with
λ<λ = λ. Let (K, U) be a coherent large accessible category with con-
crete directed colimits whose morphisms are concrete monomorphisms
and let λ be a sufficiently large regular cardinal. Then K is λ-Galois
saturated if and only if it is λ-saturated.

Proof. Let K be λ-saturated and consider g : M → K with M λ-pre-
sentable. Consider (f, a) where f : M → N . There is a λ-presen-
table object N0 and a factorization of f over f0 : M → N0 such that
a ∈ U(N0). The types (f, a) and (f0, a) are equivalent. Since K is λ-
saturated, there is a morphism g0 : N0 → K such that g0f0 = g. Then
the types (f0, a) and (g, U(g0)(a)) are equivalent. Thus K is λ-Galois
saturated.
Conversely, let K be λ-Galois saturated, h : M → N be a morphism

between λ-presentable objects and f : M → K a morphism. Following
2.2, there is a cardinal µ such that M , N and K are µ+-presentable and
equipped with morphisms g1 : N → L and g2 : K → L to a µ-saturated
µ+-presentable object L. We proceed, roughly speaking, as in the proof
of Theorem 8.14 in [3]: enumerate U(N) \ U(h)(U(M)) = 〈ai | i < α〉,
where α < λ. We construct, inductively:
1. a smooth chain (mij : Mi → Mj)i≤j≤α of λ-presentable objects Mi

with M0 = M and morphisms fi : Mi → K, ui : Mi → L for i ≤ α

such that f0 = f , fjmij = fi, u0 = g1h and ujmij = ui for i ≤ j ≤ α,
and
2. mappings ti : U(h)(U(M)) ∪ {ak|k < i} → U(Mi) for i ≤ α such
that t0 = h−1 restricted to U(h)(UM), tiU(h) = U(m0i), tjU(mij) = ti
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and U(ui)ti = U(g1) for i ≤ j ≤ α (in the last equation, U(g1) is
restricted to the domain of ti).
Suppose we have constructed Mi, fi and ti. Consider the type

(ui, U(g1)(ai)).

Since K is λ-Galois saturated, there is b ∈ U(K) such that this ty-
pe is equivalent to (fi, b). Following 4.3, there is an isomorphism s :
L → L such that sg2fi = ui and U(sg2)(b) = U(g1)(ai). There is a
λ-presentable object Mi+1, an element c ∈ U(Mi+1) and morphisms
mi,i+1 : Mi → Mi+1, fi+1 : Mi+1 → K such that U(fi+1)(c) = b and
fi+1mi,i+1 = fi. Put ui+1 = sg2fi+1. Then

ui+1mi,i+1 = sg2fi+1mi,i+1 = sg2fi = ui.

Let ti+1U(mi,i+1) = ti and t(ai) = c. Then tiU(h) = U(m0i) and, since

U(ui+1)(c) = U(sg2fi+1)(c) = U(sg2)(b) = u(g1)(ai),

we have U(ui+1)ti+1 = U(g1). In limit steps we take colimits.
Since U(uα)tα = U(g1) and (K, U) is coherent, tα = U(tα) for tα :

N → Mα. Since fαtαh = fαm0α = f , K is λ-saturated.
�

We note that coherence of (K, U) appears to be indispensable in the
“only if” portion of this proof. As in the proof of the equivalence of
Galois saturation and model homogeneity in [3], or in the more straight-
forwardly category-theoretic proof of that fact in [9], coherence is the
only guarantee that the newly-constructed map of underlying sets, tα,
is a K-morphism. This is true more broadly: when attempting to build
a K-morphism element by element, it seems that one must, as a rule,
assume coherence to guarantee success.
This is significant, given the essential role played by the analogue of

6.2 in AECs. The equivalence of Galois-saturated and model-homoge-
neous models leads to uniqueness of Galois-saturated models in each
cardinality, a result which features heavily in the existing categoricity
transfer results for AECs.

7. Stability

We have now observed that in any accessible category K with con-
crete directed colimits, it is possible to make sense of Galois types,
hence we may also speak meaningfully of Galois stability, which, again,
we define in the obvious way:

Definition 7.1. Let (K, U) be an accessible category with concrete
directed colimits. We say that an object M in K is µ-Galois stable if
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for any µ-presentable object M0 and morphism M0 → M , there are
fewer than µ types over M0 realized in M . We say that K itself is
µ-Galois stable if every M in K is µ-Galois stable.

