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EXPANSIONS OF THE ORDERED ADDITIVE GROUP OF REAL

NUMBERS BY TWO DISCRETE SUBGROUPS

PHILIPP HIERONYMI

Abstract. The theory of (R, <,+,Z,Za) is decidable if a is quadratic. If a is
the golden ratio, (R, <,+,Z,Za) defines multiplication by a. The results are

established by using the Ostrowski numeration system based on the continued
fraction expansion of a to define the above structures in monadic second order
logic of one successor. The converse that (R, <,+,Z,Za) defines monadic
second order logic of one successor, will also be established.

1. Introduction

Let a ∈ R. We consider the following structure Ra := (R, <,+,Z,Za). Although
it is well known that (R, <,+,Z) has a decidable theory and other desirable model
theoretic properties (arguably due to Skolem [13]1 and later rediscovered indepen-
dently by Weispfenning [16] and Miller [10]), the question whether the theory of
Ra is decidable even for some irrational number a has been open for a long time.
The interest in these structures arises among other things from the observation that
the structure Ra codes many of the Diophantine properties of a. This observation
will play a key role throughout this paper. The following is the main result of this
paper.

Theorem A. If a is quadratic, then the theory of Ra is decidable.

A real number is called quadratic if it is the solution to a quadratic equation
with rational coefficients. Theorem A provides the first example of an irrational
number a such that the theory of Ra is decidable. Its proof depends crucially on
the periodicity of the continued fraction expansion of a. When a is non-quadratic,
the conclusion of Theorem A can fail. It will be shown that whenever the continued
fraction expansion of a is non-computable, then the theory of Ra is undecidable.
It is also worth noting that while the theory of Ra can be decidable, its expansion
(R, <,+,Z,Za,Zb) defines multiplication on R and hence its theory is undecidable
as along as 1, a, b ∈ R are linearly independent over Q, by Hieronymi and Ty-
chonievich [8, Theorem C].

Now consider the structure Sa := (R, <,+,Z, λa), where λa : R → R maps x to
ax. Note that Sa is an expansion of Ra, since λa(Z) = aZ. There are more results
known about these structures than about Ra. If a is not a quadratic real number,
Sa defines multiplication on R and hence its theory is undecidable by [8, Theorem
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1Skolem essentially showed elimination of quantifiers ranging over elements of Z. Full quantifier

elimination follows easily as pointed out by Smornyński [14, Exercise III.4.15].
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B]. However until now there was no known example of an irrational number a such
that the theory of Sa is decidable. The following Theorem gives the first example
of such a real number.

Theorem B. Let ϕ := 1+
√
5

2 be the golden ratio. Then Rϕ defines λϕ and hence
the theory of Sϕ is decidable.

Definable here and throughout the paper will always mean definable without
parameters. In order to establish Theorem A, we will show that for a quadratic,
Ra is definable in monadic second order logic of one successor. To make this
statement precise, consider the two-sorted structure B := (N,P(N), sN,∈), where
sN is the successor function on N and ∈ is the relation on N × P(N) such that
∈ (t,X) iff t ∈ X . The structure B was studied by Büchi in his seminal paper [4].
Using the theory of automata Büchi proved that the theory of B is decidable and
established what would today be called a quantifier elimination result. Theorem A
will follow immediately from the decidability of the theory of B and the following
result.

Theorem C. Let a ∈ R be quadratic. Then B defines an isomorphic copy of Ra.

A structure that is isomorphic to a definable structure in B is sometimes called
Büchi presentable. While Theorem C shows that Ra is at most as complicated as
B for quadratic a, we will also establish the converse.

Theorem D. Let a ∈ R be irrational. Then Ra defines an isomorphic copy of B.

One can show that (R, <,+,Z) does not define an isomorphic copy of B and
is significantly less complicated than B. Hence Theorem D shows that while the
theory of Ra can be decidable, Ra is not as well-behaved as (R, <,+,Z).

To prove Theorems C and D, we will rely on results from the theory of Diophan-
tine approximation. The key tool to construct the isomorphic copies in Theorem
C and D will be the Ostrowski representations of both natural numbers and real
numbers due to Ostrowski [11]. These representations originating in the theory
of Diophantine approximation are based on the continued fraction expansion of a.
The reason why the construction in Theorem C works for quadratic numbers and
not for others, is that a real number a has a periodic continued fraction expansion
if and only if a is quadratic.

This is not the first time that Büchi’s Theorem is used to understand expansions
of the ordered real additive group. As mentioned by Boigelot, Rassart and Wolper
in [3], Büchi himself must have known that the the structure (R, <,+,Z) is defin-
able in B and hence that its theory is decidable. Also in [3], Büchi’s Theorem is
used to show that the theory of the expansion of (R, <,+,Z) by a ternary predicate
Vr(x, u, k) that holds iff u is a positive integer power of r, k ∈ {0, . . . , r − 1} and
the digit of the base-r representation of x in the position corresponding to u is k,
is decidable. In some sense, their use of base-r representations will be replaced in
this paper by the Ostrowski representations.

The results of the paper should not only be of theoretical importance. The decid-
ability of the theory (R, <,+,Z) has been used in verification and model checking,
since mixed real-integers constraints appear naturally there. Hence the results of
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this paper should be relevant in this area, if only by showing that there are inter-
esting expansions of (R, <,+,Z) whose theory is decidable.

Acknowledgements. I would like to thank Chris Miller for bringing these ques-
tions to my attention several years ago, Lou van den Dries for comments on an
early version of this paper and Christiane Frougny for pointing out references. I
am grateful to the anonymous referee for closely reading the paper and helpful
comments that improved the presentation of this paper.

Notation. We denote {0, 1, 2, . . .} by N. Throughout this paper definable will
mean definable without parameters.

2. Diophantine approximations

In this section we will recall some definitions and results from the study of
Diophantine approximations. For more details and proofs, see Rockett and Szüsz
[12].

Definition 2.1. A fraction p/q ∈ Q is a best rational approximation of a real

number a if for every fraction p′

q′
with 1 ≤ q′ ≤ q and p/q 6= p′/q′

|q′a− p′| > |qa− p|

Note that using |a − p/q| instead of |qa − p| changes the definition. For that
reason the approximations in previous definition are sometimes called best rational
approximation of the second kind.

Definition 2.2. A continued fraction expansion [a0; a1, . . . , ak, . . . ] is an ex-
pression of the form

a0 +
1

a1 +
1

a2+
1

a3+ 1

. . .
For a real number a, we say [a0; a1, . . . , ak, . . . ] is the continued fraction expan-

sion of a if a = [a0; a1, . . . , ak, · · · ] and a0 ∈ Z, ai ∈ N>0 for i > 0.

It is well known that every real number has a unique continued fraction expansion.
For the rest of this section, fix a real number a with continued fraction expansion
[a0; a1, . . . , ak, . . . ].

Fact 2.3. [12, Chapter III.1 Theorem 1 and 2] The continued fraction expansion
of a is periodic iff a is a quadratic irrational.

Definition 2.4. Let k ≥ 1. We define pk/qk ∈ Q to be the k-th convergent of

a, that is
pk
qk

= [a0; a1, . . . , ak].

The k-th difference of a is defined as βk := qka− pk.
We define ζk ∈ R to be the k-th complete quotient of a, that is

ζk = [ak; ak+1, ak+2, . . . ].

