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8524, 59655 Villeneuve d’Ascq Cedex, France.
2Department of Mathematics, KULeuven, Celestijnenlaan 200B,

3001 Heverlee, Belgium.

July 8, 2021

Abstract

We show that the class of L-constructible functions is closed under
integration for any P -minimal expansion of a p-adic field (K,L). This
generalizes results previously known for semi-algebraic and sub-analytic
structures. As part of the proof, we obtain a weak version of cell decompo-
sition and function preparation for P -minimal structures, a result which
is independent of the existence of Skolem functions. A direct corollary
is that Denef’s results on the rationality of Poincaré series hold in any
P -minimal expansion of a p-adic field (K,L).

1 Introduction

One of the main results of this paper is that, for arbitrary P -minimal structures
over p-adic fields, the class of constructible functions is closed under integration.
This generalizes a result which was previously known only for semi-algebraic and
sub-analytic structures (and some intermediary cases).

As part of the proof, we obtain the second main result of this paper: a version
of cell decomposition and function preparation for P -minimal structures. While
our version is somewhat weaker than what was obtained in previous attempts
by e.g. Mourgues [20], it does not depend on the existence of definable Skolem
functions.

∗The research leading to these results has received funding from the European Research
Council, ERC Grant nr. 615722, MOTMELSUM, 2014 - 2019.

†During the realization of this project, the second author was a postdoctoral fellow of the
Fund for Scientific Research - Flanders (Belgium) (F.W.O.).
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In this introduction we give an informal motivation of our approach, dis-
cussing the historical connections between p-adic integration, rationality of
Poincaré series, and cell decomposition. We will present exact statements of
our main results in the next section.

The study of p-adic integrals was motivated by a number-theoretic question.
It was conjectured by Borevich and Shafarevich that for f(x) ∈ Z[x], Poincaré
series like e.g. P (T ) :=

∑

m∈N
NmTm, where

Nm := #{x ∈ (Z/pmZ)n | f(x) ≡ 0 mod pm},

are rational functions of T . This was originally proven by Igusa [15–17]. Later,
Denef [8] obtained a similar, more general result. He gave two proofs that
were based on Macintyre’s quantifier elimination for semi-algebraic sets [19], one
using resolution of singularities, and one where he introduced cell decomposition
techniques. We refer to [10] for a comparison of both approaches.

A first step towards a proof is the realization that the terms of a Poincaré
series can be connected to the measure of certain semi-algebraic sets, and hence
to p-adic integrals. For instance, one can check that

Nm = pnm · µ({x ∈ Zn
p | ordf(x) > m}),

where µ is the Haar measure normalized such that µ(Zp) = 1, and ord denotes
the valuation map ord : Qp → Z ∪ {∞}. To prove rationality, one needs to
understand how the measure of this family of definable sets depends on m. (If
the dependence is tame enough, identities like

∑∞
n=0 x

n = 1
1−x

can be used to
deduce rationality.) Hence the focus shifts to the computation of (families of)
p-adic integrals.

In a p-adic integral, the integrand is usually the valuation ‘ordf ’ or the p-
adic norm |f | := p−ordf of a semi-algebraic function f . More generally, one can
consider so-called constructible functions, i.e. Q-linear combinations of definable
functions α : Qr

p → Z and their induced functions pα. Note that it is natural
here to work in a two-sorted structure (Qp,Z), adding the value group Z∪{∞}
as a separate sort. The word definable should also be interpreted in that context,
using a two-sorted language Lring,2 = (Lring,LPres, ord), consisting of the ring
language Lring for the main sort Qp, the Presburger language LPres = (+,−, <
,≡n) for the value group sort Z ∪ {∞}, and the valuation map ord : Qp →
Z ∪ {∞} to connect the sorts.

Denef showed in [9] that given a semi-algebraic function f , the integral of
|f | equals a constructible function, a result which was later generalized to the
sub-analytic setting by Cluckers, Gordon and Halupczok [6]. We will discuss
this in more detail in the next section. In section 4, we prove that this closure
property holds in arbitrary P -minimal structures over p-adic fields. Corollary
4.6 then provides an example of how the rationality of Poincaré series can be
deduced from this.

Let us now discuss the connection with cell decomposition techniques. The
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general philosophy is to partition a definable set X in somewhat uniform parts,
called cells. If X is the domain of a function f , an additional goal may be to
prepare the function, i.e. choosing the partition in such a way that the function
f , when restricted to each of the cells, has some additional nice properties. Cells
are generally taken to be sets of the form

{

(x, t) ∈ D × T

∣

∣

∣

∣

a condition of a fixed form describing
t in terms of the other variables x

}

,

where D is a definable set and T is one of the sorts. For instance, when working
with semi-algebraic sets, this fixed form is a formula stating that x belongs to
an interval-like set:

orda1(x) �1 ord(t− c(x)) �2 orda2(x) and t− c(x) ∈ λPn,

where �i may denote < or no condition, λ ∈ K and the functions ai(x) are
definable functions D → K. We use the symbol Pn for the set of (non-zero)
n-th powers. Note that if λ = 0, what we get is just the graph of the function
c(x).

What Denef [8, 12] showed is that given a semi-algebraic function f : X ⊆
Kn+1 → K, X can be decomposed into cells such that on each cell C, f|C
satisfies the following condition:

|f(x, t)| = |λ(t − c(x))|
e
n |h(x)|,

where h(x) and c(x) are definable functions and e, n are integer numbers. The
version stated here is a reformulation by Cluckers [5], who also obtained an
analogous result for subanalytic functions in [1].

This preparation result is particularly useful for integration purposes. In-
deed, if the domain of a function f : X → K can be partitioned into a finite
number of sets {(x, t) ∈ Di × T | φi(x, t)} on each of which f has the form
prescribed above, then one gets that

∫

X

|f(x, t)||dx||dt| =
∑

i

∫

Di

|h(x)|

[

∫

{t∈T |φi(x,t)}

|λ(t − c(x))|
e
n |dt|

]

|dx|.