Remark 7.2. We can reformulate this definition by saying that for any
object M0 of size µ and a morphism M0 → M , there are ≤ µ types over
M0 realized in M . If morphisms of K are concrete monomorphisms and
a, b ∈ UM0 are distinct elements then the types (idM0

, a) and (idM0
, b)

are not equivalent. Since they are realized in M , there are µ types over
M0 realized in M . Thus our definition coincides with that for abstract
elementary classes.

Having generalized to a large accessible category with concrete di-
rected colimits (K, U), it is rather surprising that one can develop a
nontrivial stability theory. This is thanks in large part to the exis-
tence even in this context of an Ehrenfeucht-Mostowski functor, E :
Lin → K, which is faithful, preserves directed colimits and, moreover,
preserves sizes for sufficiently large λ (see Remark 2.8). We denote by
λE the cardinal at which E begins preserving sizes.
Following the argument in [4], which first isolated specific applica-

tions of EM-models to stability-theoretic issues in AECs, we are able
to prove the following test result. Following [18], we define:

Definition 7.3. Let λ be an infinite cardinal. We say that an acces-
sible category K with directed colimits is λ-categorical if it has, up to
isomorphism, precisely one object size λ.

Theorem 7.4. Suppose there is a proper class of cardinals λ with
λ<λ = λ. Let (K, U) be a large accessible category with concrete directed
colimits such that U reflects split epimorphisms. If K is λ-categorical,
then K is µ-Galois stable for all λE + λU ≤ µ ≤ λ.

We proceed by way of two definitions and a handful of minor lemmas.

Definition 7.5. Given a compositionM0 → M̄ → M , we say that M̄ is
µ-universal over M0 in M if for any other factorization M0 → N → M

with N µ-presentable, N maps in M̄ over M0, i.e. there is a morphism
N → M̄ so that the left half of the following diagram commutes:

M0
//

!!❇
❇❇

❇❇
❇❇

❇
M̄ // M

N

OO✤
✤

✤

>>⑥⑥⑥⑥⑥⑥⑥⑥

Definition 7.6. We say that an object M of size λ is brimful if for
any µ ≤ λ and µ-presentable M0, any morphism M0 → M factors as
M0 → M̄ → M where M̄ is µ-universal over M0 in M .
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We note that this is the notion from [3]—only subtly different from
the brimmed models in [20].

Proposition 7.7. If a linear order I is brimful, so is E(I).

Proof. Let M = E(I), with I brimful. Say M0 is µ-presentable, with
λE ≤ µ < λ and a morphism a : M0 → M . Since Lin is finitely
accessible, it is accessible in every regular cardinal, including µ. This
means that I can be expressed as a µ-directed colimit of µ-presentable
objects, I = colimα∈D Iα. Since µ ≥ λE , E preserves both directed
colimits and presentability ranks, meaning that M = colimα∈D Mα,
with Mα = E(Iα) µ-presentable for all α ∈ D.

The map M0 → M factors through some Mα = E(Iα), say as M0
a1→

Mα
a2→ M . As I is brimful, there is a µ-presentable extension Ī of Iα

contained in I that is µ-universal over Iα in I among linear orders.
This gives an induced factorization:

M0
a //

a1 ""❋
❋❋

❋❋
❋❋

❋
M

E(Iα)
j

// E(Ī)

k

==③③③③③③③③

Set M̄ = E(Ī). It suffices to show that M̄ is µ-universal over Mα in

M . Let M0
b1→ N

b2→ M be a factorization of M0
a
→ M with N µ-

presentable. Let β ∈ D be such that β > α and the map N
b2→ M

factors through Mβ = E(Iβ), say as N
g
→ Mβ

h
→ M . As I is brimful,

there is an embedding Iβ of Ī over Iα, i.e. so that the following diagram
commutes, as, of course, does the induced triangle in K:

Iα //

��❃
❃❃

❃❃
❃❃

❃
Ī E(Iα)

j //

f ##❍
❍❍

❍❍
❍❍

❍❍
E(Ī)

Iβ

AA✂✂✂✂✂✂✂✂
E(Iβ)

i

;;✇✇✇✇✇✇✇✇✇
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The result is the following diagram, all triangles of which commute:

M0
a //

a1 ((◗◗
◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

b1

��✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯
✯

M

E(Iα)

f ##❍
❍❍

❍❍
❍❍

❍❍ j
//

a2

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢
E(Ī) = M̄

k

::tttttttttt

E(Iβ)

i

99rrrrrrrrrr h

FF

N

g

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦ b2

HH

It is an exercise in diagram chasing to show that, given b2 ◦ b1 = a, i◦ g
is the desired embedding of N into M̄ over M0. �

Lemma 7.8. If K is λ-categorical, the unique object M of size λ is
µ-Galois stable for all λE + λU ≤ µ < λ+.

