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Abstract. We consider valued fields with a distinguished contractive map as val-
ued modules over the Ore ring of difference operators. We prove quantifier elimina-
tion for separably closed valued fields with the Frobenius map, in the pure module
language augmented with functions yielding components for a p-basis and a chain
of subgroups indexed by the valuation group.

1. Introduction

LetK be a valued field of prime characteristic p, and let Frobp denote the Frobenius
map x 7→ xp, and v the valuation map. In [21], Rohwer studied the additive structure
(K,+, F robp) in a formalism taking into account the valuation through the chain of
subgroups Vδ = {x : v(x) ≥ δ}, and he proved model-completeness for such models

as K = Fp((T )) and K = F̃p((T )), F̃p being the algebraic closure of Fp. We recall
that the corresponding full theory of valued fields has been studied (see [1]), but is in
general very far from being fully understood (see e.g. [9]), in particular for the above
two examples. In [2], we investigated the additive theory of valued fields but with a
distinguished isometry (at the opposite of the Frobenius map) and we could obtain
results similar to Rohwer’s, even at the level of quantifier elimination for such models

as K = F̃p((T )) with the isometry σ(
∑
aiT

i) =
∑
apiT

i. In contrast with Rohwer,
our starting point does not address directly the structure of some specific classes of
definable sets, but is in the spirit of classical elimination of quantifiers algorithms in
the theory of modules. In this paper, we show that our methods can be applied to the
Frobenius map for separably closed valued fields (Proposition 6.3), a case not covered
by Rohwer (Lemma 4.16). In order to describe the theory of modules over the Ore
ring of difference operators, we will use the formalism of λ-functions introduced by
G. Srour ([22], see also [8], [12]), and follow the approach undertaken, for instance,
in [5], [6] and [19]. Finally let us mention that new results have been obtained by G.
Onay on the model theory of valued modules ([15]), both in the isometric case and
the contractive case (the Frobenius map case).

We mostly use the notation of [2], with some slight modifications.
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2. Rings of power series as modules

Let D be a ring with a distinguished endomorphism σ and let A0 := D[t;σ] the
corresponding skew polynomial ring with the commutation rule a.t = t.aσ ([3] chapter
2). Recall that any element of A0 can be written uniquely as

∑n
i=0 t

i.ai, with ai ∈ D
([3] Proposition 2.1.1 (i)) and one has a degree function deg : A0 \ {0} → N sending∑n

i=0 t
i.ai with an 6= 0, to n ∈ N, and with the convention that deg(0) = −∞ < N.

Whenever we consider D as a right A0-module, by interpreting scalar multiplication
by t by the action of σ on D, we will denote it by D.

In addition, we will assume that D is a right Ore domain, namely that D has no
zero-divisors and for all nonzero a, b there are nonzero c, d such that a.c = b.d, and
that σ is injective, which yields that A0 has no zero-divisors ([3] Proposition 2.1.1
(ii)).

Under these assumptions, A0 satisfies the generalized right division algorithm: for
any q1(t), q2(t) ∈ A0 with deg(q1) ≥ deg(q2), there exist a ∈ D − {0}, d ∈ N and c,
r in A0 with deg(r) < deg(q2) such that q1.a

d = q2.c+ r (see e.g. [2], Lemma 2.2).
Since D is a right Ore domain, it has a right field of fractions K and we denote

the extension of σ on K by the same letter.
In the following, we will always assume that D is a commutative ring (and so K

will always be commutative); let A := K[t;σ]. Note that A is a principal right ideal
domain (and so right Ore) ([3] Proposition 2.1.1 (iii)).

Let Kσ the subfield of K consisting of the image of K under σ. We fix a basis C
of K viewed as a Kσ vector-space; we will call such basis a σ-basis.

Moreover we will assume that C can be chosen in D and that any element of D has
a decomposition along that basis with coefficients in Dσ. This is the case for instance
if K has characteristic p and σ is the Frobenius endomorphism.

For simplicity, we will assume that C is finite, that it contains 1 and we present C as
a finite tuple of distinct elements (1 = c0, · · · , cn−1). However the infinite-dimensional
case is not essentially different (see [19]).

Later we will need both A0 and A, but for the moment we will denote by the letter
A a skew polynomial ring of the form D[t;σ], where D satisfies the above hypothesis
(which encompasses the case where D is a commutative field).

We will adopt the usual convention to denote by the corresponding script letter the
structure and by a capital letter its domain. We will consider A-modules M which
have a direct sum decomposition as follows : M = ⊕n−1

i=0 M.tci. We will add new unary
function symbols λi, i ∈ n = {0, · · · , n − 1} to the usual language of A-modules in
order to ensure the existence of such decomposition in the class of A-modules we will
consider. These functions will be additive and so we will stay in the setting of abelian
structures (see for instance [20]).

Definition 2.1. Let LA := {+,−, 0, ·a; a ∈ A} be the usual language of A-modules.
Let λi, i ∈ n = {0, · · · , n−1}, be new unary function symbols. Let LA = LA∪{λi; i ∈
n}, and let Tσ be the following LA-theory:

(1) the LA-theory of all right A-modules
(2) ∀x (x =

∑
i∈n λi(x) · tci)



SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE MODULES 3

(3) ∀x∀(xi)i∈n(x =
∑

i∈n xi · tci →
∧
i∈n xi = λi(x)).

Note that D is a model ot Tσ, when viewed as an A-module as before.
We will need later that the functions λi, i ∈ n are defined in any model of Tσ by

the following LA-formula: λi(x) = y iff (∃y0 · · · ∃yn−1 x =
∑

j∈n yj · tcj and yi = y)

iff (∀y0 · · · ∀yn−1 x =
∑

j∈n yj · tcj → yi = y).

Such theories Tσ have been investigated in [5], [6] and [19], when D is a separably
closed field of characteristic p and σ is the Frobenius endomorphism. Let us recall
some of the terminology developed there.

Notation 2.2. An element q(t) of A is σ-separable if q(0) 6= 0. In writing down an
element of A, we will allow ourselves to either write it as q or q(t) when stressing the
fact that it is a polynomial in t.

In order to reduce divisibility questions to divisibility by separable polynomials, it
is convenient to introduce the following notation.

Notation 2.3. (See Notation 3.2, Remark 2 and section 4 in [5].)
Given q ∈ A , we will define σ

√
q and qσ. First, for a =

∑
i a

σ
i ci ∈ D, where the

elements ai belong to D and ci’s to C, set a1/σ :=
∑

i aici. Observe that (aσ)1/σ = a,
but unless a ∈ Aσ, (a1/σ)σ and a are distinct. Then, for q =

∑n
j=0 t

jaj ∈ A with

aj ∈ D, set σ
√
q :=

∑n
j=0 t

ja
1/σ
j . We also define qσ as

∑n
i=0 t

jaσj , we have tqσ = qt.

Iteration of σ
√

m times is denoted by σm
√

. Let a =
∑n−1

i=0 a
σ
i ci ∈ D, where

ai ∈ D and ci ∈ C. Decompose each ai along the basis C, ai =
∑n−1

j=0 a
σ
ijcj, so

aσi =
∑n−1

j=0 a
σ2

ij c
σ
j and a =

∑n−1
i, j=0 a

σ2

ij c
σ
j ci. More generally, a =

∑
d̄∈nm a

σm

d̄
cd̄, where

d̄ := (d1, · · · , dm) ∈ nm, cd̄ := cσ
m−1

d1
· · · cdm .

Given q ∈ A, we write it as q =
∑

i qici with qi =
∑

j t
jaσij, aij ∈ D. Therefore, we

have that σ
√
qi =

∑
j t
jaij, so

tq =
∑
i

σ
√
qitci.

Indeed,
∑

i
σ
√
qitci =

∑
i

∑
j t
jaijtci =

∑
i

∑
j t
j+1aσijci = tq.

Similarly, tmq =
∑

d̄∈nm
σm
√
q
d̄
tmcd̄.

For example, let F be a field of characteristic p, D = F [x] and σ be the Frobenius
map on D. We consider D as a module over D[t;σ]. The notion of σ-separable

polynomials q(t) coincides with the notion of p-polynomials
∑m

i=0 aix
pm−i , with am 6=

0, introduced by O. Ore [17] (see also [5]), by making the identification q(t) with
x.q(t) (recalling that x.t = xσ = xp). In case F is perfect, a σ-basis for F [x] is
{1, x, · · · , xp−1}. In general, let B be a p–basis of F . Then Dσ is equal to F σ[xp] and
there is a direct sum decomposition of D as ⊕ci∈{B,x.B,··· ,xp−1.B}D

σ · ci.
We now assume that (K, v) is a valued commutative field with valuation ring OK ,

maximal ideal mK and residue field K̄. Let K× = K \{0}, we denote the value group
v(K×) by Γ.

We will set ā = a + mK , the image of a under the residue map from OK to K̄.
Moreover, as before K is endowed with an endomorphism σ which is (valuation)
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increasing on OK . This implies that σ is an isometry on the elements of valuation
zero and strictly decreasing on the elements of negative valuation. In particular σ
induces an endomorphism σv of (Γ,+,≤, 0) defined by

σv(v(a)) := v(σ(a)).

Note that σv is injective. We will denote the image by σv of an element γ ∈ Γ either by
γσv or by σv(γ). In the example above where σ is the Frobenius map, we have σv(γ) =
pγ. This action induced by σ on the value group makes it a multiplicative ordered
difference abelian group in the terminology used by K. Pal ([18]), who investigated
the model theory of such structures arising in the context of valued difference fields.

From now on, A := K[t;σ], A0 = OK [t;σ]. We extend the residue map to A0 by
sending q(t) =

∑
j t
jaj to q̄(t) :=

∑
j t
j āj. We denote by I the set of elements of A0

which have at least one coefficient of valuation 0 (or equivalently q̄(t) 6= 0̄). Note that
unlike the case where σ is an isometry of K, one cannot extend the valuation v of
K× to A× or to A×0 , but the product of two elements of I still belongs to I. (To see
this last property, let g(t), h(t) ∈ I with g(t) =

∑n
j=0 t

jbj and h(t) =
∑m

k=0 t
kck. Let

j0 (respectively k0) be minimal such that v(bj) = 0 (respectively v(ck) = 0). Then
the coefficient of tj0+k0 in g(t).h(t) has value zero.)