It is worth pointing out that for k > 0, ζk > 1, since ak is positive.

Fact 2.5. [12, Chapter II.2 Theorem 2] The set of best rational approximations of
a is precisely the set of all convergents of a.
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Fact 2.6. [12, Chapter I.1 p. 2] Let q−1 := 0 and p−1 := 1. Then q0 = 1, p0 = a0
and for k ≥ 0,

qk+1 = ak+1 · qk + qk−1,

pk+1 = ak+1 · pk + pk−1.

It follows immediately that for k ≥ 0, βk+1 = ak+1βk + βk−1.

Fact 2.7. [12, Chapter I.4 p. 9] Let k ∈ N>0. Then

βk+1 = −
βk
ζk+2

.

Since ζk > 1, the absolute value of βk decreases with k.

Fact 2.8. [12, Chapter II.4 p. 24] Let N ∈ N. Then N can be written uniquely as

N =

n
∑

k=0

bk+1qk,

where bk ∈ N such that b1 < a1, bk ≤ ak and, if bk = ak, bk−1 = 0.

The representation in the previous fact is called the Ostrowski representation

of N based on a. This representation will play a crucial role later. If a is the golden
ratio, the Ostrowski respresentation based on a is better known as the Zeckendorf
representation, see Zeckendorf [17]. It is important to note that the Ostrowski
representation is obtained by a greedy algorithm, see [12, Chapter II.4 p. 24]. The
following fact follows immediately.

Fact 2.9. Let M,N ∈ N with M 6= N and let
∑

k bkqk and
∑

k ckqk be the
Ostrowski representation of M and N . Let n ∈ N be the maximal such that
bn 6= cn. Then M < N iff bn < cn.

We will also need a similar representation of a real number.

Fact 2.10. [12, Chapter II.6 Theorem 1]2 Let c ∈ R be such that − 1
ζ1

≤ c < 1− 1
ζ1
.

Then c can be written uniquely in the form

c =

∞
∑

k=0

bk+1βk,

where bk ∈ N, 0 ≤ b1 < a1, 0 ≤ bk ≤ ak, for k > 1, and bk = 0 if bk+1 = ak+1, and
bk < ak for infinitely many odd k.

One property that is used in the proof of Fact 2.10 is of particular importance to
us.

Fact 2.11. [12, Chapter II.6 p.32f] Let n ∈ N. Then

−βn = an+2βn+1 + an+4βn+3 + an+6βn+5 + . . .

Hence if n is even, this equation determines the Ostrowski representation of −βn.

2While Fact 2.10 is well known, the statement of [12, Chapter II.6 Theorem 1] is unfortunately
slightly different. But by inspection of the proof in [12] and using Fact 2.11 and Fact 2.12 the
reader can easily verify that Fact 2.10 indeed follows from the statement in [12].
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Fact 2.12. Let n ∈ N be odd. Then the Ostrowski representation of −βn is

βn−1 + (an+1 − 1)βn + an+3βn+2 + an+5βn+4 + an+7βn+6 + . . .

Proof. Since βn+1 = an+1βn + βn−1, we have

−βn = (an+1 − 1)βn + βn−1 − βn+1

= βn−1 + (an+1 − 1)βn + an+3βn+2 + an+5βn+4 + an+7βn+6 + . . . .

�

The following fact allows us to decide whether one real number is smaller than
another if we are just given their Ostrowski representations.

Fact 2.13. Suppose β0 > 0. Let x, y ∈ R with x 6= y and let
∑

k bk+1βk and
∑

k ck+1βk be the Ostrowski representations of x and y. Let n ∈ N be minimal
such that bn+1 6= cn+1. Then x < y iff

(i) bn+1 > cn+1 and n is odd,
(ii) cn+1 > bn+1 and n is even.

Proof. Suppose bn+1 > cn+1. Then

x− y = dn+1βn + dn+2βn+1 +
∞
∑

k=n+2

dk+1βk,

for some dn+1 > 0, dn+2 < an+2, −ak ≤ dk ≤ ak for k ≥ n+ 3. It is enough show
that if n is odd, then x− y ≤ 0, and if n is even, then x− y ≥ 0.

Let n be odd. Since β0 > 0, we have βn < 0 and βn+1 > 0 by Fact 2.7. Since
dn+1 ≤ an+2 − 1, we get by Fact 2.11 that

x− y ≤ βn + (an+2 − 1)βn+1 +
∑

k≥n+2, k even

ak+1βk

= βn − βn+1 +
∑

k≥n+1, k even

ak+1βk

= −βn+1 < 0.

Let n be even. Then βn > 0 and βn+1 < 0. Since dn+1 ≤ an+2 − 1, we get by Fact
2.11 that

x− y ≥ βn + (an+2 − 1)βn+1 +
∑

k≥n+2, k odd

ak+1βk

= βn − βn+1 +

∞
∑

k≥n+1, k odd

ak+1βk

= −βn+1 > 0.

�

A similar result holds if β0 < 0.

Given two natural numbers in Ostrowski representation, it will be important for us
to know how to calculate the Ostrowski representation of their sum. Assume for
now that a is quadratic. Since the continued fraction expansion of a is periodic,
there is a natural number c := maxk∈N ak. Let Σa = {0, . . . , c} and denote by
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Σ∗
a the set of words of finite length on Σa. Let N ∈ N be such that

∑n
k=0 bk+1qk

is the Ostrowski representation of N . Then we define ρa(N) to be the Σa-word
bn+1 . . . b1. For X ⊆ Nn we define

0∗ρa(X) := {(0l1ρa(N1), . . . , 0
lnρa(Nn)) : (N1, . . . , Nn) ∈ X, l1, . . . , ln ∈ N}.

We will now explain what it means for X to be a-recognizable.

Let α = (α1, . . . , αn) ∈ (Σ∗
a)

n and let m be the maximal length of α1, . . . , αn. Then
add to each αi the necessary number of 0’s to get a word α′

i of length m. Then
the convolution3 of α is defined as the word α1 ∗ · · · ∗ αn ∈ (Σn

a)
∗ whose i-th letter

is the element of Σn
a consisting of the i-th letters of α′

1, . . . , α
′
n. Let X ⊆ Nn. We

say that X is a-recognizable if {α1 ∗ · · · ∗αn : (α1, . . . , αn) ∈ 0∗ρa(X)} ⊆ (Σn
a)

∗

is recognizable by a finite automaton. For a definition of a finite automaton and
recognizability we refer the reader to Khoussainov and Nerode [9].

Fact 2.14. [7, Theorem B] Let a be quadratic. Then {(x, y, z) ∈ N3 : x+ y = z}
is a-recognizable.

If a is the golden ratio, the Ostroskwi representation is called Zeckendorf represen-
tation and in this particular case Fact 2.14 was first shown by Frougny in [5]. In
[1] Ahlbach et al. present an elementary algorithm to calculate the Zeckendorf re-
spresentation of a sum in terms of the Zeckendorf representation of the summands.
This algorithm was adjusted to give Fact 2.14 by Hieronymi and Terry [7].

