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A RAMSEY THEOREM ON SEMIGROUPS AND A GENERAL VAN
DER CORPUT LEMMA

ANUSH TSERUNYAN

Abstract. A major theme in arithmetic combinatorics is proving multiple recurrence re-
sults on semigroups (such as Szemerédi’s theorem) and this can often be done using methods
of ergodic Ramsey theory. What usually lies at the heart of such proofs is that, for actions
of semigroups, a certain kind of one recurrence (mixing along a filter) amplifies itself to
multiple recurrence. This amplification is proved using a so-called van der Corput difference
lemma for a suitable filter on the semigroup. Particular instances of this lemma (for concrete
filters) have been proven before (by Furstenberg, Bergelson–McCutcheon, and others), with
a somewhat different proof in each case. We define a notion of differentiation for subsets
of semigroups and isolate the class of filters that respect this notion. The filters in this
class (call them ∂-filters) include all those for which the van der Corput lemma was known,
and our main result is a van der Corput lemma for ∂-filters, which thus generalizes all its
previous instances. This is done via proving a Ramsey theorem for graphs on the semigroup
with edges between the semigroup elements labeled by their ratios.
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1. Introduction

The current paper concerns a generalization of certain types of lemmas, known as van der
Corput difference lemmas1, that are used in proving multiple recurrence results in ergodic
Ramsey theory. In this section, we describe the general context in which these lemmas are
applied, using the famous Furstenberg Multiple Recurrence theorem as a motivating example.
Furthermore, we state our generalization of these lemmas, and conclude this section with a
discussion of a Ramsey-type theorem (our main result), whose immediate application gives
the mentioned generalization.

1.A. Multiple recurrence. One of the main themes in arithmetic combinatorics is proving
multiple recurrence results for a given semigroup. Such is the celebrated Szemerédi’s theorem:

Theorem 1.1 (Szemerédi, [Sze75]). Any subset A ⊆ N of positive upper density, i.e. d(A) ∶=

limsupn→∞
∣A∩[0,n)∣

n
> 0, contains arbitrarily long arithmetic progressions. In other words, for

every k ≥ 1, there is n ∈ N such that

A ∩ (A − n) ∩ (A − 2n) ∩⋯ ∩ (A − kn) ≠ ∅.

The conclusion of Szemerédi’s theorem can be viewed as a multiple recurrence statement
for the action of the semigroup G = N on itself by right translation, where we equip the
action space N with the upper density function viewed as a finitely subadditive invariant
probability measure. Shortly after Szemerédi’s original proof, Furstenberg came up with a
way of translating this statement to a multiple recurrence statement for an actual probability
measure preserving (p.m.p.) action of Z (with the measure being countably additive), and
then proved the latter statement (now known as Furstenberg’s Multiple Recurrence Theorem
[Fur77]) for arbitrary p.m.p. actions of Z.

1.B. Mixing along filters. One of the key ingredients in the proof of the Multiple Recur-
rence Theorem is the fact that a certain strong (quantitative) one recurrence, known as weak
mixing, amplifies itself to a strong multiple recurrence (weak mixing of all orders). This
amplification is where the mentioned van der Corput difference lemmas are used:

strong one recurrence
van der Corput trick

+3 strong multiple recurrence.

These strong notions of recurrence as well as the van der Corput involve a filter F on the
acting group or, more generally, semigroup G. The definitions of filters, limits along them,

1The name comes from the well-known van der Corput difference theorem proved by Johannes van der
Corput in [vdC31].
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and other related terminology, is given in Subsection 2.A below. Here is a typical example
to keep in mind:

Example 1.2. For G = N (or any amenable semigroup), define upper density d(A) for
subsets A ⊆ N by

d(A) ∶= limsup
n→∞

∣A ∩ [0, n)∣
n

.

The sets of (upper) density 0 form an ideal, so their complements form a filter, which we
denote by Fd and refer to as the density filter on N.

Definition 1.3. Let G be a semigroup, F a filter on G, and (X,ν) a probability space.
Measure-preserving (right) action (X,ν) ↶α G is called mixing along F if for every ν-
measurable A,B ⊆X , we have

lim
g→F

ν(A ∩B ⋅α g−1) = ν(A)ν(B).
Because ν(B ⋅α g−1) = ν(B), what this definition says is that as g → F , the sets A and

B ⋅α g−1 become more and more probabilistically independent. In other words, for any pair(x, y) ∈X2, the pair (x, y ⋅α g) looks more and more like a random pair (u, v) ∈X2.

Remark 1.4. We can recover the usual notions of mixing by choosing appropriate filters:
the density filter Fd for weak mixing [BG04, Theorem 1.1], the filter IP∗ for mild mixing
[Fur81, Proposition 9.22], and the Fréchet filter for strong mixing [Rud90, Definition 4.3].

1.C. The van der Corput property. Any probability measure-preserving (right) action(X,ν) ↶α G of a semigroup G can be lifted to a unitary (left) action G ↷α L2(X,ν) by(g ⋅α f)(x) ∶= f(x ⋅α g). In terms of this unitary action, denoting by ⟨⋅, ⋅⟩ the inner product
in L2(X,ν), mixing along F is equivalent to the following: for every f0, f1 ∈ L2(X,ν),

lim
g→F
⟨f0, g ⋅α f1⟩ = ∫

X
f0dν ∫

X
f1dν.

In light of this, putting eg ∶= g ⋅α f1, one can see how the following property of filters on
semigroups may be relevant here:

Definition 1.5. A filtered M-semigroup (G,P ,F) (see Subsection 2.C for the definition) is
said to have the van der Corput property if for every weakly upper P-semimeasurable (see
Definition 2.10) bounded sequence (eg)g∈G in a Hilbert space H, we have

lim
h→F

lim
g→F
⟨eg, egh⟩ = 0 Ô⇒ lim

g→F
⟨f, eg⟩ = 0, ∀f ∈H.

The conclusion in the implication above simply says that the limit along F of the sequence(eg)g∈G is 0 in the weak topology of H. This property is really a stronger and more general
version of the simple Hilbert space fact (consequence of Bessel’s inequality) that any bounded
sequence of pairwise orthogonal vectors converges to 0 in the weak topology, where the
convergence is in the usual sense, i.e. along the Fréchet filter (see Example 2.3(a) for the
definition). Here, we write this fact in the appropriate form to make the similarity apparent:

Lemma 1.6. For every bounded sequence (en)n∈N in H,

∀m ≠ 0∀n ⟨en, en+m⟩ = 0 Ô⇒ lim
n→∞
⟨f, en⟩ = 0, ∀f ∈H.

3



Remark 1.7. Letting F denote the Fréchet filter on N, our main result (Theorem 6.1) implies
that (N,F 0 ⊎F ,F) has the van der Corput property, as explained in Remark 6.4. However,(N,P(N),F) does not have the van der Corput property, in other words, the implication

lim
m→∞

lim
n→∞
⟨en, en+m⟩ = 0 Ô⇒ lim

n→∞
⟨f, en⟩ = 0, ∀f ∈H

does not hold for all sequences (en)n∈N ⊆ H. For example, let (fn)n∈N be a sequence of
orthonormal vectors in a Hilbert space and, for each n ∈ N, take

en ∶= { f0 if n = 2k, for some k

fn otherwise
.

Then, the condition lim
n→∞

lim
m→∞
⟨em, em+n⟩ = 0 holds, but ⟨f0, e2k⟩ = 1 for all k ∈ N. One reason

as to why this sequence is a counterexample is that the set {2k ∶ k ∈ N} is not∞-differentiable
mod F as explained in Example 3.6(b).

In ergodic Ramsey theory, a van der Corput lemma usually refers to a statement that the
van der Corput property holds for a filter on a semigroup G with P =P(G). An instance
of this was proven by Furstenberg [Fur81, Lemma 4.9] for the density filter Fd on G = N,
with P =P(N), as an important ingredient in his proof of Multiple Recurrence Theorem.
Furthermore, instances of the van der Corput lemma for various filters have been used in
deriving multiple recurrence results for semigroups other than N.

This apparent usefulness of the van der Corput property makes one wonder for which
filters (more precisely, filtered M-semigroups) it holds. Besides the density filter, it was
previously known to hold for the IP∗ filter [Fur81, Lemma 9.24] and idempotent ultrafilters
[BM07, Theorem 2.3] on arbitrary semigroups (with P being the powerset). Furthermore,
a version of this property was noticed and used by the author in [Tse13] for the filter of
conull sets of an invariant probability measure µ on a group (with P being the σ-algebra of
µ-measurable sets). The proofs of these van der Corput lemmas all follow a general flow,
even though different features of the filters are used to run this flow. The current work is
devoted to pinning down a general property of filters on semigroups (more precisely, filtered
M-semigroups) that implies the van der Corput property and is satisfied by all of the above-
mentioned examples.

1.D. Underlying Ramsey theory. Besides the natural urge of trying to find one proof
that works for all of the existing instances of the van der Corput lemmas, the author’s
motivation for the current work was a realization that the van der Corput property is driven
by a certain Ramsey-theoretic condition for graphs on semigroups, which we now briefly
discuss.