Definition 2.4. Let (K, σ, v) be a valued field endowed with an endomorphism σ.
We will say that K is separably σ-linearly closed if any separable linear difference
polynomial q(x), namely q(x) is of the form p(x, xσ, · · · , xσn) with each xσ

i
, 0 ≤ i ≤ n,

occurring non-trivially with degree at most 1 and ∂xp(x, x
σ, · · · , xσn) 6= 0, has a zero

in K.

Proposition 2.5. Assume that (K, v, σ) is separably σ-linearly closed. Then the
σ-separable elements of I factor into linear factors belonging to I.

Proof: This follows from [16, chapter I, theorem 3], where the author dealt with
p-polynomials.

First let us simply assume that q(t) ∈ A with q(0) 6= 0. Write q(t) :=
∑d

i=0 t
d−iai

with a0 6= 0 and ad 6= 0. We apply the Euclidean algorithm in A and so for any
(t − f) ∈ A, there exists q1(t) such that q(t) = (t − f)q1(t) + a, for some a ∈ K
and q1(t) ∈ A. We want to show that we can choose f such that a = 0. Write

q(t) =
∑d

i=0 t
d−iai and q1(t) =

∑d−1
j=0 t

d−1−jbj. Then we calculate (t − f)q1(t) and
we express that a = 0. We obtain that f has to be a root of some polynomial in
K[x, xσ, · · · , xσd−1

] with coefficients ad, · · · , a0. Namely, we get a0 = b0, a1 = b1 −
fσ

d−1
b0, a2 = b2−fσ

d−2
(a1 +fσ

d−1
a0), and finally ad = −fbd−1 = −fad−1−ffσad−2−

· · · − ffσfσ2 · · · fσd−1
a0. We consider the difference polynomial p(x, xσ, · · · , xσn) :=

xad−1 + xxσad−2 + · · · + xxσxσ
2 · · ·xσd−1

a0 + ad. Since ∂xp(x, x
σ, · · · , xσn) = ad−1 +

xσad−2 + · · · + xσxσ
2 · · ·xσd−1

a0 6= 0, we get a zero f ∈ K − {0} of that polynomial
(f is non zero since ad 6= 0).

So, we have q(t) = (t − f).q1(t) with b0 6= 0 and bd−1 6= 0 and so we can iterate
the same process with q1(t). We finally obtain q(t) = (t− f1) · · · (t− fd−1)(t.a0 − fd)
with fi ∈ K − {0}, 1 ≤ i ≤ d.
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Now let us assume that in addition q(t) ∈ I. If fi /∈ OK , then write (t − fi) =
((tf−1

i ) − 1)fi, 1 ≤ i ≤ d − 1 and the last factor is written as (t(a0.f
−1
d ) − 1).fd if

a0f
−1
d ∈ OK or (t− fd.a−1

0 ).ad if fda
−1
0 ∈ OK .

Proceeding successively, we obtain a factorization of q(t) into linear factors of the
form (tf ′i − 1) or (t − f ′i) with f ′i ∈ OK , 1 ≤ i ≤ d, together with a constant factor
say c ∈ K. Since each of these linear factors belong to I and that I is closed under
product, we get that c ∈ OK \mK . 2

Corollary 2.6. Assume K is a separably closed valued field of characteristic p and
consider the skew polynomial ring K[t;σ], where σ acts as the Frobenius. Let q(t) ∈ I
be a σ-separable polynomial, then there exists a factorization of q(t) into σ-separable
linear factors belonging to I. 2

Notation 2.7. For q(t) ∈ A and µ ∈ K − {0}, denote by qµ(t) the element of A

equal to µ.q(t).µ−1. So if q(t) =
∑

i t
iai, ai ∈ K, qµ(t) =

∑
i t
iµσ

i
aiµ
−1.

Note that if q(t) ∈ A0 and µ ∈ OK , then qµ(t) ∈ A0.

3. Valued modules

We keep the same notation as in the previous section with a fixed (K, v, σ), Γ =
v(K×) endowed with the induced endomorphism σv, A the skew polynomial ring
K[t;σ] etc.

We will define the notion of σ-valued A-modules, or simply valued A-modules.
Notions of valued modules occur in various places with many variations, see for
instance [4] or [14](§2). The following generalizes the notion in [2].

Definition 3.1. (Cf. [11], [10], [2]) A valued A-module is a two-sorted structure
(M, (∆ ∪ {+∞},≤,+γ; γ ∈ Γ), w), where M is an A-module, (∆ ∪ {+∞},≤) is a
totally ordered set for which +∞ is a maximum, +γ is an action of γ ∈ Γ on ∆, and
w is a map w : M → ∆ ∪ {+∞} such that

(1) for all δ, δ1, δ2 ∈ ∆, if δ1 ≤ δ2 then δ1 + γ ≤ δ2 + γ, for each γ ∈ Γ, and
δ + γ1 < δ + γ2, for each γ1 < γ2 ∈ Γ; 1

(2) for all m1,m2 ∈ M , w(m1 + m2) ≥ min{w(m1), w(m2)}, and w(m1) = +∞
iff m1 = 0;

(3) for all m1,m2 ∈M , w(m1) < w(m2) iff w(m1 · t) < w(m2 · t);
(4) for all m ∈M − {0}, w(m · µ) = w(m) + v(µ), for each µ ∈ K×.

We denote the corresponding two-sorted language by Lw and the corresponding the-
ory by Tw.

Taking M = K and w = v, ∆ = Γ, then K is a valued A-module with t acting as
σ and Γ acting on itself by translation.

From the axioms above, we deduce as usual the following properties : w(m) =
w(−m), and if w(m1) < w(m2), then w(m1 +m2) = w(m1).

1This axiom should replace axiom (1) in the definition given in [2].
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Note also, from axiom (1), that for each m1, m2 ∈ M and µ ∈ K×, if w(m1) 6=
w(m2) implies w(m1.µ) 6= w(m2.µ).

Note that (w(M),≤) is a substructure of (∆ ∪ {+∞},≤), and that t induces an
endomorphism τ on (w(M),≤) defined by w(m.t) = τ(w(m)). It is well-defined since
by axiom (3), if w(m1) = w(m2) then w(m1 · t) = w(m2 · t).

From now on, we will impose a growth condition on the action of t by introducing
the following additional structure on ∆. This will induce in particular that the
action of t on the corresponding class of valued A-modules will be uniform, with a
compatibility condition between the action of (Γ, σv) and the action of τ .

Definition 3.2. Let (∆,≤, 0∆, τ,+γ; γ ∈ Γ) be a totally ordered set with a distin-
guished element 0∆, +γ an action of γ ∈ Γ on ∆, and τ a fixed endomorphism of
(∆,≤).

We assume that for all δ, δ1, δ2 ∈ ∆, if δ1 ≤ δ2 then δ1 + γ ≤ δ2 + γ, for each γ ∈ Γ,
and δ + γ1 < δ + γ2, for each γ1 < γ2 ∈ Γ.

The endomorphism τ satisfies the conditions, viz. : δ1 < δ2 → τ(δ1) < τ(δ2), τ(0∆) =
0∆, δ > 0∆ → τ(δ) > δ, δ < 0∆ → τ(δ) < δ, and finally a compatibility condi-
tion between the action of σv on Γ and the action of τ : for all γ ∈ Γ we have
τ(δ + γ) = τ(δ) + γσv .

We will sometimes write 0 instead of 0∆, for ease of notation.

Let us denote the corresponding language by L∆,τ and the corresponding theory
by T∆,τ .

Let Lw,τ := Lw ∪ L∆,τ ; we will consider the the class Σw,τ of Lw,τ -structures
(M, (∆ ∪ {+∞},≤, τ, 0∆,+γ; γ ∈ Γ), w) satisfying the following properties :

(1) (M, (∆ ∪ {+∞},≤,+γ; γ ∈ Γ), w) is a valued A-module;
(2) (∆,≤, τ, 0∆,+γ; γ ∈ Γ) is a model of T∆,τ ;
(3) w(m · t) = τ(w(m)).

Note that if M ∈ Σw,τ , then if w(m) > 0∆, then w(m · t) > w(m), if w(m) = 0∆,
then w(m · t) = w(m), and if w(m) < 0∆, then w(m · t) < w(m). Moreover, letting
Γ+ := {γ ∈ Γ : γ > 0}, if γ ∈ Γ+, then σv(γ) > γ. (Indeed, 0∆ + γ > 0∆, so
τ(0∆ + γ) > 0∆ + γ. By the compatibility condition, τ(0∆ + γ) = 0∆ + σv(γ) and so
σv(γ) > γ.)

4. Abelian structures

In order to stay into the setting of abelian structures, we will use a less expressive
language. This language was used by T. Rohwer while considering the field of Laurent
series over the prime field Fp with the usual Frobenius map y 7→ yp ([21]). Instead
of the two-sorted structure (M,∆, w), whereM is a valued A-module, he considered
the one-sorted abelian structure (M, (Mδ)δ∈∆), where Mδ = {x ∈ M : w(x) ≥
δ}. Similarly, given a valued A-module M with a direct sum decomposition M =
⊕n−1
i=0 M.tci, we will add the functions λi and consider the one-sorted abelian structure

(M, (λi)i∈n, (Mδ)δ∈∆).
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We will consider theories of abelian structures satisfying strong divisibility proper-
ties. The basic example is the separable closure of F̃p((T )). Note that this example
is not covered by Rohwer, as we will indicate below, following Lemma 4.13.

Definition 4.1. Let (∆,≤, τ,+, 0∆,+∞) be a model of T∆,τ . We set the language
LV := LA ∪ {Vδ : δ ∈ ∆}, where Vδ is a unary predicate.