3. Defining Ra in B

Let a ∈ [1, 2] be an quadratic irrational number. Since Ra and Rqa are interde-
finable for non-zero q ∈ Q, we can assume that 1.5 < a < 2. Let [a0; a1, . . . , an, . . . ]
be the continued fraction expansion of a. Note that since 1.5 < a < 2, a0 = a1 = 1.
By Fact 2.3, the continued fraction expansion of a is periodic. Hence it is of the
form

[a0; a1, . . . , aξ, aξ+1, . . . , aξ+ν ],

where ν is the length of the repeating block and the repeating block starts at ξ+1.
Set µ := maxi ai. Since a0 = 1, we have that β0, as is defined in Definition 2.4,
is equal to a − 1 and hence positive. It also follows easily that a = 1 + 1

ζ1
. Hence

the interval [− 1
ζ1
, 1 − 1

ζ1
) given in Fact 2.10 is equal to the interval [1 − a, 2 − a).

We denote this interval by I. Also note that if
∑

k bk+1βk is an Ostrowski repre-
sentation of a real number in I, then b1 = 0, since a1 = 1. Hence β0 is not an
Ostrowski representation. The same is true for an Ostrowski representation of a
natural number. Hence the Ostrowski representation of 1 is q1, and not q0.

The goal for this section is to show that an isomorphic copy of Ra is definable
in B. Remember that B is the two sorted structure (N,P(N), sN,∈), where sN is
the successor function on N and ∈ is the relation on N × P(N) such that ∈ (t,X)
iff t ∈ X . We recall some easy and well-known definability results for B. We write
Even for the set of all even natural numbers and Odd for the set of all odd natural

3Here we followed the presentation in Villemaire [15]. For a general definition of convolution
see [9].
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numbers. Both sets are definable in B. For example, Even is the unique element
X in P(N) such that

0 ∈ X ∧ ∀x ∈ N (x ∈ X ↔ sN(x) /∈ X).

Similarly, for m,n ∈ N, the set

{s ∈ N : s = m mod n}

is definable in B. Also recall that for m,n ∈ N, we have m < n iff

∃X ∈ P(N) m ∈ X ∧ n /∈ X ∧ ∀t ∈ N (t /∈ X → sN(t) /∈ X).

Hence the order on N is definable in B. If W ⊆ P(N) is definable in B, so is the
subset Wfin of W containing all finite sets in W . Finally, if a subset X ⊂ P(N)n

can be recognized by a finite automaton, then it is definable in B, see for example
[4, Lemma 2].

Defining Ostrowski representations. The first step towards defining Ra in B
will be constructing definable sets that correspond to the Ostrowski representation
of both real numbers and natural numbers. This will give us two bijections between
definable sets in B and I and N.

Definition 3.1. Define A ⊆ P(N)µ to be the set containing (X1, . . . , Xµ) ∈ P(N)µ

such that

• 0 /∈ Xi, for i ≥ a1 − 1,
• If n ∈ Xi, then n /∈ Xj for j 6= i,
• n /∈ Xi, if 0 < n < ξ and i > an+1,
• n /∈ Xi, if n ≥ ξ, n+ 1 = ξ + l mod ν, l ∈ {1, . . . , ν} and i > aξ+l,
• for all m ∈ N there exists n ∈ Even with n ≥ m such that there is l ∈
{1, . . . , ν} with

n+ 1 = ξ + l mod ν and n /∈ Xaξ+l
.

It follows from the statements about definability in B we made before that A is
definable in B. Let Afin ⊆ A be the subset of A containing all tuples (X1, . . . , Xµ)
for which Xi is finite for i = 1, . . . , µ. Since A is definable in B, so is Afin.

Definition 3.2. Let bk+1 : Afin → N map (X1, . . . , Xµ) to
{

i, if k ∈ Xi;
0, otherwise.

If X ∈ Afin, define Z(X) to be the natural number

Z(X) =
∑

k∈N

bk+1(X)qk.

Note that by uniqueness of Ostrowski representations (see Fact 2.8), the map Z :
Afin → N is bijective. Hence Z has an inverse which we denote by Z−1. Also note
that the relations bk+1(X) < bk+1(Y ) and bk+1(X) = bk+1(Y ) on N × A × A are
definable in B.

Definition 3.3. Let X ∈ A. Define O(X) to be the real number in I

O(X) =
∑

k∈N

bk+1(X)βk.
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By the uniqueness of the Ostrowski representations (see Fact 2.10), the map O :
A→ I is bijective. Hence O has an inverse which we denote by O−1.

Lemma 3.4. Let X ∈ Afin. Then aZ(X)−O(X) ∈ N.

Proof. Let X ∈ Afin. Then

aZ(X)−O(X) =

n
∑

k=0

bk+1(X)aqk −
n
∑

k=0

bk+1(X)βk

=

n
∑

k=0

bk+1(X)qka−
n
∑

k=1

bk+1(X)(qka− pk) =

n
∑

k=1

bk+1(X)pk ∈ N.

�

It is now a good point to outline the strategy for defining Ra in B. We have
already constructed a bijection O between an interval I and the definable set A in
B. Moreover the map aZ : Afin → Za that maps X ∈ Afin to aZ(X) is a bijection.
In the following we will amalgamate these two bijection to a single bijection between
R and a set C definable in B. The reason we choose the map aZ and not the map
Z to start with, is Lemma 3.4. Vaguely speaking, because aZ(X)−O(X) ∈ N, we
will be able to recover N from the images O(A) and aZ(Afin).

Defining order and addition. After defining A and Afin, we will now discuss
how to define order and addition such that the maps O and Z respect order and
addition on I and N.

Definition 3.5. Let ⊕ : Afin ×Afin → Afin be given by

X ⊕ Y := Z−1
(

Z(X) + Z(Y )
)

.

Lemma 3.6. The function ⊕ is definable in B.

Proof. It follows immediately from Fact 2.14 that the graph of ⊕ can be recognized
by a finite automaton. Hence it is definable in B. �

Definition 3.7. Let X,Y ∈ Afin and X 6= Y . Let k ∈ N be the maximal natural
number such that bk+1(X) 6= bk+1(Y ). We say X ≺Z Y if bk+1(X) < bk+1(Y ).

It follows immediately from the comment after Definition 3.2 that ≺Z is definable
in B. The following Lemma follows immediately from Fact 2.9.

Lemma 3.8. Let X,Y ∈ Afin. Then X ≺Z Y iff Z(X) < Z(Y ).

Hence Z is an isomorphism between (Afin,≺Z,⊕) and (N, <,+).

Lemma 3.9. Let X,Y ∈ Afin. Then

O(X ⊕ Y ) = O(X) +O(Y ) mod 1.

Proof. By Lemma 3.4, there is N ∈ N such that

O(X) +O(Y )−O(X ⊕ Y ) = a(Z(X) + Z(Y )− Z(X ⊕ Y ))−N.

By definition of ⊕, the right hand side of the previous equation is equal to −N . �

Definition 3.10. Let X,Y ∈ A be such that X 6= Y . Let k ∈ N be the minimal
natural number such that bk+1(X) 6= bk+1(Y ). We say X ≺O Y if one of the
following conditions hold:
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(i) bk+1(X) > bk+1(Y ) and k is odd,
(ii) bk+1(Y ) > bk+1(X) and k is even.

It is easy to see that {(X,Y ) ∈ A : X ≺O Y } is definable in B. The following
Lemma follows immediately from Fact 2.13.

