SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE MODULES

LUC BÉLAIR ${ }^{1}$ AND FRANÇOISE POINT ${ }^{2}$

Abstract

We consider valued fields with a distinguished contractive map as valued modules over the Ore ring of difference operators. We prove quantifier elimination for separably closed valued fields with the Frobenius map, in the pure module language augmented with functions yielding components for a p-basis and a chain of subgroups indexed by the valuation group.

1. Introduction

Let K be a valued field of prime characteristic p, and let $F r o b_{p}$ denote the Frobenius $\operatorname{map} x \mapsto x^{p}$, and v the valuation map. In [21], Rohwer studied the additive structure $\left(K,+, F r o b_{p}\right)$ in a formalism taking into account the valuation through the chain of subgroups $V_{\delta}=\{x: v(x) \geq \delta\}$, and he proved model-completeness for such models as $K=\mathbb{F}_{p}((T))$ and $K=\widetilde{\mathbb{F}}_{p}((T))$, $\widetilde{\mathbb{F}}_{p}$ being the algebraic closure of \mathbb{F}_{p}. We recall that the corresponding full theory of valued fields has been studied (see [1]), but is in general very far from being fully understood (see e.g. [9]), in particular for the above two examples. In [2], we investigated the additive theory of valued fields but with a distinguished isometry (at the opposite of the Frobenius map) and we could obtain results similar to Rohwer's, even at the level of quantifier elimination for such models as $K=\widetilde{\mathbb{F}}_{p}((T))$ with the isometry $\sigma\left(\sum a_{i} T^{i}\right)=\sum a_{i}^{p} T^{i}$. In contrast with Rohwer, our starting point does not address directly the structure of some specific classes of definable sets, but is in the spirit of classical elimination of quantifiers algorithms in the theory of modules. In this paper, we show that our methods can be applied to the Frobenius map for separably closed valued fields (Proposition 6.3), a case not covered by Rohwer (Lemma 4.16). In order to describe the theory of modules over the Ore ring of difference operators, we will use the formalism of λ-functions introduced by G. Srour ([22], see also [8], [12]), and follow the approach undertaken, for instance, in [5], [6] and [19]. Finally let us mention that new results have been obtained by G. Onay on the model theory of valued modules ([15]), both in the isometric case and the contractive case (the Frobenius map case).

We mostly use the notation of [2], with some slight modifications.

[^0]
2. Rings of power series as modules

Let D be a ring with a distinguished endomorphism σ and let $A_{0}:=D[t ; \sigma]$ the corresponding skew polynomial ring with the commutation rule $a . t=t . a^{\sigma}$ ([3] chapter $2)$. Recall that any element of A_{0} can be written uniquely as $\sum_{i=0}^{n} t^{i} . a_{i}$, with $a_{i} \in D$ ([3] Proposition 2.1.1 (i)) and one has a degree function $\operatorname{deg}: A_{0} \backslash\{0\} \rightarrow \mathbb{N}$ sending $\sum_{i=0}^{n} t^{i} . a_{i}$ with $a_{n} \neq 0$, to $n \in \mathbb{N}$, and with the convention that $\operatorname{deg}(0)=-\infty<\mathbb{N}$. Whenever we consider D as a right A_{0}-module, by interpreting scalar multiplication by t by the action of σ on D, we will denote it by \mathcal{D}.

In addition, we will assume that D is a right Ore domain, namely that D has no zero-divisors and for all nonzero a, b there are nonzero c, d such that $a . c=b . d$, and that σ is injective, which yields that A_{0} has no zero-divisors ([3] Proposition 2.1.1 (ii)).

Under these assumptions, A_{0} satisfies the generalized right division algorithm: for any $q_{1}(t), q_{2}(t) \in A_{0}$ with $\operatorname{deg}\left(q_{1}\right) \geq \operatorname{deg}\left(q_{2}\right)$, there exist $a \in D-\{0\}, d \in \mathbb{N}$ and c, r in A_{0} with $\operatorname{deg}(r)<\operatorname{deg}\left(q_{2}\right)$ such that $q_{1} \cdot a^{d}=q_{2} . c+r$ (see e.g. [2], Lemma 2.2).

Since D is a right Ore domain, it has a right field of fractions K and we denote the extension of σ on K by the same letter.

In the following, we will always assume that D is a commutative ring (and so K will always be commutative); let $A:=K[t ; \sigma]$. Note that A is a principal right ideal domain (and so right Ore) ([3] Proposition 2.1.1 (iii)).

Let K^{σ} the subfield of K consisting of the image of K under σ. We fix a basis \mathcal{C} of K viewed as a K^{σ} vector-space; we will call such basis a σ-basis.

Moreover we will assume that \mathcal{C} can be chosen in D and that any element of D has a decomposition along that basis with coefficients in D^{σ}. This is the case for instance if K has characteristic p and σ is the Frobenius endomorphism.

For simplicity, we will assume that \mathcal{C} is finite, that it contains 1 and we present \mathcal{C} as a finite tuple of distinct elements $\left(1=c_{0}, \cdots, c_{n-1}\right)$. However the infinite-dimensional case is not essentially different (see [19]).

Later we will need both A_{0} and A, but for the moment we will denote by the letter A a skew polynomial ring of the form $D[t ; \sigma]$, where D satisfies the above hypothesis (which encompasses the case where D is a commutative field).

We will adopt the usual convention to denote by the corresponding script letter the structure and by a capital letter its domain. We will consider A-modules \mathcal{M} which have a direct sum decomposition as follows : $M=\oplus_{i=0}^{n-1} M . t c_{i}$. We will add new unary function symbols $\lambda_{i}, i \in n=\{0, \cdots, n-1\}$ to the usual language of A-modules in order to ensure the existence of such decomposition in the class of A-modules we will consider. These functions will be additive and so we will stay in the setting of abelian structures (see for instance [20]).

Definition 2.1. Let $L_{A}:=\{+,-, 0, \cdot a ; a \in A\}$ be the usual language of A-modules. Let $\lambda_{i}, i \in n=\{0, \cdots, n-1\}$, be new unary function symbols. Let $\mathcal{L}_{A}=L_{A} \cup\left\{\lambda_{i} ; i \in\right.$ $n\}$, and let T_{σ} be the following \mathcal{L}_{A}-theory:
(1) the L_{A}-theory of all right A-modules
(2) $\forall x\left(x=\sum_{i \in n} \lambda_{i}(x) \cdot t c_{i}\right)$
(3) $\forall x \forall\left(x_{i}\right)_{i \in n}\left(x=\sum_{i \in n} x_{i} \cdot t c_{i} \rightarrow \bigwedge_{i \in n} x_{i}=\lambda_{i}(x)\right)$.

Note that \mathcal{D} is a model ot T_{σ}, when viewed as an A-module as before.
We will need later that the functions $\lambda_{i}, i \in n$ are defined in any model of T_{σ} by the following \mathcal{L}_{A}-formula: $\lambda_{i}(x)=y$ iff $\left(\exists y_{0} \cdots \exists y_{n-1} \quad x=\sum_{j \in n} y_{j} \cdot t c_{j}\right.$ and $\left.y_{i}=y\right)$ iff $\left(\forall y_{0} \cdots \forall y_{n-1} \quad x=\sum_{j \in n} y_{j} \cdot t c_{j} \rightarrow y_{i}=y\right)$.

Such theories T_{σ} have been investigated in [5], [6] and [19], when D is a separably closed field of characteristic p and σ is the Frobenius endomorphism. Let us recall some of the terminology developed there.
Notation 2.2. An element $q(t)$ of A is σ-separable if $q(0) \neq 0$. In writing down an element of A, we will allow ourselves to either write it as q or $q(t)$ when stressing the fact that it is a polynomial in t.

In order to reduce divisibility questions to divisibility by separable polynomials, it is convenient to introduce the following notation.

Notation 2.3. (See Notation 3.2, Remark 2 and section 4 in [5].)
Given $q \in A$, we will define $\sqrt[\sigma]{q}$ and q^{σ}. First, for $a=\sum_{i} a_{i}^{\sigma} c_{i} \in D$, where the elements a_{i} belong to D and c_{i} 's to \mathcal{C}, set $a^{1 / \sigma}:=\sum_{i} a_{i} c_{i}$. Observe that $\left(a^{\sigma}\right)^{1 / \sigma}=a$, but unless $a \in A^{\sigma},\left(a^{1 / \sigma}\right)^{\sigma}$ and a are distinct. Then, for $q=\sum_{j=0}^{n} t^{j} a_{j} \in A$ with $a_{j} \in D$, set $\sqrt[\sigma]{q}:=\sum_{j=0}^{n} t^{j} a_{j}^{1 / \sigma}$. We also define q^{σ} as $\sum_{i=0}^{n} t^{j} a_{j}^{\sigma}$, we have $t q^{\sigma}=q t$.

Iteration of $\sqrt[\sigma]{m}$ times is denoted by $\sqrt[\sigma^{m}]{ }$. Let $a=\sum_{i=0}^{n-1} a_{i}^{\sigma} c_{i} \in D$, where $a_{i} \in D$ and $c_{i} \in \mathcal{C}$. Decompose each a_{i} along the basis $\mathcal{C}, a_{i}=\sum_{j=0}^{n-1} a_{i j}^{\sigma} c_{j}$, so $a_{i}^{\sigma}=\sum_{j=0}^{n-1} a_{i j}^{\sigma^{2}} c_{j}^{\sigma}$ and $a=\sum_{i, j=0}^{n-1} a_{i j}^{\sigma^{2}} c_{j}^{\sigma} c_{i}$. More generally, $a=\sum_{\bar{d} \in n^{m}} a_{\bar{d}}^{\sigma^{m}} c_{\bar{d}}$, where $\bar{d}:=\left(d_{1}, \cdots, d_{m}\right) \in n^{m}, c_{\bar{d}}:=c_{d_{1}}^{\sigma^{m-1}} \cdots c_{d_{m}}$.

Given $q \in A$, we write it as $q=\sum_{i} q_{i} c_{i}$ with $q_{i}=\sum_{j} t^{j} a_{i j}^{\sigma}, a_{i j} \in D$. Therefore, we have that $\sqrt[\sigma]{q_{i}}=\sum_{j} t^{j} a_{i j}$, so

$$
t q=\sum_{i} \sqrt[\sigma]{q_{i}} t c_{i}
$$

Indeed, $\sum_{i} \sqrt[\sigma]{q_{i}} t c_{i}=\sum_{i} \sum_{j} t^{j} a_{i j} t c_{i}=\sum_{i} \sum_{j} t^{j+1} a_{i j}^{\sigma} c_{i}=t q$.
Similarly, $t^{m} q=\sum_{\bar{d} \in n^{m}} \sqrt[\sigma^{m}]{q} \bar{q}^{t} t^{m} c_{\bar{d}}$.
For example, let F be a field of characteristic $p, D=F[x]$ and σ be the Frobenius map on D. We consider \mathcal{D} as a module over $D[t ; \sigma]$. The notion of σ-separable polynomials $q(t)$ coincides with the notion of p-polynomials $\sum_{i=0}^{m} a_{i} x^{p^{m-i}}$, with $a_{m} \neq$ 0 , introduced by O. Ore [17] (see also [5]), by making the identification $q(t)$ with $x . q(t)$ (recalling that $x . t=x^{\sigma}=x^{p}$). In case F is perfect, a σ-basis for $F[x]$ is $\left\{1, x, \cdots, x^{p-1}\right\}$. In general, let \mathcal{B} be a p-basis of F. Then D^{σ} is equal to $F^{\sigma}\left[x^{p}\right]$ and there is a direct sum decomposition of D as $\oplus_{c_{i} \in\left\{\mathcal{B}, x \cdot \mathcal{B}, \cdots, x^{p-1} \cdot \mathcal{B}\right\}} D^{\sigma} \cdot c_{i}$.

We now assume that (K, v) is a valued commutative field with valuation ring \mathcal{O}_{K}, maximal ideal \mathfrak{m}_{K} and residue field \bar{K}. Let $K^{\times}=K \backslash\{0\}$, we denote the value group $v\left(K^{\times}\right)$by Γ.

We will set $\bar{a}=a+\mathfrak{m}_{K}$, the image of a under the residue map from \mathcal{O}_{K} to \bar{K}. Moreover, as before K is endowed with an endomorphism σ which is (valuation)
increasing on \mathcal{O}_{K}. This implies that σ is an isometry on the elements of valuation zero and strictly decreasing on the elements of negative valuation. In particular σ induces an endomorphism σ_{v} of $(\Gamma,+, \leq, 0)$ defined by

$$
\sigma_{v}(v(a)):=v(\sigma(a)) .
$$

Note that σ_{v} is injective. We will denote the image by σ_{v} of an element $\gamma \in \Gamma$ either by $\gamma^{\sigma_{v}}$ or by $\sigma_{v}(\gamma)$. In the example above where σ is the Frobenius map, we have $\sigma_{v}(\gamma)=$ $p \gamma$. This action induced by σ on the value group makes it a multiplicative ordered difference abelian group in the terminology used by K. Pal ([18]), who investigated the model theory of such structures arising in the context of valued difference fields.

From now on, $A:=K[t ; \sigma], A_{0}=\mathcal{O}_{K}[t ; \sigma]$. We extend the residue map to A_{0} by sending $q(t)=\sum_{j} t^{j} a_{j}$ to $\bar{q}(t):=\sum_{j} t^{j} \bar{a}_{j}$. We denote by \mathcal{I} the set of elements of A_{0} which have at least one coefficient of valuation 0 (or equivalently $\bar{q}(t) \neq \overline{0}$). Note that unlike the case where σ is an isometry of K, one cannot extend the valuation v of K^{\times}to A^{\times}or to A_{0}^{\times}, but the product of two elements of \mathcal{I} still belongs to \mathcal{I}. (To see this last property, let $g(t), h(t) \in \mathcal{I}$ with $g(t)=\sum_{j=0}^{n} t^{j} b_{j}$ and $h(t)=\sum_{k=0}^{m} t^{k} c_{k}$. Let j_{0} (respectively k_{0}) be minimal such that $v\left(b_{j}\right)=0$ (respectively $v\left(c_{k}\right)=0$). Then the coefficient of $t^{j_{0}+k_{0}}$ in $g(t) . h(t)$ has value zero.)

Definition 2.4. Let (K, σ, v) be a valued field endowed with an endomorphism σ. We will say that K is separably σ-linearly closed if any separable linear difference polynomial $q(x)$, namely $q(x)$ is of the form $p\left(x, x^{\sigma}, \cdots, x^{\sigma^{n}}\right)$ with each $x^{\sigma^{i}}, 0 \leq i \leq n$, occurring non-trivially with degree at most 1 and $\partial_{x} p\left(x, x^{\sigma}, \cdots, x^{\sigma^{n}}\right) \neq 0$, has a zero in K.

Proposition 2.5. Assume that (K, v, σ) is separably σ-linearly closed. Then the σ-separable elements of \mathcal{I} factor into linear factors belonging to \mathcal{I}.