Let TV be the LV -theory with the following axioms, with δ ∈ ∆:

(1) Tσ;
(2) Vδ(0);
(3) ∀m (Vδ2(m)→ Vδ1(m)), whenever δ1 ≤ δ2, δ1, δ2 ∈ ∆;
(4) ∀m1 ∀m2 (Vδ(m1) & Vδ(m2)→ Vδ(m1 +m2));
(5) ∀m (Vδ(m)→ Vδ+v(µ)(m.µ)), where µ ∈ K×;
(6) ∀m (Vδ(m)↔ Vτ(δ)(m.t)).

If (M,∆, w) is a valued A-module with a direct sum decompositionM = ⊕i∈nM.tci,
and we let MV = (M,+, 0, (.r)r∈A, (λi)i∈n, (Mδ)δ∈∆), then MV is a model of TV ,
where Vδ is interpreted as Mδ.

The structure MV is an abelian structure and one gets as in the classical case of
(pure) modules that any formula is equivalent to a boolean combination of positive
primitive formulas (p.p.) and index sentences (namely, sentences telling the index of
two p.p.-definable subgroups of the domain ofMV in one another (see [19])) and this
p.p. elimination is uniform in the class of such structures.

Note that the pure module theory of separably closed fields of characteristic p and
fixed non-zero imperfection degree has quantifier elimination in the presence of the
functions λi ([5]).

We want to axiomatize a class of abelian structures which contains the class of
valued separably closed fields of characteristic p. Note that the theory of valued
separably closed fields has been shown to be model-complete in the language of
valued fields augmented with predicates expressing p-independence ([7]) and to admit
quantifier elimination in the language of valued fields augmented with the λi functions
([13]).

In the remainder of the section, we will formalise certain properties of separably
closed fields viewed as modules over the corresponding skew polynomial rings in order
to axiomatize the class of modules we will be working with.

Notation 4.2. Let δ ∈ ∆, then we denote by Mδ+ = {x ∈M : w(x) > δ}.
Corollary 4.3. Assume that K is separably σ-linearly closed. Let M be a A-module
with the following divisibility properties: given any a ∈ OK \ {0}, any n1, n2 ∈ M0∆

,
there exists m1,m2 ∈M0∆

such that m1 · (t− a) = n1, and m2 · (ta− 1) = n2.
Then given any σ-separable polynomial q(t) ∈ I and any element n of M0∆

there
exists m ∈M0∆

such that m · q(t) = n. Moreover, if n ∈M0∆
\M0+

∆
, then there exists

m ∈M0∆
\M0+

∆
such that m · q(t) = n.

Proof: By Proposition 2.5, it suffices to prove it for linear polynomials of the form
(t−a) or (ta−1) with a ∈ OK \{0}. Let n ∈M0∆

. Then by assumption, there exists
m ∈M0∆

such that n = m·(t−a) (respectively n = m·(ta−1)). If n ∈M0∆
\M0+

∆
and
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m ∈M0+
∆

, then min{w(m · t), v(m · a)} > 0 (respectively min{w(m · ta), v(m)} > 0),

a contradiction. 2

In the following (see Lemma 4.8), under a further condition on ∆, we will show that
given n ∈ M and q(t) ∈ I, if we can find an element m ∈ M such that n = m · q(t),
then we can find one whose value w(m) can be determined in terms of the values of
the coefficients of q(t) and w(n).

Definition 4.4. We will say that (∆,≤, 0∆, τ,+γ; γ ∈ Γ) is ordered linearly closed
(o.l.-closed) if given any finite subset {γi ∈ Γ; 0 ≤ i ≤ d}, for any δ ∈ ∆ there exists
µ ∈ ∆ such that δ = min0≤i≤d{τ i(µ) + γi}.

Lemma 4.5. Assume that τ is surjective on ∆. Then ∆ is o.l.-closed.

Proof: Let q(t) ∈ A, q(t) =
∑d

i=0 t
iai, and let {γi := v(ai) : ai 6= 0, 0 ≤ i ≤ d}.

Given δ0 ∈ ∆, let us show that there exists δ ∈ ∆ such that δ0 = min0≤i≤d τ
i(δ) + γi.

Consider the functions fi on ∆ defined by fi(δ) = τ i(δ) + γi, 0 ≤ i ≤ d. Since
τ is assumed here to be surjective, so is τ i. Thus there exists δi ∈ ∆ such that
δ0 + (−γi) = τ i(δi) and so δ0 = fi(δi).

Each function fi is strictly increasing: if δ1 < δ2, then τ i(δ1) < τ i(δ2) and τ i(δ1) +
γi < τ i(δ2) + γi. So the maximum µ of the δi’s such that fi(δi) = δ0 is well-defined.
Since δi ≤ µ, we have that δ0 = fi(δi) ≤ fi(µ) (fi is increasing), 0 ≤ i ≤ d. So,
δ0 = min0≤i≤n fi(µ), namely Υ(q, δ0) = µ. 2

Notation 4.6. Assume τ is surjective on ∆. Given q(t) ∈ A, q(t) =
∑d

i=0 t
iai, given

δ and {γi := v(ai) : ai 6= 0, 0 ≤ i ≤ d}, by the above Lemma, there exists µ such
that δ = min{τ i(µ) + γi : 0 ≤ i ≤ d}. We will denote that µ by Υ(q, δ). We also set
Υ−1(q, µ) := δ.

As soon as ∆ is o.l.-closed, the functions Υ−1 and Υ are well-defined and we
have the following relationship between Υ−1 and Υ. Let q(t) ∈ I, µ, δ ∈ ∆, then
Υ−1(q(t),Υ(q(t), δ)) = δ and Υ(q(t),Υ−1(q(t), µ)) = µ. Moreover, for m ∈ M we
always have w(m.q(t)) ≥ Υ−1(q(t), w(m)). And finally since each of the functions
τ i+γi are strictly increasing on ∆, Υ(q, µ2) ≤ µ1 ↔ µ2 ≤ Υ−1(q, µ1). This last equiv-
alence implies that Υ is increasing and since it is injective, it is strictly increasing.

When the action of Γ is transitive on ∆, because of the compatibility condition on
the two actions, whenever σv is surjective on Γ, τ is surjective on ∆ and so ∆ o.l.-
closed. Note that if K is separably closed of characteristic p and σ is the Frobenius
map, then σv(γ) = pγ, and Γ = vK is divisible.

Definition 4.7. Assume that τ is surjective on ∆ and that (∆,≤, 0∆, τ,+γ; γ ∈
Γ) |= T∆,τ , then let T+

V be the following LV -theory:

(1) TV ,
(2) ∀n (n ∈ V0 → (∃m (m ∈ V0 &m·q(t) = n))), for all q(t) ∈ I, q(t) σ-separable.
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Lemma 4.8. Let M be a valued A-module which is a model of T+
V . Assume that Γ

acts transitively on ∆. Let q(t) ∈ I be σ-separable, δ ∈ ∆ and let µ := Υ(q, δ). Then,
for any n ∈ M with w(n) = δ, there exists m ∈ M such that m · q(t) = n & w(m) =
µ. Moreover µ has the additional property that for any m ∈ M with w(m) = µ,
w(m · q(t)) ≥ δ.

Proof: Let q(t) =
∑d

i=0 t
iai ∈ I, with a0 6= 0. By axiom scheme (2) of T+

V , for
any n0 ∈ M with w(n0) = 0∆, there exists m0 ∈ M such that m0 · q(t) = n0 and
w(m0) = 0∆. Note that the axiom scheme (2) only gives us that w(m0) ≥ 0∆, but
since at least one coefficient of q(t) has value 0, we get that w(m0) cannot be strictly
bigger than 0∆. Since the action of Γ on ∆ is transitive, there exist kδ, kµ ∈ K such
that 0∆ + v(kδ) = δ and 0∆ + v(kµ) = µ.

Let n ∈ M with w(n) = δ and consider the polynomial q̃(t) :=
∑

i t
ikσ

i

µ aik
−1
δ =

qkµ(kµk
−1
δ ). Then by construction q̃(t) ∈ I and is still σ-separable.

Now w(n · k−1
δ ) = 0, so by hypothesis there exists m0 ∈M0∆

such that m0 · q̃(t) =

n · k−1
δ . So, m0 ·

∑
i t
ikσ

i

µ ai = n and so m0 · kµq(t) = n. Set m := m0 · kµ, we have
w(m) = µ and m · q(t) = n.

Moreover, if w(m) = µ, then by the compatibility condition between τ and σv, we
have w(m · q(t)) ≥ mini τ

i(w(m)) + v(ai) ≥ δ. 2

Lemma 4.9. LetM be a model of T+
V and assume that Γ acts transitively on ∆. Let

q(t) ∈ I be σ-separable and δ ∈ ∆. Then, for any n ∈ Mδ, there exists m ∈ MΥ(q,δ)

such that m · q(t) = n. Moreover Υ(q, δ) is such that for any m ∈MΥ(q,δ), m · q(t) ∈
Mδ.

Proof: It follows from the proof of the above Lemma, replacing equalities of the form
w(m) = δ ∈ ∆, by m ∈Mδ. 2

The separable closure of a valued field of characteristic p is dense in its algebraic
closure. This translates as follows in the case of models of T+

V .

Lemma 4.10. If M is a valued A-module which is a model of T+
V , and if the action

of Γ on ∆ is transitive and satisfies the following (??): for all δ1, δ2 ∈ ∆, there exists
γ ∈ Γ such that δ1 + (σv(γ) − γ) = δ2. Then for any δ and m with w(m) ≤ δ, there
exists n such that w(m− n · t) = δ.

Proof: W.l.o.g. we may assume that δ > w(m) (otherwise it suffices to choose n = 0).
First choose k ∈ K such that w(m) + v(kσ) < 0.

By Lemma 4.8 M is (t − 1)-divisible, so there exists n ∈ M such that m · kσ =
n · (t − 1) and necessarily w(n) < 0. So τ(w(n)) < w(n) and therefore w(n · t) =
w(m) + σv(v(k)) and w(n) = τ−1(w(m) + σv(v(kµ))).