Lemma 3.11. Let X,Y ∈ A. Then X ≺O Y iff O(X) < O(Y ).

Corollary 3.12. Let X,Y ∈ A be such that X ≺O Y . Then there is Z ∈ Afin

such that X ≺O Z ≺O Y .

Proof. By Lemma 3.11, O(X) < O(Y ). Take Z0 ∈ A such that O(X) < O(Z0) <
O(Y ). Let ε ∈ R>0 be such that ε < min{O(Z0) − O(X), O(Y ) − O(Z0)}. Take
n ∈ N such that

max{
∑

k>n,k even

ak+1βk,−
∑

k≥n,k odd

ak+1βk} < ε.

Let Z0,1, . . . , Z0,µ ∈ P(N) such that Z0 = (Z0,1, . . . , Z0,µ). Set

Z := ((Z0,1 ∩ [0, n], . . . , Z0,µ ∩ [0, n]).

Then

O(Z) =
n
∑

k=0

bk+1(Z)βk =
∞
∑

k=0

bk+1(Z0)βk −
∞
∑

k=n+1

bk+1(Z)βk

= O(Z0)−
∞
∑

k=n+1

bk+1(Z0)βk.

Since |
∑∞

k=n+1 bk+1(Z0)βk| < ε, we have O(X) < O(Z) < O(Y ). Again by Lemma
3.11, X ≺O Z ≺O Y . �

We now use this density to extend ⊕ to A.

Definition 3.13. Define +1 : I × I → I be the function that maps (c1, c2) ∈ I2

to the unique element d ∈ I such that d = c1 + c2 mod 1. Let ⊕ : A× A→ A be
function that maps (X,Y ) to O−1(O(X) +1 O(Y )).

The following Lemma follows immediately from the definition of ⊕.

Lemma 3.14. Let X,Y ∈ A. Then

O(X ⊕ Y ) = O(X) +O(Y ) mod 1.

Lemma 3.15. The map ⊕ : A×A→ A is definable in B.

Proof. Consider the following two structures,

M1 := (A,≺O,⊕|Afin
, Afin),M2 := (I,<,+1|O(Afin), O(Afin)).

By Lemma 3.9 and Lemma 3.11, the map O : M1 → M2 is an isomorphism. Let
T be the topology on I whose basic open sets are the intervals (c1, c2), if c1, c2 ∈ I
and c1 < c2, and the sets [1 − a, c2) ∪ (c1, 2 − a), if c1, c2 ∈ I and c1 > c2. It is
immediate that the topological closure with respect to T of a set definable in M2

is definable in M2 as well. By Lemma 3.11 and Lemma 3.12, O(Afin) is dense
in I with respect to T . Because of the continuity of +1 with respect to T , the
topological closure in T of the graph +1|O(Afin) is the graph of +1. Hence +1 is
definable in M2. Since O is an isomorphism, ⊕ is definable in M1 and hence in
B. �
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Thus (A,⊕) forms a group. The neutral element 0 is (∅, . . . , ∅). We write

1 := ({1}, ∅, . . . , ∅).

Note that O(1) = β1 = a− 2. For X ∈ A, we denote the inverse of X with respect
to ⊕ by ⊖X , that means X ⊕ (⊖X) = 0. As usual, for X,Y ∈ A we will write
X ⊖ Y for X ⊕ (⊖Y ).

Modifying O. We have constructed an isomorphism O between (A,≺O,⊕) and
(I,<,+1). In the following this isomorphism will be modified to an isomorphism S
whose range is ([0, 1), <,+ mod 1) instead of (I,<,+1). Here + mod 1 : [0, 1)2 →
[0, 1) is the map that takes (x, y) ∈ [0, 1)2 to the unique z ∈ [0, 1) such that x+y = z
mod 1.

Definition 3.16. Let X,Y ∈ A, we write X ≺1 Y if

• Y ≺O 1 �O X ,
• X,Y ≺O 1 and X ≺O Y ,
• X,Y ≻O 1 and X ≺O Y

Let ⊕1 : A × A → A be the map that takes (X,Y ) ∈ A2 to (X ⊕ Y ) ⊖ 1. Let
S : A→ [0, 1) maps X ∈ A to

{

O(X)−O(1), if 1 �O X ;
O(X)−O(1) + 1, otherwise.

Lemma 3.17. The map S : (A,≺1,⊕1) → ([0, 1), <,+ mod 1) is an isomorphism.

Proof. Since O(1) = a− 2 and I = [1− a, 2− a), we directly get that

S({X ∈ A : 1 �O X}) = [0, 4− 2a) and S({X ∈ A : X ≺O 1}) = [4− 2a, 1).

We have 4 − 2a < 1, since 1.5 < a < 2. It follows immediately that S(X) < S(Y )
iff X ≺1 Y . Since O is bijective, it is easy to see that S is bijective. Note that
S(X) is the unique c ∈ [0, 1) with c = O(X)− a mod 1. Let X,Y ∈ A. Then

S(X) + S(Y ) = O(X) +O(Y )− 2O(1) mod 1

= O((X ⊕ Y )⊖ 1)−O(1) mod 1

= S(X ⊕1 Y ) mod 1.

�

Hence (A,⊕1) is a group and its neutral element is 1. As above, for X ∈ A we
will write ⊖1X for the inverse element of X in A with respect to ⊕1. Thus ⊖1X is
the unique element in A such that (⊖1X)⊕1 X = 1.

Lemma 3.18. Let X,Y ∈ A. Then ⊖1X �1 Y iff S(X) + S(Y ) ≥ 1.

Proof. Since 1 − S(X) = −S(X) mod 1 and S is group homomorphism, we have
1− S(X) = S(⊖1X). Hence we have by Lemma 3.17

S(X) + S(Y ) ≥ 1 iff S(Y ) ≥ 1− S(X)

iff S(Y ) ≥ S(⊖1X)

iff Y �1 ⊖1X.

�
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Corollary 3.19. Let X,Y ∈ A. Then

S(X ⊕1 Y ) =

{

S(X) + S(Y ), if ⊖1X �1 Y ;
S(X) + S(Y )− 1, otherwise.

Recovering N. We have now established that we can define order and addition on
A and Afin such that O, S and Za become isomorphisms. Vaguely speaking, the
next step is to recover N from O(A) and Za(Afin). We will find a set B definable
in B, a definable order ≺B on B, a definable operation ⊕B : B×B → B and a map
R : B → N such that R is an isomorphism between (B,≺B,⊕B) and (N, <,+). It
will be crucial later that the isomorphism R arises naturally from O and Za.

Lemma 3.20. Let X ∈ Afin. Then N ∩
(

aZ(X), (Z(X) + 1)a
)

is






{aZ(X)−O(X) + 1, aZ(X)−O(X) + 2}, if X ≺O 1

{aZ(X)−O(X) + 1}, if 1 �O X �O 0;
{aZ(X)−O(X), aZ(X)−O(X) + 1}, otherwise.

Proof. Let X ∈ Afin. Since 1.5 < a < 2, there are at most two natural numbers
between aZ(X) and a(Z(X) + 1). Moreover, since 1.5 < a < 2, 3 − a < a.
We will use this observation repeatedly throughout this proof. By Lemma 3.4,
aZ(X)−O(X) ∈ N and so are aZ(X)− O(X) + 1 and aZ(X)− O(X) + 2. Since
1− a ≤ O(X) < 2− a, we also have that

aZ(X) < aZ(X) +O(X) + 1 < a(Z(X) + 1).