Iteration of this theorem allows one to give very accurate descriptions of the
value of the integral of f and its dependence on possible parameters. Similar
strategies were applied for the subanalytic case, see e.g. [1, 11].

When Haskell and Macpherson developed the notion of P -minimality [13], it
was natural to ask how much of the above ideas could be generalized to that
setting. One of the most notable results so far in this context is Mourgues’
cell decomposition theorem [20]. She showed that in a P -minimal structure
which admits definable Skolem functions, any definable set A ⊆ Kr+1 can be
partitioned in cells of the form

{(x, t) ⊆ S ×K | orda(x) �1 ord(t− c(x)) �2 ord b(x); t− c(x) ∈ λPn},
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where a, b, c : S → K are definable functions, �i are either < or no condition,
Pn denotes the set of n-th powers and λ ∈ K. Moreover, she showed that the
existence of definable Skolem functions is a necessary condition for the existence
of a decomposition using cells of this form. Note that is currently not known
whether all P -minimal structures admit definable Skolem functions. Work by
the second author on reducts of p-adically closed fields [18] seems to indicate
that this may not be the case, and hence some caution is warranted when making
this assumption.

One way to deal with this uncertainty is to replace P -minimality by a (pos-
sibly) more restrictive notion, explicitly adding the existence of Skolem function
as a condition. An example of this approach is the recent attempt of Darnière
(see [7] for his preprint), who suggests a notion of so-called P -optimal struc-
tures. Even with these stronger assumptions, it is still an open problem whether
some version of the Denef-Cluckers preparation theorem holds for arbitrary P -
minimal structures.

In this paper, we take an alternative approach: the results we present here
do not rely on the existence of definable Skolem functions. Instead, we de-
cided to shift the emphasis back to possible applications. While our versions
of cell decomposition/preparation are certainly weaker than versions known for
individual structures, they are still strong enough to prove the theorems that
initially motivated their development. Theorem 4.1 is an illustration of this.

The rest of the paper is organized as follows. In section 2, we explain our
results in more detail. The proof of the cell decomposition and preparation
theorems will be given in section 3. In section 4 we show that constructible
functions form a class that is stable under integration. This result will be used
to derive the rationality of Poincaré series.

Our arguments use the fact that on every model M of Presburger arithmetic,
there exists a definable total order ⊳ of M , such that every definable subset of
M has a ⊳-minimal element. We present this result in an appendix, as part of a
more general framework. As a corollary, we obtain that Presburger arithmetic
has elimination of imaginaries (a result already proven in [2]).

The authors would like to thank Raf Cluckers for for stimulating conversations
during the preparation of this paper.

2 Overview of main results

In this section we state the main results of this paper. Proofs will be deferred
to later sections.

We first fix some notations. Let K be a p-adically closed field (that is,
elementarily equivalent to a p-adic field). We use the notation qK for the number
of elements of the residue field kK , OK for the valuation ring of K, and πK for
a uniformizing element. Write acm : K → (OK/πm

KOK)× ∪ {0} for the m-th
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angular component map, which can be defined as

acm (x) :=

{

x̃ mod πm
K if 0 6= x = πordx

K x̃,
0 if x = 0.

In every expansion of a p-adically closed field K, such angular component maps
exist and can be defined in a unique way, as was shown in Lemma 1.3 of [3].
For notational purposes, we will fix a definable set S ⊆ Km0 × Γm0

K which we
call a parameter set. Given a set X ⊆ S ×K and s ∈ S, we write

Xs := {x ∈ K | (s, x) ∈ X}

to denote the fiber over s. Analogously, for a definable function f : X → ΓK , we
use the notation fs(·) for the function f(s, ·) : Xs → ΓK . Given two sets A and
B, we write ΠA : A × B → A for the projection onto A, and ΠB : A× B → B
for the projection onto B. For a positive integer n ≥ 1, A≤n denotes

⋃n
i=1 A

i.

We will work with a two-sorted version of P -minimality, where we consider both
the field sort and the value group sort ΓK ∪ {∞} to be of equal importance.
Let (K,ΓK ;L2) be a two-sorted structure, with language L2 = (L,LPres, ord).
Here L, the language for the K-sort, is assumed to be an expansion of the ring
language Lring. For the value group sort ΓK ∪ {+∞}, we use the language of
Presburger arithmetic LPres = (+,−, <,≡n). The sorts are connected through
the valuation map ord : K → ΓK ∪ {+∞}. If the language L2 is clear from the
context, we will just write (K,ΓK). By a definable set we mean definable with
parameters.

Definition 2.1. A two-sorted structure (K,ΓK ;L2) with L2 = (L,LPres, ord)
and Lring ⊆ L is said to be P -minimal if the underlying structure (K,L) is
P -minimal, that is, for every (K ′,L) elementarily equivalent to (K,L), the L-
definable subsets of K ′ are Lring-definable.

This definition is motivated by the following observation, which was based
on Wagner’s results on definable functions in one variable on certain ordered
abelian groups [21].

Theorem 2.2 (Cluckers [2], Lemma 2 and Theorem 6). Let (K,L) be a P -
minimal field.

For any L-definable set X ⊆ (K×)m, the set

ord(X) := {(ordx1, . . . , ordxm) ∈ Γm
K | (x1, . . . , xm) ∈ X}

is LPres-definable.

Let S ⊆ Γm
K be a Presburger-definable set. Then the set

ord−1(S) := {(x1, . . . , xm) ∈ (K×)m | ordx ∈ S}

is Lring-definable.
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This theorem implies that, given a (mono-sorted) P -minimal structure (K,L),
the valuation map ord : K → ΓK ∪{∞} induces a two-sorted structure (K,ΓK)
where every definable subset of Γm

K is LPres-definable, and hence it is natural to
take LPres as the language for the value group sort.