We have that m = n · k−1t− n · k−σ.
We have w(m− n · k−1t) = w(n)− v(kσ) = τ−1(w(m)) + (v(k)− σv(v(k))). Now,

by the extra assumption, there is k1 such that τ−1(w(m)) + (v(k1)− σv(v(k1))) = δ.
It suffices to see that this forces w(m) + v(kσ1 ) < 0, so that the preceding discussion
applies to k1 as well, and we are done. But we have w(m) +v(kσ1 ) = τ(δ+v(kσ1 )) and
w(m) + v(kσ1 ) < δ + v(kσ1 ). So if w(m) + v(kσ1 ) ≥ 0, we would get 0 < δ + v(kσ1 ) <
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τ(δ+ v(kσ1 )), and then w(m) + v(kσ1 ) < τ(δ+ v(kσ1 )) which is absurd. Hence we must
have w(m) + v(kσ1 ) < 0, as wanted. 2

Remark 4.11. Note that in case the action of Γ on ∆ is transitive, to meet the
hypothesis (??), we can require that the action of σv − 1 is surjective on Γ.

Definition 4.12. Recall that Γ+ := {γ ∈ Γ : γ ≥ 0}. We will say that σv is
2-contracting on Γ if ∀γ ∈ Γ+ σv(γ) ≥ γ + γ.

Lemma 4.13. Suppose M is a model of T+
V and assume Γ acts transitively on ∆. If

σv is 2-contracting on Γ, then for any δ ∈ ∆ and for all m ∈M , there exists n such
that Vδ(m− n · t) holds.

Proof: It follows from the proof of the above lemma, noting that we only need in this
setting that ∀δ1 ∈ ∆∀δ2 ∈ ∆∃ γ ∈ Γ δ1 + (σv(γ)− γ) ≥ δ2. W.l.o.g., we may assume
that δ1 < δ2. So given δ1 < δ2 ∈ ∆, by transitivity of the action of Γ on ∆, we get
that there exists γ̃ ∈ Γ+ such that δ1 + γ̃ = δ2. Since σv is 2-contracting we get that
σv(γ̃) ≥ γ̃ + γ̃. So δ1 + σv(γ̃) ≥ δ2 + γ̃ and so δ1 + σv(γ̃)− γ̃ ≥ δ2. 2

Definition 4.14. Assume that τ is surjective on ∆ and that (∆,≤, 0∆, τ,+γ; γ ∈
Γ) |= T∆,τ . Let T sepV be the LV -theory:

(1) TV ,
(2) ∀n (n ∈ Vδ → (∃m (m ∈ VΥ(q,δ) &m · q(t) = n))), for all q(t) ∈ I, q(t)

σ-separable and for all δ ∈ ∆.
(3) ∀m ∃n Vδ(m− n · t), for all δ ∈ ∆.

In particular, if K is separably closed of characteristic p, then K viewed as a
K[t;σ]-module with σ acting as the Frobenius map, is a model of T sepV .

More generally, if (Kv, σ) is separably σ-linearly closed and if σv is 2-contracting
on Γ, then again K viewed as a A-module is a model of T sepV .

Further note that if Γ acts transitively on ∆ and σv is 2-contracting on Γ, then a
model of T+

V is a model of T sepV (by Lemmas 4.9 and 4.13).

We will prove in the next sections that T sepV eliminates quantifiers up to index
sentences.

Before doing that, we now check that the basic example of the separable closure
of F̃p((T )) is not covered by Rohwer (see [21], pp. 40-41), since it does not have a
weak valuation basis.

Definition 4.15. LetM := (M,+, 0, .r; r ∈ A, λi, i ∈ n) be a model of Tσ. ThenM
is a valued A-module with a weak σ-valuation basis if there exists r ∈ K such that for
each m ∈M we have: w(m) ≤ mini{w(λi(m) · t) + v(ci) + v(r) : ci ∈ C}. (∗)

Lemma 4.16. Let K be any valued separably closed field K of finite imperfection
degree, then K does not have a weak σ-valuation basis, with σ the Frobenius endo-
morphism.
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Proof: By way of contradiction, let c1, c2, . . . be a linear basis of K over Kp and
suppose that it is a weak σ-valuation basis and let δ be the corresponding v(r). By
adjusting δ and since v(K×) is p-divisible, we may always assume that c1 = 1. Let
δ′ ∈ Γ such that δ′ > {v(c2), δ, v(c2)+δ}. By Lemma 4.13 let a, b such that c2 = ap+b
with v(b) ≥ δ′. If v(ap) 6= v(c2), then that would contradict the required inequality
(*) for ap − c2. Otherwise, v(ap) = v(c2), and again this contradicts (*) for ap − c2.
2

5. Special cases

In order to eliminate quantifiers in T sepV , we need some basic cases and reductions,
which are treated in the following lemmas.

Our main tools will be axiom schemes (2) and (3) of T sepV and we will use Notation
4.6. We will treat the general case in the next section.

We will use the notation u · r ≡δ m to mean that Vδ(u · r −m) holds. We place
ourselves in any model of T sepV and the bi’s that will occur in the systems are LA-terms
in some tuple of variables ȳ.

Lemma 5.1. Consider a system of the form

∃u
{

u · t ≡µ1 b1

u · r ≡µ2 b2,

where r ∈ I is separable. Then this system is equivalent to a congruence of the form

b1 · rσ ≡µ3 b2 · t.

Proof: We distinguish two cases.
(i) Υ−1(rσ, µ1) ≥ τ(µ2). Then the system above is equivalent to

b1 · rσ ≡τ(µ2) b2 · t.
One implication is straightforward. For the reverse implication, since we are in a
model of T sepV , by axiom (3), there exists u such that u · t ≡µ1 b1. So u · trσ ≡Υ−1(rσ ,µ1)

b1 · rσ. So u · rt ≡τ(µ2) b2 · t and so u · r ≡µ2 b2.
(ii) Υ−1(rσ, µ1) < τ(µ2). Then the system above is equivalent to

b1 · rσ ≡Υ−1(rσ ,µ1) b2 · t.
One implication is straighforward. For the reverse implication, choose µ such that
Υ−1(rσ, µ) ≥ τ(µ2) (and so µ > µ1). Again by axiom (3), there exists u such that
u · t ≡µ1 b1. So u · trσ ≡Υ−1(rσ ,µ1) b1 · rσ ≡Υ−1(rσ ,µ1) b2 · t.

Since we are in a model of T sep, by axiom (2), there exists u′′ such that u′′ ·rσ = (u ·
r−b2)·t with w(u′′) ≥ µ1 (by definition of Υ−1(rσ, µ1)). Let u′ be such that u′·t ≡µ u′′.
Then u′ · rt = u′ · trσ ≡τ(µ2) (u · r− b2) · t, which implies that (u− u′) · rt ≡τ(µ2) b2 · t
and so (u−u′) · r ≡µ2 b2, which finishes the proof since (u−u′) · t ≡µ u · t−u′′ ≡µ1 b1.
2

Lemma 5.2. Consider a system of the form

∃u
{
u · r1 = b1

u · r2 ≡δ2 b2,
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where r1, r2 ∈ I are separable and assume that deg(r1) ≥ deg(r2). Then this system
is equivalent to the following system

∃u
{
u · r2 = b2

u · r3 ≡δ b1 · α− b2 · s,

where δ = Υ−1(r1α,Υ(r2, δ2)), for some α ∈ OK, and deg(r2) > deg(r3).

Proof: By the generalized euclidean algorithm, there exists α ∈ OK such that r1α =
r2s+ r3 with deg(r3) < deg(r2).

Suppose u is a solution of the first system. Let u′ be such that u′ ·r2 = u·r2−b2. We
can find such u′ with w(u′) ≥ Υ(r2, δ2). So (u−u′) ·r2.s+(u−u′) ·r3 = (u−u′) ·r1α =
b1 · α− u′ · r1α i.e. (u− u′) · r3 = b1 · α− b2 · s− u′ · r1α.

Conversely, let u′′ satisfy the second system. Then u′′ ·r1α = u′′ ·r2s+u′′ ·r3 ≡δ b1 ·α.
So let u′′′ be such that u′′′ · r1 = u′′ · r1 − b1 and we have to make sure that we can
choose u′′′ such that w(u′′′ · r2) ≥ δ2. In other words, Υ(r1α, δ) = Υ(r2, δ2). 2

Lemma 5.3. Consider a system of the form

∃u
{
u · r1 ≡δ1 b1

u · r2 ≡δ2 b2

where r1, r2 ∈ I are separable and Υ(r1, δ1) ≤ Υ(r2, δ2). Then this system is equiva-
lent to the following system

∃u
{
u · r1 ≡δ1 b1

u · r2 = b2

Proof: Indeed, we can choose u′ such that w(u′) ≥ Υ(r2, δ2) and such that u′ · r2 =
b2 − u · r2 and so (u+ u′) · r2 = b2. Moreover w(u′ · r1) ≥ δ1. 2

Lemma 5.4. Consider a system of the form

∃u
{
u · r = b
u · t ≡δ b1,

where r ∈ I is separable. Then this system is equivalent to the following system

∃u
{
u · r ≡δ′ b
u · t ≡δ b1,

where δ′ is chosen such that τ(Υ(r, δ′)) ≥ δ.

Proof: Let us show the non-trivial implication. Since r is separable, there exists u′

such that u′ · r = (u · r − b) and we can choose such u′ with w(u′) ≥ Υ(r, δ′). Since
τ(Υ(r, δ′)) ≥ δ, we get that w(u′ · t) ≥ δ and so (u − u′) is a solution of the first
system. 2

Lemma 5.5. Consider a system of the form

∃u
{

u · r0 = b0∧d
i=1 u · tn ≡δi bi,
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where r0 ∈ OK, r̄0 6= 0. Then this system is equivalent to congruences of the following
form {

b′0 · tn ≡δ b′1 · rσ
n

0∧d
i=2 b

′
1 ≡δ′i b′i,

where the b′i are LA-terms in ȳ obtained from the bi’s by scalar multiplication by
elements of A.