We just have to determine which of the other two natural numbers fall into the
interval we are considering. First consider the case that X ≺O 1. Since O(1) =
a− 2, we have O(X) < a− 2 by Lemma 3.11. Since 1− a ≤ O(X) < a− 2, we get
that

aZ(X) +O(X) < aZ(X) < aZ(X) +O(X) + 2 < a(Z(X) + 1).

Now suppose that 1 �O X �O 0. Since O(0) = 0 and O(1) = a − 2, we have
a− 2 ≤ O(X) ≤ 0 by Lemma 3.11. Hence

aZ(X) +O(X) ≤ aZ(X) and a(Z(X) + 1) ≤ aZ(X) +O(X) + 2.

Finally consider the case that 0 ≺O X . Since O(0) = 0, we have 0 < O(X) by
Lemma 3.11. Since O(X) < 2− a, we have

aZ(X) < aZ(X) +O(X) < aZ(X) +O(X) + 1 < a(Z(X) + 1).

�

Definition 3.21. Let B ⊆ Afin × {0, 1, 2} be defined as the set of all pairs (X, i)
that have one of the following properties:

(i) X = 0 and i = 0,
(ii) X ≺O 1 and i ∈ {1, 2},
(iii) 1 �O X �O 0 and i = 1,
(iv) 0 ≺O X and i ∈ {0, 1}.

Let R : B → N map (X, i) to aZ(X)−O(X) + i.

Lemma 3.22. R is a bijection.

Proof. By Lemma 3.20, Na∩N = {0} and the fact that Z : Afin → N is a bijection,
R maps B\{(0, 0)} bijectively to N>0. Hence R is bijective, since R((0, 0)) = 0. �

Definition 3.23. Let (X, i), (Y, j) ∈ B. We write (X, i) ≺B (Y, j) if either
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• X = Y and i < j or
• X ≺Z Y .

Let sB : B → B map Z ∈ B to its ≺B-successor in B. Let pB : B \ {(0, 0)} → B
map Z ∈ B to its ≺B-predecessor in B.

Since ≺Z well-orders Afin, ≺B well-orders B. Hence the successor and predecessor
function are well-defined. Moreover, by Lemma 3.8, we have that for Z1, Z2 ∈ B,
Z1 ≺B Z2 iff R(Z1) < R(Z2). Since R is a bijection, we have for Z ∈ B

(3.1) R(sB(Z)) = R(Z) + 1.

We will use the following notation: we write s0B for the identity on B, and for

i ∈ N>0, we write s−i
B for i-th iterate of pB and siB for the i-th iterate of sB.

We will now define ⊕B : B×B → B such that R is an isomorphism from (B,≺B,⊕)
to (N, <,+). For convenience set e := ⊖1. Since O(1) = a − 2, we have that
O(e) = 1− a by Lemma 3.14. Hence e is the left endpoint of I and is ≺O-minimal
in A by Lemma 3.11.

Definition 3.24. For X,Y ∈ A, we define r(X,Y ) ∈ {0, 1, 2} to be






0, if X ≺O e⊖ Y and Y �O 0;
2 if e⊖ Y �O X and Y ≻O 0;
1, otherwise.

Definition 3.25. Let (X, i), (Y, j) ∈ B. We define ⊕B : B ×B → B by

(X, i)⊕B (Y, j) := si+j+r(X,Y )−2((X ⊕ Y, 1)).

Lemma 3.26. Let X ∈ A. Then

O(e⊖X) =

{

O(e) −O(X), if X �O 0;
O(e) −O(X) + 1, otherwise.

Proof. Suppose X �O 0. Since 1− a ≤ O(X) ≤ 0, we have

1− a ≤ O(e) −O(X) = 1− a−O(X) ≤ 0.

Hence O(e) −O(X) ∈ I and thus O(e⊖X) = O(e)−O(X) by Lemma 3.14.
Suppose X ≻O 0. Then 0 < O(X) < 2 − a, and thus 0 < a − 1 < 1 − O(X) < 1.
Hence

O(e) < O(e)−O(X) + 1 < 1− a+ 1 = 2− a.

Hence O(e) −O(X) + 1 ∈ I and therefore O(e⊖X) = O(e)−O(X) + 1. �

Lemma 3.27. Let X,Y ∈ A. Then O(X) +O(Y ) = O(X ⊕ Y ) + r(X,Y )− 1.

Proof. We first consider the case that Y �O 0. Suppose that X ≺O e⊖ Y . Hence
r(X,Y ) = 0. By Lemma 3.26

O(X) +O(Y ) < O(e⊖ Y ) +O(Y ) = O(e) ≤ O(X ⊕ Y ).

Hence O(X) + O(Y ) + 1 ∈ I and thus O(X ⊕ Y ) − 1 = O(X) + O(Y ). Suppose
now that X �O e⊖ Y . Hence r(X,Y ) = 1. By Lemma 3.26

O(X) ≥ O(X) +O(Y ) ≥ O(e⊖ Y ) +O(Y ) = O(e).
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Hence O(X) +O(Y ) ∈ I and thus O(X ⊕ Y ) = O(X) +O(Y ).
Now consider the case that Y ≻O 0. Suppose that e⊖Y �O X . Hence r(X,Y ) = 2.
Again by Lemma 3.26

O(X) +O(Y ) ≥ O(Y ) +O(e) −O(Y ) + 1 = O(e) + 1 = 2− a > O(X ⊕ Y ).

Thus O(X) +O(Y ) = O(X ⊕ Y ) + 1. Finally suppose that e⊖ Y ≻O X . Then we
have r(X,Y ) = 1. By Lemma 3.26

O(X) ≤ O(X) +O(Y ) < O(Y ) +O(e) + 1−O(Y ) = O(e) + 1 = 2− a.

Hence O(X) +O(Y ) ∈ I and hence O(X ⊕ Y ) = O(X) +O(Y ). �

Lemma 3.28. Let Z1, Z2 ∈ B. Then R(Z1 ⊕B Z2) = R(Z1) +R(Z2).

Proof. Let (X, i), (Y, j) ∈ B. Then by (3.1) and Lemma 3.27

R((X, i)⊕B (Y, j)) = R(si+j+r(X,Y )−2(X ⊕ Y, 1))

= R((X ⊕ Y ), 1) + i+ j + r(X,Y )− 2

= Z(X ⊕ Y )a+O(X ⊕ Y ) + i+ j + r(X,Y )− 1

= aZ(X) + Z(Y )a+O(X) +O(Y ) + i+ j

= R((X, i)) +R((Y, j)).

�

Corollary 3.29. The map R : (B,≺B,⊕B) → (N, <,+) is an isomorphism.

Amalgamating R and S. We have constructed two isomorphisms R : B → N and
S : A→ [0, 1). We define T : B×A→ R≥0 as the map that takes (Z,X) ∈ B×A to
R(Z) + S(X). It follows immediately from Lemma 3.17 and Lemma 3.22 that T is
bijective. We will now construct two definable subsets A′, B′ of B ×A, a definable
relation ≺C and a definable operation ⊕C : (B × A)2 → B × A such that T is an
isomorphism between (B × A,≺C ,⊕C , B

′, A′) and (R≥0, <,+,N,Na).