Proof: This follows from [16, chapter I, theorem 3], where the author dealt with p-polynomials.

First let us simply assume that $q(t) \in A$ with $q(0) \neq 0$. Write $q(t):=\sum_{i=0}^{d} t^{d-i} a_{i}$ with $a_{0} \neq 0$ and $a_{d} \neq 0$. We apply the Euclidean algorithm in A and so for any $(t-f) \in A$, there exists $q_{1}(t)$ such that $q(t)=(t-f) q_{1}(t)+a$, for some $a \in K$ and $q_{1}(t) \in A$. We want to show that we can choose f such that $a=0$. Write $q(t)=\sum_{i=0}^{d} t^{d-i} a_{i}$ and $q_{1}(t)=\sum_{j=0}^{d-1} t^{d-1-j} b_{j}$. Then we calculate $(t-f) q_{1}(t)$ and we express that $a=0$. We obtain that f has to be a root of some polynomial in $K\left[x, x^{\sigma}, \cdots, x^{\sigma^{d-1}}\right]$ with coefficients a_{d}, \cdots, a_{0}. Namely, we get $a_{0}=b_{0}, a_{1}=b_{1}-$ $f^{\sigma^{d-1}} b_{0}, a_{2}=b_{2}-f^{\sigma^{d-2}}\left(a_{1}+f^{\sigma^{d-1}} a_{0}\right)$, and finally $a_{d}=-f b_{d-1}=-f a_{d-1}-f f^{\sigma} a_{d-2}-$ $\cdots-f f^{\sigma} f^{\sigma^{2}} \cdots f^{\sigma^{d-1}} a_{0}$. We consider the difference polynomial $p\left(x, x^{\sigma}, \cdots, x^{\sigma^{n}}\right):=$ $x a_{d-1}+x x^{\sigma} a_{d-2}+\cdots+x x^{\sigma} x^{\sigma^{2}} \cdots x^{\sigma^{d-1}} a_{0}+a_{d}$. Since $\partial_{x} p\left(x, x^{\sigma}, \cdots, x^{\sigma^{n}}\right)=a_{d-1}+$ $x^{\sigma} a_{d-2}+\cdots+x^{\sigma} x^{\sigma^{2}} \cdots x^{\sigma^{d-1}} a_{0} \neq 0$, we get a zero $f \in K-\{0\}$ of that polynomial (f is non zero since $a_{d} \neq 0$).

So, we have $q(t)=(t-f) \cdot q_{1}(t)$ with $b_{0} \neq 0$ and $b_{d-1} \neq 0$ and so we can iterate the same process with $q_{1}(t)$. We finally obtain $q(t)=\left(t-f_{1}\right) \cdots\left(t-f_{d-1}\right)\left(t . a_{0}-f_{d}\right)$ with $f_{i} \in K-\{0\}, 1 \leq i \leq d$.

Now let us assume that in addition $q(t) \in \mathcal{I}$. If $f_{i} \notin \mathcal{O}_{K}$, then write $\left(t-f_{i}\right)=$ $\left(\left(t f_{i}^{-1}\right)-1\right) f_{i}, 1 \leq i \leq d-1$ and the last factor is written as $\left(t\left(a_{0} \cdot f_{d}^{-1}\right)-1\right) \cdot f_{d}$ if $a_{0} f_{d}^{-1} \in \mathcal{O}_{K}$ or $\left(t-f_{\text {d. }} a_{0}^{-1}\right) \cdot a_{d}$ if $f_{d} a_{0}^{-1} \in \mathcal{O}_{K}$.

Proceeding successively, we obtain a factorization of $q(t)$ into linear factors of the form $\left(t f_{i}^{\prime}-1\right)$ or $\left(t-f_{i}^{\prime}\right)$ with $f_{i}^{\prime} \in \mathcal{O}_{K}, 1 \leq i \leq d$, together with a constant factor say $c \in K$. Since each of these linear factors belong to \mathcal{I} and that \mathcal{I} is closed under product, we get that $c \in \mathcal{O}_{K} \backslash \mathfrak{m}_{K}$.
Corollary 2.6. Assume K is a separably closed valued field of characteristic p and consider the skew polynomial ring $K[t ; \sigma]$, where σ acts as the Frobenius. Let $q(t) \in \mathcal{I}$ be a σ-separable polynomial, then there exists a factorization of $q(t)$ into σ-separable linear factors belonging to \mathcal{I}.

Notation 2.7. For $q(t) \in A$ and $\mu \in K-\{0\}$, denote by $q^{\mu}(t)$ the element of A equal to $\mu \cdot q(t) \cdot \mu^{-1}$. So if $q(t)=\sum_{i} t^{i} a_{i}, a_{i} \in K, q^{\mu}(t)=\sum_{i} t^{i} \mu^{\sigma^{i}} a_{i} \mu^{-1}$.

Note that if $q(t) \in A_{0}$ and $\mu \in \mathcal{O}_{K}$, then $q^{\mu}(t) \in A_{0}$.

3. Valued modules

We keep the same notation as in the previous section with a fixed $(K, v, \sigma), \Gamma=$ $v\left(K^{\times}\right)$endowed with the induced endomorphism σ_{v}, A the skew polynomial ring $K[t ; \sigma]$ etc.

We will define the notion of σ-valued A-modules, or simply valued A-modules. Notions of valued modules occur in various places with many variations, see for instance [4] or [14](%C2%A72). The following generalizes the notion in [2].

Definition 3.1. (Cf. [11], [10], [2]) A valued A-module is a two-sorted structure $(M,(\Delta \cup\{+\infty\}, \leq,+\gamma ; \gamma \in \Gamma), w)$, where M is an A-module, $(\Delta \cup\{+\infty\}, \leq)$ is a totally ordered set for which $+\infty$ is a maximum, $+\gamma$ is an action of $\gamma \in \Gamma$ on Δ, and w is a map $w: M \rightarrow \Delta \cup\{+\infty\}$ such that
(1) for all $\delta, \delta_{1}, \delta_{2} \in \Delta$, if $\delta_{1} \leq \delta_{2}$ then $\delta_{1}+\gamma \leq \delta_{2}+\gamma$, for each $\gamma \in \Gamma$, and $\delta+\gamma_{1}<\delta+\gamma_{2}$, for each $\gamma_{1}<\gamma_{2} \in \Gamma ;{ }^{1}$
(2) for all $m_{1}, m_{2} \in M, w\left(m_{1}+m_{2}\right) \geq \min \left\{w\left(m_{1}\right), w\left(m_{2}\right)\right\}$, and $w\left(m_{1}\right)=+\infty$ iff $m_{1}=0$;
(3) for all $m_{1}, m_{2} \in M, w\left(m_{1}\right)<w\left(m_{2}\right)$ iff $w\left(m_{1} \cdot t\right)<w\left(m_{2} \cdot t\right)$;
(4) for all $m \in M-\{0\}, w(m \cdot \mu)=w(m)+v(\mu)$, for each $\mu \in K^{\times}$.

We denote the corresponding two-sorted language by L_{w} and the corresponding theory by T_{w}.

Taking $M=K$ and $w=v, \Delta=\Gamma$, then K is a valued A-module with t acting as σ and Γ acting on itself by translation.

From the axioms above, we deduce as usual the following properties : $w(m)=$ $w(-m)$, and if $w\left(m_{1}\right)<w\left(m_{2}\right)$, then $w\left(m_{1}+m_{2}\right)=w\left(m_{1}\right)$.

[^1]Note also, from axiom (1), that for each $m_{1}, m_{2} \in M$ and $\mu \in K^{\times}$, if $w\left(m_{1}\right) \neq$ $w\left(m_{2}\right)$ implies $w\left(m_{1} \cdot \mu\right) \neq w\left(m_{2} \cdot \mu\right)$.

Note that $(w(M), \leq)$ is a substructure of $(\Delta \cup\{+\infty\}, \leq)$, and that t induces an endomorphism τ on $(w(M), \leq)$ defined by $w(m \cdot t)=\tau(w(m))$. It is well-defined since by axiom (3), if $w\left(m_{1}\right)=w\left(m_{2}\right)$ then $w\left(m_{1} \cdot t\right)=w\left(m_{2} \cdot t\right)$.

From now on, we will impose a growth condition on the action of t by introducing the following additional structure on Δ. This will induce in particular that the action of t on the corresponding class of valued A-modules will be uniform, with a compatibility condition between the action of $\left(\Gamma, \sigma_{v}\right)$ and the action of τ.

Definition 3.2. Let $\left(\Delta, \leq, 0_{\Delta}, \tau,+\gamma ; \gamma \in \Gamma\right)$ be a totally ordered set with a distinguished element $0_{\Delta},+\gamma$ an action of $\gamma \in \Gamma$ on Δ, and τ a fixed endomorphism of (Δ, \leq).

We assume that for all $\delta, \delta_{1}, \delta_{2} \in \Delta$, if $\delta_{1} \leq \delta_{2}$ then $\delta_{1}+\gamma \leq \delta_{2}+\gamma$, for each $\gamma \in \Gamma$, and $\delta+\gamma_{1}<\delta+\gamma_{2}$, for each $\gamma_{1}<\gamma_{2} \in \Gamma$.

The endomorphism τ satisfies the conditions, viz. : $\delta_{1}<\delta_{2} \rightarrow \tau\left(\delta_{1}\right)<\tau\left(\delta_{2}\right), \tau\left(0_{\Delta}\right)=$ $0_{\Delta}, \delta>0_{\Delta} \rightarrow \tau(\delta)>\delta, \delta<0_{\Delta} \rightarrow \tau(\delta)<\delta$, and finally a compatibility condition between the action of σ_{v} on Γ and the action of τ : for all $\gamma \in \Gamma$ we have $\tau(\delta+\gamma)=\tau(\delta)+\gamma^{\sigma_{v}}$.

We will sometimes write 0 instead of 0_{Δ}, for ease of notation.
Let us denote the corresponding language by $\mathcal{L}_{\Delta, \tau}$ and the corresponding theory by $T_{\Delta, \tau}$.

Let $L_{w, \tau}:=L_{w} \cup \mathcal{L}_{\Delta, \tau}$; we will consider the the class $\Sigma_{w, \tau}$ of $L_{w, \tau}$-structures $\left(M,\left(\Delta \cup\{+\infty\}, \leq, \tau, 0_{\Delta},+\gamma ; \gamma \in \Gamma\right), w\right)$ satisfying the following properties :
(1) $(M,(\Delta \cup\{+\infty\}, \leq,+\gamma ; \gamma \in \Gamma), w)$ is a valued A-module;
(2) $\left(\Delta, \leq, \tau, 0_{\Delta},+\gamma ; \gamma \in \Gamma\right)$ is a model of $T_{\Delta, \tau}$;
(3) $w(m \cdot t)=\tau(w(m))$.

Note that if $M \in \Sigma_{w, \tau}$, then if $w(m)>0_{\Delta}$, then $w(m \cdot t)>w(m)$, if $w(m)=0_{\Delta}$, then $w(m \cdot t)=w(m)$, and if $w(m)<0_{\Delta}$, then $w(m \cdot t)<w(m)$. Moreover, letting $\Gamma^{+}:=\{\gamma \in \Gamma: \gamma>0\}$, if $\gamma \in \Gamma^{+}$, then $\sigma_{v}(\gamma)>\gamma$. (Indeed, $0_{\Delta}+\gamma>0_{\Delta}$, so $\tau\left(0_{\Delta}+\gamma\right)>0_{\Delta}+\gamma$. By the compatibility condition, $\tau\left(0_{\Delta}+\gamma\right)=0_{\Delta}+\sigma_{v}(\gamma)$ and so $\sigma_{v}(\gamma)>\gamma$.)

4. Abelian structures

In order to stay into the setting of abelian structures, we will use a less expressive language. This language was used by T. Rohwer while considering the field of Laurent series over the prime field \mathbb{F}_{p} with the usual Frobenius map $y \mapsto y^{p}([21])$. Instead of the two-sorted structure (M, Δ, w), where \mathcal{M} is a valued A-module, he considered the one-sorted abelian structure $\left(M,\left(M_{\delta}\right)_{\delta \in \Delta}\right)$, where $M_{\delta}=\{x \in M: w(x) \geq$ $\delta\}$. Similarly, given a valued A-module \mathcal{M} with a direct sum decomposition $M=$ $\oplus_{i=0}^{n-1}$ M.tc c_{i}, we will add the functions λ_{i} and consider the one-sorted abelian structure $\left(M,\left(\lambda_{i}\right)_{i \in n},\left(M_{\delta}\right)_{\delta \in \Delta}\right)$.

We will consider theories of abelian structures satisfying strong divisibility properties. The basic example is the separable closure of $\tilde{\mathbb{F}}_{p}((T))$. Note that this example is not covered by Rohwer, as we will indicate below, following Lemma 4.13.

Definition 4.1. Let $\left(\Delta, \leq, \tau,+, 0_{\Delta},+\infty\right)$ be a model of $T_{\Delta, \tau}$. We set the language $\mathcal{L}_{V}:=\mathcal{L}_{A} \cup\left\{V_{\delta}: \delta \in \Delta\right\}$, where V_{δ} is a unary predicate.

Let T_{V} be the \mathcal{L}_{V}-theory with the following axioms, with $\delta \in \Delta$:
(1) T_{σ};
(2) $V_{\delta}(0)$;
(3) $\forall m\left(V_{\delta_{2}}(m) \rightarrow V_{\delta_{1}}(m)\right)$, whenever $\delta_{1} \leq \delta_{2}, \delta_{1}, \delta_{2} \in \Delta$;
(4) $\forall m_{1} \forall m_{2}\left(V_{\delta}\left(m_{1}\right) \& V_{\delta}\left(m_{2}\right) \rightarrow V_{\delta}\left(m_{1}+m_{2}\right)\right)$;
(5) $\forall m\left(V_{\delta}(m) \rightarrow V_{\delta+v(\mu)}(m . \mu)\right)$, where $\mu \in K^{\times}$;
(6) $\forall m\left(V_{\delta}(m) \leftrightarrow V_{\tau(\delta)}(m . t)\right)$.

If (M, Δ, w) is a valued A-module with a direct sum decomposition $M=\oplus_{i \in n} M . t c_{i}$, and we let $\mathcal{M}_{V}=\left(M,+, 0,(. r)_{r \in A},\left(\lambda_{i}\right)_{i \in n},\left(M_{\delta}\right)_{\delta \in \Delta}\right)$, then \mathcal{M}_{V} is a model of T_{V}, where V_{δ} is interpreted as M_{δ}.

The structure \mathcal{M}_{V} is an abelian structure and one gets as in the classical case of (pure) modules that any formula is equivalent to a boolean combination of positive primitive formulas (p.p.) and index sentences (namely, sentences telling the index of two p.p.-definable subgroups of the domain of \mathcal{M}_{V} in one another (see [19])) and this p.p. elimination is uniform in the class of such structures.