Definition 1.8. Say that a filtered L-semigroup (G,L,F) (see Definition 2.13) has the
difference-Ramsey property if any graph2 E ⊆ G2 satisfying ∀Fh∀Fg E(g, gh) contains arbi-
trarily large complete subgraphs in any L-large set A, i.e. for any n ∈ N there is a sequence(gi)i≤n of elements in A such that E(gi, gj) for all i < j < n.

One way to think about it is as follows: label each edge (g1, g2) ∈ E with all possible ratios3,
i.e. all h ∈ G such that g1h = g2. Then, the hypothesis reads as follows: for F -almost every
label h ∈ H , F -almost every vertex g ∈ G has an outgoing edge in E with that label. This

2By a graph we simply mean a binary relation.
3Since G is only a semigroup, there may be more than one ratio or none at all.
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is a way of expressing via the semigroup operation that the graph E has lots of edges. The
conclusion is, as expected, that the graph E contains arbitrarily large complete subgraphs,
and moreover, these subgraphs can be found “locally” in large enough subsets of vertices.

We now prove that, indeed, this Ramsey property implies that of van der Corput. The
argument we give here is implicitly present in all known proofs of the van der Corput property
for particular examples of filters, however, the difference-Ramsey property had not been
explicitly isolated before.

Theorem 1.9. If a filtered L-semigroup (G,L,F) (see Definition 2.13) has the difference-
Ramsey property, then the filtered M-semigroup (G,F 0∪L,F) has the van der Corput prop-
erty.

Proof. Letting P ∶= F 0 ∪L and using the notation of Definition 1.5, we fix a weakly upper
P-semimeasurable sequence (eg)g∈G ⊆ H with ∥eg∥ ≤ 1, and suppose the conclusion fails for
a nonzero vector f ∈ H, i.e. there is ε > 0 such that the set A = {g ∈ G ∶ ∣⟨eg, f⟩∣ ≥ ε} is
F -positive. By the semimeasurability hypothesis on (eg)g∈G, A ∈ P , so it must be L-large.
Choose n ∈ N so large that ∥f∥2 < nε2/2, and δ > 0 so small that (n−1)∥f∥2δ ≤ ε2/2. Applying
the difference-Ramsey property to A and the graph E ⊆ G2 defined by

E(g1, g2) ∶⇐⇒ ∣⟨eg1, eg2⟩∣ ≤ δ,
we get “too many pairwise almost orthogonal vectors” over A, that is, a sequence (gi)i<n ⊆ A
with ∣⟨egi, egj ⟩∣ ≤ δ for all i < j. Hence, the proof of Bessel’s inequality gives a contradiction:

0 ≤ ∥f −∑
i<n

⟨f, egi⟩egi∥2 = ∥f∥2 − 2∑
i<n

∣⟨f, egi⟩∣2 + ∑
i,j<n

⟨f, egi⟩⟨f, egj ⟩⟨egi, egj ⟩
= ∥f∥2 − 2∑

i<n

∣⟨f, egi⟩∣2 +∑
i<n

∣⟨f, egi⟩∣2 ⋅ ∥egi∥2 + ∑
i,j<n,i≠j

∥f∥ ⋅ ∥egi∥ ⋅ ∥f∥ ⋅ ∥egj∥ ⋅ ∣⟨egi, egj ⟩∣
≤ ∥f∥2 −∑

i<n

∣⟨f, egi⟩∣2 + ∑
i,j<n,i≠j

∥f∥2 ⋅ δ
= ∥f∥2 − nε2 + n(n − 1) ⋅ ∥f∥2 ⋅ δ
≤ ∥f∥2 − nε2 + nε2/2 = ∥f∥2 − nε2/2 < 0. �

Now the question is: Which filters (more precisely, filtered L-semigroups) have the difference-
Ramsey property? We give an answer to this based on a notion of differentiation for subsets
of a semigroup that we define in Section 3. Our main theorem (Theorem 6.1) states that the
filters that respect this notion of differentiation in an appropriate sense have the difference-
Ramsey property. These filters include all of those for which the van der Corput property
was known, so, as a corollary, we obtain a van der Corput lemma generalizing its previously
known instances.

Acknowledgements. I am grateful to S lawek Solecki for very useful suggestions and comments.
Many thanks to John H. Johnson, Joel Moreira, Florian K. Richter, and Donald Robertson for
their enlightening remarks, corrections, and references. I also thank James Cummings and Stevo
Todorčević for their helpful comments and positive feedback.

2. Preliminaries

2.A. Filters.
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Definition 2.1. A filter F on a set S is a nonempty collection of subsets of S that does not
contain ∅ and is closed upward4 and under finite intersections.

Note that F 0 ∶= {A ⊆ S ∶ Ac ∈ F} is an ideal and we call it the dual ideal of F . Thus,
AF ∶= F 0 ∪ F is an algebra with a {0,1}-valued finitely additive complete measure µF

defined on it such that the measure-1 sets are exactly those in F .
We call a set A ⊆ S

● F -large if A ∈ F (i.e. A has measure 1);

● F -small if Ac is F -large (i.e. A has measure 0);

● F -positive, and write A >F 0, if A is not F -small (i.e. either A has measure 1 or the
measure of A is undefined).

We denote the collection of F -positive sets by F+ and it is often helpful to think of them
as nonempty open sets.

For sets A,B ⊆ S, we write A ∼F B if A△B is F -small. This clearly defines an equivalence
relation, so we say that C ⊆ P(S) is F -invariant if for sets A,B ⊆ S with A ∼F B, A ∈ C
implies B ∈ C. We write A ⊆F B if A ∖ B is F -small; equivalently, A ∩ H ⊆ B for some
F -large H ⊆ S.
For a set A ⊆ S and a property P (⋅) of elements of S, we write

∀Fs ∈ A P (s)
to mean that for all but an F -small set of s in A, P (s) holds; consequently, we write

∃Fs ∈ A P (s)
to mean ¬∀Fs ∈ A ¬P (s), i.e. there exists an F -positive set of s in A (in particular A is
F -positive) such that P (s) holds.
Lastly, we recall the notion of a limit along a filter. For a topological space X , a sequence(xs)s∈S ⊆X and a point x ∈X , we write

lim
s→F

xs = x

if for every open neighborhood U ⊆X of x, we have ∀Fs ∈ S (xs ∈ U).
2.B. Examples of filters on semigroups. In the sequel, we consider filters on semigroups
and we start by listing some examples. Henceforth, let G denote a semigroup.

2.2. Almost invariant filters. A filter F on G is called invariant if for every A ⊆ G,

A is F -large ⇒ ∀g (Ag−1 is F -large),
where Ag−1 ∶= {h ∈ G ∶ hg ∈ A}. Thinking of F as a finitely additive measure, this simply
means that it is invariant under the right translation action of G on itself.

A filter F on G is called almost invariant if for every A ⊆ G,

A is F -large ⇒ ∀Fg (Ag−1 is F -large).
Working with almost invariant filters, it is convenient to use the following notation: for a
set A ⊆ G, put

StabF(A) ∶= {g ∈ G ∶ Ag−1 is F -large} .
4A family C ⊆P(X) is upward (resp. downward) closed if A ∈ C implies B ∈ C for every superset (resp.

subset) B ⊆X of A.
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Thus, for an almost invariant filter F , if A is F -large then so is StabF(A).
The class of almost invariant filters includes many important examples, most of which are

actually invariant.

Examples 2.3.

(a) The Fréchet filter on a group G, i.e. the filter containing all cofinite subsets of G, is
invariant.

(b) The filter Fµ of conull sets of a finitely additive, or even subadditive, invariant nonzero
measure µ on a semigroup G is invariant.

(c) The density filter (along a fixed Følner sequence) Fd on an amenable groupG is invariant.

(d) If G is a Polish group (or more generally a Baire group5), then the collection of comeager
sets forms a filter; in fact, this filter is closed under countable intersections. Due to
continuity of group multiplication, this filter is invariant under right multiplication.

(e) For G = N, call A ⊆ N a set of convergence if ∑n∈A
1

n
< ∞. Clearly, sets of convergence

form an ideal and hence the collection Fh of complements of sets of convergence is a
filter. Moreover, if A is a set of convergence then so is A − n for any n ∈ N; thus, Fh is
invariant.

(f) Finally, idempotent ultrafilters, i.e. maximal filters p on a semigroup G such that for
any A ⊆ G,

A is p-large ⇔ ∀pg (Ag−1 is p-large).
In particular, idempotent6 ultrafilters are almost invariant. They always exist on any
semigroup by Ellis’s theorem, see, for example, [Tod10, 2.1 and 2.9].

2.4. IP-sets and the filter IP∗. For n ∈ N ∪ {∞}, put n̄ ∶= {0,1, ..., n − 1} if n ∈ N (although,
set-theoretically there is not difference between n and n̄) and put n̄ ∶= N if n = ∞. Let G

be a semigroup. For a countable (or finite) sequence (gi)i<n, n ∈ N ∪ {∞}, of elements of G
and finite ∅ ≠ α ⊆ n̄, put gα = gi1gi2 ...gik , where i1 > i2 > ⋯ > ik list the elements of α in the
decreasing order; also put g∅ = 1G. Finally, let FP(gi)i<n = {gα ∶ α ⊆ n̄ finite} and call it a
finite product set of length n.