Definition 3.30. Set C := B ×A. Let A′ ⊆ C be

{(p2B(X, 1), X ⊕ 1) : X ∈ Afin, X ≺O 0}

∪ {(pB(X, 1), X ⊕ 1) : X ∈ Afin, X �O 0},

and let B′ ⊆ C be the set {(Z,1) : Z ∈ B}.

Lemma 3.31. The map T : (C,B′, A′) → (R≥0,N,Na) is an isomorphism.

Isomorphism Domain Codomain
O A I
Z Afin N

S A [0, 1)
R B N

T C R≥0

Table 1. A list of the isomorphisms and their domain and codomain
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Proof. We first show that T (B′) = N. Let (Z,1) ∈ B′. Then

T (Z,1) = R(Z) + S(1) = R(Z) + 0 = R(Z) ∈ N.

Since R : B → N is bijective by Lemma 3.22, we have T (B′) = N .

We now establish that T (A′) = Na. Let X ∈ Afin. Then

(3.2) O(X ⊕ 1) = O(X) +O(1) mod 1.

Suppose that X �O 0. Since 0 ≤ O(X) < 1 and S(X ⊕ 1) ∈ [0, 1), we get
S(X ⊕ 1) = O(X) by (3.2). Hence

T (pB(X, 1), X ⊕ 1) = R(pB(X, 1)) + S(X ⊕ 1)

= aZ(X)−O(X) +O(X) = aZ(X).

Now suppose X ≺O 0. Since 0 < O(X) + 1 < 1, we have S(X ⊕ 1) = O(X) + 1 by
(3.2). Hence

T (p2B(X, 1), X ⊕ 1) = R(p2B(X, 1)) + S(X ⊕ 1)

= aZ(X)−O(X)− 1 +O(X) + 1 = aZ(X).

Since Z : Afin → N is bijective, we have T (A′) = aN.
�

Definition 3.32. Let (Z1, X1), (Z2, X2) ∈ C, we define

(Z1, X1)⊕C (Z2, X2) :=

{

(sB(Z1 ⊕B Z2), X1 ⊕1 X2), if ⊖1X1 �1 X2;
(Z1 ⊕B Z2, X1 ⊕1 X2), otherwise.

We say (Z1, X1) ≺C (Z2, X2) if Z1 ≺B Z2 or (Z1 = Z2 and X1 ≺1 X2).

Lemma 3.33. The map T : (C,≺C ,⊕C , B
′, A′) → (R≥0, <,+,N,Na) is an iso-

morphism.

Proof. Let (Z1, X1), (Z2, X2) ∈ C. By the definition of the maps R and S, we have
R(B) = N and S(A) = [0, 1). Thus we see directly that T (Z1, X1) < T (Z2, X2)
holds iff either R(Z1) < R(Z2) holds or, R(Z1) = R(Z2) and S(Z1) < S(Z2)
hold. By Corollary 3.29 and Lemma 3.17 we have T (Z1, X1) < T (Z2, X2) iff
(Z1, X1) ≺C (Z2, X2).

It is left to show that T ((Z1, X1) ⊕C (Z2, X2)) = T (Z1, X1) + T (Z2, X2). First
suppose that ⊖1X1 �1 X2. Then by Corollary 3.19

T ((Z1, X1)⊕C (Z2, X2)) = T (sB(Z1 ⊕B Z2), X1 ⊕1 X2)

= R(sB(Z1 ⊕B Z2)) + S(X1 ⊕1 X2)

= R(Z1 ⊕B Z2) + 1 + S(X1) + S(X2)− 1

= R(Z1) +R(Z2) + S(X1) + S(X2)

= T (Z1, X1) + T (Z2, X2).
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If ⊖1X1 ≻1 X2, we have by Corollary 3.19

T ((Z1, X1)⊕C (Z2, X2)) = T (Z1 ⊕B Z2, X1 ⊕1 X2)

= R(Z1 ⊕B Z2) + S(X1 ⊕1 X2)

= R(Z1 ⊕B Z2) + S(X1) + S(X2)

= T (Z1, X1) + T (Z2, X2).

�

It follows easily from the previous Lemma that an isomorphic copy of Ra is
definable in B. Hence Theorem C holds.

4. Defining B in Ra

Let a ∈ R \ Q. Since Ra and Rqa are interdefinable for non-zero q ∈ Q, we can
assume that 1.5 < a < 2. In this section, we will show that an isomorphic copy of
B is definable in Ra. We do not require a to be quadratic.

Since 1 < a < 2, we have a = 1+ 1
ζ1

and hence [1− a, 2− a) = [− 1
ζ1
, 1− 1

ζ1
). Recall

that we denote this interval I. It is obviously definable in Ra. Moreover, since
1 < a < 2, β0 = a− 1 > 0.

Definition 4.1. Let U be the set of all pairs (p, qa) ∈ N× Na with

∀p′ ∈ N ∀q′a ∈ Na(a ≤ q′a ≤ qa ∧ (p, qa) 6= (p′, q′a)) → |q′a− p′| > |qa− p|

Note that U is definable in Ra. By Fact 2.5 the set {qka : k > 0} is the projection
on the second coordinate of U and hence definable in Ra. We denote this set by
V . Since V is definable, the successor function sV on V is definable as well. Note
for every qla ∈ V we have sV (qla) = ql+1a.

Definition 4.2. Let f : Na→ R map na to na−m, where m is the unique natural
number such that na−m ∈ I.

Obviously, f is well-defined and definable in Ra.

Lemma 4.3. Let na ∈ Na and let
∑

k bk+1qk be the Ostrowski representation of
n. Then

f(na) =
∑

k

bk+1βk.

Proof. Let m :=
∑

k bk+1pk. Then

na−m =
∑

k

bk+1(qka− pk) =
∑

k

bk+1βk ∈ I.

�

So in particular, f(qka) = βk for every k ∈ N.

Corollary 4.4. The set {qka : k odd} is definable in Ra.

Proof. Since βk < 0 iff k is odd, we have by Lemma 4.3 that f(qka) < 0 iff k is
odd. Hence the above set is equal to {na ∈ V : f(na) < 0}. �
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Definition 4.5. Define g : V → R2 by

qla 7→

{

(−(βl + βl+1),−βl+1), if l is even,
(−βl,−(βl + βl+1)), otherwise.

By Lemma 4.3, Corollary 4.4 and sV (qla) = ql+1a, the function g is definable. For
ease of notation, we will write gl = (gl,1, gl,2) for g(qla).

Lemma 4.6. Let n ∈ N and c ∈ R be such that
∑∞

k=0 bk+1βk is the Ostrowski
representation of c. If −βn < c < −(βn + βn+1) or −(βn + βn+1) < c < −βn, then
bk+1 = 0 for all k ≤ n.

Proof. Suppose −βn < c < −(βn + βn+1). Since βn+1 < 0, n is even. By Fact 2.11
the Ostrowski representation of −βn is

an+2βn+1 + an+4βn+3 + an+6βn+5 + . . . .

Since −βn < c, we have bk+1 = 0 for all odd k ≤ n by Fact 2.13. By Fact 2.11 the
Ostrowski representation of −(βn + βn+1) is

(an+2 − 1)βn+1 + an+3βn+2 + an+5βn+4 + an+7βn+6 + . . . .