Proof. Take I = λ<ω, which is brimful as a linear order by Claim 4.4
in [4]. Consequently, the object E(I) is brimful in K. Given that it
has size λ (as E preserves sizes for λ ≥ λE), we may take M = E(I).
Take M0 µ-presentable, and f : M0 → M a morphism. Since M is

brimful, we may factor f as M0
f1
→ M̄

f2
→ M , with M̄ µ-presentable

and µ-universal over M0.
Any type realized over M0 in M will be of the form (f, a), with

a ∈ U(M). In fact, we may factor f as M0
g1
→ M1

g2
→ M with M1

µ-presentable and b ∈ U(M1) such that U(g2)(b) = a. Hence there is a
morphism h : M1 → M̄ such that hg1 = f1. This morphism, and the
pair (f1, Uh(b)), witness that our type is realized in M̄ . Since µ > λU ,
U(M̄) contains fewer than µ elements. So, in fact, there are fewer than

µ types realized in M̄ over the subobject M0
f1
→ M̄ . We have shown

that every type over M0
f
→ M in M is equivalent to one of this form:

the result follows. �

We are now in a position to prove Theorem 7.4:

Proof. Suppose that K is not µ-stable for some λE + λU ≤ µ < λ+.
Then there is a µ-presentable M0 and f : M0 → N so that there are
at least µ types realized in N via f , say {(f, aα) |α < µ}. Since λK ≤
λU ≤ µ, K is µ+-accessible. Consequently, f factors through a µ+-
presentable object M1 with the additional property that aα ∈ U(M1)
for all α < µ. In this way, we have produced a µ+-presentable model
M1 that is not µ-stable. By the joint embedding property, there is an
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object K in K and morphisms u : M1 → K and v : M → K. Since K is
µ+-accessible, K is µ+-directed colimit of µ+-presentable objects, i.e.
objects of size µ. All these objects are isomorphic to M and, because
M1 is µ+-presentable, u factors through one of those objects. Thus M
is not µ-stable, which contradicts Lemma 7.8. �

Corollary 7.9. Suppose there is a proper class of cardinals λ with
λ<λ = λ. Let K be a coherent large accessible category with concrete
directed colimits whose morphisms are concrete monomorphisms. Let
K be λ-categorical for a regular cardinal λ ≥ λU +λE. Then the unique
M of size λ is saturated.

Proof. Fixing M0 µ-presentable with µ < λ+ and a morphism of M0

into the monster object L, we build a smooth chain of length λ of
models Mα, where each models realizes all Galois types over its prede-
cessor. The colimit Mλ of this chain is λ+-presentable and is λ-Galois
saturated. Following 6.2, Mλ is λ-saturated and, following 3.3, Mλ has
size λ. Thus M ∼= Mλ is saturated. �

In fact, this argument gives saturated models in all regular cardinals
µ < λ+ with µ ≥ λU + λE. It also yields the following.

Remark 7.10. Suppose there is a proper class of cardinals λ with
λ<λ = λ. Let K be a coherent large accessible category with concrete
directed colimits, whose morphisms are concrete monomorphisms.
(1) Let K be λ-Galois stable for a regular cardinal λ ≥ λU + λE.

Then K has a saturated object of size λ.
(2) Let λ ≥ λU +λE be a regular cardinal. Then K is λ-categorical if

and only if every object of K of size ≥ λ is λ-saturated. From the proof
of theorem 7.3 we know that any object of size ≥ λ is a λ+-directed
colimit of objects of size λ. Since a λ+-directed colimit of λ-saturated
objects is λ-saturated, Corollary 7.8 implies that all objects of size
≥ λ are λ-saturated provided that K is λ-categorical. Conversely, if all
objects of size ≥ λ are λ-saturated, all objects of size λ are saturated
and thus isomorphic. Since K has an object of size λ, it is λ-categorical.
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