Note that a two-sorted P -minimal structure (K,ΓK) cannot have definable
Skolem functions since any definable section of ord contradicts the assumption
of P -minimality.

We will now explain our notion of cells and cell decomposition. We distinguish
the following two kinds of cells:

Definition 2.3 (Cells). Let (K,ΓK) be an L2-structure.

• A subset C ⊆ S ×K is a K-cell if it is of the form

C =







(s, t) ∈ D ×K

∣

∣

∣

∣

∣

∣

α(s) �1 ord(t− c(s)) �2 β(s),
ord(t− c(s)) ≡ k mod n,
acm (t− c(s)) = ξ







,

where D, the base of the cell, is a definable subset of S, c is a definable
function c : D → K, α, β are L2-definable functions D → ΓK , k, n,m ∈ N,
ξ ∈ acm (K) and the symbols �i may denote < or no condition.
If acm (t − c(s)) = 0 (and hence t = c(s)), one should ignore the first two
conditions.

• A subset B ⊆ S × ΓK is a Γ-cell if it is of the form

B =

{

(s, γ) ∈ D × ΓK

∣

∣

∣

∣

α(s) �1 γ �2 β(s),
γ ≡ k mod n

}

,

where D, the base of the cell, is a definable subset of S, α, β are definable
functions D → Γk, k, n ∈ N and the squares �i may denote < or no condition.

To each cell, one can associate a tuple (�, k, n,m, ξ), respectively (�, k, n),
where � = (�1,�2) ∈ {∅, <}2, ξ ∈ acm (K), and (k, n,m) is a triple of non-
negative integers such that k < n. These tuples will be referred to as the type
of the respective cells. We denote by PK (resp. PΓ) the set of all possible types
of K-cells (resp. Γ-cells).

We obtain cell decomposition results for definable sets both of the form X ⊆
S ×K and X ⊆ S × ΓK . Let us first consider the case where the last variable
belongs to the ΓK-sort. When X is a set X ⊆ S × ΓK , we obtain a partition
into a finite union of Γ-cells. Moreover, for functions f : X ⊆ S × ΓK → ΓK ,
we describe explicitly how, on each cell in the decomposition of X , the value of
f depends on the last variable.

Proposition 2.4 (Function preparation). Let f : X ⊆ S × ΓK → ΓK be
definable in a P -minimal structure (K,ΓK). There exists a finite partition of
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X in Γ-cells C, such that on each cell C with type (δ, k, n), the function f has
the form

f(x, γ) = a

(

γ − k

n

)

+ δ(x),

where a ∈ Z, n, k ∈ N and δ is a definable function S → ΓK .

If X is a subset of S × K, the statement of our cell decomposition result
is more subtle. The main difference between classical cell decomposition and
K-cell decomposition arises at the level of centers. In the classical definition,
the centers appear as the images of definable functions from the parameter set
S. Instead, a K-cell decomposition provides a partition of X into sets Xi, which
are essentially a finite union of cells, together with a definable Σi containing all
their possible tuples of centers. This type of decomposition is sufficiently strong
for the computation of integrals: the Haar measure is translation invariant, and
hence the centers are not of great importance here.

Theorem-Definition 2.5 (K-cell decomposition). Let (K,ΓK) be a P -minimal
structure, and X ⊆ S ×K be a definable set. There exists a finite partition of
X in sets Xi ⊆ Si ×K. On each part Xi, there is an integer r and r associated
K-cells Cj of the form

Cj :=







(s, t) ∈ Si ×K

∣

∣

∣

∣

∣

∣

αj(s) �1,j ord t �2,j βj(s) ∧
ord t ≡ kj mod n ∧
acm(t) = ξj







,

where αj , βj : Si → ΓK are definable functions and (�j, kj , n,m, ξj) ∈ PK . To
each Xi, we associate a definable set Σi ⊆ Si × Kr, which has the following
property. To any function

σ : Si → Kr : s 7→ (σ1(s), . . . , σr(s)),

whose graph is contained in Σi, we can associate a (bijective) translation Tσ :
⊔jCj → Xi, defined by

Tσ(s, t) = (s, t− σj(s)) for all (s, t) ∈ Cj .

The tuple {(Xi)i, (Σi)i, (Cδij )i,j}, will be called a K-cell decomposition of X.

Notice that the cells Cj are not necessarily disjoint (in fact, some of them may
even coincide.) What we obtain is a family of bijective translations Tσ between
the disjoint union ⊔j Cj and one of the parts Xi. Also note that while the sets
Σi are definable, we cannot assure that any of the individual curves σ contained
in it will be definable. (If a definable σ exists andX only consists ofK-variables,
a cell decomposition with the functions σ(x) as centers will be very similar to
what Mourgues obtained.)

In the second part of the paper (section 4), we discuss applications of the
preparation and cell decomposition theorems. We will restrict our attention
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to the case where K is a p-adic field. The results in other sections are valid for
arbitrary p-adically closed fields.

Inspired by his rationality results, Denef decided to introduce the class of
constructible functions:

Definition 2.6. Let X be an L2-definable set. Write AqK for the ring

AqK := Z

[

qK , q−1
K ,

(

1

1− q−i
K

)

i∈N,i>0

]

.

We say that a function f : X → Q is L2-constructible if it is contained in the
AqK -algebra generated by functions of the forms

α : X → Z and X → Z : x 7→ q
β(x)
K ,

where α and β are L2-definable and Z-valued.