Note that the pure module theory of separably closed fields of characteristic p and fixed non-zero imperfection degree has quantifier elimination in the presence of the functions $\lambda_{i}([5])$.

We want to axiomatize a class of abelian structures which contains the class of valued separably closed fields of characteristic p. Note that the theory of valued separably closed fields has been shown to be model-complete in the language of valued fields augmented with predicates expressing p-independence ([7]) and to admit quantifier elimination in the language of valued fields augmented with the λ_{i} functions ([13]).
In the remainder of the section, we will formalise certain properties of separably closed fields viewed as modules over the corresponding skew polynomial rings in order to axiomatize the class of modules we will be working with.
Notation 4.2. Let $\delta \in \Delta$, then we denote by $M_{\delta^{+}}=\{x \in M: w(x)>\delta\}$.
Corollary 4.3. Assume that K is separably σ-linearly closed. Let \mathcal{M} be a A-module with the following divisibility properties: given any $a \in \mathcal{O}_{K} \backslash\{0\}$, any $n_{1}, n_{2} \in M_{0_{\Delta}}$, there exists $m_{1}, m_{2} \in M_{0_{\Delta}}$ such that $m_{1} \cdot(t-a)=n_{1}$, and $m_{2} \cdot(t a-1)=n_{2}$.

Then given any σ-separable polynomial $q(t) \in \mathcal{I}$ and any element n of $M_{0_{\Delta}}$ there exists $m \in M_{0_{\Delta}}$ such that $m \cdot q(t)=n$. Moreover, if $n \in M_{0_{\Delta}} \backslash M_{0_{\Delta}^{+}}$, then there exists $m \in M_{0_{\Delta}} \backslash M_{0_{\Delta}^{+}}$such that $m \cdot q(t)=n$.
Proof: By Proposition 2.5, it suffices to prove it for linear polynomials of the form $(t-a)$ or $(t a-1)$ with $a \in \mathcal{O}_{K} \backslash\{0\}$. Let $n \in M_{0_{\Delta}}$. Then by assumption, there exists $m \in M_{0_{\Delta}}$ such that $n=m \cdot(t-a)$ (respectively $\left.n=m \cdot(t a-1)\right)$. If $n \in M_{0_{\Delta}} \backslash M_{0_{\Delta}^{+}}$and
$m \in M_{0_{\Delta}^{+}}$, then $\min \{w(m \cdot t), v(m \cdot a)\}>0($ respectively $\min \{w(m \cdot t a), v(m)\}>0)$, a contradiction.

In the following (see Lemma 4.8), under a further condition on Δ, we will show that given $n \in M$ and $q(t) \in \mathcal{I}$, if we can find an element $m \in M$ such that $n=m \cdot q(t)$, then we can find one whose value $w(m)$ can be determined in terms of the values of the coefficients of $q(t)$ and $w(n)$.

Definition 4.4. We will say that ($\Delta, \leq, 0_{\Delta}, \tau,+\gamma ; \gamma \in \Gamma$) is ordered linearly closed (o.l.-closed) if given any finite subset $\left\{\gamma_{i} \in \Gamma ; 0 \leq i \leq d\right\}$, for any $\delta \in \Delta$ there exists $\mu \in \Delta$ such that $\delta=\min _{0 \leq i \leq d}\left\{\tau^{i}(\mu)+\gamma_{i}\right\}$.

Lemma 4.5. Assume that τ is surjective on Δ. Then Δ is o.l.-closed.
Proof: Let $q(t) \in A, q(t)=\sum_{i=0}^{d} t^{i} a_{i}$, and let $\left\{\gamma_{i}:=v\left(a_{i}\right): a_{i} \neq 0,0 \leq i \leq d\right\}$. Given $\delta_{0} \in \Delta$, let us show that there exists $\delta \in \Delta$ such that $\delta_{0}=\min _{0 \leq i \leq d} \tau^{i}(\delta)+\gamma_{i}$.

Consider the functions f_{i} on Δ defined by $f_{i}(\delta)=\tau^{i}(\delta)+\gamma_{i}, 0 \leq i \leq d$. Since τ is assumed here to be surjective, so is τ^{i}. Thus there exists $\delta_{i} \in \Delta$ such that $\delta_{0}+\left(-\gamma_{i}\right)=\tau^{i}\left(\delta_{i}\right)$ and so $\delta_{0}=f_{i}\left(\delta_{i}\right)$.

Each function f_{i} is strictly increasing: if $\delta_{1}<\delta_{2}$, then $\tau^{i}\left(\delta_{1}\right)<\tau^{i}\left(\delta_{2}\right)$ and $\tau^{i}\left(\delta_{1}\right)+$ $\gamma_{i}<\tau^{i}\left(\delta_{2}\right)+\gamma_{i}$. So the maximum μ of the δ_{i} 's such that $f_{i}\left(\delta_{i}\right)=\delta_{0}$ is well-defined. Since $\delta_{i} \leq \mu$, we have that $\delta_{0}=f_{i}\left(\delta_{i}\right) \leq f_{i}(\mu)$ (f_{i} is increasing), $0 \leq i \leq d$. So, $\delta_{0}=\min _{0 \leq i \leq n} f_{i}(\mu)$, namely $\Upsilon\left(q, \delta_{0}\right)=\mu$.
Notation 4.6. Assume τ is surjective on Δ. Given $q(t) \in A, q(t)=\sum_{i=0}^{d} t^{i} a_{i}$, given δ and $\left\{\gamma_{i}:=v\left(a_{i}\right): a_{i} \neq 0,0 \leq i \leq d\right\}$, by the above Lemma, there exists μ such that $\delta=\min \left\{\tau^{i}(\mu)+\gamma_{i}: 0 \leq i \leq d\right\}$. We will denote that μ by $\Upsilon(q, \delta)$. We also set $\Upsilon^{-1}(q, \mu):=\delta$.

As soon as Δ is o.l.-closed, the functions Υ^{-1} and Υ are well-defined and we have the following relationship between Υ^{-1} and Υ. Let $q(t) \in \mathcal{I}, \mu, \delta \in \Delta$, then $\Upsilon^{-1}(q(t), \Upsilon(q(t), \delta))=\delta$ and $\Upsilon\left(q(t), \Upsilon^{-1}(q(t), \mu)\right)=\mu$. Moreover, for $m \in M$ we always have $w(m \cdot q(t)) \geq \Upsilon^{-1}(q(t), w(m))$. And finally since each of the functions $\tau^{i}+\gamma_{i}$ are strictly increasing on $\Delta, \Upsilon\left(q, \mu_{2}\right) \leq \mu_{1} \leftrightarrow \mu_{2} \leq \Upsilon^{-1}\left(q, \mu_{1}\right)$. This last equivalence implies that Υ is increasing and since it is injective, it is strictly increasing.

When the action of Γ is transitive on Δ, because of the compatibility condition on the two actions, whenever σ_{v} is surjective on Γ, τ is surjective on Δ and so Δ o.l.closed. Note that if K is separably closed of characteristic p and σ is the Frobenius map, then $\sigma_{v}(\gamma)=p \gamma$, and $\Gamma=v K$ is divisible.

Definition 4.7. Assume that τ is surjective on Δ and that $\left(\Delta, \leq, 0_{\Delta}, \tau,+\gamma ; \gamma \in\right.$ $\Gamma) \models T_{\Delta, \tau}$, then let T_{V}^{+}be the following \mathcal{L}_{V}-theory:
(1) T_{V},
(2) $\forall n\left(n \in V_{0} \rightarrow\left(\exists m\left(m \in V_{0} \& m \cdot q(t)=n\right)\right)\right)$, for all $q(t) \in \mathcal{I}, q(t) \sigma$-separable.

Lemma 4.8. Let \mathcal{M} be a valued A-module which is a model of T_{V}^{+}. Assume that Γ acts transitively on Δ. Let $q(t) \in \mathcal{I}$ be σ-separable, $\delta \in \Delta$ and let $\mu:=\Upsilon(q, \delta)$. Then, for any $n \in M$ with $w(n)=\delta$, there exists $m \in M$ such that $m \cdot q(t)=n \& w(m)=$ μ. Moreover μ has the additional property that for any $m \in M$ with $w(m)=\mu$, $w(m \cdot q(t)) \geq \delta$.
Proof: Let $q(t)=\sum_{i=0}^{d} t^{i} a_{i} \in \mathcal{I}$, with $a_{0} \neq 0$. By axiom scheme (2) of T_{V}^{+}, for any $n_{0} \in M$ with $w\left(n_{0}\right)=0_{\Delta}$, there exists $m_{0} \in M$ such that $m_{0} \cdot q(t)=n_{0}$ and $w\left(m_{0}\right)=0_{\Delta}$. Note that the axiom scheme (2) only gives us that $w\left(m_{0}\right) \geq 0_{\Delta}$, but since at least one coefficient of $q(t)$ has value 0 , we get that $w\left(m_{0}\right)$ cannot be strictly bigger than 0_{Δ}. Since the action of Γ on Δ is transitive, there exist $k_{\delta}, k_{\mu} \in K$ such that $0_{\Delta}+v\left(k_{\delta}\right)=\delta$ and $0_{\Delta}+v\left(k_{\mu}\right)=\mu$.

Let $n \in M$ with $w(n)=\delta$ and consider the polynomial $\tilde{q}(t):=\sum_{i} t^{i} k_{\mu}^{\sigma^{i}} a_{i} k_{\delta}^{-1}=$ $q^{k_{\mu}}\left(k_{\mu} k_{\delta}^{-1}\right)$. Then by construction $\tilde{q}(t) \in \mathcal{I}$ and is still σ-separable.

Now $w\left(n \cdot k_{\delta}^{-1}\right)=0$, so by hypothesis there exists $m_{0} \in M_{0_{\Delta}}$ such that $m_{0} \cdot \tilde{q}(t)=$ $n \cdot k_{\delta}^{-1}$. So, $m_{0} \cdot \sum_{i} t^{i} k_{\mu}^{\sigma^{i}} a_{i}=n$ and so $m_{0} \cdot k_{\mu} q(t)=n$. Set $m:=m_{0} \cdot k_{\mu}$, we have $w(m)=\mu$ and $m \cdot q(t)=n$.

Moreover, if $w(m)=\mu$, then by the compatibility condition between τ and σ_{v}, we have $w(m \cdot q(t)) \geq \min _{i} \tau^{i}(w(m))+v\left(a_{i}\right) \geq \delta$.
Lemma 4.9. Let \mathcal{M} be a model of T_{V}^{+}and assume that Γ acts transitively on Δ. Let $q(t) \in \mathcal{I}$ be σ-separable and $\delta \in \Delta$. Then, for any $n \in M_{\delta}$, there exists $m \in M_{\Upsilon(q, \delta)}$ such that $m \cdot q(t)=n$. Moreover $\Upsilon(q, \delta)$ is such that for any $m \in M_{\Upsilon(q, \delta)}, m \cdot q(t) \in$ M_{δ}.

Proof: It follows from the proof of the above Lemma, replacing equalities of the form $w(m)=\delta \in \Delta$, by $m \in M_{\delta}$.

The separable closure of a valued field of characteristic p is dense in its algebraic closure. This translates as follows in the case of models of T_{V}^{+}.
Lemma 4.10. If \mathcal{M} is a valued A-module which is a model of T_{V}^{+}, and if the action of Γ on Δ is transitive and satisfies the following $(* *)$: for all $\delta_{1}, \delta_{2} \in \Delta$, there exists $\gamma \in \Gamma$ such that $\delta_{1}+\left(\sigma_{v}(\gamma)-\gamma\right)=\delta_{2}$. Then for any δ and m with $w(m) \leq \delta$, there exists n such that $w(m-n \cdot t)=\delta$.

Proof: W.l.o.g. we may assume that $\delta>w(m)$ (otherwise it suffices to choose $n=0$). First choose $k \in K$ such that $w(m)+v\left(k^{\sigma}\right)<0$.

By Lemma $4.8 M$ is $(t-1)$-divisible, so there exists $n \in M$ such that $m \cdot k^{\sigma}=$ $n \cdot(t-1)$ and necessarily $w(n)<0$. So $\tau(w(n))<w(n)$ and therefore $w(n \cdot t)=$ $w(m)+\sigma_{v}(v(k))$ and $w(n)=\tau^{-1}\left(w(m)+\sigma_{v}\left(v\left(k_{\mu}\right)\right)\right)$.

We have that $m=n \cdot k^{-1} t-n \cdot k^{-\sigma}$.
We have $w\left(m-n \cdot k^{-1} t\right)=w(n)-v\left(k^{\sigma}\right)=\tau^{-1}(w(m))+\left(v(k)-\sigma_{v}(v(k))\right)$. Now, by the extra assumption, there is k_{1} such that $\tau^{-1}(w(m))+\left(v\left(k_{1}\right)-\sigma_{v}\left(v\left(k_{1}\right)\right)\right)=\delta$. It suffices to see that this forces $w(m)+v\left(k_{1}^{\sigma}\right)<0$, so that the preceding discussion applies to k_{1} as well, and we are done. But we have $w(m)+v\left(k_{1}^{\sigma}\right)=\tau\left(\delta+v\left(k_{1}^{\sigma}\right)\right)$ and $w(m)+v\left(k_{1}^{\sigma}\right)<\delta+v\left(k_{1}^{\sigma}\right)$. So if $w(m)+v\left(k_{1}^{\sigma}\right) \geq 0$, we would get $0<\delta+v\left(k_{1}^{\sigma}\right)<$
$\tau\left(\delta+v\left(k_{1}^{\sigma}\right)\right)$, and then $w(m)+v\left(k_{1}^{\sigma}\right)<\tau\left(\delta+v\left(k_{1}^{\sigma}\right)\right)$ which is absurd. Hence we must have $w(m)+v\left(k_{1}^{\sigma}\right)<0$, as wanted.

Remark 4.11. Note that in case the action of Γ on Δ is transitive, to meet the hypothesis ($\star \star$), we can require that the action of $\sigma_{v}-1$ is surjective on Γ.

Definition 4.12. Recall that $\Gamma^{+}:=\{\gamma \in \Gamma: \gamma \geq 0\}$. We will say that σ_{v} is 2-contracting on Γ if $\forall \gamma \in \Gamma^{+} \sigma_{v}(\gamma) \geq \gamma+\gamma$.

Lemma 4.13. Suppose \mathcal{M} is a model of T_{V}^{+}and assume Γ acts transitively on Δ. If σ_{v} is 2-contracting on Γ, then for any $\delta \in \Delta$ and for all $m \in M$, there exists n such that $V_{\delta}(m-n \cdot t)$ holds.