Proof: We first proceed as in Lemma 5.4, replacing the equation u · r0 = b0 by a
congruence u · r0 ≡δ′ b0 where δ′ is chosen such that τn(Υ(r0, δ

′)) ≥ {δi : 1 ≤ i ≤ d}.
So it remains to consider a system of the form:

∃u
{

u · r0 ≡δ′ b0∧d
i=1 u · tn ≡δi bi,

Now we proceed as in Lemma 5.1. First we note that u·r0t
n ≡τn(δ′) b0 ·tn is equivalent

to u · r0 ≡δ′ b0. We rewrite the first formula as u · tnrσn0 ≡τn(δ′) b0 · tn.
We order the δi and w.l.o.g. assume that δ1 ≥ max{δi : 1 ≤ i ≤ d}. Our system is

then equivalent to: {
b0 · tn ≡Υ−1(rσ

n
0 ,δ1) b1 · rσ

n

0∧d
i=2 b1 ≡δi bi,

Indeed, by axiom (3), there exists u such that u·tn ≡δ1 b1. So, if Υ−1(rσ
n

0 , δ1) ≥ τn(δ′)
(?), we get that u · tnrσn0 ≡Υ−1(rσ

n
0 ,δ1) b1 · rσ

n

0 and so since b1 · rσ
n

0 ≡Υ−1(rσ
n

0 ,δ1) b0 · tn,

we get by (?), that u · r0 ≡δ′ b0.
Now assume that Υ−1(rσ

n

0 , δ1) < τn(δ′). So we choose δ′′ such that Υ−1(rσ
n

0 , δ′′) ≥
τn(δ′).

Again, by axiom (3), there exists u such that u · tn ≡δ1 b1. So we get

u · tnrσn ≡Υ−1(rσ
n

0 ,δ1) b1 · rσ
n ≡Υ−1(rσ

n
0 ,δ1) b0 · tn.

By axiom (2), there exists u′′ such that u′′ · rσn = (u · r − b0) · tn with w(u′′) ≥ δ1.
By axiom (3), there exists u′ such that u′ ·tn ≡δ′′ u′′. Then u′ ·rtn = u′ ·tnrσn ≡τn(δ′)

(u · r− b0) · tn, which implies that (u− u′) · rtn ≡τn(δ′) b0 · tn and so (u− u′) · r ≡δ′ b0.
Since w(u′′) = δ1, we may add to the other congruences u′′ = u′ · tn without

perturbing them. 2

6. Quantifier elimination

We now prove that T sepV admits quantifier-elimination up to index sentences.

Notation 6.1. Let d = (d1, · · · , dm) ∈ nm be a m-tuple of natural numbers between

0 and n − 1. We denote by λ
(m)
d the composition of the m λ-functions: λd1 ◦ λd2 ◦

· · · ◦ λdm .

Lemma 6.2. In any model of TV , a system of equations
∧d
i=1 u · ri = ti(ȳ), where

ti(ȳ) is a LA-term and ri ∈ A with at least one ri σ-separable, is equivalent to one
equation of the form u ·r = t(ȳ), where r ∈ A is separable together with a conjunction
of atomic formulas in ȳ.
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Proof: We apply the Euclidean algorithm and do some bookeeping to check that we
always keep a separable coefficient. Assume that r1 is separable. Let us consider the
system:

(1)

{
u · r1 = t1(ȳ)
u · ri = ti(ȳ),

with i 6= 1.
If ri is not separable and if deg(r1) ≥ deg(ri), then for some r′, r′′ ∈ A, we have

r1 = rir
′ + r′′, then r′′ 6= 0 and r′′ is separable. So, the system is equivalent to:

(2)

{
u · ri = ti(ȳ)
u · r′′ = t1(ȳ)− ti(ȳ) · r′,

with deg(r′′) < deg(ri) and r′′ separable.
If ri is not separable and if deg(r1) < deg(ri), then for some r′, r′′ ∈ A, we have

ri = r1s
′ + s′′, then either s′′ = 0 and the system is equivalent to:

(3)

{
u · r1 = t1(ȳ)

t1(ȳ) · s′ = ti(ȳ),

or s′′ 6= 0 and the system is equivalent to:

(4)

{
u · r1 = t1(ȳ)
u · s′′ = ti(ȳ)− t1(ȳ) · s′.

If ri is separable, then w.l.o.g. deg(r1) ≥ deg(ri). For some r′, r′′ ∈ A, we have
r1 = rir

′ + r′′. Either r′′ = 0 and the system is equivalent to:

(5)

{
u · ri = ti(ȳ)
t1(ȳ) = ti(ȳ) · r′,

or r′′ 6= 0 and the system is equivalent to

(6)

{
u · ri = ti(ȳ)
u · r′′ = t1(ȳ)− ti(ȳ) · r′,

with ri separable.
In each case, we showed that the system of two equations with the pair of coeffi-

cients (r1, si) where r1 separable, was equivalent with another system with a pair of
coefficients consisting of a separable coefficient and such that the sum of the degrees
of the coefficients decreased. If one of the coefficient is zero, we consider another
equation, if applicable, of the conjunction. If both coefficients are nonzero, we repeat
the procedure until either we considered all of the equations occurring in the con-
junction, or one of the coefficient has degree zero which allows us to eliminate the
variable u. 2

Proposition 6.3. In T sepV , every LV p.p. formula is equivalent to a positive quantifier-
free formula.

Proof: As usual, we proceed by induction on the number of existential quantifiers,
so it suffices to consider a formula existential in just one variable ∃uφ(u,y), where
φ(u,y) is a conjunction of atomic LV -formulas.



SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE MODULES 15

Note first that terms in u are LA-terms in u, λi(u), i ∈ n`, for some ` ≥ 1, where
λi denotes the composition of ` functions λj, j ∈ n (see [5, Notation 3.3]). One uses
the fact that the λi functions are additive and that λi(u · q(t)) with q(t) ∈ A, can
be expressed as an LA-term in λj(u), j ∈ n. Moreover since u =

∑
i∈n λi(u) · tci, we

may assume that the terms are terms in only the λi(u), i ∈ n` (see [5] Lemma 3.2,
and Notation 2.3).

Therefore we may replace the quantifier ∃u by n` quantifiers ∃un`−1 · · · ∃u0

∧
i∈n` ui =

λi(u). We first tackle the quantifier ∃u0 and for convenience, let us replace u0 by u.
Since A is right Euclidean, we can always assume that we have at most one atomic

formula involving u, of the form u · r0(t) = t0(y), where t0(y) is a LA-term.

Claim 6.4. We may assume that r0 is separable.

Proof of Claim: Write r0 = tmr′0, where m ∈ N and r′0 separable. Express r′0 =∑
d∈nm r

′
0dcd with the property that r′0d ∈ Aσ

m
[t;σ] e.g. r′0d =

∑
j t
jaσ

m

dj , with adj ∈
K. Recall that σm

√
r′0d =

∑
j t
jadj, so tmr′0 =

∑
d∈nm

σm
√
r′0dt

mcd (see Notation 2.3).
Using this equality, replace the atomic formula u · tmr′0 = t0 by the system∧

d∈nm
u · σm

√
r′0d = λ

(m)
d (t0)

(see Notation 6.1). Note that for at least one tuple d, σm
√
r′0d is separable. So

by Lemma 6.2, we may assume that we have just one equation with a separable
coefficient together a conjunction of atomic formulas in ȳ. 2

Moreover, for any element r(t) =
∑

j t
jaj ∈ A, there exists µ ∈ K such that

r(t)µ ∈ I (take µ := a−1
k , where v(ak) = ṽ(r(t)). So, we transform the atomic

formula: u · r(t) = t(y) multiplying both sides by µ and we transform u · r(t) ≡δ t(y),
δ ∈ ∆, into u · r(t)µ ≡δ+v(µ) t(y) · µ.

So we reduced ourselves to consider an existential formula of the form ∃u φ(u,y),
where φ(u,y) is of the form

u · r0 = t0(y) &
m∧
k=1

u · rk ≡δk tk(y) & θ(y)

with rk ∈ I, θ(y) a quantifier-free LV -formula, tk(y) are LA-terms, and δk ∈ ∆.
Note that in case r0 6= 0, we can always assume that deg(r0) > deg(rk), for all k.

Indeed, suppose that deg(r0) ≤ deg(rk), for some k, say k = 1. By the g.r. Euclidean
algorithm in A0, there exists µ ∈ OK such that r1µ = r0r+ r′1 with deg(r′1) < deg(r0)
and r, r′1 ∈ A0. So, we have that u · r1µ = u · r0r + u · r′1 = t0 · r + u · r′1, and we can
replace u · r1 ≡δ1 t1(y) by u · r′1 + t0(y) · r ≡δ1+v(µ) t1(y) · µ.

First, we will assume that the equation present in φ(u,y), u.r0 = t0(y), is non
trivial, namely that r0 6= 0. We will concentrate on the system formed by this
equation and the congruences. For ease of notation, we replaced t0(y) by b0 and ti(y)
by bi. So consider a system of the form

(7) ∃u
{

u · r0 = b0∧d
i=1 u · tniri ≡δi bi,
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where r0, ri ∈ I, r0, ri are σ-separable, ni ∈ N, 1 ≤ i ≤ d.
We will call

∑d
i=0 deg(ri) the separability degree of that system, and we proceed by

induction on that number.
We consider two cases : either there is 1 ≤ i ≤ d such that ni ≥ 1, or for all

1 ≤ i ≤ d, ni = 0. We will refer to the latter systems as separable systems, namely
those for which r0, ri are σ-separable and ni = 0 for all 1 ≤ i ≤ n.