When L is Lring, the subanalytic language Lan on K (see [11] for a defi-
nition), or some intermediary languages as in [4], the class of L2-constructible
functions is known to be stable under integration (see [10], [1], and [6] for the
most convenient dealing with integrability conditions). We show that (see Theo-
rem 4.1), whenever (K,Z) is a P -minimal structure, the class of L2-constructible
functions is stable under integration :

Theorem. Let K be a p-adic field, (K,Z) a P -minimal structure, and f : X ⊆
S×Km → AqK an L2-constructible function such that f(s, ·) is measurable and
integrable on Ys for all s ∈ S. There exists a constructible function g : S → AqK ,
such that

g(s) =

∫

Xs

f(s, x)|dx|,

for all s ∈ S.

We also extend the rationality results known so far only for the semi-algebraic
[8] and subanalytic setting [11] (and thus also for any sublanguage), obtaining
the following:

Theorem. Suppose that (K,Z) is P -minimal. Let X be a definable subset of
On

K × N, and let an be the Haar measure of Xn := {x ∈ On
K | (x, n) ∈ X} for

each n ≥ 0. Then the series
∑

i≥0 aiT
i is rational.

Here we normalize the Haar measure on Kn so that On
K has measure 1. For a

more precise statement we refer to Corollary 4.6.

3 Cell decomposition and function preparation

In this section we will give a proof of the cell decomposition and preparation
theorems. For the comfort of the reader, we will restate (an abbreviated version
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of) the theorems. To ease notation, we will assume that for any definable set
X ⊆ S ×K, the projection onto the parameter set S is surjective, replacing S
by ΠS(X) if necessary. The following notation will also be used in the proofs of
this section.

Definition 3.1. A K-cell condition is a formula Cδ(x, y, α, β; s) of the form

Cδ(x, y, α, β; s) :=





α(s) �1 ord(x− y) �2 β(s) ∧
ord(x− y) ≡ k mod n ∧
acm(x− y) = ξ



 ,

where (�, k, n,m, ξ) = δ ∈ PK , and α, β are definable functions S → ΓK . When
no s appears, α, β are just elements of ΓK .

Theorem (Theorem-Definition 2.5). Let X ⊆ S ×K be a set definable in a P -
minimal structure (K,ΓK). There exists aK-cell decomposition {(Xi)i, (Σi)i, (Cδij )i,j}
of X.

Proof. Fix a parameter s ∈ S. By the cell decomposition theorem for semi-
algebraic sets, see e.g. [6, theorem 3.3.2], there exists a finite partition of Xs

into K-cells

Cs =







t ∈ K

∣

∣

∣

∣

∣

∣

αs �1 ord(t− cs) �2 βs,
ord(t− cs) ≡ ks mod ns,
acms

(t− cs) = ξms,s







, (1)

where αs, βs ∈ Γk, cs ∈ K and (�, ks, ns,ms, ξms,s) ∈ PK . Note that the cell
decomposition of Xs may contain multiple cells of the same type.

Claim 3.2. There is a natural number N ≥ 1 such that for every s ∈ S, the
set Xs can be partioned as a union of at most N K-cells, and for each of these
cells we can assure that ns,ms < N .

The claim will follow by a standard compactness argument. Recall that PK

consists of elements δ = (�δ, kδ, nδ,mδ, ξδ), encoding the type of a K-cell. For
each positive integer N , put

PK,N := {δ ∈ PK | nδ < N,mδ < N},

and write

EK,N :=

N
⊔

i=1

PK,N ,

for the disjoint union ofN copies of PK,N . Note that EK,N is a finite set. For ev-
ery J ⊆ EK,N , fix an enumeration {δ1, . . . , δ|J|} of J . Given y = (y1, . . . , y|J|) ∈

K |J|, and α = (α1, α2) ∈ Γ
2|J|
K we will write

CJ (y, α) :=



















|J|
⋃

i=1

Cδi(K, yi, α1i, α2i) if the sets Cδi(K, yi, α1i, α2i)

are disjoint,

∅ otherwise,
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making use of K-cell conditions Cδi as defined in Definition 3.1. Consider the
set of formulas

Σ(x) :=







∧

J⊆EK,N

¬(∃y ∈ K |J|)(∃α ∈ Γ
2|J|
K )[Xx = CJ(y, α)]

∣

∣

∣

∣

∣

∣

N ∈ N∗







.

Since each Xs can be partitioned in semi-algebraic cells as in (1), Σ(x) is in-
consistent. Hence, by compactness there exists a finite subset Σ0(x) which is
inconsistent. Since Σ0(x) is a finite subset of Σ(x), one can find a positive
integer N0 such that





∧

J⊆EK,N0

¬(∃y ∈ K |J|)(∃α ∈ Γ
2|J|
K )[Xx = CJ (y, α)]



 |= Σ0(x).

This implies that there must exist N > 0 such that for every s ∈ S

(K,ΓK) |=





∨

J⊆EK,N

(∃y ∈ K |J|)(∃α ∈ Γ
2|J|
K )[Xs = CJ(y, α)]



 ,

which completes the claim.

Now choose an integer N satisfying the requirements of Claim 3.2. Let WN

denote the power set of EK,N . Since WN is finite, one can put a total ordering
⋖ on it. We will also put an alternative ordering ⊳ on the value group ΓK ,
which is defined by :

x⊳ y ⇔ (0 6 x < y) ∨ (0 < x 6 −y) ∨ (0 < −x < y) ∨ (0 < −x < −y). (2)

This produces a total ordering on ΓK which can be extended to Γk
K lexicograph-

ically. We will also denote this extension by ⊳. The important property of the
order ⊳ is that every definable set of ΓK has a ⊳-smallest element (for a proof
of this, see the appendix, in particular A.7). Now consider the map

τ : S → WN × (ΓK)≤2|WN | : s 7→ (τ1(s), τ2(s)),

where τ1, τ2 are defined as follows:

• put τ1(s) = J , if J is the ⋖-smallest element of WN such that

(K,ΓK) |=
[

(∃y ∈ K |J|)(∃α ∈ Γ
2|J|
K )[Xs = CJ (y, α)]

]

.