A subset A ⊆ G is called an IP-set (stands for Infinite-dimensional Parallelepiped) if it
is a finite product set of infinite length, i.e. A = FP(gn)n∈N for some sequence (gn)n∈N of
(not necessarily distinct) elements of G. There is a tight connection between IP-sets and
idempotent ultrafilters. Firstly, by [Ber10, Theorem 2.5]7, we have that every IP-set A ⊆ G
supports an idempotent ultrafilter, i.e. there is an idempotent ultrafilter p on G so that A
is p-large. Conversely, we have the following standard fact:

Proposition 2.5. For any semigroup G and an idempotent ultrafilter p on G, every p-large
set contains an IP-set.

5A topological group G is called Baire if it is not meager, i.e. a countable union of nowhere dense sets.
Examples are Polish groups, as well as locally compact Hausdorff groups.

6These ultrafilters are called idempotent because their defining condition is equivalent to p ∗ p = p, where
∗ is the convolution operation defined in the same way as for measures.

7Although [Ber10, Theorem 2.5] is stated and proved for G = N, the same proof works for any semigroup.
7



Proof. Let A ⊆ be p-large. We recursively define sequences (gn)n∈N of elements of G and(An)n∈N of p-large subsets of G such that

(i) A0 = A,
(ii) An+1 = An ∩Ang−1n ,
(iii) gn ∈ An,

and we do it as follows: having An defined and p-large, by almost invariance, we know that
Stabp(An) is also p-large, so in particular An∩Stabp(An) ≠ ∅ and we take gn ∈ An∩Stabp(An).
Thus, Ang−1n is p-large, and hence such is An+1 ∶= An∩Ang−1n , finishing the construction. Now
it is easy to check that FP(gn)n∈N ⊆ A. �

Thus, we get:

Corollary 2.6. A set A ⊆ G contains an IP-set if and only if it supports an idempotent
ultrafilter.

This corollary in its turn implies the following famous theorem (see [Fur81, Proposition
8.13]):

Theorem 2.7 (Hindman). The class of IP-sets is Ramsey, i.e. if an IP-set is partitioned
into finitely many subsets, one of these subsets contains an IP-set.

This theorem allows us to define a filter IP∗ for which the positive sets are exactly those
that contain an IP-set:

IP∗ = {F ⊆ G ∶ F meets every IP-set} .
To see that this is indeed closed under finite intersections, first note the following:

Lemma 2.8. For every IP∗-large F and IP-set A ⊆ G, F ∩A contains an IP-set.

Proof. Immediately follows from Hindman’s theorem and the definition of IP∗. �

We can now easily conclude:

Proposition 2.9. IP∗ is a filter.

Proof. Let F1 and F2 be IP∗-large and we need to show that so is F1 ∩ F2. To this end,
fix an IP-set A ⊆ G. By Lemma 2.8, there is an IP-set A′ ⊆ F1 ∩ A. But by the same
lemma, there is a further IP-set A′′ ⊆ F2 ∩A′, and thus A′′ ⊆ (F1 ∩ F2) ∩A, so in particular,(F1 ∩ F2) ∩A ≠ ∅. �

Moreover, Corollary 2.6 implies that IP∗ is the intersection of all idempotent ultrafilters
on G.

Remark. Because of the latter fact, the statements below that are true for IP∗ can be derived
indirectly from them being true for idempotent ultrafilters.

2.C. M-semigroups. In literature, a measurable space is a pair (S,A), where X is a set
and A is a σ-algebra on S. For the purpose of stating the van der Corput property, we would
like to drop the last requirement, and for an arbitrary collection P ⊆P(S) of subsets of S,
we call the pair (S,P) an M-space8 (also an M-semigroup if S is a semigroup). We refer
to the sets in P as P-measurable sets and we extend this over functions in the following
definition.

8Here M stands for measurable, but we use the term “M-space” rather than “measurable space” to avoid
abuse of terminology and confusion.

8



Definition 2.10. For an M-space (S,P), a function f ∶ S → R is said to be upper P-
semimeasurable if for each r ∈ R, f−1([r,∞)) ∈ P . For a Hilbert space H with inner product⟨⋅, ⋅⟩, a function (i.e. sequence) e ∶ S →H is said to be weakly upper P-semimeasurable if for
every h ∈H, the function S → R

+, given by s↦ ∣⟨h, e(s)⟩∣, is upper P-semimeasurable.

Remark 2.11. It is not hard to check that if P is actually a σ-algebra, then upper P-
semimeasurability for a function f ∶ S → R coincides with the classical notion of P-measurability.
Consequently, for a function e ∶ S → H, being weakly upper P-semimeasurable is the same
as being weakly P-measurable in the classical sense, i.e. as a function from the measurable
space (S,P) to the measurable space (H,Bw(H)), where Bw(H) is the Borel σ-algebra of
H with respect to the weak topology.

Finally, we remark that the van der Corput property is really a property of a filter on
an M-semigroup and to make it easy to state we fix the following terminology: for a filter
F on a set S and P ⊆P(S), we refer to the triple (S,P ,F) as a filtered M-space (also a
filtered M-semigroup if S is a semigroup). Note, however, that we do not impose any relation
between P and F .

2.D. Notions of largeness and filtered L-semigroups. We now generalize the notion of
a filter by dropping the closure under intersections requirement.

Definition 2.12. For a nonempty set S, call a collection L ⊆P(S) a largeness notion on S

if it is nonempty, upward closed and ∅ ∉ L. We refer to the pair (S,L) as an L-space (also
an L-semigroup if S is a semigroup).

Throughout, we will use the following terminology. For a largeness notion L ⊆P(S), and
we say a set A ⊆ S is L-large to mean A ∈ L. Furthermore, for a property P of points s ∈ S,
we write

there are L-many s ∈ S for which P (s) holds
to mean that the set {s ∈ S ∶ P (s) holds} is L-large.

Clearly, any filter F on S is a largeness notion, but F+ is also a largeness notion, while
it may not be a filter. For our purposes, we will consider semigroups with a fixed largeness
notion and a filter, so we make the following definition.

Definition 2.13. Let (S,L) be an L-space. A filter F on S is said to be compatible with L

if F ⊆ L. We refer to such triple (S,L,F) as a filtered L-space (also a filtered L-semigroup
if S is a semigroup).

3. Differentiability of subsets of semigroups

We now proceed to define a stratification of a given largeness notion on a semigroup G;
namely, we introduce quantitative strengthening of largeness using the semigroup operation.
This is analogous to n-differentiability being a quantitative strengthening of continuity for
functions on R, thinking of continuity as 0-differentiability.

Throughout this section, let L and L′ denote largeness notions on a semigroup G.

3.A. Definition and examples. We set up notation that emphasizes the analogy with
differentiation.

9



Notation 3.1. For A ⊆ G and g ∈ G, put

∂gA ∶= A ∩Ag−1

and call it the directional derivative of A in the direction of g.

Definition 3.2. For A ⊆ G, put ∆0(A/L,L′) ∶= A and call A 0-differentiable over (L,L′) if
A ∈ L. For n ≥ 1, we recursively define sets ∆n(A/L,L′) and notion of n-differentiability as
follows: let ∆n(A/L,L′) denote the set of all directions g ∈ G in which the derivative of A
is (n − 1)-differentiable, that is,

∆n(A/L,L′) ∶= {g ∈ G ∶ ∂gA is (n − 1)-differentiable over (L,L′)} ,
and call A n-differentiable over (L,L′) if ∆n(A/L,L′) ∈ L′. We say that A ⊆ G is ∞-
differentiable over (L,L′) if it is n-differentiable over (L,L′) for every n ∈ N. For n ≤∞, let
Cn(L,L′) ⊆ L denote the collection of all n-differentiable sets over (L,L′).

Before illustrating the notion of differentiability on some examples, we record the following
self-induction phenomenon, which, in the author’s opinion, is what often lies at the heart of
statements of the form

one recurrence Ô⇒ multiple recurrence,

mentioned in the introduction.

Lemma 3.3. If C1(L,L′) = L, then C∞(L,L′) = L.
Proof. Every set in L being 1-differentiable over (L,L′), means, by definition, that ∆2(A/L,L′) =
∆1(A/L,L′) for every A ∈ L. Iterating this gives ∆n(A/L,L′) = ∆1(A/L,L′) for every
A ∈ L, which implies C∞(L,L′) = L. �

We also record that differentiability over (L,L′) is upward closed with respect to (L,L′).
Proposition 3.4. For i = 0,1, let Li,L

′
i be largeness notions on G with Li ⊆ L′i. Then for

any n ≤∞, Cn(L0,L1) ⊆ Cn(L′
0
,L′

1
).

Proof. Straightforward induction on n. �

Although Definition 3.2 is stated for potentially different L and L′, it will primarily be
used with L = L′. Thus, we make the following convention.