Proof: It follows from the proof of the above lemma, noting that we only need in this setting that $\forall \delta_{1} \in \Delta \forall \delta_{2} \in \Delta \exists \gamma \in \Gamma \delta_{1}+\left(\sigma_{v}(\gamma)-\gamma\right) \geq \delta_{2}$. W.l.o.g., we may assume that $\delta_{1}<\delta_{2}$. So given $\delta_{1}<\delta_{2} \in \Delta$, by transitivity of the action of Γ on Δ, we get that there exists $\tilde{\gamma} \in \Gamma^{+}$such that $\delta_{1}+\tilde{\gamma}=\delta_{2}$. Since σ_{v} is 2 -contracting we get that $\sigma_{v}(\tilde{\gamma}) \geq \tilde{\gamma}+\tilde{\gamma}$. So $\delta_{1}+\sigma_{v}(\tilde{\gamma}) \geq \delta_{2}+\tilde{\gamma}$ and so $\delta_{1}+\sigma_{v}(\tilde{\gamma})-\tilde{\gamma} \geq \delta_{2}$.

Definition 4.14. Assume that τ is surjective on Δ and that $\left(\Delta, \leq, 0_{\Delta}, \tau,+\gamma ; \gamma \in\right.$ $\Gamma) \models T_{\Delta, \tau}$. Let $T_{V}^{s e p}$ be the \mathcal{L}_{V}-theory:
(1) T_{V},
(2) $\forall n\left(n \in V_{\delta} \rightarrow\left(\exists m\left(m \in V_{\Upsilon(q, \delta)} \& m \cdot q(t)=n\right)\right)\right)$, for all $q(t) \in \mathcal{I}, q(t)$ σ-separable and for all $\delta \in \Delta$.
(3) $\forall m \exists n V_{\delta}(m-n \cdot t)$, for all $\delta \in \Delta$.

In particular, if K is separably closed of characteristic p, then \mathcal{K} viewed as a $K[t ; \sigma]$-module with σ acting as the Frobenius map, is a model of $T_{V}^{s e p}$.

More generally, if $(K v, \sigma)$ is separably σ-linearly closed and if σ_{v} is 2 -contracting on Γ, then again \mathcal{K} viewed as a A-module is a model of $T_{V}^{s e p}$.

Further note that if Γ acts transitively on Δ and σ_{v} is 2-contracting on Γ, then a model of T_{V}^{+}is a model of $T_{V}^{s e p}$ (by Lemmas 4.9 and 4.13).

We will prove in the next sections that $T_{V}^{s e p}$ eliminates quantifiers up to index sentences.

Before doing that, we now check that the basic example of the separable closure of $\tilde{\mathbb{F}}_{p}((T))$ is not covered by Rohwer (see [21], pp. 40-41), since it does not have a weak valuation basis.

Definition 4.15. Let $\mathcal{M}:=\left(M,+, 0, . r ; r \in A, \lambda_{i}, i \in n\right)$ be a model of T_{σ}. Then \mathcal{M} is a valued A-module with a weak σ-valuation basis if there exists $r \in K$ such that for each $m \in M$ we have: $w(m) \leq \min _{i}\left\{w\left(\lambda_{i}(m) \cdot t\right)+v\left(c_{i}\right)+v(r): c_{i} \in \mathcal{C}\right\}$. (*)

Lemma 4.16. Let K be any valued separably closed field K of finite imperfection degree, then K does not have a weak σ-valuation basis, with σ the Frobenius endomorphism.

Proof: By way of contradiction, let c_{1}, c_{2}, \ldots be a linear basis of K over K^{p} and suppose that it is a weak σ-valuation basis and let δ be the corresponding $v(r)$. By adjusting δ and since $v\left(K^{\times}\right)$is p-divisible, we may always assume that $c_{1}=1$. Let $\delta^{\prime} \in \Gamma$ such that $\delta^{\prime}>\left\{v\left(c_{2}\right), \delta, v\left(c_{2}\right)+\delta\right\}$. By Lemma 4.13 let a, b such that $c_{2}=a^{p}+b$ with $v(b) \geq \delta^{\prime}$. If $v\left(a^{p}\right) \neq v\left(c_{2}\right)$, then that would contradict the required inequality $\left(^{*}\right)$ for $a^{p}-c_{2}$. Otherwise, $v\left(a^{p}\right)=v\left(c_{2}\right)$, and again this contradicts $\left(^{*}\right)$ for $a^{p}-c_{2}$.

5. Special cases

In order to eliminate quantifiers in $T_{V}^{s e p}$, we need some basic cases and reductions, which are treated in the following lemmas.

Our main tools will be axiom schemes (2) and (3) of $T_{V}^{\text {sep }}$ and we will use Notation 4.6. We will treat the general case in the next section.

We will use the notation $u \cdot r \equiv_{\delta} m$ to mean that $V_{\delta}(u \cdot r-m)$ holds. We place ourselves in any model of $T_{V}^{s e p}$ and the b_{i} 's that will occur in the systems are \mathcal{L}_{A}-terms in some tuple of variables \bar{y}.

Lemma 5.1. Consider a system of the form

$$
\exists u\left\{\begin{array}{ccc}
u \cdot t & \equiv_{\mu_{1}} & b_{1} \\
u \cdot r & \equiv_{\mu_{2}} & b_{2},
\end{array}\right.
$$

where $r \in \mathcal{I}$ is separable. Then this system is equivalent to a congruence of the form

$$
b_{1} \cdot r^{\sigma} \equiv_{\mu_{3}} b_{2} \cdot t .
$$

Proof: We distinguish two cases.
(i) $\Upsilon^{-1}\left(r^{\sigma}, \mu_{1}\right) \geq \tau\left(\mu_{2}\right)$. Then the system above is equivalent to

$$
b_{1} \cdot r^{\sigma} \equiv_{\tau\left(\mu_{2}\right)} b_{2} \cdot t .
$$

One implication is straightforward. For the reverse implication, since we are in a model of $T_{V}^{s e p}$, by axiom (3), there exists u such that $u \cdot t \equiv_{\mu_{1}} b_{1}$. So $u \cdot t r^{\sigma} \equiv_{\Upsilon-1\left(r^{\sigma}, \mu_{1}\right)}$ $b_{1} \cdot r^{\sigma}$. So $u \cdot r t \equiv_{\tau\left(\mu_{2}\right)} b_{2} \cdot t$ and so $u \cdot r \equiv_{\mu_{2}} b_{2}$.
(ii) $\Upsilon^{-1}\left(r^{\sigma}, \mu_{1}\right)<\tau\left(\mu_{2}\right)$. Then the system above is equivalent to

$$
b_{1} \cdot r^{\sigma} \equiv_{\Upsilon-1\left(r^{\sigma}, \mu_{1}\right)} b_{2} \cdot t .
$$

One implication is straighforward. For the reverse implication, choose μ such that $\Upsilon^{-1}\left(r^{\sigma}, \mu\right) \geq \tau\left(\mu_{2}\right)$ (and so $\left.\mu>\mu_{1}\right)$. Again by axiom (3), there exists u such that $u \cdot t \equiv_{\mu_{1}} b_{1}$. So $u \cdot t r^{\sigma} \equiv_{\Upsilon^{-1}\left(r^{\sigma}, \mu_{1}\right)} b_{1} \cdot r^{\sigma} \equiv_{\Upsilon^{-1}\left(r^{\sigma}, \mu_{1}\right)} b_{2} \cdot t$.

Since we are in a model of $T^{\text {sep }}$, by axiom (2), there exists $u^{\prime \prime}$ such that $u^{\prime \prime} \cdot r^{\sigma}=(u$. $\left.r-b_{2}\right) \cdot t$ with $w\left(u^{\prime \prime}\right) \geq \mu_{1}\left(\right.$ by definition of $\left.\Upsilon^{-1}\left(r^{\sigma}, \mu_{1}\right)\right)$. Let u^{\prime} be such that $u^{\prime} \cdot t \equiv_{\mu} u^{\prime \prime}$. Then $u^{\prime} \cdot r t=u^{\prime} \cdot t r^{\sigma} \equiv_{\tau\left(\mu_{2}\right)}\left(u \cdot r-b_{2}\right) \cdot t$, which implies that $\left(u-u^{\prime}\right) \cdot r t \equiv_{\tau\left(\mu_{2}\right)} b_{2} \cdot t$ and so $\left(u-u^{\prime}\right) \cdot r \equiv_{\mu_{2}} b_{2}$, which finishes the proof since $\left(u-u^{\prime}\right) \cdot t \equiv_{\mu} u \cdot t-u^{\prime \prime} \equiv_{\mu_{1}} b_{1}$.

Lemma 5.2. Consider a system of the form

$$
\exists u\left\{\begin{array}{ccc}
u \cdot r_{1} & = & b_{1} \\
u \cdot r_{2} \equiv \equiv_{2} & b_{2},
\end{array}\right.
$$

where $r_{1}, r_{2} \in \mathcal{I}$ are separable and assume that $\operatorname{deg}\left(r_{1}\right) \geq \operatorname{deg}\left(r_{2}\right)$. Then this system is equivalent to the following system

$$
\exists u\left\{\begin{array}{l}
u \cdot r_{2}=b_{2} \\
u \cdot r_{3} \equiv_{\delta} b_{1} \cdot \alpha-b_{2} \cdot s,
\end{array}\right.
$$

where $\delta=\Upsilon^{-1}\left(r_{1} \alpha, \Upsilon\left(r_{2}, \delta_{2}\right)\right)$, for some $\alpha \in \mathcal{O}_{K}$, and $\operatorname{deg}\left(r_{2}\right)>\operatorname{deg}\left(r_{3}\right)$.
Proof: By the generalized euclidean algorithm, there exists $\alpha \in \mathcal{O}_{K}$ such that $r_{1} \alpha=$ $r_{2} s+r_{3}$ with $\operatorname{deg}\left(r_{3}\right)<\operatorname{deg}\left(r_{2}\right)$.

Suppose u is a solution of the first system. Let u^{\prime} be such that $u^{\prime} \cdot r_{2}=u \cdot r_{2}-b_{2}$. We can find such u^{\prime} with $w\left(u^{\prime}\right) \geq \Upsilon\left(r_{2}, \delta_{2}\right)$. So $\left(u-u^{\prime}\right) \cdot r_{2} \cdot s+\left(u-u^{\prime}\right) \cdot r_{3}=\left(u-u^{\prime}\right) \cdot r_{1} \alpha=$ $b_{1} \cdot \alpha-u^{\prime} \cdot r_{1} \alpha$ i.e. $\left(u-u^{\prime}\right) \cdot r_{3}=b_{1} \cdot \alpha-b_{2} \cdot s-u^{\prime} \cdot r_{1} \alpha$.

Conversely, let $u^{\prime \prime}$ satisfy the second system. Then $u^{\prime \prime} \cdot r_{1} \alpha=u^{\prime \prime} \cdot r_{2} s+u^{\prime \prime} \cdot r_{3} \equiv_{\delta} b_{1} \cdot \alpha$. So let $u^{\prime \prime \prime}$ be such that $u^{\prime \prime \prime} \cdot r_{1}=u^{\prime \prime} \cdot r_{1}-b_{1}$ and we have to make sure that we can choose $u^{\prime \prime \prime}$ such that $w\left(u^{\prime \prime \prime} \cdot r_{2}\right) \geq \delta_{2}$. In other words, $\Upsilon\left(r_{1} \alpha, \delta\right)=\Upsilon\left(r_{2}, \delta_{2}\right)$.

Lemma 5.3. Consider a system of the form

$$
\exists u\left\{\begin{array}{ccc}
u \cdot r_{1} & \equiv_{\delta_{1}} & b_{1} \\
u \cdot r_{2} & \equiv_{\delta_{2}} & b_{2}
\end{array}\right.
$$

where $r_{1}, r_{2} \in \mathcal{I}$ are separable and $\Upsilon\left(r_{1}, \delta_{1}\right) \leq \Upsilon\left(r_{2}, \delta_{2}\right)$. Then this system is equivalent to the following system

$$
\exists u\left\{\begin{array}{ccc}
u \cdot r_{1} & \equiv \delta_{1} & b_{1} \\
u \cdot r_{2} & = & b_{2}
\end{array}\right.
$$

Proof: Indeed, we can choose u^{\prime} such that $w\left(u^{\prime}\right) \geq \Upsilon\left(r_{2}, \delta_{2}\right)$ and such that $u^{\prime} \cdot r_{2}=$ $b_{2}-u \cdot r_{2}$ and so $\left(u+u^{\prime}\right) \cdot r_{2}=b_{2}$. Moreover $w\left(u^{\prime} \cdot r_{1}\right) \geq \delta_{1}$.

Lemma 5.4. Consider a system of the form

$$
\exists u\left\{\begin{array}{l}
u \cdot r= \\
u \cdot t \equiv_{\delta}
\end{array} b_{1},\right.
$$

where $r \in \mathcal{I}$ is separable. Then this system is equivalent to the following system

$$
\exists u\left\{\begin{array}{ccc}
u \cdot r & \equiv_{\delta^{\prime}} & b \\
u \cdot t & \equiv_{\delta} & b_{1},
\end{array}\right.
$$

where δ^{\prime} is chosen such that $\tau\left(\Upsilon\left(r, \delta^{\prime}\right)\right) \geq \delta$.
Proof: Let us show the non-trivial implication. Since r is separable, there exists u^{\prime} such that $u^{\prime} \cdot r=(u \cdot r-b)$ and we can choose such u^{\prime} with $w\left(u^{\prime}\right) \geq \Upsilon\left(r, \delta^{\prime}\right)$. Since $\tau\left(\Upsilon\left(r, \delta^{\prime}\right)\right) \geq \delta$, we get that $w\left(u^{\prime} \cdot t\right) \geq \delta$ and so $\left(u-u^{\prime}\right)$ is a solution of the first system.

Lemma 5.5. Consider a system of the form

$$
\exists u\left\{\begin{array}{rcc}
u \cdot r_{0} & = & b_{0} \\
\bigwedge_{i=1}^{d} u \cdot t^{n} & \equiv \delta_{i} & b_{i},
\end{array}\right.
$$

where $r_{0} \in \mathcal{O}_{K}, \bar{r}_{0} \neq 0$. Then this system is equivalent to congruences of the following form

$$
\left\{\begin{array}{rll}
b_{0}^{\prime} \cdot t^{n} & \equiv_{\delta} & b_{1}^{\prime} \cdot r_{0}^{\sigma^{n}} \\
\bigwedge_{i=2}^{d} b_{1}^{\prime} & \equiv_{\delta_{i}^{\prime}} & b_{i}^{\prime},
\end{array}\right.
$$

where the b_{i}^{\prime} are \mathcal{L}_{A}-terms in \bar{y} obtained from the b_{i} 's by scalar multiplication by elements of A.

Proof: We first proceed as in Lemma 5.4, replacing the equation $u \cdot r_{0}=b_{0}$ by a congruence $u \cdot r_{0} \equiv_{\delta^{\prime}} b_{0}$ where δ^{\prime} is chosen such that $\tau^{n}\left(\Upsilon\left(r_{0}, \delta^{\prime}\right)\right) \geq\left\{\delta_{i}: 1 \leq i \leq d\right\}$.