The claim ensures the existence of at least one such J in WN .

• let τ2(s) be the ⊳-smallest tuple α ∈ Γ
2|τ1(s)|
K such that

(K,ΓK) |= (∃y ∈ K |J|)[Xs = Cτ1(s)(y, α)].

10



It is clear that the function τ will be definable, using some fixed representation
for the finite index setWN . For each J ∈ τ1(S), let SJ be the set {s ∈ S | τ1(s) =
J}. These sets induce a partition of X into sets XJ := {(s, x) ∈ X : s ∈ SJ}.
We show that this partition satisfies all conditions stated in the theorem. Fix
{δ1, . . . , δ|J|} = J ∈ τ1(S). The integer r associated to XJ is precisely r := |J |.
Let ΣJ :=

⋃

s∈SJ
ΣJ,s be the set consisting of fibers

ΣJ,s := {y ∈ Kr | [Xs = CJ (y, τ2(s))]}.

Note that these sets are non-empty by definition of τ1. Given any function
σ : SJ → Kr : s 7→ (σ1(s), . . . , σr(s)) whose graph is contained in ΣJ , one then
has that Xs = CJ (σ(s), τ2(s)) for all s ∈ SJ . For 1 ≤ j ≤ r and i ∈ {1, 2},
define αij : SJ → ΓK to be the ijth-component in the tuple τ2(s). We obtain
that

XJ =
r
⋃

j=1

{(s, x) ∈ SJ ×K | Cδj (x, σj(s), α1j , α2j , s)}.

Taking the r K-cells associated to XJ given by

Cj := {(s, x) ∈ SJ ×K | Cδj (x, 0, α1j , α2j , s)}, 1 ≤ j ≤ r,

it is clear that the translation map Tσ stated in the theorem gives the required
bijection.

We now present the preparation theorem for definable subsets of the form
X ⊆ S × ΓK . The proof follows a similar scheme as the previous one.

Proposition (Proposition 2.4). Let (K,Γk,L2) be P -minimal. Let X ⊆ S×ΓK

and f : X → ΓK a definable function. There exists a finite decomposition of X
into Γ-cells C such that on each such cell C, there exists a constant aC ∈ Z and
a definable function δ : D → ΓK , such that for all (x, γ) ∈ C,

f(x, γ) = aC

(

γ − n0

n

)

+ δ(x).

Proof. Since (K,L) is P -minimal, it follows from Theorem 2.2 that each of the
fibers Xs is Presburger definable. Cluckers [2] obtained a cell decomposition
theorem for Presburger structures. Applying this to the sets Xs, yields that
each Xs can be partitoned into a finite union of cells of the form

Cs := {γ ∈ K | αs �1 γ �2 βs and γ ≡ n0 mod ns},

where αs, βs ∈ ΓK and ns ∈ N are constants depending on s. Also note that
for any s ∈ S, the graph of the function fs will be a Presburger set, by the
assumption of P -minimality. Indeed, the related set

Gs := {(x, y) ∈ (K×)2 | fs(ordx) = ord y}
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is definable in a P -minimal structure, and hence by Theorem 2.2, the set

Graph(fs) = {(ordx, ord y) ∈ Γ2 | (x, y) ∈ Gs},

is Presburger definable. This means that each fs is a Presburger definable func-
tion, and hence must be piecewise linear (with coefficients in Q). In particular,
the above partition can be taken such that on each Cs, there exist constants
as ∈ Z, δs ∈ γK such that for all γ ∈ Cs, we have that

fs(γ) = as

(

γ − n0

ns

)

+ δs.

Claim 3.3. There is a natural number N ≥ 1 such that for every s ∈ S, the
set Xs can be partioned as a union of at most N Γ-cells, and for each of these
cells we can assure that ns, |as| < N .

The claim follows by compactness and P -minimality using an analogous
argument to the one presentend in Claim 3.2.

For an integer N satisfying the requirements of the claim, let

PΓ,N := {(�, k, n) ∈ PΓ | n < N} and EΓ,N :=

N
⊔

i=1

PΓ,N .

Recall that PΓ consists of elements δ = (�δ, kδ, nδ), encoding the type of a
Γ-cell. We will use the notation

Cδ(α, β) := {γ ∈ K | α �δ,1 γ �δ,2 β ∧ γ ≡ kδ mod nδ} .

For every J ⊆ EΓ,N , fix an enumeration {δ1, . . . , δ|J|} of J . Given α = (α1, α2) ∈

Γ
2|J|
K , we put

CJ(α) :=



















|J|
⋃

i=1

Cδi(α1i, α2i) if the sets Cδi(α1i, α2i)

are disjoint,

∅ otherwise.

Let a ∈ Z|J| be such that |ai| < N for all 1 ≤ i ≤ |J |. Let x be a tuple of
variables of the same length (and sorts) as elements in S, and γ a ΓK-variable
of length 1. The tuple α = (α1, α2, α3) consists of (tuples of) ΓK-variables:
α1, α2 and α3 all have length |J |. We define the formula φJ,a(x, α) as

φJ,a(x, α) :=







Xx = CJ (α1, α2) ∧
∧

1≤i≤|J|

(∀γ)

[

γ ∈ Cδi(α1i, α2i) →

(

fx(γ) = ai

(

γ − kδi
nδi

)

+ α3i

)]






.