Convention 3.5. For L = L′, we say n-differentiable over L, instead of n-differentiable over(L,L), and write ∆n(A/L),Cn(L), in lieu of ∆n(A/L,L),Cn(L,L). Furthermore, we omit
writing the superscript n in ∆n if n = 1. Lastly, we colloquially refer to the sets of the form
∆(A/L), for some A ⊆ G, as ∆-sets over L, and we refer to the elements in ∆(A/L) as
differentiation-friendly directions for A.

Examples 3.6.

(a) For an almost invariant filter F on G, every F -large set is ∞-differentiable over F . To
show this, by Lemma 3.3, we only need to verify that for every F -large set A, the set
∆(A/F) is still F -large, which follows from the fact that it contains StabF(A).

(b) Let F be the Fréchet filter on G. This filter is not almost invariant in general, but even
when it is (e.g. when G is a group or G = N, F is invariant), there are still many F -
positive subsets A ⊆ G that are not even 1-differentiable over F+. For instance, let G = N
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and take any A ⊆ N with superlinear growth rate, i.e. for any k ∈ N, A ∩ ∂kA is finite,
e.g. A = {2n ∶ n ∈ N}. Then A is 0-differentiable over F+, but it is not 1-differentiable
over F+ because ∆(A/F+) = ∅.

(c) For the filter IP∗ on a semigroup G, every IP∗-positive set is∞-differentiable over (IP∗)+.
To show this, by Lemma 3.3, it is enough to verify that for every IP∗-positive set A ⊆ G,
the set ∆(A/(IP∗)+) is IP∗-positive. Recalling that a set is IP∗-positive precisely when
it contains an IP-set, it is enough to prove the following stronger statement.

Lemma 3.7. For every IP-set A ⊆ G and every g ∈ A, the set ∂gA contains an IP-set,
and hence, A ⊆∆(A/(IP∗)+).
Proof. Let A = FP(gi ∶ i ∈ N) and fix g ∈ A. Thus, g = gin−1gin−2 ...gi0 for some indices
in−1 > in−2 > ... > i0. But then, we still have Ag−1 ⊇ FP(gi ∶ i > in−1), and hence also
∂gA ⊇ FP(gi ∶ i > in−1). Therefore, g ∈∆(A/(IP∗)+), so A ⊆ ∆(A/(IP∗)+). �

3.B. Properties of ∂ and ∆. Throughout this subsection, all of the notions of differen-
tiability are over L and we will omit writing it; in particular, we will write ∆(⋅) in lieu of
∆(⋅/L).

The following proposition exhibits the connection between differentiability and finite prod-
uct sets.

Proposition 3.8. For any n-differentiable set A ⊆ G, there is a sequence (hi)i<n ⊆ ∆(A)
such that ⋂α⊆n̄Ah

−1
α = ∂hn−1

...∂h1
∂h0

A ∈ L. In particular, A contains L-many shifts of a finite
product set of length n; that is, for every g ∈ ∂hn−1

...∂h1
∂h0

A, g ⋅ FP(hi ∶ i < n) ⊆ A.
Proof. Take h0 ∈ ∆n(A) and applying induction to ∂h0

A get (hi)1≤i<n ⊆ ∆(∂h0
A) ⊆ ∆(A/)

such that ∂hn−1
...∂h1

∂h0
A ∈ L. �

Next, we record some relations between ∂ and ∆.

Proposition 3.9. Let A ⊆ G, g, h ∈ G, and n,m ≥ 0.

(a) ∂ is superassociative: ∂hgA ⊇ ∂h∂gA.
(b) ∆ and ∂ subcommute: ∆n(∂gA) ⊆ ∂g∆n(A).
(c) ∆ is subassociative: ∆n+m(A) ⊆∆n(∆m(A)). In particular, if A is (n+m)-differentiable,

then ∆m(A) is n-differentiable.

Proof. For (a) just compute: ∂h∂gA = A ∩Ag−1 ∩Ah−1 ∩Ag−1h−1 ⊆ A ∩Ag−1h−1 = ∂hgA.
For (b), we assume that n ≥ 1 since n = 0 case follows from the convention that ∆0(B) = B

for any B ⊆ G. Note that ∂gA ⊆ A trivially implies ∆n(∂gA) ⊆ ∆n(A). As for ∆n(∂gA) ⊆
∆n(A)g−1, fixing h ∈∆n(∂gA), we have that ∂h∂gA is (n − 1)-differentiable and is contained
in ∂hgA, by part (a). So, ∂hgA is (n − 1)-differentiable as well, and hence, hg ∈∆n(A).

We prove (c) by induction on n. The n = 0 case follows from the convention, so we suppose
that the statement is true for n ≥ 0 and prove for n + 1. Fixing g ∈ ∆n+m+1(A), we have
that ∂gA is (n +m)-differentiable, and hence, by induction, ∆m(∂gA) is n-differentiable.
But by part (b), ∆m(∂gA) ⊆ ∂g∆m(A), so ∂g∆m(A) is also n-differentiable, and thus, g ∈
∆n+1(∆m(A)). �

Taking m = 1 and replacing n with n − 1 in part (c) of Proposition 3.9, we get:
11



Corollary 3.10. For any A ⊆ G and n ≥ 1,

∆n−1(∆(A)) ⊇∆n(A).
In particular, if A is n-differentiable, then ∆(A) is (n − 1)-differentiable.

Thus, containing a ∆-set of an n-differentiable set is a structurally strong way of being(n − 1)-differentiable.
We now arrive at a property that illustrates that the connection between A and ∆(A) is

tighter than it appears on the surgace of the definition of ∆(A). We refer to this property
as Main Property of ∆-sets.

Main Property of ∆-sets 3.11. For n ≥ 1 and n-differentiable A ⊆ G, there are L-many
g ∈ ∆(A) (namely, all g ∈ ∆n(A)) such that

(i) ∂gA is (n − 1)-differentiable;
(ii) ∂g∆(A) ⊇ ∆(∂gA); in particular, ∂g∆(A) is (n − 2)-differentiable, if n ≥ 2.

Proof. Because A is n-differentiable, we have that ∆(A) ⊇ ∆n(A) ∈ L. But for any g ∈
∆n(A), ∂gA is (n−1)-differentiable. Moreover, by (b) of Proposition 3.9, we have ∂g∆(A) ⊇
∆(∂gA). �

What this property says is that there are L-many directions g in ∆(A) that are differenti-
ation-friendly for both A and ∆(A), simultaneously. Moreover, the property that ∆(A)
contains all differentiation-friendly directions for A is maintained by their directional deriva-
tives along g, i.e. ∂g∆(A) still contains all differentiation-friendly directions for ∂gA. We
emphasize it here as it will play an important role later in defining a class of filters that
“respect” all notions involved in the definition of differentiability.

3.C. Derivation trees. We now digress a bit to discuss the geometry underlying the defini-
tions of differentiability and ∆-sets. Although, this subsection provides an intuitive picture
to keep in mind, nothing in it will be used in the proofs below, so it may be safely skipped.

We start with recalling some terminology regarding set-theoretic trees.

Notation 3.12. For a set X , we denote by X<N the set of finite tuples of elements of X , i.e.
X<N ∶= ⋃n∈NX

n, where X0 = {∅}. For s ∈ X<N, we denote by ∣s∣ the length of s; thus, s is a
function from {0,1, ..., ∣s∣ − 1} to X . Recalling that functions are sets of pairs, the notation
s ⊆ t for s, t ∈ X<N means that ∣s∣ ≤ ∣t∣ and s(i) = t(i) for all i < ∣s∣. Finally, for s ∈ X<N and
x ∈ X , we write s⌢x to denote the extension of s to a tuple of length ∣s∣ + 1 that takes the
value x at index ∣s∣; we define x⌢s analogously.

Definition 3.13. For a set X , a subset T of X<N is called a (set theoretic) tree on X if it
is closed downward under ⊆, i.e. for all s, t ∈X<N, if t ∈ T and s ⊆ t, then s ∈ T .

Notation 3.14. For a tree T on a set X and s ∈ T , define the set of extensions of s in T by
extT (s) ∶= {x ∈X ∶ s⌢x ∈ T}. Call s a leaf of T if extT (s) = ∅, and call T pruned if it has no
leaves. Furthermore, define

Depth(T ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if T = ∅
maxs∈T ∣s∣ if T ≠ ∅ and this max exists
∞ otherwise

,
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as well as

depth(T ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if T = ∅
min {∣s∣ ∶ s is a leaf in T} if T has a leaf
∞ otherwise

.

We call α ∈ XN an infinite branch through T if for each n ∈ N, α⇂n ∈ T . Note that
a nonempty pruned tree T (i.e. depth(T ) = ∞) has an infinite branch, while in general,
Depth(T ) =∞ does not imply this.

Definition 3.15. For a largeness notion L on X , call a tree T on X an L-tree if for every
s ∈ T , either s is a leaf, or else, extT (s) ∈ L.