So it remains to consider a system of the form:

$$
\exists u\left\{\begin{array}{rll}
u \cdot r_{0} & \equiv_{\delta^{\prime}} & b_{0} \\
\bigwedge_{i=1}^{d} u \cdot t^{n} & \equiv_{\delta_{i}} & b_{i},
\end{array}\right.
$$

Now we proceed as in Lemma 5.1. First we note that $u \cdot r_{0} t^{n} \equiv_{\tau^{n}\left(\delta^{\prime}\right)} b_{0} \cdot t^{n}$ is equivalent to $u \cdot r_{0} \equiv_{\delta^{\prime}} b_{0}$. We rewrite the first formula as $u \cdot t^{n} r_{0}^{\sigma^{n}} \equiv_{\tau^{n}\left(\delta^{\prime}\right)} b_{0} \cdot t^{n}$.

We order the δ_{i} and w.l.o.g. assume that $\delta_{1} \geq \max \left\{\delta_{i}: 1 \leq i \leq d\right\}$. Our system is then equivalent to:

$$
\left\{\begin{array}{cll}
b_{0} \cdot t^{n} & \equiv_{\Upsilon-1}\left(r_{0}^{\sigma^{n}}, \delta_{1}\right) & b_{1} \cdot r_{0}^{\sigma^{n}} \\
\bigwedge_{i=2}^{d} b_{1} & \equiv \delta_{i} & b_{i},
\end{array}\right.
$$

Indeed, by axiom (3), there exists u such that $u \cdot t^{n} \equiv_{\delta_{1}} b_{1}$. So, if $\Upsilon^{-1}\left(r_{0}^{\sigma^{n}}, \delta_{1}\right) \geq \tau^{n}\left(\delta^{\prime}\right)$ (\star), we get that $u \cdot t^{n} r_{0}^{\sigma^{n}} \equiv_{\Upsilon(1)\left(r_{0}^{\sigma^{n}}, \delta_{1}\right)} b_{1} \cdot r_{0}^{\sigma^{n}}$ and so since $b_{1} \cdot r_{0}^{\sigma^{n}} \equiv_{\Upsilon-1\left(r_{0}^{\sigma^{n}}, \delta_{1}\right)} b_{0} \cdot t^{n}$, we get by (\star), that $u \cdot r_{0} \equiv{ }_{\delta_{n}^{\prime}} b_{0}$.

Now assume that $\Upsilon^{-1}\left(r_{0}^{\sigma^{n}}, \delta_{1}\right)<\tau^{n}\left(\delta^{\prime}\right)$. So we choose $\delta^{\prime \prime}$ such that $\Upsilon^{-1}\left(r_{0}^{\sigma^{n}}, \delta^{\prime \prime}\right) \geq$ $\tau^{n}\left(\delta^{\prime}\right)$.

Again, by axiom (3), there exists u such that $u \cdot t^{n} \equiv_{\delta_{1}} b_{1}$. So we get

$$
u \cdot t^{n} r^{\sigma^{n}} \equiv_{\Upsilon-1\left(r_{0}^{\sigma^{n}}, \delta_{1}\right)} b_{1} \cdot r^{\sigma^{n}} \equiv_{\Upsilon-1\left(r_{0}^{\sigma^{n}}, \delta_{1}\right)} b_{0} \cdot t^{n}
$$

By axiom (2), there exists $u^{\prime \prime}$ such that $u^{\prime \prime} \cdot r^{\sigma^{n}}=\left(u \cdot r-b_{0}\right) \cdot t^{n}$ with $w\left(u^{\prime \prime}\right)_{n} \geq \delta_{1}$.
By axiom (3), there exists u^{\prime} such that $u^{\prime} \cdot t^{n} \equiv_{\delta^{\prime \prime}} u^{\prime \prime}$. Then $u^{\prime} \cdot r t^{n}=u^{\prime} \cdot t^{n} r^{\sigma^{n}} \equiv_{\tau^{n}\left(\delta^{\prime}\right)}$ $\left(u \cdot r-b_{0}\right) \cdot t^{n}$, which implies that $\left(u-u^{\prime}\right) \cdot r t^{n} \equiv{ }_{\tau^{n}\left(\delta^{\prime}\right)} b_{0} \cdot t^{n}$ and so $\left(u-u^{\prime}\right) \cdot r \equiv{ }_{\delta^{\prime}} b_{0}$.

Since $w\left(u^{\prime \prime}\right)=\delta_{1}$, we may add to the other congruences $u^{\prime \prime}=u^{\prime} \cdot t^{n}$ without perturbing them.

6. Quantifier elimination

We now prove that $T_{V}^{s e p}$ admits quantifier-elimination up to index sentences.
Notation 6.1. Let $\boldsymbol{d}=\left(d_{1}, \cdots, d_{m}\right) \in n^{m}$ be a m-tuple of natural numbers between 0 and $n-1$. We denote by $\lambda_{d}^{(m)}$ the composition of the $m \lambda$-functions: $\lambda_{d_{1}} \circ \lambda_{d_{2}} \circ$ $\cdots \circ \lambda_{d_{m}}$.
Lemma 6.2. In any model of T_{V}, a system of equations $\bigwedge_{i=1}^{d} u \cdot r_{i}=t_{i}(\bar{y})$, where $t_{i}(\bar{y})$ is a \mathcal{L}_{A}-term and $r_{i} \in A$ with at least one $r_{i} \sigma$-separable, is equivalent to one equation of the form $u \cdot r=t(\bar{y})$, where $r \in A$ is separable together with a conjunction of atomic formulas in \bar{y}.

Proof: We apply the Euclidean algorithm and do some bookeeping to check that we always keep a separable coefficient. Assume that r_{1} is separable. Let us consider the system:

$$
\left\{\begin{array}{l}
u \cdot r_{1}=t_{1}(\bar{y}) \tag{1}\\
u \cdot r_{i}=t_{i}(\bar{y}),
\end{array}\right.
$$

with $i \neq 1$.
If r_{i} is not separable and if $\operatorname{deg}\left(r_{1}\right) \geq \operatorname{deg}\left(r_{i}\right)$, then for some $r^{\prime}, r^{\prime \prime} \in A$, we have $r_{1}=r_{i} r^{\prime}+r^{\prime \prime}$, then $r^{\prime \prime} \neq 0$ and $r^{\prime \prime}$ is separable. So, the system is equivalent to:

$$
\left\{\begin{align*}
u \cdot r_{i} & =t_{i}(\bar{y}) \tag{2}\\
u \cdot r^{\prime \prime} & =t_{1}(\bar{y})-t_{i}(\bar{y}) \cdot r^{\prime}
\end{align*}\right.
$$

with $\operatorname{deg}\left(r^{\prime \prime}\right)<\operatorname{deg}\left(r_{i}\right)$ and $r^{\prime \prime}$ separable.
If r_{i} is not separable and if $\operatorname{deg}\left(r_{1}\right)<\operatorname{deg}\left(r_{i}\right)$, then for some $r^{\prime}, r^{\prime \prime} \in A$, we have $r_{i}=r_{1} s^{\prime}+s^{\prime \prime}$, then either $s^{\prime \prime}=0$ and the system is equivalent to:

$$
\left\{\begin{align*}
u \cdot r_{1} & =t_{1}(\bar{y}) \tag{3}\\
t_{1}(\bar{y}) \cdot s^{\prime} & =t_{i}(\bar{y})
\end{align*}\right.
$$

or $s^{\prime \prime} \neq 0$ and the system is equivalent to:

$$
\left\{\begin{align*}
u \cdot r_{1} & =t_{1}(\bar{y}) \tag{4}\\
u \cdot s^{\prime \prime} & =t_{i}(\bar{y})-t_{1}(\bar{y}) \cdot s^{\prime}
\end{align*}\right.
$$

If r_{i} is separable, then w.l.o.g. $\operatorname{deg}\left(r_{1}\right) \geq \operatorname{deg}\left(r_{i}\right)$. For some $r^{\prime}, r^{\prime \prime} \in A$, we have $r_{1}=r_{i} r^{\prime}+r^{\prime \prime}$. Either $r^{\prime \prime}=0$ and the system is equivalent to:

$$
\left\{\begin{align*}
u \cdot r_{i} & =t_{i}(\bar{y}) \tag{5}\\
t_{1}(\bar{y}) & =t_{i}(\bar{y}) \cdot r^{\prime}
\end{align*}\right.
$$

or $r^{\prime \prime} \neq 0$ and the system is equivalent to

$$
\left\{\begin{align*}
u \cdot r_{i} & =t_{i}(\bar{y}) \tag{6}\\
u \cdot r^{\prime \prime} & =t_{1}(\bar{y})-t_{i}(\bar{y}) \cdot r^{\prime}
\end{align*}\right.
$$

with r_{i} separable.
In each case, we showed that the system of two equations with the pair of coefficients $\left(r_{1}, s_{i}\right)$ where r_{1} separable, was equivalent with another system with a pair of coefficients consisting of a separable coefficient and such that the sum of the degrees of the coefficients decreased. If one of the coefficient is zero, we consider another equation, if applicable, of the conjunction. If both coefficients are nonzero, we repeat the procedure until either we considered all of the equations occurring in the conjunction, or one of the coefficient has degree zero which allows us to eliminate the variable u.
Proposition 6.3. In $T_{V}^{\text {sep }}$, every \mathcal{L}_{V} p.p. formula is equivalent to a positive quantifierfree formula.

Proof: As usual, we proceed by induction on the number of existential quantifiers, so it suffices to consider a formula existential in just one variable $\exists u \phi(u, \mathbf{y})$, where $\phi(u, \mathbf{y})$ is a conjunction of atomic \mathcal{L}_{V}-formulas.

Note first that terms in u are L_{A}-terms in $u, \lambda_{i}(u), i \in n^{\ell}$, for some $\ell \geq 1$, where λ_{i} denotes the composition of ℓ functions $\lambda_{j}, j \in n$ (see [5, Notation 3.3]). One uses the fact that the λ_{i} functions are additive and that $\lambda_{i}(u \cdot q(t))$ with $q(t) \in A$, can be expressed as an L_{A}-term in $\lambda_{j}(u), j \in n$. Moreover since $u=\sum_{i \in n} \lambda_{i}(u) \cdot t c_{i}$, we may assume that the terms are terms in only the $\lambda_{i}(u), i \in n^{\ell}$ (see [5] Lemma 3.2, and Notation 2.3).

Therefore we may replace the quantifier $\exists u$ by n^{ℓ} quantifiers $\exists u_{n^{\ell-1}} \cdots \exists u_{0} \bigwedge_{i \in n^{\ell}} u_{i}=$ $\lambda_{i}(u)$. We first tackle the quantifier $\exists u_{0}$ and for convenience, let us replace u_{0} by u.

Since A is right Euclidean, we can always assume that we have at most one atomic formula involving u, of the form $u \cdot r_{0}(t)=t_{0}(\mathbf{y})$, where $t_{0}(\mathbf{y})$ is a \mathcal{L}_{A}-term.
Claim 6.4. We may assume that r_{0} is separable.
Proof of Claim: Write $r_{0}=t^{m} r_{0}^{\prime}$, where $m \in \mathbb{N}$ and r_{0}^{\prime} separable. Express $r_{0}^{\prime}=$ $\sum_{\boldsymbol{d} \in n^{m}} r_{0 \boldsymbol{d}}^{\prime} c_{\boldsymbol{d}}$ with the property that $r_{0 \boldsymbol{d}}^{\prime} \in A^{\sigma^{m}}[t ; \sigma]$ e.g. $r_{0 \boldsymbol{d}}^{\prime}=\sum_{j} t^{j} a_{\boldsymbol{d} j}^{\sigma^{m}}$, with $a_{\boldsymbol{d} j} \in$ K. Recall that $\sqrt[\sigma^{m}]{r_{0 \boldsymbol{d}}^{\prime}}=\sum_{j} t^{j} a_{\boldsymbol{d} j}$, so $t^{m} r_{0}^{\prime}=\sum_{\boldsymbol{d} \in n^{m}} \sqrt[\sigma^{m}]{r_{0 \boldsymbol{d}}^{\prime}} t^{m} c_{\boldsymbol{d}}$ (see Notation 2.3).

Using this equality, replace the atomic formula $u \cdot t^{m} r_{0}^{\prime}=t_{0}$ by the system

$$
\bigwedge_{\boldsymbol{d} \in n^{m}} u \cdot \sqrt[\sigma^{m}]{r_{0 \boldsymbol{d}}^{\prime}}=\lambda_{\boldsymbol{d}}^{(m)}\left(t_{0}\right)
$$

(see Notation 6.1). Note that for at least one tuple $\boldsymbol{d}, \sqrt[\sigma^{m}]{r_{0 \boldsymbol{d}}^{\prime}}$ is separable. So by Lemma 6.2, we may assume that we have just one equation with a separable coefficient together a conjunction of atomic formulas in \bar{y}.

Moreover, for any element $r(t)=\sum_{j} t^{j} a_{j} \in A$, there exists $\mu \in K$ such that $r(t) \mu \in \mathcal{I}$ (take $\mu:=a_{k}^{-1}$, where $v\left(a_{k}\right)=\tilde{v}(r(t))$. So, we transform the atomic formula: $u \cdot r(t)=t(\mathbf{y})$ multiplying both sides by μ and we transform $u \cdot r(t) \equiv_{\delta} t(\mathbf{y})$, $\delta \in \Delta$, into $u \cdot r(t) \mu \equiv_{\delta+v(\mu)} t(\mathbf{y}) \cdot \mu$.

So we reduced ourselves to consider an existential formula of the form $\exists u \phi(u, \mathbf{y})$, where $\phi(u, \mathbf{y})$ is of the form

$$
u \cdot r_{0}=t_{0}(\mathbf{y}) \& \bigwedge_{k=1}^{m} u \cdot r_{k} \equiv_{\delta_{k}} t_{k}(\mathbf{y}) \& \theta(\mathbf{y})
$$

with $r_{k} \in \mathcal{I}, \theta(\mathbf{y})$ a quantifier-free \mathcal{L}_{V}-formula, $t_{k}(\mathbf{y})$ are \mathcal{L}_{A}-terms, and $\delta_{k} \in \Delta$.
Note that in case $r_{0} \neq 0$, we can always assume that $\operatorname{deg}\left(r_{0}\right)>\operatorname{deg}\left(r_{k}\right)$, for all k. Indeed, suppose that $\operatorname{deg}\left(r_{0}\right) \leq \operatorname{deg}\left(r_{k}\right)$, for some k, say $k=1$. By the g.r. Euclidean algorithm in A_{0}, there exists $\mu \in \mathcal{O}_{K}$ such that $r_{1} \mu=r_{0} r+r_{1}^{\prime}$ with $\operatorname{deg}\left(r_{1}^{\prime}\right)<\operatorname{deg}\left(r_{0}\right)$ and $r, r_{1}^{\prime} \in A_{0}$. So, we have that $u \cdot r_{1} \mu=u \cdot r_{0} r+u \cdot r_{1}^{\prime}=t_{0} \cdot r+u \cdot r_{1}^{\prime}$, and we can replace $u \cdot r_{1} \equiv_{\delta_{1}} t_{1}(\mathbf{y})$ by $u \cdot r_{1}^{\prime}+t_{0}(\mathbf{y}) \cdot r \equiv_{\delta_{1}+v(\mu)} t_{1}(\mathbf{y}) \cdot \mu$.