Roughly, this formula states that the set Xx can be decomposed into finitely
many disjoint Γ-cells, on each of which the function fs satisfies the required
preparation condition. Define the set WN by

WN := {(J, a) : J ⊆ EΓ,N , a ∈ Z|J|, |ai| < N for all 1 ≤ i ≤ |J |}.
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Since WN is finite, one can put a total ordering ⋖ on it. As before we work with
an alternative total ordering ⊳ on the value group ΓK defined as in equation
(2). We proceed as in the K-cell decomposition theorem and define a map

σ : S → WN × (ΓK)≤3|WN | : s 7→ (σ1(s), σ2(s)),

where σ1, σ2 are defined as follows:

• put σ1(s) = (J, a), if (J, a) is the ⋖-smallest element of WN such that

(K,ΓK) |= (∃α ∈ Γ
3|J|
K )φJ,a(s, α).

Claim 3.3 ensures the existence of at least one such (J, a) in WN .

• let σ2(s) be the ⊳-smallest tuple α ∈ Γ
3|σ1(s)|
K such that

(K,ΓK) |= φσ1(s)(s, α).

It is easy to see that the function σ will be definable, using some fixed repre-
sentation of the finite index set WN . We recover the Γ-cell decomposition for
X and the linear functions satisfying the preparation condition in the following
way. For each λ = (J, a) ∈ σ1(S), we define sets Sλ and Xλ, as

Sλ := {s ∈ S | σ1(s) = λ} and Xλ := {(s, x) ∈ X : s ∈ Sλ}.

This gives us a finite partition of X as X = ∪λXλ. We will now partition the
sets Xλ as a finite union of Γ-cells, on each of which f will have the required
form.

For 1 ≤ j ≤ |J | and i ∈ {1, 2, 3}, define αλij : Sλ → ΓK to be the ijth-
coordinate of σ2(s). Note that these functions are indeed definable, since σ2 is
definable. The above construction now implies that

Xλ =
⋃

16j6|J|

Cλ,j ,

where Cλ,j :=
{

(s, γ) ∈ Sλ ×K | αλ1j �δj,1 γ �δj ,2 αλ2j ∧ γ ≡ kδj mod nδj

}

.
The formula φλ(s, α) then ensures that for all (s, γ) ∈ Cλ,j , it holds that

f|Cλ,j
(s, γ) = aj

(

t− kδj
nδj

)

+ αλ3j ,

which completes the proof.

Remark. Proposition 2.4 can be used to translate theorems for parametrized
Presburger definable sets X ⊆ S × Γm

K to two-sorted P -minimal structures, in
the following sense. The same theorems will hold in any two-sorted P -minimal
structure, where the parameter set S can now be any L2-definable set containing
variables in both K and ΓK , and the involved Presburger-definable functions
should be replaced by functions which are piecewise linear in the ΓK-variables,
in the sense of Proposition 2.4. The corollary stated below is an example of
this.
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Given a P -minimal structure (K,ΓK ,L2), we call a definable function f :
X ⊆ S×Γm

K → S×Γl
K linear over S if there is a definable function g : S → Γl

K

and a linear definable function a : Γm
K → Γl

K such that f(s, t) = (s, g(s) + a(t))
for all (s, t) ∈ X . We write H for the set H := {x ∈ ΓK | x > 0}.

Corollary 3.4. (Parametric rectilinearization) Let (K,ΓK ,L2) be a P -minimal
structure and X ⊆ S × Γm

K be a definable set. There exists a finite partition of
X into definable sets such that the following holds.

For each part A, there is a set B ⊆ S×Γm
K and a definable bijection ρ : A →

B which is linear over S such that, for each s ∈ S, the set Bs is a set of the
form Λs ×H l for a bounded subset Λs ⊆ Hm−l, depending on s (in a definable
way), and for an integer l ≥ 0 only depending on A.

Proof. The proof is almost word for word the proof the same as the proof of the
Parametric rectilinearization Theorem for Presburger definable sets (Theorem
3 in [2]). One just needs to replace every application of the Presburger function
preparation theorem (Theorem 1 in [1]) by Proposition 2.4.

4 Integration and rationality

In this section, K denotes a p-adic field, so the value group ΓK will just be Z.
Two types of integrals will appear. When integrating over (subsets of) Km,
the Haar measure µ is used. When integrating over Zn, we use the counting
measure. The notation

∫

X
|dx| will be used in both contexts, adapting the

measure |dx| to the sort of the variables involved.
The results below are stated for an L2-constructible function f : X ⊆

S × Y → AqK , where both S and Y are definable sets and S is considered
a parameter set. Note that both S and Y may contain variables in both the
K-sort and the Z-sort, unless explicitly stated otherwise. Recall that the defi-
nition of constructible functions was given in Definition 2.6. For such a fuction
f , we define its locus of integrability as the set

Int(f, S) := {s ∈ S | f(s, ·) is measurable and integrable on Ys}.

The main result of this section is the following theorem.

Theorem 4.1. Let K be a p-adic field and (K,Z,L2) be a P -minimal structure.
Let S be a definable set, and f : X ⊆ S×Y → AqK an L2-constructible function
such that Int(f, S) = S. There exists an L2-constructible function g : S → AqK ,
such that

g(s) =

∫

Xs

f(s, y)|dy|,

for all s ∈ S.

This is a partial generalization of results which were already proven for
specific cases by Cluckers, Gordon and Halupczok in [6]. The generalization is
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partial because their results do not require the assumption Int(f, S) = S, instead
relying on an interpolation lemma, replacing f by a function f̃ that coincides
with f on its locus of integrability, and for which Int(f̃ , S) = S. If a similar
interpolation lemma can be proven to hold in general P -minimal structures, the
assumption that Int(f, S) = S, can be removed from our result as well.

Proposition 4.2. Theorem 4.1 holds when X ⊆ Zr.

Proof. Note that in this case, X is LPres-definable, by Theorem 2.2. Proofs can
be found in [6], Theorem 2.1.6.

Proposition 4.3. Theorem 4.1 holds when L2 = Lring,2 or Lan,2.