Since c < −(βn + βn+1), we get bk+1 = 0 for all even k ≤ n by Fact 2.13. Hence
bk+1 = 0 for all k ≤ n. The case that −(βn + βn+1) < c < −βn can be handled
similarly. �

Lemma 4.7. Let l, n ∈ N and c ∈ I such that n < ql+1 and

f(na) + gl,1 ≤ c < f(na) + gl,2.

and let
∑∞

k=0 bk+1βk be the Ostrowski representation of c. Then
∑l

k=0 bk+1qk is
the Ostrowski representation of n.

Proof. Let l be even and n ≥ ql. Then by definition of the function g, we have

−(βl + βl+1) < c− f(na) < −βl+1.

Hence by Lemma 4.6 the Ostrowski representation of c− f(na) is
∑∞

k=l+1 ck+1βk,

for some ck+1 ∈ {0, ..., ak+1}. Now let
∑l

k=0 ck+1qk be the Ostrowski representation
of n. By Lemma 4.3

∞
∑

k=0

bk+1βk = c = c− f(na) + f(na) =

∞
∑

k=l+1

ck+1βk +

l
∑

k=0

ck+1βk =

∞
∑

k=0

ck+1βk.

Hence by Lemma 4.3 and the uniqueness of the Ostrowski representation, we have

that
∑l

k=0 bk+1qk =
∑l

k=0 ck+1qk is the Ostrowski representation of n. The case
that l is odd can be shown similarly. �

Lemma 4.8. Let l ∈ N. For every c ∈ I there is a unique n ∈ N<ql+1
such that

(4.1) f(na) + gl,1(na) ≤ c < f(na) + gl,2(na).

Proof. Let
∑∞

k=0 bk+1βk be the Ostrowski representation of c. We first show the

existence of such a natural number n. Set n :=
∑l

k=0 bk+1qk. We will now show
that n satisfies (4.1). Suppose that l is even. Since l is even, βl+2k > 0 for each
k ∈ N. Then by Fact 2.11

f(na)− βl+1 =

l
∑

k=0

bk+1βk + al+3βl+2 + al+5βl+4 + al+7βl+6 + · · · > c.
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Suppose that n ≥ ql. Then we have bl+1 > 0. Hence by Fact 2.11

f(na)− (βl + βl+1) =

l
∑

k=0

bk+1βk + (al+2 − 1)βl+1 + al+4βl+3 + al+6βl+5 + · · · ≤ c.

Note that the inequality on the right follows immediately from bl+1 > 0. Now
consider that n < ql. Then by Fact 2.11

f(na)− βl =

l
∑

k=0

bk+1βk + al+2βl+1 + al+4βl+3 + al+6βl+5 + · · · ≤ c.

Hence (4.1) holds, if l is even. The case that l is odd can be treated similarly. The
uniqueness of n follows directly from Lemma 4.7 and the uniqueness of Ostrowski
representations. �

Definition 4.9. Let h : V ×I → Namap a pair (qla, c) to the unique na ∈ Na<ql+1a

given by Lemma 4.8.

Definition 4.10. We define

E0 := {(qla, c) ∈ V × I : h(qla, c) < qla},

E1 := {(qla, c) ∈ V × I : qla ≤ h(qla, c) < min{ql+1a, 2qla}}.

Lemma 4.11. Let i ∈ {0, 1}, l ∈ N, c ∈ I and let
∑∞

k=0 bk+1βk be Ostrowski
representation of c. Then bl+1 = i iff (qla, c) ∈ Ei.

Proof. Let qla ∈ V . Then by Lemma 4.7,
∑l

k=0 bk+1qk is the Ostrowski repre-
sentation of h(qla, c)/a. Since the Ostrowski representation of a natural number
is obtained by a greedy algorithm, we have ql ≤ h(qla, c)/a < min{ql+1, 2ql} iff
bl = 1, and h(qla, c)/a < ql iff bl = 0. The statement of the Lemma follows
immediately. �

Definition 4.12. Define J to be set of c ∈ I such that (qla, c) ∈ E0 ∪ E1 for all
qla ∈ V . Let d ∈ J be the unique element in J such that (a, d) ∈ E1 and

∀qla ∈ V (qla, d) ∈ E1 iff (ql+1a, d) /∈ E1.

Let W := {ql ∈ V : (qla, d) ∈ E1}.

It is easy to check that qla ∈W iff l is odd.

Definition 4.13. Define J ′ to be the set of all c ∈ J such that (qla, c) ∈ E0

whenever qla /∈W . Define h1 :W → N to be the function that maps qla to l−1
2 .

Let h2 : J ′ → P(N) be the function that maps c ∈ J ′ to { l−1
2 : (qla, c) ∈ E1}.

Theorem 4.14. The map h = (h1, h2) : (W,J
′, sW , E1) → (N,P(N), sN,∈) is an

isomorphism.

Proof. It follows immediately from the remark after the definition of W that h1 :
(W, sW ) → (N, sN) is an isomorphism. By definition of W , we have that c ∈ J is in
J ′ if and only if (qla, c) ∈ E0 for every even l ∈ N. Given a subset X ⊆ N, one can
easily find a unique c ∈ I such that

c =
∑

k∈X

β2k+1.
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We directly get that c ∈ J ′ and for every k ∈ N, we have k ∈ X iff (q2k+1a, c) ∈ E1.
Hence h2(c) = X and c is the unique element in J ′ with this property. From
the construction it follows directly that (qla, c) ∈ E1 iff h1(qla) ∈ h2(c), for every
qla ∈ W and c ∈ J ′. �

Hence Ra defines an isomorphic copy of B. This proves Theorem D.

5. Defining multiplication in Rϕ

Let ϕ := 1+
√
5

2 be the golden ration. In this section it will be shown that multiplica-
tion by ϕ is definable inRϕ. Since the continued fraction expansion of ϕ is [1; 1, . . . ],
we get by Fact 2.6 that qk is the k-th Fibonacci number, while pk is k+1-Fibonacci
number. So in particular, qk+1 = pk and βk = qkϕ − qk+1. Moreover, because of
the special form of the continued fraction expansion of ϕ, we get that ζk = ϕ for
every k ∈ N. Hence βk+1 = −βk

ϕ
by Fact 2.7. Loosely speaking, this will allow us

to realizes multiplication by ϕ as a shift operation on the Ostrowski representations.

We will use the notation from the previous section. In particular, f, E0 and E1 are
as defined before.

Definition 5.1. Let L : Nϕ→ Nϕ map nϕ ∈ Nϕ to the unique element mϕ ∈ Nϕ
such that (qkϕ, f(mϕ)) ∈ E1 iff (qk+1ϕ, f(nϕ)) ∈ E1 for every k ≥ 1.
Let T1 : Nϕ→ R map nϕ to

{

L(nϕ)− f(L(nϕ)) + 1, if (ϕ, f(nϕ)) ∈ E1;
L(nϕ)− f(L(nϕ)), otherwise.

Let T2 : Nϕ→ R map nϕ to

{

f(L(nϕ)) + ϕ− 1, if (ϕ, f(nϕ)) ∈ E1;
f(L(nϕ)), otherwise.