First, we will assume that the equation present in $\phi(u, \mathbf{y}), u . r_{0}=t_{0}(\mathbf{y})$, is non trivial, namely that $r_{0} \neq 0$. We will concentrate on the system formed by this equation and the congruences. For ease of notation, we replaced $t_{0}(\mathbf{y})$ by b_{0} and $t_{i}(\mathbf{y})$ by b_{i}. So consider a system of the form

$$
\exists u\left\{\begin{array}{rcc}
u \cdot r_{0} & = & b_{0} \tag{7}\\
\bigwedge_{i=1}^{d} u \cdot t^{n_{i}} r_{i} & \equiv \delta_{i} & b_{i},
\end{array}\right.
$$

where $r_{0}, r_{i} \in \mathcal{I}, r_{0}, r_{i}$ are σ-separable, $n_{i} \in \mathbb{N}, 1 \leq i \leq d$.
We will call $\sum_{i=0}^{d} \operatorname{deg}\left(r_{i}\right)$ the separability degree of that system, and we proceed by induction on that number.

We consider two cases : either there is $1 \leq i \leq d$ such that $n_{i} \geq 1$, or for all $1 \leq i \leq d, n_{i}=0$. We will refer to the latter systems as separable systems, namely those for which r_{0}, r_{i} are σ-separable and $n_{i}=0$ for all $1 \leq i \leq n$.

Case A: let $n_{0}:=\max \left\{n_{i}: 1 \leq i \leq d\right\}$ and suppose $n_{0} \geq 1$. Then there exists δ such that the system (7) is equivalent to

$$
\exists u\left\{\begin{array}{rll}
u \cdot r_{0} & \equiv_{\delta} & b_{0} \tag{8}\\
\bigwedge_{i=1}^{d} u \cdot t^{n_{i}} r_{i} & \equiv_{\delta_{i}} & b_{i},
\end{array}\right.
$$

where δ is chosen such that $\Upsilon\left(r_{0}, \delta\right) \geq \max \left\{\tau^{-n_{i}}\left(\delta_{i}\right): 1 \leq i \leq d\right\}$ (see Lemma 5.4). Then system (8) is equivalent to

$$
\exists u\left\{\begin{array}{rll}
u \cdot r_{0} t^{n_{0}} & \equiv_{\tau^{n_{0}}(\delta)} & b_{0} \cdot t^{n_{0}} \tag{9}\\
\bigwedge_{i=1}^{d} u \cdot t^{n_{i}} r_{i} t^{t_{0}-n_{i}} & \equiv_{\tau^{n_{0}-n_{i}\left(\delta_{i}\right)}} & b_{i} \cdot t^{n_{0}-n_{i}},
\end{array}\right.
$$

We re-write system (9) as follows:

$$
\exists u\left\{\begin{array}{ccc}
u \cdot t^{n_{0}} r_{0}^{\sigma_{0}} & \equiv_{\tau^{n_{0}(\delta)}} & b_{0} \cdot t^{n_{0}} \tag{10}\\
\bigwedge_{i=1}^{d} u \cdot t^{n_{0}} r_{i}^{\pi_{0}-n_{i}} & \equiv_{\tau^{n_{0}-n_{i}\left(\delta_{i}\right)}} & b_{i} \cdot t^{n_{0}-n_{i}},
\end{array}\right.
$$

If all $r_{i} \in \mathcal{O}_{K}$, then we are done by Lemma 5.5. Otherwise we replace $u \cdot t^{n_{0}}$ by u_{0} and we consider the following separable system of congruences, assuming that one of the $r_{i} \notin \mathcal{O}_{K}$:

$$
\exists u_{0}\left\{\begin{array}{rll}
u_{0} \cdot r_{0}^{\sigma^{n_{0}}} & \equiv_{\tau^{n_{0}}(\delta)} & b_{0} \cdot t^{n_{0}} \tag{11}\\
\bigwedge_{i=1}^{d} u_{0} \cdot r_{i}^{\sigma_{0}-n_{i}} & \equiv_{\tau^{n_{0}-n_{i}}\left(\delta_{i}\right)} & b_{i} \cdot t^{n_{0}-n_{i}},
\end{array}\right.
$$

Suppose we can solve that system (see Lemma 5.3). Then by Lemma 4.13, there exists u such that $u \cdot t^{n_{0}} \equiv \delta_{0} u_{0}$, where we can choose $\delta_{0} \geq \max _{1 \leq i \leq d}\left\{\tau^{n_{0}}(\delta), \tau^{n_{0}-n_{i}}\left(\delta_{i}\right)\right\}$.

Now we order the set $\left\{\Upsilon\left(r_{i}^{\sigma_{0}-n_{i}}, \tau^{n_{0}-n_{i}}\left(\delta_{i}\right)\right), \Upsilon\left(r_{0}^{\sigma^{n_{0}}}, \tau^{n_{0}}(\bar{\delta})\right): 1 \leq i \leq d\right\}$ and we replace one of the congruences (the one corresponding to the maximum index) by the corresponding equation. Then we apply the g.r. Euclidean algorithm in order to obtain a system with separability degree strictly smaller than that of system (11).

Case B: suppose that for all $i, n_{i}=0$. We have a system of the form

$$
\exists u\left\{\begin{array}{rcc}
u \cdot r_{0} & = & b_{0} \tag{12}\\
\bigwedge_{i=1}^{d} u \cdot r_{i} & \equiv \delta_{i} & b_{i},
\end{array}\right.
$$

We order the set $\left\{\Upsilon\left(r_{i}, \delta_{i}\right): 1 \leq i \leq d\right\}$ and we show that system (12) is equivalent to another system where both the degrees of r_{0} and of $r_{i}, 1 \leq i \leq d$ have decreased. We proceed as in Lemma 5.2 with δ_{2} replaced by the element of Δ realizing the maximum of the set above. Considering the equation with each of the congruences, we obtain a system where the coefficient appearing in the equation is separable and has degree strictly less than r_{0} and the coefficients occurring in the congruences have each a strictly smaller degree but may no longer be separable. Then we use the previous Case A, to obtain an equivalent system where now all the coefficients of the congruences are separable and the degrees of the coefficients of both the equation
and the congruences either stayed the same or have decreased. We obtain a system with strictly smaller separability degree.

Second, we will assume that there is no equation present in $\phi(u, \mathbf{y})$. So, we consider a system formed by congruences and for ease of notation, as before, we replace $t_{i}(\mathbf{y})$ by b_{i}. Consider a system of the form

$$
\begin{equation*}
\exists u \bigwedge_{i=1}^{d} u \cdot t^{n_{i}} r_{i} \equiv \equiv_{\delta_{i}} \quad b_{i}, \tag{13}
\end{equation*}
$$

where $r_{i} \in \mathcal{I}, r_{i}$ is separable, $n_{i} \in \mathbb{N}, 1 \leq i \leq d$.
Again we distinguish the two cases : either there is $1 \leq i \leq d$ such that $n_{i} \geq 1$, or for all $1 \leq i \leq d, n_{i}=0$.

Case A': let $n_{0}:=\max \left\{n_{i}: 1 \leq i \leq d\right\}$ and suppose $n_{0} \geq 1$. Then the system (13) is equivalent to

$$
\begin{equation*}
\exists u \bigwedge_{i=1}^{d} u \cdot t^{n_{0}} r_{i} t^{n_{0}-n_{i}} \equiv_{\tau^{n_{0}-n_{i}}\left(\delta_{i}\right)} b_{i} \cdot t^{n_{0}-n_{i}} \tag{14}
\end{equation*}
$$

First note that if all $r_{i} \in \mathcal{O}_{K}$, it implies since $r_{i} \in \mathcal{I}$, that $r_{i}^{-1} \in \mathcal{O}_{K} \cap \mathcal{I}$. In this case, w.l.o.g. we may assume that system (13) is of the form

$$
\begin{equation*}
\exists u \bigwedge_{i=1}^{d} u \cdot t^{n_{i}} \equiv_{\delta_{i}} \quad b_{i} \tag{15}
\end{equation*}
$$

System (15) is equivalent to the following system:

$$
\begin{equation*}
\exists u \bigwedge_{i=1}^{d} u \cdot t^{n_{0}} \equiv_{\tau^{n_{0}-n_{i}\left(\delta_{i}\right)}} \quad b_{i} \cdot t^{n_{0}-n_{i}} \tag{16}
\end{equation*}
$$

We order the elements $\left\{\tau^{n_{0}-n_{i}}\left(\delta_{i}\right): 1 \leq i \leq n\right\}$. Let α be a permutation of $\{1, \cdots, n\}$ and suppose that $\tau^{n_{0}-n_{\alpha(1)}}\left(\delta_{\alpha(1)}\right) \leq \cdots \leq \tau^{n_{0}-n_{\alpha(n)}}\left(\delta_{\alpha(n)}\right)$. We claim that system (16) is equivalent to:

$$
\begin{equation*}
\bigwedge_{i=1}^{d-1} b_{\alpha(i)} \cdot t^{n_{0}-n_{\alpha(i)}} \equiv_{\tau^{n_{0}-n_{\alpha(i)}}\left(\delta_{\alpha(i)}\right)} \quad b_{\alpha(i+1)} \cdot t^{n_{0}-n_{\alpha(i+1)}} \tag{17}
\end{equation*}
$$

We use Lemma 4.13 in order to find u such that $u \cdot t^{n_{0}} \equiv_{\tau^{n_{0}-n_{j}}\left(\delta_{j}\right)} b_{j} \cdot t^{n_{0}-n_{j}}$ and then we use the congruences.

Now assume that $r_{i} \notin \mathcal{O}_{K}$ for some i in system (14). Replace $u \cdot t^{n_{0}}$ by u_{0} and consider the system :

$$
\begin{equation*}
\exists u_{0} \bigwedge_{i=1}^{d} u_{0} \cdot r_{i}^{\sigma^{n_{0}-n_{i}}} \equiv_{\tau^{n_{0}-n_{i}}\left(\delta_{i}\right)} \quad b_{i} \cdot t^{n_{0}-n_{i}} \tag{18}
\end{equation*}
$$

Suppose we can solve that system. Then by Lemma 4.13, there exists u such that $u \cdot t^{n_{0}} \equiv_{\delta_{0}} u_{0}$, where we can choose $\delta_{0} \geq \max \left\{\tau^{n_{0}-n_{i}}\left(\delta_{i}\right): 1 \leq i \leq d\right\}$.

Now we order the set $\left\{\Upsilon\left(r_{i}^{\sigma_{0}-n_{i}}, \tau^{n_{0}-n_{i}}\left(\delta_{i}\right)\right): 1 \leq i \leq d\right\}$ and we replace one of the congruences by an equation, the one corresponding to the maximum index. So we are in the case of a separable system treated before.

Case B': supppose that for all $1 \leq i \leq d, n_{i}=0$. We have the system

$$
\begin{equation*}
\exists u \bigwedge_{i=1}^{d} u \cdot r_{i} \equiv_{\delta_{i}} b_{i} \tag{19}
\end{equation*}
$$

We order the set $\left\{\Upsilon\left(r_{i}, \delta_{i}\right): 1 \leq i \leq d\right\}$ and we replace one of the congruences by an equation, the one corresponding to the maximum index. So we are in the case of a separable system treated before.
Corollary 6.5. In $T_{V}^{\text {sep }}$, any \mathcal{L}_{V}-formula is equivalent to a quantifier-free \mathcal{L}_{V}-formula up to index sentences.

Recall that index sentences in particular tell us the sizes of the annihilators (of the separable) polynomials and the index of the subgroups $M_{\delta_{1}} \cdot t^{n_{1}} / M_{\delta_{2}} \cdot t^{n_{2}}$, with $\delta_{1}<\delta_{2}$, $n_{1}, n_{2} \in \mathbb{N}$. Also, the image of M by a L_{A}-term $u(x)$ with one free variable x is equal to $M . t^{n}$, for some $n \in \mathbb{N}$ and we can determine the n from the term $u(x)$, but since our language \mathcal{L}_{A} contains λ functions, we need to consider terms in several variables.

In the next section, under the assumption that K is separably σ-linearly closed, we will show that if we add a list of axioms specifying the torsion to $T_{V}^{s e p}$, then the torsion submodule is determined up to isomorphism (Corollary 7.10). Then in the last section, we will consider the class of torsion-free models of $T_{V}^{s e p}$ and we will show that any two elements are elementary equivalent (Corollary 8.3).

7. Torsion

In this section, we will work under the assumption that K is separably σ-linearly closed and that the action of Γ on Δ is transitive.

Let $\mathcal{M} \models T_{V}^{s e p}$; denote by $M_{\text {tor }}$ the submodule of M consisting of torsion elements. Note that $\mathcal{M}_{\text {tor }}$ is a \mathcal{L}_{A}-substructure of \mathcal{M} ([5, Proposition 3.5]. Moreover by our quantifier elimination result (Proposition 6.3) $M_{\text {tor }}$ is a pure submodule of M. So taking an ultrapower \mathcal{M}^{*} of \mathcal{M} which is $\left(|A|+\aleph_{0}\right)^{+}$-saturated, the corresponding ultrapower of $\mathcal{M}_{\text {tor }}$ is a direct summand of \mathcal{M}^{*}, namely $M^{*}=\left(M_{\text {tor }}\right)^{*} \oplus M_{t f}$, where $\mathcal{M}_{t f}$ is a torsion-free A-module, an \mathcal{L}_{A}-substructure and a model of $T_{V}^{s e p}$.

We will show that if we add to the theory $T_{V}^{\text {sep }}$ a list of axioms specifying the torsion for each separable polynomial, then the submodule consisting of the torsion elements is unique up to isomorphism as an \mathcal{L}-substructure in any valued A-module, model of that extended theory.

We will show on one hand that we can determine all the valuations taken by the elements in the annihilator of a σ-separable polynomial belonging of \mathcal{I} and on the other hand that given a non-zero element n of valuation δ and a separable polynomial $q(t) \in \mathcal{I}$, we can determine all the valuations taken by the elements m such that $m \cdot q(t)=n$.

We will use axiom (2) of $T_{V}^{s e p}$ together with the factorization of such polynomials $q(t)$ into linear factors of the form $t b-1, t-a, c$ with $a, b, c \in \mathcal{O}_{K}, v(c)=0, v(a) \geq$ $0, v(b)>0$ (see Proposition 2.5).

Notation 7.1. Let $q(t) \in A$ and let \mathcal{M} be an A-module, then denote $\operatorname{ann}(q(t)):=$ $\{m \in M: m \cdot q(t)=0\}$.

Since we assume here that the action of Γ on Δ is transitive, the following Lemma is straightforward.