Now let X = G be a semigroup. For s = (h0, h1, ..., hm−1) ∈ G<N and A ⊆ G, put

∂sA ∶= ∂hm−1
...∂h1

∂h0
A

with convention that ∂∅A = A. Fixing largeness notions L,L′ ⊆P(G), we associate a tree
to every subset of G.

Definition 3.16. For a set A ⊆ G, the derivation tree of A over (L,L′), noted T (A/L,L′),
is the tree on G defined by

s ∈ T (A/L,L′) ⇐⇒ ∀t ⊆ s ∂tA is (∣s∣ − ∣t∣)-differentiable over (L,L′).
Note that T (A/L,L′) is actually an L′-tree on ∆(A/L,L′); in fact, for each s ∈ T (A/L,L′)

that is not a leaf, extT (A/L,L′)(s) =∆(∂sA/L,L′).
Proposition 3.17. Let A ⊆ G.

(a) T (A/L,L′) = ∅ if and only if A ∉ L.
(b) Depth(T (A/L,L′)) = sup {n ∈ N ∶ A is n-differentiable over (L,L′)}.
(c) If C1(L,L′) = L, then for any A ∈ L, T (A/L,L′) is nonempty pruned; in particular,

it has an infinite branch.
(d) If T (A/L,L′) has an infinite branch, then ∆(A/L,L′) contains an IP-set. In fact,

if (hn)n∈N is an infinite branch of T (A/L,L′), then ∆(A/L,L′) ⊇ FP(hn)n∈N.
Proof. Follows from the definitions. �

For the rest of this subsection, we take L = L′, and use the term derivation tree of A over
L instead of derivation tree of A over (L,L), and write T (A/L) in lieu of T (A/L,L).
Examples 3.18.

(a) For an almost invariant filter F on G, taking L = F , part (c) above and Example 3.6(a)
imply that for any F -large set H ⊆ G, T (H/F) is nonempty pruned. In particular,
T (H/F) has an infinite branch, so, by (d) above, ∆(H/F) contains an IP-set.

(b) Similarly, for the filter IP∗ on G, taking L = (IP∗)+, it follows from Example 3.6(c) that
for any IP∗-positive set A ⊆ G, T (A/L) is nonempty pruned, so ∆(A/L) contains an
IP-set. However, the latter is not news as any IP∗-positive set contains an IP-set.

Iterating Main Property of ∆-sets 3.11, we get that the derivation trees of A and ∆(A/L)
over L have much in common.

Proposition 3.19. For A ⊆ G, the set T (A/L) ∩ T (∆(A/L)/L) contains an L-tree T with
depth(T ) = Depth(T (A/L)) − 1 such that for each s ∈ T , ∂s∆(A/L) ⊇∆(∂sA/L).

13



4. Intersections and differentiability

Throughout this section, we fix an L-semigroup (G,L) and all notions of differentiability
will be over L. Here, we investigate the behavior of the notions associated with differentiation
under intersections. More specifically, for sets A,D ⊆ G with A being n-differentiable over
L, we are interested in the following two informal questions:

(1) How much of A does D have to contain so that A ∩D is still n-differentiable?
(2) How much of ∆(A) does D have to contain so that ∆(A) ∩D still satisfies the Main

Property of ∆-sets (see 3.11)?

We give answers to both of these questions in the following two subsections.

4.A. ∂(n/L)-thickness. Given sets A∩D, we unravel the recursive definition of A∩D being
n-differentiable and arrive at the following definition.

Definition 4.1. Let A,D ⊆ G and n ∈ N, and suppose that A is n-differentiable. For n ≥ 1,
we say that D is ∂(n/L)-thick in A if there are L-many g ∈ G such that

(i) ∂gA is (n − 1)-differentiable;
(ii) ∂gD is ∂(n − 1/L)-thick in ∂gA.

For n = 0, we say that D is ∂(0/L)-thick in A if A ∩D is 0-differentiable. Finally, in case A

is not n-differentiable, we simply declare D to be ∂(n/L)-thick in A.

We now check that this indeed gives us an answer to question (1) above.

Proposition 4.2. For n ≥ 0, A,D ⊆ G with A being n-differentiable, A∩D is n-differentiable
if and only if D is ∂(n/L)-thick in A.

Proof. We prove by induction on n. For n = 0, it is trivial, so let n ≥ 1 and, assuming the
equivalence is true for n − 1, prove for n.

⇒: Suppose A ∩D is n-differentiable. Then ∆n(A ∩D) ∈ L and for any g ∈ ∆n(A ∩D),
∂g(A ∩D) is (n − 1)-differentiable. But ∂g(A ∩D) = (∂gA) ∩ (∂gD), so by induction, ∂gD is
∂(n − 1/L)-thick in ∂gA.

⇐: Suppose D is ∂(n/L)-thick in A. Then ∃Fg ∈ G such that ∂gA is (n − 1)-differentiable
and ∂gD is ∂(n − 1/L)-thick in ∂gA. Thus, by induction, the set (∂gA) ∩ (∂gD) is (n − 1)-
differentiable, but it is equal to ∂g(A ∩D), so we are done. �

4.B. ∆(n/L)-thickness. Using the analogy with Definition 4.1, we define what it means
for a set D ⊆ G to contain a thick enough part of ∆(A/L) so that D plays the same role for
A as ∆(A) in Main Property of ∆-sets 3.11.

Definition 4.3. Let A,D ⊆ G and n ∈ N, and suppose that A is n-differentiable. For n ≥ 1,
we say that D is ∆(n/L)-thick for A if there are L-many g ∈ D such that

(i) ∂gA is (n − 1)-differentiable;
(ii) ∂gD is ∆(n − 1/L)-thick for ∂gA.

For n = 0, we always say that D is ∆(0/L)-thick for A. Finally, in case A is not n-
differentiable, we simply declare D to be ∆(n/L)-thick for A.

It follows by an easy induction on n that ∆(n/L)-thickness is closed upward, i.e. ifD′ ⊇D,
A′ ⊇ A, and D is ∆(n/L)-thick for A, then D′ is ∆(n/L)-thick in A′.

We now check that Corollary 3.10 still (essentially) holds for ∆(n/L)-thick sets.
14



Proposition 4.4. Let A,D ⊆ G, n ≥ 1. Suppose that A is n-differentiable and D is ∆(n/L)-
thick for A. Then ∆n(A) ∩∆n−1(D) is in L, and thus, D is (n − 1)-differentiable.
Proof. We prove by induction on n. For n = 1, ∆0(D) = D and D being ∆(1/L)-thick for
A is equivalent to ∆1(A) ∩D ∈ L. Let n ≥ 2 and suppose the statement is true for n − 1.
By ∆(n/L)-thickness, there are L-many g ∈ D ∩∆n(A) such that ∂gD is ∆(n − 1/L)-thick
for ∂gA. But ∂gA is (n − 1)-differentiable, so by induction, ∆n−1(∂gA) ∩∆n−2(∂gD) ∈ L. In
particular, ∂gD is (n − 2)-differentiable, so g ∈ ∆n−1(D). Since there are L-many such g in
∆n(A), it follows that ∆n(A) ∩∆n−1(D) ∈ L. �

Examples 4.5.

(a) Let L = F+, for an almost invariant filter F on G. Then any F -large H is ∆(n/L)-
thick for A for any A ⊆ G and n ≥ 0. Indeed, if n ≥ 1 and A is n-differentiable,
then ∆n(A) ⊆F H ∩ Stab(H) and hence ∃Fg ∈ H ∩ Stab(H) such that ∂gA is (n − 1)-
differentiable. Moreover, since g ∈ Stab(H), ∂gH is F -large, so, by induction on n, it
must be ∆(n − 1/L)-thick for ∂gA.

(b) Let L = (IP∗)+. Then every IP∗-positive set A is ∆(n/L)-thick for A for any n ≥ 0.
Indeed, being IP∗-positive, A contains an IP-set P . By Lemma 3.7, P ⊆ ∆(P ) ⊆ ∆(A),
so for any g ∈ P , ∂gA is positive, and hence (n − 1)-differentiable. By induction on n,
∂gA is ∆(n − 1/L)-thick for ∂gA.

Lastly, we record what being ∆(n/L)-thickness means in terms of derivation trees.

Proposition 4.6. For n ≥ 0 and A,D ⊆ G with A being n-differentiable, D is ∆(n/L)-thick
for A if and only if the tree T (A/L)∩ T (D/L) contains an L-tree T on D with depth(T ) =
n − 1 and such that for each s ∈ T , the set ∂sD ∩∆(∂sA/L) is L-large.
Proof. We prove by induction on n. For n = 0, this equivalence is trivial since both sides
vacuously hold. So let n ≥ 1 and, assuming the equivalence is true for n − 1, prove for n.