Case A: let n0 := max{ni : 1 ≤ i ≤ d} and suppose n0 ≥ 1. Then there exists δ
such that the system (7) is equivalent to

(8) ∃u
{

u · r0 ≡δ b0∧d
i=1 u · tniri ≡δi bi,

where δ is chosen such that Υ(r0, δ) ≥ max{τ−ni(δi) : 1 ≤ i ≤ d} (see Lemma 5.4).
Then system (8) is equivalent to

(9) ∃u
{

u · r0t
n0 ≡τn0 (δ) b0 · tn0∧d

i=1 u · tniritn0−ni ≡τn0−ni (δi) bi · tn0−ni ,

We re-write system (9) as follows:

(10) ∃u
{

u · tn0rσ
n0

0 ≡τn0 (δ) b0 · tn0∧d
i=1 u · tn0rσ

n0−ni
i ≡τn0−ni (δi) bi · tn0−ni ,

If all ri ∈ OK , then we are done by Lemma 5.5. Otherwise we replace u · tn0 by u0

and we consider the following separable system of congruences, assuming that one of
the ri /∈ OK :

(11) ∃u0

{
u0 · rσ

n0

0 ≡τn0 (δ) b0 · tn0∧d
i=1 u0 · rσ

n0−ni
i ≡τn0−ni (δi) bi · tn0−ni ,

Suppose we can solve that system (see Lemma 5.3). Then by Lemma 4.13, there exists
u such that u · tn0 ≡δ0 u0, where we can choose δ0 ≥ max1≤i≤d{τn0(δ), τn0−ni(δi)}.

Now we order the set {Υ(rσ
n0−ni
i , τn0−ni(δi)),Υ(rσ

n0

0 , τn0(δ)) : 1 ≤ i ≤ d} and we
replace one of the congruences (the one corresponding to the maximum index) by
the corresponding equation. Then we apply the g.r. Euclidean algorithm in order to
obtain a system with separability degree strictly smaller than that of system (11).

Case B: suppose that for all i, ni = 0. We have a system of the form

(12) ∃u
{

u · r0 = b0∧d
i=1 u · ri ≡δi bi,

We order the set {Υ(ri, δi) : 1 ≤ i ≤ d} and we show that system (12) is equivalent
to another system where both the degrees of r0 and of ri, 1 ≤ i ≤ d have decreased.
We proceed as in Lemma 5.2 with δ2 replaced by the element of ∆ realizing the
maximum of the set above. Considering the equation with each of the congruences,
we obtain a system where the coefficient appearing in the equation is separable and
has degree strictly less than r0 and the coefficients occurring in the congruences have
each a strictly smaller degree but may no longer be separable. Then we use the
previous Case A, to obtain an equivalent system where now all the coefficients of the
congruences are separable and the degrees of the coefficients of both the equation
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and the congruences either stayed the same or have decreased. We obtain a system
with strictly smaller separability degree.

Second, we will assume that there is no equation present in φ(u,y). So, we consider
a system formed by congruences and for ease of notation, as before, we replace ti(y)
by bi. Consider a system of the form

(13) ∃u
∧d
i=1 u · tniri ≡δi bi,

where ri ∈ I, ri is separable, ni ∈ N, 1 ≤ i ≤ d.
Again we distinguish the two cases : either there is 1 ≤ i ≤ d such that ni ≥ 1, or

for all 1 ≤ i ≤ d, ni = 0.
Case A’: let n0 := max{ni : 1 ≤ i ≤ d} and suppose n0 ≥ 1. Then the system

(13) is equivalent to

(14) ∃u
∧d
i=1 u · tn0rit

n0−ni ≡τn0−ni (δi) bi · tn0−ni

First note that if all ri ∈ OK , it implies since ri ∈ I, that r−1
i ∈ OK ∩ I. In this

case, w.l.o.g. we may assume that system (13) is of the form

(15) ∃u
∧d
i=1 u · tni ≡δi bi

System (15) is equivalent to the following system:

(16) ∃u
∧d
i=1 u · tn0 ≡τn0−ni (δi) bi · tn0−ni

We order the elements {τn0−ni(δi) : 1 ≤ i ≤ n}. Let α be a permutation of {1, · · · , n}
and suppose that τn0−nα(1)(δα(1)) ≤ · · · ≤ τn0−nα(n)(δα(n)). We claim that system (16)
is equivalent to:

(17)
∧d−1
i=1 bα(i) · tn0−nα(i) ≡

τ
n0−nα(i) (δα(i))

bα(i+1).t
n0−nα(i+1)

We use Lemma 4.13 in order to find u such that u · tn0 ≡τn0−nj (δj)
bj · tn0−nj and then

we use the congruences.
Now assume that ri /∈ OK for some i in system (14). Replace u · tn0 by u0 and

consider the system :

(18) ∃u0

∧d
i=1 u0 · rσ

n0−ni
i ≡τn0−ni (δi) bi · tn0−ni

Suppose we can solve that system. Then by Lemma 4.13, there exists u such that
u · tn0 ≡δ0 u0, where we can choose δ0 ≥ max{τn0−ni(δi) : 1 ≤ i ≤ d}.

Now we order the set {Υ(rσ
n0−ni
i , τn0−ni(δi)) : 1 ≤ i ≤ d} and we replace one of

the congruences by an equation, the one corresponding to the maximum index. So
we are in the case of a separable system treated before.

Case B’: supppose that for all 1 ≤ i ≤ d, ni = 0. We have the system

(19) ∃u
∧d
i=1 u · ri ≡δi bi

We order the set {Υ(ri, δi) : 1 ≤ i ≤ d} and we replace one of the congruences by an
equation, the one corresponding to the maximum index. So we are in the case of a
separable system treated before. 2

Corollary 6.5. In T sepV , any LV -formula is equivalent to a quantifier-free LV -formula
up to index sentences.
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Recall that index sentences in particular tell us the sizes of the annihilators (of the
separable) polynomials and the index of the subgroups Mδ1 .t

n1/Mδ2 .t
n2 , with δ1 < δ2,

n1, n2 ∈ N. Also, the image of M by a LA-term u(x) with one free variable x is equal
to M.tn, for some n ∈ N and we can determine the n from the term u(x), but since
our language LA contains λ functions, we need to consider terms in several variables.

In the next section, under the assumption that K is separably σ-linearly closed,
we will show that if we add a list of axioms specifying the torsion to T sepV , then the
torsion submodule is determined up to isomorphism (Corollary 7.10). Then in the
last section, we will consider the class of torsion-free models of T sepV and we will show
that any two elements are elementary equivalent (Corollary 8.3).

7. Torsion

In this section, we will work under the assumption that K is separably σ-linearly
closed and that the action of Γ on ∆ is transitive.

LetM |= T sepV ; denote by Mtor the submodule of M consisting of torsion elements.
Note that Mtor is a LA-substructure of M ([5, Proposition 3.5]. Moreover by our
quantifier elimination result (Proposition 6.3) Mtor is a pure submodule of M . So
taking an ultrapower M∗ of M which is (|A| + ℵ0)+-saturated, the corresponding
ultrapower of Mtor is a direct summand ofM∗, namely M∗ = (Mtor)

∗ ⊕Mtf , where
Mtf is a torsion-free A-module, an LA-substructure and a model of T sepV .

We will show that if we add to the theory T sepV a list of axioms specifying the
torsion for each separable polynomial, then the submodule consisting of the torsion
elements is unique up to isomorphism as an L-substructure in any valued A-module,
model of that extended theory.

We will show on one hand that we can determine all the valuations taken by the
elements in the annihilator of a σ-separable polynomial belonging of I and on the
other hand that given a non-zero element n of valuation δ and a separable polynomial
q(t) ∈ I, we can determine all the valuations taken by the elements m such that
m.q(t) = n.

We will use axiom (2) of T sepV together with the factorization of such polynomials
q(t) into linear factors of the form tb− 1, t− a, c with a, b, c ∈ OK , v(c) = 0, v(a) ≥
0, v(b) > 0 (see Proposition 2.5).

Notation 7.1. Let q(t) ∈ A and let M be an A-module, then denote ann(q(t)) :=
{m ∈M : m · q(t) = 0}.

Since we assume here that the action of Γ on ∆ is transitive, the following Lemma
is straightforward.

Lemma 7.2. Let γ ∈ Γ, then there exists at most one δ ∈ ∆ such that τ(δ) = δ+ γ.
Moreover if there exists δ0 such that τ(δ0) = δ0 + γ, then we have for δ > δ0 that
τ(δ) > δ + γ and for δ < δ0 that τ(δ) < δ + γ. 2

Notation 7.3. Let γ ∈ Γ and suppose δ ∈ ∆ is such that τ(δ) = δ + γ, then we will
denote δ by (τ − 1)−1(γ). In particular, τ((τ − 1)−1(γ)) = (τ − 1)−1(γ) + γ.
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Lemma 7.4. Let M be a valued A-module and suppose that M |= T sepV and let
r(t) ∈ I of degree 1.

(1) When m ∈ ann(r(t)), then w(m) takes a unique value which can be expressed
in terms of the values of the coefficients of r(t).

(2) Let n ∈ M − {0}, then there exists m ∈ M such that n = m.r(t) and w(m)
can take at most two values which can be expressed in terms of w(n) and the values
of the coefficients of r(t).

Proof: We can restrict ourselves to consider r(t) of the form (t− a), or (tb− 1) with
v(a) ≥ 0 and v(b) > 0.

(1) Suppose that m · (t− a) = 0 with m 6= 0, then m · t = m · a and so τ(w(m)) =
w(m)+v(a). By Lemma 7.2, w(m) is uniquely determined and we will use the above
notation: (τ − 1)−1(v(a)).

Suppose now that m · (tb− 1) = 0 and m 6= 0, then m · tb = m and so τ(w(m)) +
v(b) = w(m). We denote w(m) by (τ − 1)−1(−v(b)).

So in both cases, if there is such a non zero m, w(m) can only take one value.

(2) Now let n ∈M with w(n) = δ ∈ ∆. By axiom (2) of T sepV , there exists m0 such
that m0 ·r(t) = n with w(m0) = Υ(r(t), δ) (and any other element m with m·r(t) = n
differs from m0 by an element of the annihilator of r(t)). Let us calculate explicitly
Υ(r(t), δ) in each case. Let Υ := Υ(r(t), δ).

First, let us consider the case r(t) = (tb− 1).