Lemma 7.2. Let $\gamma \in \Gamma$, then there exists at most one $\delta \in \Delta$ such that $\tau(\delta)=\delta+\gamma$. Moreover if there exists δ_{0} such that $\tau\left(\delta_{0}\right)=\delta_{0}+\gamma$, then we have for $\delta>\delta_{0}$ that $\tau(\delta)>\delta+\gamma$ and for $\delta<\delta_{0}$ that $\tau(\delta)<\delta+\gamma$.

Notation 7.3. Let $\gamma \in \Gamma$ and suppose $\delta \in \Delta$ is such that $\tau(\delta)=\delta+\gamma$, then we will denote δ by $(\tau-1)^{-1}(\gamma)$. In particular, $\tau\left((\tau-1)^{-1}(\gamma)\right)=(\tau-1)^{-1}(\gamma)+\gamma$.

Lemma 7.4. Let \mathcal{M} be a valued A-module and suppose that $\mathcal{M} \vDash T_{V}^{\text {sep }}$ and let $r(t) \in \mathcal{I}$ of degree 1 .
(1) When $m \in \operatorname{ann}(r(t))$, then $w(m)$ takes a unique value which can be expressed in terms of the values of the coefficients of $r(t)$.
(2) Let $n \in M-\{0\}$, then there exists $m \in M$ such that $n=m \cdot r(t)$ and $w(m)$ can take at most two values which can be expressed in terms of $w(n)$ and the values of the coefficients of $r(t)$.

Proof: We can restrict ourselves to consider $r(t)$ of the form $(t-a)$, or $(t b-1)$ with $v(a) \geq 0$ and $v(b)>0$.
(1) Suppose that $m \cdot(t-a)=0$ with $m \neq 0$, then $m \cdot t=m \cdot a$ and so $\tau(w(m))=$ $w(m)+v(a)$. By Lemma $7 \cdot 2, w(m)$ is uniquely determined and we will use the above notation: $(\tau-1)^{-1}(v(a))$.

Suppose now that $m \cdot(t b-1)=0$ and $m \neq 0$, then $m \cdot t b=m$ and so $\tau(w(m))+$ $v(b)=w(m)$. We denote $w(m)$ by $(\tau-1)^{-1}(-v(b))$.

So in both cases, if there is such a non zero $m, w(m)$ can only take one value.
(2) Now let $n \in M$ with $w(n)=\delta \in \Delta$. By axiom (2) of $T_{V}^{s e p}$, there exists m_{0} such that $m_{0} \cdot r(t)=n$ with $w\left(m_{0}\right)=\Upsilon(r(t), \delta)$ (and any other element m with $m \cdot r(t)=n$ differs from m_{0} by an element of the annihilator of $r(t)$). Let us calculate explicitly $\Upsilon(r(t), \delta)$ in each case. Let $\Upsilon:=\Upsilon(r(t), \delta)$.

First, let us consider the case $r(t)=(t b-1)$.

Claim 7.5.

(i) If $\delta \geq(\tau-1)^{-1}(-v(b))$, then $\Upsilon=\delta$.
(ii) If $\delta<(\tau-1)^{-1}(-v(b))$, then $\Upsilon=\tau^{-1}(\delta-v(b))$.

Proof of Claim: By Lemma 7.2, there is at most one $\rho \in \Delta$ such that $\rho+(-v(b))=$ $\tau(\rho)$ and we have denoted such a ρ by $(\tau-1)^{-1}(-v(b))$.

Moreover if $\rho^{\prime}<(\tau-1)^{-1}(-v(b))$, then $\rho^{\prime}>\tau\left(\rho^{\prime}\right)+v(b)$ and if $\rho^{\prime}>(\tau-1)^{-1}(-v(b))$, then $\rho^{\prime}<\tau\left(\rho^{\prime}\right)+v(b)$.

We compare δ, respectively Υ to $\tau(\delta)+v(b)$ (equivalently to $\left.(\tau-1)^{-1}(-v(b))\right)$, respectively to $\tau(\Upsilon)+v(b)$.

Moreover, by definition Υ is such that $\delta=\min \{\Upsilon, \tau(\Upsilon)+v(b)\}$.
So, if $\Upsilon<\tau(\Upsilon)+v(b)$, then $\delta=\Upsilon$ and this corresponds to the case $\delta<\tau(\delta)+v(b)$ or equivalently to $\delta>(\tau-1)^{-1}(-v(b))$.

If $\tau(\Upsilon)+v(b)<\Upsilon$, then $\delta=\tau(\Upsilon)+v(b)$ and so $\delta<\Upsilon$ and so $\tau(\delta)+v(b)<$ $\tau(\Upsilon)+v(b)=\delta$, or equivalently $\delta<(\tau-1)^{-1}(-v(b))$.

If $\tau(\Upsilon)+v(b)=\Upsilon$, then $\delta=\Upsilon$ and so $\delta=(\tau-1)^{-1}(-v(b))$.
Now suppose there exists $m \neq m_{0}$ such that $m \cdot r(t)=n$, equivalently assume we have $m_{1} \in \operatorname{ann}(r(t))-\{0\}$. Then,
(i) If $\delta>(\tau-1)^{-1}(-v(b))$, then $w\left(m_{0}+m_{1}\right)=(\tau-1)^{-1}(-v(b))$. So in this case we have two possible values for $w(m)$ with $m \cdot(t b-1)=n$. In fact we have one element m_{0} with $w\left(m_{0}\right)=\delta$ (and $m_{0} \cdot r(t)=n$) and all the other elements m have value $(\tau-1)^{-1}(-v(b))$.
(ii) If $\delta<(\tau-1)^{-1}(-v(b))$, then $\tau^{-1}(\delta-v(b))<(\tau-1)^{-1}(-v(b))$. (Indeed, $\rho:=(\tau-1)^{-1}(-v(b))$ is defined by: $\tau(\rho)+v(b)=\rho$. So we have to show that $\delta-v(b)<\tau(\rho)$, equivalently that $\delta<\tau(\rho)+v(b)=\rho$.)

So since $\Upsilon=\tau^{-1}(\delta-v(b))$, we have $w\left(m_{0}+m_{1}\right)=\tau^{-1}(\delta-v(b))$ and in this case we have one possible value for $w(m)$ with $m \cdot r(t)=n$.
(iii) If $\delta=(\tau-1)^{-1}(-v(b))$, then $w\left(m_{0}+m_{1}\right) \geq(\tau-1)^{-1}(-v(b))$. Let us show that we have equality by way of contradiction.

Suppose that $w\left(m_{0}+m_{1}\right)>(\tau-1)^{-1}(-v(b))$. By Lemma 7.2, this implies that $w\left(m_{0}+m_{1}\right)<\tau\left(w\left(m_{0}+m_{1}\right)\right)+v(b)$, then $w(n)=\delta=w\left(m_{0}+m_{1}\right)$, a contradiction.

So, we get that $w\left(m_{0}+m_{1}\right)=(\tau-1)^{-1}(-v(b))=\Upsilon=w\left(m_{0}\right)$ and again in this case we have only one possible value for $w(m)$ with $m \cdot r(t)=n$.

Second, let us consider the case $r(t)=(t-a)$.

Claim 7.6.

(i) If $\delta \geq(\tau-1)^{-1}(v(a))$, then $\Upsilon=\delta-v(a)$.
(ii) If $\delta<(\tau-1)^{-1}(v(a))$, then $\Upsilon=\tau^{-1}(\delta)$.

Proof of Claim: The proof is similar to the proof of the previous claim. But now, Υ is such that $\delta=\min \{\tau(\Upsilon), \Upsilon+v(a)\}$. As before, let m_{0} such that $n=m_{0} \cdot t-m \cdot a$ and $w\left(m_{0}\right)=\Upsilon$. So, we have that $\delta \geq \min \{\tau(\Upsilon), \Upsilon+v(a)\}$. We compare both Υ and δ to $\tau(\Upsilon)+v(a)$, respectively to $\tau(\delta)+v(a)$ and therefore also to $(\tau-1)^{-1}(v(a))$.

Again any other solution m of $m \cdot(t+a)=n$ differs from m_{0} by a non zero element m_{1} of the annihilator of $r(t)$. Let us evaluate $w\left(m_{0}+m_{1}\right)$.
(ia) If $(\tau-1)^{-1}(v(a))<\delta<(\tau-1)^{-1}(v(a))+v(a)$.
By the Claim, $w\left(m_{0}\right)=\delta-v(a)$, and so we have $w\left(m_{0}+m_{1}\right)=\delta-v(a)$.
(ib) If $\delta>(\tau-1)^{-1}(v(a))+v(a)$, then $w\left(m_{0}+m_{1}\right)=(\tau-1)^{-1}(v(a))=w\left(m_{1}\right)$.
(ic) If $\delta=(\tau-1)^{-1}(v(a))+v(a)$, then $w\left(m_{0}+m_{1}\right) \geq(\tau-1)^{-1}(v(a))$. Suppose that $w\left(m_{0}+m_{1}\right)>(\tau-1)^{-1}(v(a))$, so $w\left(m_{0}+m_{1}\right)>\delta-v(a)$. Since $\left(m_{0}+m_{1}\right) \cdot(t+a)=n$, $w\left(\left(m_{0}+m_{1}\right) \cdot t\right)=\delta$. On the other hand, by Lemma 7.2, $\tau\left(w\left(m_{0}+m_{1}\right)\right)>w\left(m_{0}+\right.$ $\left.m_{1}\right)+v(a)>\delta$, a contradiction. So, we also get in this case that $w\left(m_{0}+m_{1}\right)=$ $(\tau-1)^{-1}(v(a))=w\left(m_{1}\right)$.

So in case (ia), we have two possible values depending on whether there is a non zero element in the annihilator of $r(t)$.
(ii) If $\delta<(\tau-1)^{-1}(v(a))$, then by the claim, $w\left(m_{0}\right)=\tau^{-1}(\delta)$; compare $\tau\left(w\left(m_{0}\right)\right)$ to $\tau\left(w\left(m_{1}\right)\right)\left(=\tau\left((\tau-1)^{-1}(v(a))\right)\right)$.

We have $\tau\left((\tau-1)^{-1}(v(a))\right)=(\tau-1)^{-1}(v(a))+v(a)>\delta$ (see Notation above) and so $w\left(m_{0}\right)<w\left(m_{1}\right)(\tau$ respects $<$ on $\Delta)$ and so $w\left(m_{0}+m_{1}\right)=w\left(m_{0}\right)=\tau^{-1}(\delta)$. So we have only one possible value.
(iii) If $\delta=(\tau-1)^{-1}(v(a))$, then $w\left(m_{0}\right)=\delta-v(a)=(\tau-1)^{-1}(v(a))-v(a)<$ $(\tau-1)^{-1}(v(a))=w\left(m_{1}\right)$. Then $w\left(m_{0}+m_{1}\right)=w\left(m_{0}\right)=\delta-v(a)$. So, again in this case we have only one possible value.

Note that in each case $w(m)$ can be expressed in terms of $w(n)$ and the values of the coefficients of $r(t)$.

Proposition 7.7. Let \mathcal{M} be a valued A-module and suppose that $\mathcal{M} \vDash T_{V}^{s e p}$, let $m \in M$ and let $q(t) \in \mathcal{I}$ of degree d. Then there is a finite subset $F_{q(t)} \subset \Delta$ of cardinality at most 2^{d-1} such that if $m \in$ ann $(q(t))-\{0\}$, then $w(m) \in F_{q(t)}$. (N.B. The elements of $F_{q(t)}$ whose values are taken by elements of ann $(q(t))$ only depend on the values of the coefficients of the factors of degree 1 of $q(t)$ and on which are the non-trivial annihilators in M.)
Proof: We proceed by induction on d. For polynomials of degree 1 , this is the content of Lemma 7.4. Let us assume $d \geq 2$. By hypothesis on $K, q(t)=r(t) q_{1}(t)$, where $r(t), q_{1}(t) \in \mathcal{I}$ and $r(t)$ has degree 1 . Now $m \cdot q(t)=0$ is equivalent to $m \cdot r(t)=0$ or $m \cdot r(t) \in \operatorname{ann}\left(q_{1}(t)\right)-\{0\}$. Since degree of $q_{1}(t)$ is strictly less than d, we can apply the induction hypothesis and so we get at most 2^{d-2} possible values for the elements in $\operatorname{ann}\left(q_{1}(t)\right)-\{0\}$. By axiom (2) of $T_{V}^{s e p}$, for each $n \in \operatorname{ann}\left(q_{1}(t)\right)-\{0\}$, there is an element m such that $m \cdot r(t)=n$ and by Lemma 7.4, for each of the values $w(n)$, we get at most 2 values for $w(m)$.
Proposition 7.8. Let \mathcal{M} be a valued A-module and assume that $\mathcal{M} \models T_{V}^{s e p}$. Let $q(t) \in \mathcal{I}$ of degree d and let $n \in M-\{0\}$. Then one can determine a finite set $G_{q(t)} \subset \Delta$ of cardinality at most 2^{d} such that $w(m) \in G_{q(t)}$ if and only if $m \cdot q(t)=n$, $m \in M$. Moreover, $G_{q(t)}$ only depends on $w(n), q(t)$ and on which are the non-trivial annihilators in M.

Proof: We proceed by induction on $d \geq 1$. For polynomials of degree 1 , this is the content of Lemma 7.4. So let us assume $d \geq 2$. By hypothesis on $K, q(t)=q_{2}(t) r(t)$, where $r(t)$ has degree 1. Now $m \cdot q(t)=n$ is equivalent to $m^{\prime} \cdot r(t)=n$ and $m \cdot q_{2}(t)=m^{\prime}$. By Lemma 7.4, given $w(n)$, we know that there is either one or two values for $w\left(m^{\prime}\right)$ with $m^{\prime} \cdot r(t)=n$ depending on the respective positions of the values of the coefficients of $r(t)$ and $w(n)$, together whether ann $(r(t))$ is non-trivial. By axiom 2 of $T_{V}^{s e p}$, there exists m such that $m \cdot q_{2}(t)=m^{\prime}$. Then we apply the induction hypothesis to $q_{2}(t)$, so given each of these values for $w\left(m^{\prime}\right)$, the number of values of such m are bounded by 2^{d-1} (and we can determine the exact number which depends on the relative position on the chain Δ of the values of the coefficients and δ together with which are the non-trivial annihilators).

Now we extend $T_{V}^{s e p}$ by specifying the torsion in our models. Note that in considering $\operatorname{ann}(q(t))$, we may always assume that $q(t) \in \mathcal{I}$, also that annihilators are $\operatorname{Fix}(\sigma)$-vector spaces. If $\operatorname{Fix}(\sigma)$ is infinite then if we have two annihilators with one strictly included in the other, then the index is infinite ($[2$, Lemma 2.4 (in Corrigendum)]). So in this case we will add to the theory $T_{V}^{\text {sep }}$ a list of axioms specifying which annihilators are non-trivial.