Proof. See [6], Theorem 3.1.1.

As a first step towards a general proof of Theorem 4.1, we show that it
already holds when Y ⊆ Zr:

Proposition 4.4. Theorem 4.1 holds when Y ⊆ Zr.

Proof. This is essentially a consequence of Proposition 2.4 (see also the remark
on page 13). In [6], this proposition was proven under the assumption that
L2 = Lring,2 or Lan,2. Part (1) corresponds to Theorem 3.4.5 and part (2) to
Theorem 3.1.1 in [6]. If one replaces their Parametric rectilinearization Theorem
(Proposition 3.4.4 in [6]) by Corollary 3.4, the same proof also works for two-
sorted P -minimal structures.

We will reduce the general case to Proposition 4.4 using the following obser-
vation on the measure of definable sets.

Proposition 4.5. Let (K,ΓK ,L2) be a P -minimal structure. Let X ⊆ S × T
be a definable set, where T is K or Z. There exists a constructible function
g : S → AqK , such that g uniformly measures the fibers Xs, that is,

g(s) =

∫

Xs

|dt|,

whenever Xs has finite measure. Moreover, the set

S̃ := {s ∈ S | Xs has finite measure},

is definable.

Proof. When T = Z, this is a consequence of Proposition 4.4, where f is the
constant function f(x) = 1 for all x ∈ X . The fact that the set S̃ is definable
follows from the cell-decomposition part of Proposition 2.4. Indeed, a Γ-cell
B ⊆ Z (as in definition 2.3) has finite measure if and only if both �1 and �2

are < on such cell. This is a definable condition.
Let us now consider the case where T = K. By (the translation version of)

the K-cell decomposition theorem (i.e., Theorem 2.5), we can partition X in
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parts Xi ⊆ Si ×K. On each of these parts, for any choice of a function σ with
image contained in Σ, we have that

∫

(Xi)s

|dt| =

∫

Tσ(⊔(Cj)s)

|dt| =
∑

j

[

∫

(Cj)s

|dt|

]

,

and hence it suffices to compute the integral
∫

(Cj)s
|dt|. Assume that Cj is the

zero-centered K -cell

Cj :=







(s, t) ∈ Si ×K

∣

∣

∣

∣

∣

∣

αj(s) �j,1 ord t �j,2 βj(s),
ord t ≡ kj mod N,
acM (x) = ξj







.

Computing the measures of these cells, we get that
∫

(Cj)s

|dt| =
∑

τ∈Tj

µ
(

ξjπ
kj+τN

K (1 + πMOK)
)

,

= |ξ|q
−(kj+M)
K

∑

τ∈Tj

(q−N
K )τ ,

where πK is a uniformizing element for K and Tj is the set

Tj := {τ ∈ ΓK | αj(s) �j,1 kj + τN �j,2 βj(s)}.

It is easy to see that (Cj)s (and hence X) can only have finite measure if �j,1

denotes < for j = 1, . . . , l. Since this is a property of the cell, this is a definable
condition.

We get the following results for this sum. If we put α̃ := ⌊α−k
N

⌋ + 1, and

β̃ := ⌈β−k
N

⌉ − 1 (clearly these are still definable functions), then we get that

∑

τ∈Tj

(q−N
K )τ =











q
−Nα̃j

K

1−q
−N

K

if �j,2 = ∅,

1
1−q

−N

K

(q
−Nα̃j

K − q
−Nβ̃j

K ) if �j,2 =< .
(3)

In both cases we obtain an L2-constructible function. Hence, we can conclude
that µ(Xs) is given by a constructible function as well.

We can now complete the proof of the main theorem:

Proof of Theorem 4.1. Since Int(f, S) = S, by Fubini’s theorem, the general
result can be obtained by iteration and we may assume that either Y = Z, or
Y = K. The first case is already included in Proposition 4.4, so we only need
to consider the case Y = K.

A general constructible function f : X ⊆ S ×K → AqK has the form

f(s, x) =

r
∑

i=1

aiq
fi0(s,x)
K

r′
∏

j=1

fij(s, x),
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where the fij are definable functions X → Z, and ai ∈ AqK . Now put γ = (γij)i,j
and consider the set

G := {(s, γ, x) ∈ S × Z(r′+1)r ×K | γij = fij(s, x)},

which is a permutated version of the combined graphs of the functions generating
f . To ease notations, we will sometimes consider G as a subset of D×K, where
D = Π

S×Γ
(r′+1)r
K

(G). Let µ denote the usual Haar measure. The integral of fs

can be written as a sum ranging over Im(fs):

∫

Xs

f(s, x)|dx| =
∑

δ∈Im(fs)

δ · µ{x ∈ Xs | fs(x) = δ},

and this sum can be expressed in terms of the variables γ, to obtain a sum

∑

γ∈Ds









r
∑

i=1

aiq
γi0

K

r′
∏

j=1

γij



 · µ



{x ∈ Xs |
∧

ij

fij(s, x) = γij}









This reduces the integral to a sum

∫

Xs

f(s, x)|dx| =
∑

γ∈Ds





r
∑

i=1

aiq
γi0

K

r′
∏

j=1

γij



 · µ(Gs,γ). (4)

Applying Proposition 4.5, we know that µ(Gs,γ) is given by a constructible
function, whenever Gs,γ has finite measure. Since this is a definable condition,
we may as well assume that the measure of Gs,γ is finite for all s ∈ S and
γ ∈ Im(fs). Hence, we can conclude that

∫

Xs

f(s, x)|dx| =
∑

γ∈Ds

h(s, γ), (5)

for some constructible function h : D → AqK . Noticing that

∑

γ∈Ds

h(s, γ) =

∫

Ds

h(s, γ)|dγ|,

the result follows by Proposition 4.4 applied to the constructible function h.