Claim 7.5.
(i) If δ ≥ (τ − 1)−1(−v(b)), then Υ = δ.
(ii) If δ < (τ − 1)−1(−v(b)), then Υ = τ−1(δ − v(b)).

Proof of Claim: By Lemma 7.2, there is at most one ρ ∈ ∆ such that ρ+ (−v(b)) =
τ(ρ) and we have denoted such a ρ by (τ − 1)−1(−v(b)).

Moreover if ρ′ < (τ−1)−1(−v(b)), then ρ′ > τ(ρ′)+v(b) and if ρ′ > (τ−1)−1(−v(b)),
then ρ′ < τ(ρ′) + v(b).

We compare δ, respectively Υ to τ(δ) + v(b) (equivalently to (τ − 1)−1(−v(b))),
respectively to τ(Υ) + v(b).

Moreover, by definition Υ is such that δ = min{Υ, τ(Υ) + v(b)}.
So, if Υ < τ(Υ)+v(b), then δ = Υ and this corresponds to the case δ < τ(δ)+v(b)

or equivalently to δ > (τ − 1)−1(−v(b)).
If τ(Υ) + v(b) < Υ, then δ = τ(Υ) + v(b) and so δ < Υ and so τ(δ) + v(b) <

τ(Υ) + v(b) = δ, or equivalently δ < (τ − 1)−1(−v(b)).
If τ(Υ) + v(b) = Υ, then δ = Υ and so δ = (τ − 1)−1(−v(b)). 2

Now suppose there exists m 6= m0 such that m · r(t) = n, equivalently assume we
have m1 ∈ ann(r(t))− {0}. Then,

(i) If δ > (τ − 1)−1(−v(b)), then w(m0 + m1) = (τ − 1)−1(−v(b)). So in this case
we have two possible values for w(m) with m · (tb − 1) = n. In fact we have one
element m0 with w(m0) = δ (and m0 · r(t) = n) and all the other elements m have
value (τ − 1)−1(−v(b)).
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(ii) If δ < (τ − 1)−1(−v(b)), then τ−1(δ − v(b)) < (τ − 1)−1(−v(b)). (Indeed,
ρ := (τ − 1)−1(−v(b)) is defined by: τ(ρ) + v(b) = ρ. So we have to show that
δ − v(b) < τ(ρ), equivalently that δ < τ(ρ) + v(b) = ρ.)

So since Υ = τ−1(δ − v(b)), we have w(m0 +m1) = τ−1(δ − v(b)) and in this case
we have one possible value for w(m) with m.r(t) = n.

(iii) If δ = (τ − 1)−1(−v(b)), then w(m0 + m1) ≥ (τ − 1)−1(−v(b)). Let us show
that we have equality by way of contradiction.

Suppose that w(m0 + m1) > (τ − 1)−1(−v(b)). By Lemma 7.2, this implies that
w(m0 +m1) < τ(w(m0 +m1)) + v(b), then w(n) = δ = w(m0 +m1), a contradiction.

So, we get that w(m0 + m1) = (τ − 1)−1(−v(b)) = Υ = w(m0) and again in this
case we have only one possible value for w(m) with m.r(t) = n.

Second, let us consider the case r(t) = (t− a).

Claim 7.6.
(i) If δ ≥ (τ − 1)−1(v(a)), then Υ = δ − v(a).
(ii) If δ < (τ − 1)−1(v(a)), then Υ = τ−1(δ).

Proof of Claim: The proof is similar to the proof of the previous claim. But now, Υ
is such that δ = min{τ(Υ),Υ + v(a)}. As before, let m0 such that n = m0 · t−m · a
and w(m0) = Υ. So, we have that δ ≥ min{τ(Υ),Υ + v(a)}. We compare both Υ
and δ to τ(Υ)+v(a), respectively to τ(δ)+v(a) and therefore also to (τ −1)−1(v(a)).
2

Again any other solution m of m · (t+a) = n differs from m0 by a non zero element
m1 of the annihilator of r(t). Let us evaluate w(m0 +m1).

(ia) If (τ − 1)−1(v(a)) < δ < (τ − 1)−1(v(a)) + v(a).
By the Claim, w(m0) = δ − v(a), and so we have w(m0 +m1) = δ − v(a).
(ib) If δ > (τ − 1)−1(v(a)) + v(a), then w(m0 +m1) = (τ − 1)−1(v(a)) = w(m1).
(ic) If δ = (τ−1)−1(v(a))+v(a), then w(m0 +m1) ≥ (τ−1)−1(v(a)). Suppose that

w(m0+m1) > (τ−1)−1(v(a)), so w(m0+m1) > δ−v(a). Since (m0+m1)·(t+a) = n,
w((m0 +m1) · t) = δ. On the other hand, by Lemma 7.2, τ(w(m0 +m1)) > w(m0 +
m1) + v(a) > δ, a contradiction. So, we also get in this case that w(m0 + m1) =
(τ − 1)−1(v(a)) = w(m1).

So in case (ia), we have two possible values depending on whether there is a non
zero element in the annihilator of r(t).

(ii) If δ < (τ − 1)−1(v(a)), then by the claim, w(m0) = τ−1(δ); compare τ(w(m0))
to τ(w(m1))(=τ((τ − 1)−1(v(a)))).

We have τ((τ − 1)−1(v(a))) = (τ − 1)−1(v(a)) + v(a) > δ (see Notation above) and
so w(m0) < w(m1) (τ respects < on ∆) and so w(m0 + m1) = w(m0) = τ−1(δ). So
we have only one possible value.

(iii) If δ = (τ − 1)−1(v(a)), then w(m0) = δ − v(a) = (τ − 1)−1(v(a)) − v(a) <
(τ − 1)−1(v(a)) = w(m1). Then w(m0 + m1) = w(m0) = δ − v(a). So, again in this
case we have only one possible value.

Note that in each case w(m) can be expressed in terms of w(n) and the values of
the coefficients of r(t). 2
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Proposition 7.7. Let M be a valued A-module and suppose that M |= T sepV , let
m ∈ M and let q(t) ∈ I of degree d. Then there is a finite subset Fq(t) ⊂ ∆ of
cardinality at most 2d−1 such that if m ∈ ann(q(t))− {0}, then w(m) ∈ Fq(t). (N.B.
The elements of Fq(t) whose values are taken by elements of ann(q(t)) only depend
on the values of the coefficients of the factors of degree 1 of q(t) and on which are
the non-trivial annihilators in M .)

Proof: We proceed by induction on d. For polynomials of degree 1, this is the content
of Lemma 7.4. Let us assume d ≥ 2. By hypothesis on K, q(t) = r(t)q1(t), where
r(t), q1(t) ∈ I and r(t) has degree 1. Now m · q(t) = 0 is equivalent to m · r(t) = 0 or
m · r(t) ∈ ann(q1(t))−{0}. Since degree of q1(t) is strictly less than d, we can apply
the induction hypothesis and so we get at most 2d−2 possible values for the elements
in ann(q1(t))− {0}. By axiom (2) of T sepV , for each n ∈ ann(q1(t))− {0}, there is an
element m such that m · r(t) = n and by Lemma 7.4, for each of the values w(n), we
get at most 2 values for w(m). 2

Proposition 7.8. Let M be a valued A-module and assume that M |= T sepV . Let
q(t) ∈ I of degree d and let n ∈ M − {0}. Then one can determine a finite set
Gq(t) ⊂ ∆ of cardinality at most 2d such that w(m) ∈ Gq(t) if and only if m · q(t) = n,
m ∈M . Moreover, Gq(t) only depends on w(n), q(t) and on which are the non-trivial
annihilators in M .

Proof: We proceed by induction on d ≥ 1. For polynomials of degree 1, this is the
content of Lemma 7.4. So let us assume d ≥ 2. By hypothesis on K, q(t) = q2(t)r(t),
where r(t) has degree 1. Now m · q(t) = n is equivalent to m′ · r(t) = n and
m · q2(t) = m′. By Lemma 7.4, given w(n), we know that there is either one or
two values for w(m′) with m′ · r(t) = n depending on the respective positions of the
values of the coefficients of r(t) and w(n), together whether ann(r(t)) is non-trivial.
By axiom 2 of T sepV , there exists m such that m · q2(t) = m′. Then we apply the
induction hypothesis to q2(t), so given each of these values for w(m′), the number
of values of such m are bounded by 2d−1 (and we can determine the exact number
which depends on the relative position on the chain ∆ of the values of the coefficients
and δ together with which are the non-trivial annihilators). 2

Now we extend T sepV by specifying the torsion in our models. Note that in con-
sidering ann(q(t)), we may always assume that q(t) ∈ I, also that annihilators are
Fix(σ)-vector spaces. If Fix(σ) is infinite then if we have two annihilators with one
strictly included in the other, then the index is infinite ([2, Lemma 2.4 (in Corrigen-
dum)]). So in this case we will add to the theory T sepV a list of axioms specifying
which annihilators are non-trivial.

From now on let us assume Fix(σ) is finite. For instance, in the case where K is
a (valued) field of characteristic p and σ is the Frobenius endomorphism (or a power
of it), then Fix(σ) is finite. We will specify the torsion as follows.

Definition 7.9. Let Ttor be the theory of A-modules together with the following
scheme of axioms, for each element q ∈ I of degree d: there exist exactly d elements
x1, · · · , xd which are linearly independent over Fix(σ) and such that xi · q = 0, for
all 1 ≤ i ≤ d.
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We will consider now the theory T sepV ∪Ttor. A model of that theory is for instance
the separable closure of K.

Corollary 7.10. LetM,N be two valued A-modules, models of T sepV ∪Ttor containing,
respectively, isomorphic LV -structures M0, N0. Then we may extend this partial
isomorphism to a minimal submodel Msep

0 of M containing M0.

Proof: We follow the proof of [5, Proposition 5.8] and we apply Proposition 7.8. In
particular, a main ingredient in [5, Proposition 5.8] is the following (see [5, Lemma
5.1]). Let N be an LA-structure and N0 a substructure of N . Let u ∈ N −N0 and
assume that u · q ∈ N0 for some q ∈ I. Then there is a unique (up to multiplication
by elements of Fix(σ)) element qu of I such that u · qu ∈ N0. 2

8. Torsion-free models of T sepV

In this section, we show that the theory of torsion-free models of T sepV is complete,
and we specify the other completions of T sepV (see Corollary 8.3).