⇒: Suppose D is ∆(n/L)-thick for A, so in particular, it follows from Proposition 4.4 that
D ∩∆(A/L) is L-large. We build the desired tree T as follows. Let L be the set of all g ∈D
such that ∂gA is (n − 1)-differentiable and ∂gD is ∆(n − 1/L)-thick for ∂gA; by ∆(n/L)-
thickness, L ∈ L. For each g ∈ L, by induction, there is an L-tree Tg ⊆ T (∂gA/L)∩T (∂gD/L)
with depth(Tg) = n−2 and such that for each s ∈ Tg, the set ∂s∂gD∩∆(∂s∂gA/L) is L-large.
It is now straightforward to check that the tree

T ∶= {∅} ∪ {g⌢s ∶ g ∈ L, s ∈ Tg}
is as desired. We only note that to verify T ⊆ T (D/L), it is enough to show that L ⊆
∆n−1(D/L), which follows from Proposition 4.4 as for each g ∈ L, ∂gD is ∆(n − 1/L)-thick
for A.

⇐: For n ≥ 2, using the induction hypothesis, it is straightforward to check that for every
g ∈ extT (∅), the conditions (i)–(ii) of the definition of ∆(n/L)-thickness hold. For n = 1,
T = {∅}, which gives that D ∩ ∆(A/L) = ∂∅D ∩ ∆(∂∅A/L) is L-large, but the latter is
equivalent to D being ∆(1/L)-thick for A. �
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5. Filters and differentiability

Henceforth, we will be dealing with a fixed filter F on a semigroup G and our largeness
notion will be L = F+. In particular, we will only use the notion of differentiability over F+,
so we introduce special terminology and notation for this.

Terminology 5.1. For a filter F on a semigroup G and n ≤∞, call a set A ⊆ G n-differentiable
mod F if it is n-differentiable over F+. (Note that n-differentiability over F implies n-
differentiability mod F , but the converse may not be true.) We also write ∆n

F
(A), Cn

F
,

TF(A), ∂F(n)-thick, ∆F(n)-thick, in lieu of ∆n(A/F+), Cn(F+), T (A/F+), ∂(n/F+)-thick,
∆(n/F+)-thick, respectively. Furthermore, we may omit writing the subscript F altogether
if the filter F is clear from the context and there is no danger of confusion.

5.A. Respecting differentiability. We now define a class of filters for which the notion
of differentiability is well-defined for subsets of G/ ∼F , i.e. for each n ≥ 0, the collection Cn

F

is F -invariant.

Definition 5.2. A filter F on G is said to respect differentiability if for all n ≥ 1 and subsets
A ∼F Ã of G, A is n-differentiable mod F if and only if Ã is n-differentiable mod F .

Example 5.3. The filter IP∗ on any semigroup G respects differentiability. This is because,
by Example 3.6(c), every IP∗-positive set is automatically ∞-differentiable mod IP∗, so if
A ∼ B, then

A is n-differentiable mod IP∗⇔ A >IP∗ 0⇔ B >IP∗ 0⇔ B is n-differentiable mod IP∗.

The next proposition unravels the above definition to make it easier to check.

Proposition 5.4. A filter F on G respects differentiability if and only if for every F -large
set H ⊆ G, for every n ≥ 1 and every n-differentiable set A ⊆ G, ∃Fg ∈ G such that Hg−1 ⊇F A′

for some (n − 1)-differentiable set A′ ⊆ ∂gA.

Proof. For ⇒, note that if A is n-differentiable and H is F -large, then A ∩ H is still n-
differentiable, so ∆n(A∩H) is F -positive. Thus, for any g ∈∆n(A∩H), A′ ∶= ∂g(A∩H) ⊆ ∂gA
is (n − 1)-differentiable and A′ ⊆Hg−1.

For ⇐, we assume the right-hand side and prove by induction on n that if H is F -large
and A is n-differentiable, then A ∩H is also n-differentiable. The base case n = 0 is trivial
because if A is F -positive then so is A ∩H . Now suppose it holds for n − 1, and let A be
n-differentiable and H be F -large. Then, ∃Fg ∈ G such that Hg−1 ⊇F A′ for some (n − 1)-
differentiable set A′ ⊆ ∂gA, so, in particular, A′ ⊆F ∂gH . Thus, A′ ⊆F ∂g(A ∩H) and hence
A′ ∩H ′ ⊆ ∂g(A∩H) for some F -large H ′. By induction, A′ ∩H ′ is still (n−1)-differentiable,
and hence so is ∂g(A∩H). The fact that this holds for F -positively many g ∈ G means that
A ∩H is n-differentiable. �

Example 5.5. It follows immediately from the last proposition that any almost invariant
filter respects differentiability. This is because for every g ∈ ∆n(A) ∩ Stab(H), A′ ∶= ∂gA is(n − 1)-differentiable and Hg−1 is F -large, so Hg−1 ⊇F B holds for every set B ⊆ G, and in
particular, for B = A′.

Finally, using Proposition 4.2, we express respecting differentiability in terms of ∂F(n)-
thickness:

Corollary 5.6. A filter F on a semigroup G respects differentiability if and only if every
F -large H ⊆ G is ∂F(n)-thick in A for every A ⊆ G and n ≥ 0.
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Remark 5.7. For a filter F on G, respecting differentiability implies in particular that every
F -large set is ∞-differentiable mod F , i.e. F ⊆ C∞

F
. In other words, F is compatible with

the largeness notion C∞
F
, turning (G,C∞

F
,F) into a filtered L-semigroup.

5.B. Respecting ∆-sets. Again fix an ambient filter F on G. Just like it was natural
to require F respect differentiability, it is also natural to have F respect the role that
∆F(A) plays for A, i.e. ensure that Main Property of ∆-sets 3.11 is stable under F -small
perturbations. This amounts to the following two conditions:

(i) For every set A ⊆ G and D ⊆ G with D ∼F ∆F(A), D is ∆F(n)-thick for A.
(ii) For D ⊆ G and A, Ã ⊆ G with A ∼F Ã, D is ∆F(n)-thick for A if and only if D is

∆F(n)-thick for Ã.

Note that since being ∆F(n)-thick is closed under supersets, condition (i) amounts to
∆F(A) ∩ H being ∆F(n)-thick for A for every F -large H , which is the same as H itself
being ∆F(n)-thick for A.

As for condition (ii), below, we will need it only for F -large sets and their derivatives,
so instead of demanding it for all sets D, we define the following strengthening of ∆F(n)-
thickness and require all F -large sets to satisfy it.

Definition 5.8. Let A,D ⊆ G and n ∈ N. For n ≥ 1, we say that D is absolutely ∆F(n)-thick
for A if for any n-differentiable (mod F ) Ã ∼F A, ∃Fg ∈ D such that

(i) ∂gÃ is (n − 1)-differentiable;
(ii) ∂gD is absolutely ∆F(n − 1)-thick for ∂gÃ.

For n = 0, we always say that D is absolutely ∆F(0)-thick for A.

As with ∆F(n)-thickness, it follows by an easy induction on n that being absolutely
∆F(n)-thick is closed upward, i.e. if D′ ⊇ D, A′ ⊇ A, and D is absolutely ∆F(n)-thick for
A, then D′ is absolutely ∆F(n)-thick for A′.

Proposition 5.9. For an almost invariant filter F on G, every F -large set is absolutely
∆F(n)-thick for A for every A ⊆ G and n ≥ 0.

Proof. The same as in Example 4.5(a). �

Lemma 5.10. For the filter IP∗ on G, every IP-positive set A is absolutely ∆F(n)-thick for
A for every n ≥ 0.

Proof. We prove by induction on n, and since n = 0 is automatic, we assume that it is true
for k < n and prove for n. Let Ã ∼F A, so Ã ∩A is also IP∗-positive and hence contains an
IP-set P . By Lemma 3.7, P ⊆ ∆(P ) ⊆ ∆(Ã), so for any g ∈ P , ∂gP is positive, and hence(n − 1)-differentiable. By induction on n, ∂gP is absolutely ∆F(n − 1)-thick for ∂gP , and

hence, by upward closure, ∂gA is absolutely ∆F(n − 1)-thick for ∂gÃ. �

Corollary 5.11. For the filter IP∗ on G, every IP∗-large set H is absolutely ∆F(n)-thick
for A for every A ⊆ G and n ≥ 0.

Proof. The set H ∩A is IP∗-positive, so by the previous lemma, it is absolutely ∆F(n)-thick
for H ∩A, and thus, by upward closure, H is absolutely ∆F(n)-thick for A. �
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5.C. ∂-filters. Finally, we define the class of filters, which respect all of the notions involved
in differentiation.

Definition 5.12. A filter F on a semigroup G is called a ∂-filter (read del-filter) if

(i) F respects differentiability (equivalently, every F -large H is ∂F(n)-thick in A, for every
A ⊆ G and n ≥ 0);

(ii) Every F -large H is absolutely ∆F(n)-thick for A, for every A ⊆ G and n ≥ 0.

By Examples 5.3 and 5.5 together with Proposition 5.9 and Corollary 5.11, all almost
invariant filters, as well as the filter IP∗, are ∂-filters.

6. The main results

Throughout this section, all of the notions of differentiability will be mod F , for a filter
F under consideration.

6.A. A difference-Ramsey theorem for ∂-filters. We are now ready to state and prove
our main theorem. Recall that for a filter F on G that respects differentiability, the triple(G,C∞

F
,F) is a filtered L-semigroup.