As a consequence of Theorem 4.1, we obtain the following rationality result.

Corollary 4.6. Suppose that (K,Z) is P -minimal. Let X be a definable subset
of N×D, where D is a compact subset of Km. Then the series

∑

n≥0 µ(Xn)T
n

is a rational function. More precisely,

∑

n≥0

µ(Xn)T
n =

Q(T )
∏r

i=1(1− q−mi

K TN
i )

,

for certain integers mi, r ∈ N, Ni > 0 and Q(T ) ∈ AqK [T ].
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Proof. Applying Theorem 4.1 to the set X ⊆ N×D, one can find a constructible
function g : N → AqK , such that

g(n) =

∫

Xn

|dx|.

This function must have the form

g(n) =

r
∑

i=1

aiq
αi(n)
K

∏

j

βij(n),

where ai ∈ AqK , and the functions αi and βij are Presburger-definable functions
N → Z, and hence it is actually Lring,2-constructible. Our claim now follows
from Denef’s rationality results in the semi-algebraic case, for which we refer to
eg. [8, 9].

We finish by presenting as a conjecture a version of interpolation for P -
minimal constructible functions:

Conjecture 1. (Interpolation) Let K be a p-adic field and (K,Z,L2) be a P -
minimal structure. For every L2-constructible function f : X ⊆ S × Y → AqK

there exists an L2-constructible function g : X ⊆ S × Y → AqK such that
Int(g, S) = S and f(s, y) = g(s, y) whenever s ∈ Int(f, S).

Assuming this conjecture, Theorem 4.1 implies the full generalization of the
stability result in [6].

Corollary 4.7. Let K be a p-adic field and (K,Z,L2) be a P -minimal structure
and suppose that the interpolation conjecture is true. Let S be a definable set,
and f : X ⊆ S × Y → AqK an L2-constructible function. There exists an
L2-constructible function g : S → AqK , such that

g(s) =

∫

Xs

f(s, y)|dy|,

whenever s ∈ Int(f, S).

A Definably well-ordered structures

Definition A.1. A structure (M,L) is said to be definably well-ordered if there
exists a definable linear order ⊳ on M , such that every definable subset of M
has a ⊳-minimal element.

Lemma A.2. Suppose that (M,L) is definably well-ordered, and that ⊳ is de-
fined by an L(a)-formula. Then every structure (N,L(a)) which is elementarily
equivalent to (M,L(a)), is definably well-orderable.

18



Proof. Let φ(x, y) be an L(a)-formula with length(x) = 1. By definition,

M |= (∀y)[(∃x)φ(x, y) → (∃x)(φ(x, y) ∧ (∀z)[φ(z, y) → xE z])].

Since N and M are elementarily equivalent as L(a) structures, this implies that
every definable subset of N has a ⊳-minimal element.

The previous lemma shows that being a definably well-ordered structure is a
property of Th(M,a), where a is a tuple of parameters used in a formula defining
a linear order that satisfies the requirements of Definition A.1. We say that a
theory T is definably well-orderable if it has some definably well-ordered model
where the linear order is 0-definable. The following lemma shows the relation
with cartesian powers:

Lemma A.3. The following are equivalent:

1. (M,L) is definably well-ordered;

2. There is an L(M)-definable linear order ⊳ on Mn such that any definable
subset of Mn has a ⊳-minimal element.

Proof. That (1) implies (2) follows by equipping Mn with the lexicographic
order induced by the definable linear order on M . For the converse, suppose
that n > 1 and pick an element a ∈ Mn−1. Let φ(x, y) be a formula defining
x⊳ y. Then φ(x1, a; y1, a) defines a well-order on M .

For a theory to have models which are definably well-ordered is a very strong
property. As an example we show that such theories have definable choice, and
thus eliminate imaginaries (for definitions we refer to [23] and [14]).

Proposition A.4. An definably well-ordered structure (M,L) has definable
choice.

Proof. Let X ⊆ Mm+n be a definable set, and ⊳ a fixed definable linear order
on M , such that definable sets in any cartesian power of M have ⊳-minimal
elements. Define f : Πm(X) → Mn to be the function sending x to the ⊳-least
element in Xx. Clearly, if Xx = Xy then f(x) = f(y).

Corollary A.5. A definably well-ordered structure (M,L) has definable Skolem
functions.

Corollary A.6. A definably well-ordered structure (M,L) has uniform elimi-
nation of imaginaries.

Notice that being a definably well-ordered structure is stronger than having
definable choice. For instance, the real field has definable choice, yet by a result
of Ramakrishnan in [22] every definable order embeds in (Rn, <lex). Therefore,
no definable linear order has minimal elements for all definable subsets of the
real line. Using this, one can show that no reduct of the real field is definably
well-orderable.
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Even though definably well-ordered structures have strong model-theoretic
properties, they are not always model-theoretically tame. For instance, the
theory of arithmetic is definably well-orderable and yet model-theoretically wild.
The main example of a tame well-orderable theory is Presburger Arithmetic.
That this theory is well-orderable, is a consequence of the following proposition:

Proposition A.7. Let L be a language containing {≤,−} (as LPres). Then
Th(Z,L) is definably well-orderable.

Proof. Consider the following definable order

x⊳ y ⇔



















0 ≤ x < y

0 ≤ x < −y

0 ≤ −x < y

0 ≤ −x < −y

On Z this defines the following well-order:

0⊳ 1⊳−1⊳ 2⊳−2⊳ · · · .

Because of lemma A.2, this completes the proof.

Notice that the linear ordering defined in the previous proposition does not
necessarily define a well-order on every Z-group G. However, it does define
a linear order such that for any definable subset A ⊆ G, A has a ⊳-minimal
element. As a corollary we get a result from [2]

Corollary A.8. Presburger arithmetic has elimination of imaginaries.
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