Lemma 5.2. Let n ∈ N and let
∑

k bk+1qk be the Ostrowski representation of n.
Then the Ostrowski representation of ϕ−1L(nϕ) is

∑

k

bk+2qk.

Proof. Set m := ϕ−1L(nϕ) and let
∑

k ck+1qk be the Ostrowski representation on
m. It is left to show that ck+1 = bk+2 for every k ∈ N. By Lemma 4.3 the Ostrowski
representation of f(mϕ) is

∑

k ck+1βk and the Ostrowski representation of f(nϕ) is
∑

k bk+1βk. By Lemma 4.11, ck+1 = 1 iff (qkϕ, f(mϕ)) ∈ E1. By definition of the
map L, this occurs iff (qk+1ϕ, f(nϕ)) ∈ E1. Again, by Lemma 4.11 this happens if
and only if bk+2 = 1. Hence ck+1 = bk+2. �

Lemma 5.3. Let n ∈ N. Then T1(nϕ) = n.
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Proof. Let
∑

k bk+1qk be the Ostrowski representation of n. By Lemma 5.2 and
βk = qkϕ− qk+1, we get that

n =
∑

k

bk+1qk

= (
∑

k>1

bk+1qk−1)ϕ+ (
∑

k>1

bk+1(qk − ϕqk−1)) + b2q1

= L(nϕ)− f(L(nϕ)) + b2

= T1(nϕ).

�

Lemma 5.4. Let n ∈ N. Then ϕf(nϕ) = −f(T2(nϕ)).

Proof. Since ζk = ϕ and βk = qkϕ− qk+1, we have by Fact 2.7 that

(5.1)
qk+1ϕ− qk+2

qkϕ− qk+1
= −

1

ϕ
.

Let
∑

k bk+1qk be the Ostrowski representation of n. Note that

ϕβ1 = ϕ(ϕ − 2) = ϕ2 − 2ϕ = 1− ϕ.

Hence by (5.1)

ϕf(nϕ) =
∑

k

bk+1ϕ(qkϕ− qk+1) = −(
∑

k>0

bk+1(qk−1ϕ− qk)) + ϕb2β1

= −f(L(nϕ)− b2(ϕ− 1) = −T2(nϕ).

�

Theorem 5.5. The function λϕ : R → R that maps x 7→ ϕx, is definable in Rϕ.

Proof. It is enough to define λϕ on R≥0. For m ∈ N and nϕ ∈ Nϕ, define a map
P : N× ϕN → R by

P (m,nϕ) := T−1
1 (m)− f(T2(nϕ)).

This is well-defined, since T1 is injective by Lemma 5.3, and moreover definable in
Rϕ. By Lemma 5.3 and Lemma 5.4, we have

P (m, f(nϕ)) = T−1
1 (m)− f(T2(nϕ)) = ϕm+ ϕf(nϕ) = ϕ · (m+ f(nϕ)).

Hence if there are m,m′ ∈ N and nϕ, n′ϕ ∈ Nϕ with m + f(nϕ) = m′ + f(n′ϕ),
we get P (m, f(nϕ)) = P (m′, f(n′ϕ)). Let Q : N+ f(Nϕ) → R map m + f(nϕ) to
P (m, f(nϕ). By the above, Q is well-defined, definable in Rϕ and Q(x) = ϕx for
all x ∈ N+ f(Nϕ). Since N+ f(Nϕ) is dense in [1−ϕ,∞) and multiplication by ϕ
is continuous, the graph of λϕ on [1− ϕ,∞) is the topological closure of the graph
of Q in R2. Hence λϕ is definable in Rϕ. �

Theorem B now follows immediately from Theorem A and Theorem 5.5.
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6. Optimality and open questions

1. Let L be the language of Ra for some a ∈ R. For a ∈ R \Q, we have seen that
the structure Ra defines the set {qka : k > 0}, which we denoted by V . Since

sk−1
V (a) = qka, it easy to see that for every k, l ∈ N there is an L-sentence ψk,l such
that for all a ∈ R \Q

Ra |= ψk,l iff qk+1 = lqk + qk−1.

It follows immediately from Fact 2.6 that if a = [a0; a1, . . . ] and the function that
takes k to ak is non-computable, then the theory of Ra is undecidable.

2. For a quadratic, quantifier elimination results for B like [4, Theorem 1] transfer
quite directly toRa because of Theorem C and Theorem D. Any attempt of proving
substantially different quantifier elimination results for Ra are likely to fail due to
Theorem D.

3. Let a ∈ R \Q. By Lemma 4.3, the function f : Na → R that takes na ∈ Na to
∑

k bkβk, where
∑

k bkqk is the Ostrowski representation of n, is definable in Ra.
This function maps a closed and discrete set onto a dense subset of the interval
[1− a, 2− a). Hence together with Theorem A of the current paper, it follows that
for a quadratic the structure Ra satisfies condition (i) of [8, Theorem A], but not
its conclusion. Hence condition (ii) can not be dropped from [8, Theorem A].

4. Except for Theorem D not much is known about the structure Ra when a is not
quadratic. For example it is not know whether there is an a such that Ra defines
multiplication on R. Even in the case of Euler’s number e we do not know whether
the theory of Re is decidable or not. Because the continued fraction expansion of
e is not periodic, it is unlikely that Re can be defined in B, surely not in the way
presented here. On the one hand the continued fraction expansion of e is simple
enough that other methods might be used to show decidability, but on the other
hand the expansion Se defines multiplication on R by [8, Theorem B].

5. It is an open question whether Theorem B holds for all quadratic numbers. How-
ever, it seems possible that a closer examination of how multiplication by a interacts
with the Ostrowski representations based on a, might at least yield decidability of
the theory of Sa for every quadratic a.

6. By [8, Theorem C], (R, <,+,Z, aZ, bZ) defines multiplication on R and hence
every projective set whenever 1, a, b are linearly independent over Q. However, we
do not know whether there is a set definable in both (R, <,+,Z, aZ) and (R, <
,+,Z, bZ) that is not definable in (R, <,+,Z). It would be interesting if a version
of Cobham’s theorem similar to the results in Boigelot, Brusten and Bruyère [2]
holds in this setting.

7. Let a ∈ R\Q. Note that an isomorphic copy of Ra is definable in the expansion
(R, <,+, ·, eZ, eZa) of the real field, but by [6, Theorem 1.3] the theory of the latter
structure is undecidable, even if a is quadratic.
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8. Several of the results in this paper can be reformulated to state that certain
sets are recognizable by certain automata. For example, Lemma 3.15 shows that
the graph of addition of real numbers given in Ostrowski representation based on
a quadratic irrational is recognizable by a deterministic Müller automaton. While
not crucial for the main results of this paper, it might still be interesting to give
and study explicit constructions of these automata.
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[14] Craig Smoryński. Logical number theory. I. Universitext. Springer-Verlag, Berlin, 1991. An
introduction.

[15] Roger Villemaire. The theory of 〈N,+, Vk , Vl〉 is undecidable. Theoret. Comput. Sci.,
106(2):337–349, 1992.

[16] Volker Weispfenning. Mixed real-integer linear quantifier elimination. In Proceedings of the
1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC),
pages 129–136 (electronic). ACM, New York, 1999.

[17] E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci
ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41:179–182, 1972.
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