Theorem 6.1 (Difference-Ramsey for ∂-filters). For a ∂-filter F on G, the filtered L-
semigroup (G,C∞

F
,F) has the difference-Ramsey property, i.e. for any binary relation

E ⊆ G2, if ∀Fh∀Fg E(g, gh), then for any A ∈ C∞
F

and n ∈ N, there is a sequence (gi)i≤n ⊆ A
with ∀i < j E(gj , gi).
Proof. First let’s introduce some notation: for α,β ⊆ m̄ ∶= {0,1, ...,m − 1}, we write β < α
if max(β) < min(α) or one of α,β is ∅. For h,h′ ∈ G, put E(⋅h, ⋅h′) ∶= {g ∈ G ∶ E(gh, gh′)} ,
and also E(⋅, ⋅h) ∶= {g ∈ G ∶ E(g, gh)} , so the set

H ∶= {h ∈ G ∶ E(⋅, ⋅h) is F -large}
is F -large by the hypothesis.

To prove this theorem, we will construct sequences (hm)m<n of elements in H and (Am)m≤n
of subsets of A such that for every m ≤ n, we have

(m.1) Am ⊆ ∂hm−1
...∂h1

∂h0
A is (n −m)-differentiable;

(m.2) for all α,β ⊆ m̄ with ∅ ≠ β < α, Am ⊆ E(⋅hα, ⋅hαhβ);
(m.3) for all α ⊆ m̄, hα ∈H ;
(m.4) Hm ∶= ∂hm−1

...∂h1
∂h0

H is absolutely ∆F(n −m)-thick for Am.

Granted such a sequence, we define the desired sequence (gi)i≤n as follows: by (n.1) An ≠ ∅,
so take g ∈ An and for each i ≤ n, put gi = ghαi

, where αi = {n − 1, n − 2, ..., i}. Because g ∈
An ⊆ ⋂α⊆m̄Ah−1α , gi ∈ A for each i ≤ n. Also, for i < j ≤ n, taking α ∶= αj = {n − 1, n − 2, ..., j}
and β ∶= αi ∖αj = {j − 1, j − 2, ..., i} in (n.2), we get E(ghα, ghαhβ) and thus E(gj, gi).

Now we show how to recursively define the sequences (hm)m<n and (Am)m≤n. For m = 0,
put A0 = A so it is n-differentiable, H0 =H is absolutely ∆F(n)-thick for A0 because F is a
∂-filter, and (0.2)–(0.3) are vacuous.

Now suppose that for m < n, the sequences (hk)k<m and (Ak)k≤m are defined and satisfy
conditions (m.1)–(m.4). By (m.4), ∃Fhm ∈Hm such that ∂hm

Am is (n−m−1)-differentiable
and Hm+1 = ∂hm

Hm is absolutely ∆F(n−m−1)-thick for ∂hm
Am. Because hm ∈Hm, hmhα ∈H
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for all α ⊆ m̄, so (m + 1.3) holds. In particular, for all α ⊆ m̄, E(⋅, ⋅hmhα) is F -large, so the
set

Am+1 ∶= ∂hm
Am ∩ ⋂

α⊆m̄
E(⋅, ⋅hmhα)

is still (n −m − 1)-differentiable and Hm+1 is still absolutely ∆F(n −m − 1)-thick for Am+1.
Thus, (m + 1.1) and (m + 1.4) are verified, and it remains to check (m + 1.2). To this end,
fix α,β ⊆ m + 1 with ∅ ≠ β < α. Note that we only need to check the case when m ∈ β or
m ∈ α. If m ∈ β, then α = ∅ and hβ = hmhβ′ for some β′ ⊆ m̄. Thus, it follows by the very
choice of Am+1 that Am+1 ⊆ E(⋅, ⋅hmhβ′). On the other hand, if m ∈ α, then hα = hmhα′ for
some α′ ⊆ m̄, so Am+1 ⊆ ∂hm

Am and (m.2) imply

Am+1 ⊆ Amh
−1
m ⊆ E(⋅hα′ , ⋅hα′hβ)h−1m = E(⋅hmhα′ , ⋅hmhα′hβ) = E(⋅hα, ⋅hαhβ).

�

6.B. A van der Corput lemma for ∂-filters. To make it convenient to state the van der
Corput property below, for a filter F on a semigroup G, we put

PF ∶= F 0 ⊎C∞
F
.

The last theorem, together with Theorem 1.9, immediately gives:

Corollary 6.2 (van der Corput lemma for ∂-filters). For a ∂-filter F on a semigroup G,
the filtered M-semigroup (G,PF ,F) has the van der Corput property, i.e. for every weakly
upper PF -semimeasurable bounded sequence (eg)g∈G in a Hilbert space H, we have

lim
h→F

lim
g→F
⟨eg, egh⟩ = 0 Ô⇒ lim

g→F
⟨f, eg⟩ = 0, ∀f ∈H.

Note that the van der Corput property is hereditary with respect to the measurability
restriction given by P , i.e. if a filtered M-semigroup (G,P ,F) has it and P ⊇ P ′, then(G,P ′,F) also has it. With this in mind, we now explicitly list some previously known
concrete instances of Corollary 6.2.

Instances 6.3.

(a) For any almost invariant filter F on a semigroup G, the filtered M-semigroup (G,AF ,F)
has the van der Corput property. (Recall that AF = F 0 ⊎F .) Indeed, almost invariant
filters are ∂-filters, so by the above corollary, (G,PF ,F) has the van der Corput property,
and hence so does (G,AF ,F) because AF ⊆ PF by Example 3.6(a). Note that in case
G is a group or G = N, this includes the Fréchet filter on G.

(b) (Bergelson–McCutcheon [BM07, Theorem 2.3]) For any idempotent ultrafilter p on a
semigroup G, the filtered M-semigroup (G,P(G), p) has the van der Corput property.
This is a special case of the previous example because for any ultrafilter F , AF =P(G).

(c) (Furstenberg [Fur81, Lemma 9.24]) The filtered M-semigroup (G,P(G), IP∗) has the
van der Corput property. Indeed, IP∗ is a ∂-filter and, by Example 3.6(c), PIP

∗ =P(G).
Remark 6.4. When G is a group or G = N, the Fréchet filter F on G is invariant, so
it is included in Example 6.3(a). This can be viewed as a generalization of Lemma 1.6
because every bounded sequence (eg)g∈G ⊆H of pairwise orthogonal vectors is weakly upper
AF -semimeasurable. However, to verify this last fact, we use Lemma 1.6 itself, so this
generalization is somewhat tautological.
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The next thing we will do is define a natural subclass of almost invariant filters (hence
∂-filters), for which PF is rich (typically the powerset of G). What is somewhat remarkable
is that the richness of PF will be proven using, again, the difference-Ramsey theorem for
∂-filters.

7. D-measures

In this section, we define a notion of measure that generalizes invariant finitely additive
probability measures and idempotent ultrafilters, as well as subadditive notions such as
the notion of upper density for subsets of amenable groups. We study the differentiability
of sets of positive measure and obtain a van der Corput lemma for these measures from
Corollary 6.2.

7.A. Definitions and examples.

Definition 7.1. Let S be a set and A ⊆P(S) be an algebra. A finitely subadditive proba-
bility measure on A is a function µ ∶ A → [0,1] such that

(i) µ(∅) = 0, µ(S) = 1;
(ii) for A,B ∈A, A ⊆ B implies µ(A) ≤ µ(B);
(iii) for A,B ∈A, µ(A ∪B) ≤ µ(A) + µ(B).
For (S,A, µ) as above, we fix the following terminology. Call a set B ⊆ S µ-null if B ⊆ A

for some A ∈ A with µ(A) = 0; denote by Sµ the collection of µ-null sets. Similarly, call a
set B ⊆ S µ-positive if B ⊇ A for some A ∈ A with µ(A) > 0; let Lµ denote the collection
of µ-positive sets and put Aµ ∶= Sµ ⊎ Lµ. Clearly, Aµ ⊇ A and one can think of it as a
completion of A to a collection that enjoys the following dichotomy: each set in it is either
small or it contains a structurally large set.

Furthermore, we call a set C ⊆ S µ-conull if its complement is µ-null. Note that µ-null
sets form an ideal and hence µ-conull sets form a filter, which we denote by Fµ. Also note
that Fµ is compatible with the largeness notion Lµ, so (S,Lµ,Fµ) is a filtered L-space.

We now isolate a relevant class of finitely subadditive measures on a semigroup G. Below,
we call P ⊆P(G) invariant if PG−1 ∶= {Ag−1 ∶ A ∈ P , g ∈ G} ⊆ P .

Definition 7.2. Let A ⊆ P(G) be an invariant algebra and µ be a finitely subadditive
measure on A. We say that µ is almost invariant if

(iv) for every A ∈A,

∀Fµg µ(Ag−1) = µ(A).
Furthermore, we say that µ is additive on translates if

(v) for every A ∈A and g0, g1, ..., gn−1 ∈ G,

µ(⋃
i<n

Ag−1i ) ≥∑
i<n

µ(Ag−1i ) − ∑
i<j<n

µ(Ag−1i ∩Ag−1j ).
If µ satisfies both (iv) and (v), we call it a D-measure9 and refer to (G,A, µ) as a D-measured
semigroup.