Let M |= T sepV and assume that M is a torsion-free A-module. Given G0, G1 two
p.p. definable subgroups of M, we wish to determinate the index of [G0 : G1].

Here we will assume that the residue field K̄ is infinite, which is the case if K is
separably closed of characteristic p and finite (non-zero) imperfection degree, and so
K̄ is algebraically closed (and so infinite) and that σ acts on K as the Frobenius, or
more generally if (K, σ) is separably σ-linearly closed.

In the case where the map w is surjective and the action of Γ is transitive on ∆, we
note that certain p.p. definable subgroups have infinite index. For instance, the index
[M0∆

: M0+
∆

] is infinite, so there is an element a ∈M with w(a) = 0 and multiplying

a by elements of OK − mK with different images in K̄, we get elements of M0∆
in

distinct cosets modulo M0+
∆

(and so a fortiori modulo any Mδ with δ > 0). Since the

action of Γ is transitive on ∆, we get the indices [Mδ : Mδ+ ] are also infinite, for any
δ ∈ ∆. Also the index of M.t in M is infinite (this follows from the fact that Kσ is
infinite) ([6, Proposition 3.2]) and the index of M.tm+1 in M.tm as well.

Now let us consider the general case.

Proposition 8.1. Let M be a model of T sepV and assume that M is a torsion-free
A-module. Then the index of any two p.p. definable subgroups G1 $ G0 of M is
infinite.

Proof: By the positive q.e. result (see Proposition 6.3), a p.p. definable subgroup of
M is defined by a positive quantifier-free formula of the following kind:

∧
i ti(u) =

0 &
∧
j tj(u) ≡δj 0, where ti, tj are LA-terms and u one free variable. As noted

before a LA-term t(u) is a LA-term in u, λi(u), i ∈ n`, for some ` ≥ 1. Using the
decomposition tq =

∑
i
σ
√
qitci (see Notation 2.2), we may assume that each equation

contains a separable coefficient. (This process increases the number of equations but
decreases the degree of the coefficients, so it will eventually terminate.) Note that if
we have two equations containing a separable coefficient for λi(u), say q0, q1, then by
multiplying by an element of K×, we may assume that q0 ∈ I (respectively q1 ∈ I).
By the Ore property of A0, there exist q′0, q

′
1 such that q0q

′
1 = q1q

′
0 and note that
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we may choose q′0, q
′
1 ∈ I. So we may just keep one equation with λi(u) and assume

that it has a separable coefficient. Continuing like that we get a lower triangular
d× k-matrix D with non zero separable coefficients on its diagonal. Recall that such
matrix was called lower triangular separable (l.t.s.) of co-rank ` in [5, Definition 9]
where d − ` is the number of non-zero (or equivalently separable) elements on its
diagonal. We will call the corresponding system a l.t.s. system.

So we may assume that G0 (respectively G1) is defined by a l.t.s. system of co-
rank ` ≤ d (respectively `1 ≤ `) equations (on the same variables) with in addition
congruences conditions.

Set ud−` := λm(u), where λm(u) is the variable multiplied by the (d − `, d − `)-
coefficient of D. Let δi, i ∈ m, be the elements of ∆ occurring in the congruences.

Since G1 ⊆ G0, we may assume that G1 is defined by a l.t.s. system of co-rank
`1 ≤ ` and with the same first d− ` equations.

Claim 8.2. Let q ∈ I, then in any torsion-free model of T sepV , we have the following
equivalence: u ≡δ 0↔ u · tnq ≡Υ−1(q,τn(δ)) 0.

Proof of Claim: By definition of Υ−1 (see Notation 4.6), we get in any valued A-
module, that u ≡δ 0 → u · tnq ≡Υ−1(q,τn(δ)) 0. Now assume that w(u · tnq) ≥
Υ−1(q, τn(δ)), since q ∈ I, there exists u′ with w(u′) ≥ τn(δ) (Υ is increasing, see
Lemma 4.5) such that u′ · q = u · tnq. Since M is torsion-free, u′ = u · tn and so
w(u) ≥ δ. 2

So if we have a l.t.s. system of co-rank ` ≤ d, with d ≥ 1 and if um, 1 ≤ m ≤ d− `,
occurs in an equation with a separable coefficient and if it also occurs in a congruence
condition, we may replace it in the congruences conditions in terms of the other
variables (using the Ore property of A0 and the Claim above). So w.l.o.g., we may
assume that in the congruences none of the variables um, 1 ≤ m ≤ d− ` occur.

First we assume that `1 < `, so we have at least one more equation in G1 of the
form ud−`+1 · qd−`+1 + · · · = 0 (?). Denote by δ(G0) the minimum δ ∈ ∆ such that
any tuple of elements each in Mδ satisfies the congruence conditions appearing in the
definition of G0 and denote by χ the conjunction of these congruences.

Take −→u = (ud−`+1,
−→u0) satisfying χ and verify whether −→u satisfies equation (?).

If it does, add to ud−`+1 a non-zero element uδ,1 ∈ Mδ(G0). So the tuple (un−`+1 +

uδ,1,
−→u0) still satisfies χ (since (uδ,1,

−→
0 ) satisfies χ) but no longer equation (?) (ud−`+1

was uniquely determined in terms of −→u0 since we are in a torsion-free module).
Since the system is l.t.s. and M |= T sepV , we may find (u1, · · · , ud−`) such that
(u1, · · · , ud−`, ud−`+1 + uδ,1,

−→u0) ∈ G0, then choose in Mδ(G0) a non zero uδ,2 6= uδ,1.
The tuple (ud−`+1 +uδ,2,

−→u0) still satisfies χ but no longer equation (?). Again we may
complete this tuple to (u′1, · · · , u′d−`, ud−`+1+uδ,2,

−→u0) ∈ G0, and so (u′1−u1, · · · , u′d−`−
ud−`, uδ,2 − uδ,1,

−→
0 ) ∈ G0 − G1, (since (uδ,2 − uδ,1,

−→
0 ) does not satisfy equation (?))

and we may continue infinitely often since Mδ(G0) is infinite.
Then assume that `1 = ` and so that the l.t.s. system of equations occurring in

the definition of G0 and G1 is the same.
Then using the Claim 8.2, we triangularize further the system of congruences as

follows.
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Suppose we have the following system of two congruences with r1, r2 ∈ I and
δ1 ≥ δ2 ∈ ∆, occurring in the definition of G0 and for simplicity re-index the variables
by u0, u1, · · · .

(20)

{
u0 · r1 + u1 · r3 + · · · ≡δ1 0
u0 · r2 + u1 · r4 + · · · ≡δ2 0

By the right Ore property of A0, there exist q1, q2 ∈ A0 (and we may assume that
they belong to I) such that r1q2 = r2q1.

Assume Υ−1(q2, δ1) ≤ Υ−1(q1, δ2) (the other case is similar). Then system (20) is
equivalent to:

(21)

{
u0 · r2 + u1 · r4 + · · · ≡δ2 0

u1 · (r3q2 − r4q1) + · · · ≡Υ−1(q2,δ1) 0

Given a solution of the system (21), we multiply the first equation by q1 and get
u0 · r2q1 + u1 · r4q1 + · · · ≡Υ−1(q1,δ2) 0 and add the second equation to get u0 · r1q2 +
u1 · r3q2 + · · · ≡Υ−1(q2,δ1) 0. This last equation is equivalent by Claim 8.2 to u0 · r1 +
u1 · r3 + · · · ≡δ1 0.

So, w.l.o.g. we may assume that we have the following system of two congruences
with r1, r2 ∈ I, the first one being the last one occurring in the definition of G0 and
the second one being the first one in G1 and for simplicity re-index the variables by
u0, u1, · · · .

(22)

{
u0 · r1 + u1 · r3 + · · · ≡δ1 0

u1 · r4 + · · · ≡δ2 0

First choose (u1,
−→
0 ) such that the second equation does not hold (take u1 /∈MΥ−1(r4,δ2)).

Then choose u0 such that u0 · r1 + u1 · r3 + · · · = 0, which is possible whenever r1 is
separable and in the case r1 is of the form tm.r′1 with r′1 ∈ I separable and m ≥ 1,
we proceed as follows. First choose, u′0 such that u′0 · r′1 + u1 · r3 + · · · = 0 holds

and then u0 with w(u0 − u′0) ≥ δ1 (see Lemma 4.13). So in both cases, (u0, u1,
−→
0 )

satisfies (22) and also the conjunction χ of congruences occurring in the definition of
G0 but doesn’t satisfy those occurring in the definition of G1. Then continue to solve
the system in order to get an element in G0 using the fact we have put the system
in triangular form. Finally choose infinitely many such u1 not congruent modulo
MΥ−1(r4,δ2). 2

Corollary 8.3. Assume that K is separably σ-linearly closed and that the action of
Γ on ∆ is transitive. Then, the theory of torsion-free (as A-modules) models of T sepV

is complete.

Proof: For the first statement, apply Proposition 6.5 and Proposition 8.1. 2

Corollary 8.4. Under the same hypotheses on K, ∆ and Γ, letM, N be two valued
A-modules. Suppose that their LV -reducts are models of T sepV ∪ Ttor and that Fix(σ)
is finite. Then M and N are elementary equivalent as LV -structures.

Suppose that Fix(σ) is infinite, and let Tan be any extension of T sepV containing the
list of axioms telling for each separable q ∈ I whether the annihilator of that element
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is trivial or not. Suppose that the LV -reduct of M respectively N are models of Tan,
then they are elementarily equivalent.

Proof: For the first statement, apply Proposition 6.5, Corollary 7.10 and Proposition
8.1. For the second one, apply Proposition 6.5 and Proposition 8.1. 2

Acknowledgments: We would like to thank the referee for his/her useful remarks.
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