Before proceeding with examples, we record the following simple observations.

9Here, “D” stands for density as D-measures can be viewed as generalizations of upper density on amenable
groups.
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Proposition 7.3. Let µ be a finitely subadditive probability measure on an invariant algebra
A ⊆P(G).
(a) If µ is almost invariant, then so is Fµ, and hence Fµ is a ∂-filter.
(b) If µ is additive on translates, then it is genuinely additive on almost disjoint translates,

that is: for every A ∈ A and g0, g1, ..., gn−1 ∈ G, if Ag−1i ∩Ag−1j is µ-null whenever i ≠ j,
then

µ(⋃
i<n

Ag−1i ) =∑
i<n

µ(Ag−1i ).
Examples 7.4.

(a) Idempotent ultrafilters, or more precisely, the {0,1}-measures associated to idempotent
ultrafilters, are examples of finitely additive D-measures on a semigroup G with A =
P(G).

(b) More generally, for any almost invariant filter F , the associated {0,1}-measure on AF =
F 0 ∪F is a D-measure. This includes, in particular, the Fréchet filter on any group.

(c) A notable instance of the previous example is the filter C of comeager sets on a Baire
topological group. In this case, A is actually a σ-algebra, being the disjoint union of
the collections of meager and comeager sets.

(d) For a countable amenable group G with a Følner sequence (Fn)n∈N, we define the upper
density function along (Fn)n∈N by letting

d(A) = limsup
n→∞

∣A ∩ Fn∣∣Fn∣ ,

for all sets A ⊆ G. The function d is a fully invariant (but not additive) D-measure on
the powerset A =P(G). The condition of additivity on translates holds simply because
the subsequence that achieves the limsup for A also achieves it for all of its translates.
We refer to the associated filter Fd as the density filter along (Fn)n∈N.

(e) Every locally compact Hausdorff amenable group G, by definition, admits a finitely
additive invariant probability measure on the σ-algebra A of Haar measurable sets. In
particular, if G is countable, then A =P(G).

(f) Every compact Hausdorff group G admits a countably additive invariant probability
measure µ, namely, the normalized Haar measure defined on the Borel σ-algebra of
G. Thus, (G,A, µ) is, in particular, a D-measured group, where A is the σ-algebra of
µ-measurable sets.

(g) Let (Gn,An, µn)n∈N be a sequence of groups with finitely additive invariant probability
measures µn, and let G be their ultraproduct. Then G admits a countably additive
invariant probability measure µ, called the Loeb measure, defined on the σ-algebra A

generated by the so-called internal sets.

(h) Generalizing the last two examples, every probability group (see Definition 1 in [Tse13]),
by definition, admits a countably additive invariant probability measure defined some
σ-algebra A.
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7.B. D-measures and differentiability.

Proposition 7.5 (Quantitative differentiability for D-measures). Let (G,A, µ) be a D-

measured semigroup. Then for every µ-positive set A ∈ A, ∃Fµh µ(∂hA) ≥ µ(A)2

3
.

Proof. Put F = Fµ, ε =
µ(A)2

3
, and assume for contradiction that ∀Fh ∈ G, µ(∂hA) < ε. Thus,

for every such h ∈ G, we also have ∀Fg ∈ G µ((∂hA)g−1) < ε, by the almost invariance of µ.
Because (∂hA)g−1 = Ag−1 ∩A(gh)−1, we get

∀Fh∀Fg µ(Ag−1 ∩A(gh)−1) < ε.
Hence, defining

E(g1, g2) ∶⇔ µ(Ag−11 ∩Ag−12 ) < ε,
for g1, g2 ∈ G, we have ∀Fh∀Fg E(g, gh). Because µ is almost invariant, the set

Stabµ(A) ∶= {g ∈ G ∶ µ(Ag−1) = µ(A)}
is F -large and hence ∞-differentiable mod F because F is almost invariant (see Example

3.6(a)). Choosing n = ⌈ 3

µ(A)⌉, apply the difference-Ramsey property (Theorem 6.1) to E and

Stabµ(A), and get a sequence (gi)i<n ⊆ Stabµ(A) such that µ(Ag−1i ∩Ag−1j ) < ε for all i < j.
But then, by additivity on translates, we have

µ(⋃
i<n

Ag−1i ) ≥∑
i<n

µ(Ag−1i ) − ∑
i<j<n

µ(Ag−1i ∩Ag−1j )
> nµ(A) − 1

2
n(n − 1)ε

≥
3

µ(A)µ(A) −
1

2
( 3

µ(A) + 1) 3

µ(A)
µ(A)2

3

= 3 − 3 + µ(A)
2

≥ 3 − 3 + 1

2
= 3 − 2 = 1,

a contradiction. �

Recalling the definition of n-differentiability over (L,L′) (Definition 3.2), we get the fol-
lowing.

Corollary 7.6 (Qualitative differentiability for D-measures). For any D-measured semi-
group (G,A, µ), every µ-positive set is ∞-differentiable over (Lµ,Fµ

+), and hence, Lµ =
C∞(Lµ,Fµ

+) ⊆ C∞Fµ
. In particular, Aµ ⊆ PFµ

.

Proof. The previous proposition implies that every set in Lµ is 1-differentiable over (Lµ,Fµ
+),

so, by Lemma 3.3, Lµ = C∞(Lµ,Fµ
+). Because Lµ ⊆ Fµ

+, Proposition 3.4 implies that
C∞(Lµ,Fµ

+) ⊆ C∞Fµ
. �

7.C. A van der Corput lemma for D-measures. Corollaries 6.2 and 7.6 yield the fol-
lowing:

Corollary 7.7 (van der Corput lemma for D-measures). For any D-measured semigroup(G,A, µ), the filtered M-semigroup (G,Aµ,Fµ) has the van der Corput property, i.e. for
every weakly upper Aµ-semimeasurable bounded sequence (eg)g∈G in a Hilbert space H, we
have

lim
h→Fµ

lim
g→Fµ

⟨eg, egh⟩ = 0 Ô⇒ lim
g→Fµ

⟨f, eg⟩ = 0, ∀f ∈H.
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Remark 7.8. If A is a σ-algebra (as in (c), (e)–(h) of Examples 7.4), we recall from Re-
mark 2.11 that weakly A-measurable sequences (in the classical sense) are weakly upper
A-semimeasurable, and hence also weakly upper Aµ-semimeasurable. Thus, the conclusion
in Corollary 7.7 holds for all weakly A-measurable sequences.

With this remark in mind, we see that the following particular instances of van der Corput
lemmas that have appeared in the literature all follow as direct applications of Corollary 7.7.

Instances 7.9.

(a) (Furstenberg [Fur81, Lemma 4.9]) For the density filter (along some Følner sequence)
Fd on a countable amenable group G, the filtered M-semigroup (G,P(G),Fd) has the
van der Corput property.

(b) (By essentially the same proof as for the previous instance) For a locally compact Haus-
dorff amenable group G and a finitely additive invariant probability measure µ defined on
the σ-algebra A of Haar measurable subsets of G, the filtered M-semigroup (G,A,Fµ)
has the van der Corput property.

(c) (Folklore) For a compact Hausdorff group G and the normalized Haar measure µ on G,
the filtered M-semigroup (G,A,Fµ) has the van der Corput property, where A is the
σ-algebra of µ-measurable subsets of G.

(d) (By the same proof as for the previous instance) For the Loeb measure µ on an ultraprod-
uct G of a sequence of groups Gn equipped with a finitely additive invariant probability
measure µn, the filtered M-semigroup (G,A,Fµ) has the van der Corput property, where
A is the σ-algebra of µ-measurable subsets of G.

(e) (A variant of [Tse13, Lemma 20]) Generalizing the previous two examples, for a proba-
bility group (G,B, µ) (as in Definition 1 of [Tse13]), the filtered M-semigroup (G,A,Fµ)
has the van der Corput property, where A is the σ-algebra of µ-measurable subsets of G.

This set of instances, together with Instances 6.3, completes the list of all previously
existing van der Corput lemmas that the author is aware of.

7.D. Further consequences. In terms of derivation trees, Corollary 7.6, together with
parts (c) and (d) of Proposition 3.17, implies the following:

Corollary 7.10. For a D-measured semigroup (G,A, µ) and A ∈ Lµ, T (A/Lµ,Fµ
+) is

nonempty pruned. In particular, it has an infinite branch and hence ∆(A/Lµ,Fµ
+) contains

an IP-set.

This last corollary implies the following weak version of what would be a “density Hindman
theorem” for D-measures.

Corollary 7.11. Let (G,A, µ) be a D-measured semigroup. For every µ-positive set A ⊆ G
there is an IP-set P = FP(hn)n∈N such that for every finite product subset QN ∶= FP(hn)n<N ,
N ∈ N, we have

⋂
h∈QN

Ah−1 >Fµ
0.

In particular, A contains shifts of arbitrarily long finite product sets; more precisely, for
every N , there is g ∈ A such that A ⊇ gQN .
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