From now on let us assume $\operatorname{Fix}(\sigma)$ is finite. For instance, in the case where K is a (valued) field of characteristic p and σ is the Frobenius endomorphism (or a power of it), then $\operatorname{Fix}(\sigma)$ is finite. We will specify the torsion as follows.
Definition 7.9. Let $T_{\text {tor }}$ be the theory of A-modules together with the following scheme of axioms, for each element $q \in \mathcal{I}$ of degree d : there exist exactly d elements x_{1}, \cdots, x_{d} which are linearly independent over Fix (σ) and such that $x_{i} \cdot q=0$, for all $1 \leq i \leq d$.

We will consider now the theory $T_{V}^{s e p} \cup T_{\text {tor }}$. A model of that theory is for instance the separable closure of K.
Corollary 7.10. Let \mathcal{M}, \mathcal{N} be two valued A-modules, models of $T_{V}^{s e p} \cup T_{\text {tor }}$ containing, respectively, isomorphic \mathcal{L}_{V}-structures $\mathcal{M}_{0}, \mathcal{N}_{0}$. Then we may extend this partial isomorphism to a minimal submodel $\mathcal{M}_{0}^{\text {sep }}$ of \mathcal{M} containing \mathcal{M}_{0}.

Proof: We follow the proof of [5, Proposition 5.8] and we apply Proposition 7.8. In particular, a main ingredient in [5, Proposition 5.8] is the following (see [5, Lemma 5.1]). Let \mathcal{N} be an \mathcal{L}_{A}-structure and \mathcal{N}_{0} a substructure of \mathcal{N}. Let $u \in N-N_{0}$ and assume that $u \cdot q \in N_{0}$ for some $q \in \mathcal{I}$. Then there is a unique (up to multiplication by elements of $\operatorname{Fix}(\sigma))$ element q_{u} of \mathcal{I} such that $u \cdot q_{u} \in N_{0}$.

8. Torsion-free models of $T_{V}^{s e p}$

In this section, we show that the theory of torsion-free models of $T_{V}^{s e p}$ is complete, and we specify the other completions of $T_{V}^{s e p}$ (see Corollary 8.3).

Let $\mathcal{M} \models T_{V}^{s e p}$ and assume that \mathcal{M} is a torsion-free A-module. Given G_{0}, G_{1} two p.p. definable subgroups of \mathcal{M}, we wish to determinate the index of $\left[G_{0}: G_{1}\right]$.

Here we will assume that the residue field \bar{K} is infinite, which is the case if K is separably closed of characteristic p and finite (non-zero) imperfection degree, and so \bar{K} is algebraically closed (and so infinite) and that σ acts on K as the Frobenius, or more generally if (K, σ) is separably σ-linearly closed.

In the case where the map w is surjective and the action of Γ is transitive on Δ, we note that certain p.p. definable subgroups have infinite index. For instance, the index $\left[M_{0_{\Delta}}: M_{0_{\Delta}^{+}}\right]$is infinite, so there is an element $a \in M$ with $w(a)=0$ and multiplying a by elements of $\mathcal{O}_{K}-\mathfrak{m}_{K}$ with different images in \bar{K}, we get elements of $M_{0_{\Delta}}$ in distinct cosets modulo $M_{0_{\Delta}^{+}}$(and so a fortiori modulo any M_{δ} with $\delta>0$). Since the action of Γ is transitive on Δ, we get the indices $\left[M_{\delta}: M_{\delta^{+}}\right]$are also infinite, for any $\delta \in \Delta$. Also the index of M.t in M is infinite (this follows from the fact that K^{σ} is infinite) ([6, Proposition 3.2]) and the index of M. t^{m+1} in M. t^{m} as well.

Now let us consider the general case.
Proposition 8.1. Let \mathcal{M} be a model of $T_{V}^{s e p}$ and assume that \mathcal{M} is a torsion-free A-module. Then the index of any two p.p. definable subgroups $G_{1} \varsubsetneqq G_{0}$ of M is infinite.

Proof: By the positive q.e. result (see Proposition 6.3), a p.p. definable subgroup of \mathcal{M} is defined by a positive quantifier-free formula of the following kind: $\bigwedge_{i} t_{i}(u)=$ $0 \& \bigwedge_{j} t_{j}(u) \equiv_{\delta_{j}} 0$, where t_{i}, t_{j} are \mathcal{L}_{A}-terms and u one free variable. As noted before a $\mathcal{L}_{A^{-}}$-term $t(u)$ is a $L_{A^{-}}$-term in $u, \lambda_{i}(u), i \in n^{\ell}$, for some $\ell \geq 1$. Using the decomposition $t q=\sum_{i} \sqrt[\sigma]{q_{i}} t c_{i}$ (see Notation 2.2), we may assume that each equation contains a separable coefficient. (This process increases the number of equations but decreases the degree of the coefficients, so it will eventually terminate.) Note that if we have two equations containing a separable coefficient for $\lambda_{i}(u)$, say q_{0}, q_{1}, then by multiplying by an element of K^{\times}, we may assume that $q_{0} \in \mathcal{I}$ (respectively $q_{1} \in \mathcal{I}$). By the Ore property of A_{0}, there exist $q_{0}^{\prime}, q_{1}^{\prime}$ such that $q_{0} q_{1}^{\prime}=q_{1} q_{0}^{\prime}$ and note that
we may choose $q_{0}^{\prime}, q_{1}^{\prime} \in \mathcal{I}$. So we may just keep one equation with $\lambda_{i}(u)$ and assume that it has a separable coefficient. Continuing like that we get a lower triangular $d \times k$-matrix D with non zero separable coefficients on its diagonal. Recall that such matrix was called lower triangular separable (l.t.s.) of co-rank ℓ in [5, Definition 9] where $d-\ell$ is the number of non-zero (or equivalently separable) elements on its diagonal. We will call the corresponding system a l.t.s. system.

So we may assume that G_{0} (respectively G_{1}) is defined by a l.t.s. system of corank $\ell \leq d$ (respectively $\ell_{1} \leq \ell$) equations (on the same variables) with in addition congruences conditions.

Set $u_{d-\ell}:=\lambda_{m}(u)$, where $\lambda_{m}(u)$ is the variable multiplied by the $(d-\ell, d-\ell)$ coefficient of D. Let $\delta_{i}, i \in m$, be the elements of Δ occurring in the congruences.

Since $G_{1} \subseteq G_{0}$, we may assume that G_{1} is defined by a l.t.s. system of co-rank $\ell_{1} \leq \ell$ and with the same first $d-\ell$ equations.

Claim 8.2. Let $q \in \mathcal{I}$, then in any torsion-free model of $T_{V}^{s e p}$, we have the following equivalence: $u \equiv_{\delta} 0 \leftrightarrow u \cdot t^{n} q \equiv_{\Upsilon^{-1}\left(q, \tau^{n}(\delta)\right)} 0$.
Proof of Claim: By definition of Υ^{-1} (see Notation 4.6), we get in any valued A module, that $u \equiv_{\delta} 0 \rightarrow u \cdot t^{n} q \equiv_{\Upsilon-1}\left(q, \tau^{n}(\delta)\right)$. Now assume that $w\left(u \cdot t^{n} q\right) \geq$ $\Upsilon^{-1}\left(q, \tau^{n}(\delta)\right)$, since $q \in \mathcal{I}$, there exists u^{\prime} with $w\left(u^{\prime}\right) \geq \tau^{n}(\delta)$ (Υ is increasing, see Lemma 4.5) such that $u^{\prime} \cdot q=u \cdot t^{n} q$. Since \mathcal{M} is torsion-free, $u^{\prime}=u \cdot t^{n}$ and so $w(u) \geq \delta$.

So if we have a l.t.s. system of co-rank $\ell \leq d$, with $d \geq 1$ and if $u_{m}, 1 \leq m \leq d-\ell$, occurs in an equation with a separable coefficient and if it also occurs in a congruence condition, we may replace it in the congruences conditions in terms of the other variables (using the Ore property of A_{0} and the Claim above). So w.l.o.g., we may assume that in the congruences none of the variables $u_{m}, 1 \leq m \leq d-\ell$ occur.

First we assume that $\ell_{1}<\ell$, so we have at least one more equation in G_{1} of the form $u_{d-\ell+1} \cdot q_{d-\ell+1}+\cdots=0(\star)$. Denote by $\delta\left(G_{0}\right)$ the minimum $\delta \in \Delta$ such that any tuple of elements each in M_{δ} satisfies the congruence conditions appearing in the definition of G_{0} and denote by χ the conjunction of these congruences.

Take $\vec{u}=\left(u_{d-\ell+1}, \overrightarrow{u_{0}}\right)$ satisfying χ and verify whether \vec{u} satisfies equation (\star). If it does, add to $u_{d-\ell+1}$ a non-zero element $u_{\delta, 1} \in M_{\delta\left(G_{0}\right)}$. So the tuple ($u_{n-\ell+1}+$ $\left.u_{\delta, 1}, \overrightarrow{u_{0}}\right)$ still satisfies χ (since $\left(u_{\delta, 1}, \overrightarrow{0}\right)$ satisfies $\left.\chi\right)$ but no longer equation $(\star)\left(u_{d-\ell+1}\right.$ was uniquely determined in terms of $\overrightarrow{u_{0}}$ since we are in a torsion-free module). Since the system is l.t.s. and $\mathcal{M} \models T_{V}^{s e p}$, we may find ($u_{1}, \cdots, u_{d-\ell}$) such that $\left(u_{1}, \cdots, u_{d-\ell}, u_{d-\ell+1}+u_{\delta, 1}, \overrightarrow{u_{0}}\right) \in G_{0}$, then choose in $M_{\delta\left(G_{0}\right)}$ a non zero $u_{\delta, 2} \neq u_{\delta, 1}$. The tuple ($u_{d-\ell+1}+u_{\delta, 2}, \overrightarrow{u_{0}}$) still satisfies χ but no longer equation (\star). Again we may complete this tuple to ($\left.u_{1}^{\prime}, \cdots, u_{d-\ell}^{\prime}, u_{d-\ell+1}+u_{\delta, 2}, \overrightarrow{u_{0}}\right) \in G_{0}$, and so ($u_{1}^{\prime}-u_{1}, \cdots, u_{d-\ell}^{\prime}-$ $\left.u_{d-\ell}, u_{\delta, 2}-u_{\delta, 1}, \overrightarrow{0}\right) \in G_{0}-G_{1},\left(\right.$ since $\left(u_{\delta, 2}-u_{\delta, 1}, \overrightarrow{0}\right)$ does not satisfy equation $\left.(\star)\right)$ and we may continue infinitely often since $M_{\delta\left(G_{0}\right)}$ is infinite.

Then assume that $\ell_{1}=\ell$ and so that the l.t.s. system of equations occurring in the definition of G_{0} and G_{1} is the same.

Then using the Claim 8.2, we triangularize further the system of congruences as follows.

Suppose we have the following system of two congruences with $r_{1}, r_{2} \in \mathcal{I}$ and $\delta_{1} \geq \delta_{2} \in \Delta$, occurring in the definition of G_{0} and for simplicity re-index the variables by u_{0}, u_{1}, \cdots.

$$
\left\{\begin{array}{ccc}
u_{0} \cdot r_{1}+u_{1} \cdot r_{3}+\cdots & \equiv \delta_{\delta_{1}} & 0 \tag{20}\\
u_{0} \cdot r_{2}+u_{1} \cdot r_{4}+\cdots & \equiv \delta_{2} & 0
\end{array}\right.
$$

By the right Ore property of A_{0}, there exist $q_{1}, q_{2} \in A_{0}$ (and we may assume that they belong to \mathcal{I}) such that $r_{1} q_{2}=r_{2} q_{1}$.

Assume $\Upsilon^{-1}\left(q_{2}, \delta_{1}\right) \leq \Upsilon^{-1}\left(q_{1}, \delta_{2}\right)$ (the other case is similar). Then system (20) is equivalent to:

$$
\left\{\begin{array}{cc}
u_{0} \cdot r_{2}+u_{1} \cdot r_{4}+\cdots & \equiv_{\delta_{2}} \tag{21}\\
u_{1} \cdot\left(r_{3} q_{2}-r_{4} q_{1}\right)+\cdots & \equiv_{\Upsilon^{-1}\left(q_{2}, \delta_{1}\right)} \\
0
\end{array}\right.
$$

Given a solution of the system (21), we multiply the first equation by q_{1} and get $u_{0} \cdot r_{2} q_{1}+u_{1} \cdot r_{4} q_{1}+\cdots \equiv_{\Upsilon-1\left(q_{1}, \delta_{2}\right)} 0$ and add the second equation to get $u_{0} \cdot r_{1} q_{2}+$ $u_{1} \cdot r_{3} q_{2}+\cdots \equiv_{\Upsilon-1\left(q_{2}, \delta_{1}\right)} 0$. This last equation is equivalent by Claim 8.2 to $u_{0} \cdot r_{1}+$ $u_{1} \cdot r_{3}+\cdots \equiv_{\delta_{1}} 0$.

So, w.l.o.g. we may assume that we have the following system of two congruences with $r_{1}, r_{2} \in \mathcal{I}$, the first one being the last one occurring in the definition of G_{0} and the second one being the first one in G_{1} and for simplicity re-index the variables by u_{0}, u_{1}, \cdots.

$$
\left\{\begin{array}{rll}
u_{0} \cdot r_{1}+u_{1} \cdot r_{3}+\cdots & \equiv_{\delta_{1}} & 0 \tag{22}\\
u_{1} \cdot r_{4}+\cdots & \equiv \delta_{\delta_{2}} & 0
\end{array}\right.
$$

First choose $\left(u_{1}, \overrightarrow{0}\right)$ such that the second equation does not hold (take $\left.u_{1} \notin M_{\Upsilon-1\left(r_{4}, \delta_{2}\right)}\right)$. Then choose u_{0} such that $u_{0} \cdot r_{1}+u_{1} \cdot r_{3}+\cdots=0$, which is possible whenever r_{1} is separable and in the case r_{1} is of the form $t^{m} . r_{1}^{\prime}$ with $r_{1}^{\prime} \in \mathcal{I}$ separable and $m \geq 1$, we proceed as follows. First choose, u_{0}^{\prime} such that $u_{0}^{\prime} \cdot r_{1}^{\prime}+u_{1} \cdot r_{3}+\cdots=0$ holds and then u_{0} with $w\left(u_{0}-u_{0}^{\prime}\right) \geq \delta_{1}$ (see Lemma 4.13). So in both cases, $\left(u_{0}, u_{1}, \overrightarrow{0}\right)$ satisfies (22) and also the conjunction χ of congruences occurring in the definition of G_{0} but doesn't satisfy those occurring in the definition of G_{1}. Then continue to solve the system in order to get an element in G_{0} using the fact we have put the system in triangular form. Finally choose infinitely many such u_{1} not congruent modulo $M_{\Upsilon-1\left(r_{1}, \delta_{2}\right)}$.
Corollary 8.3. Assume that K is separably σ-linearly closed and that the action of Γ on Δ is transitive. Then, the theory of torsion-free (as A-modules) models of $T_{V}^{s e p}$ is complete.

Proof: For the first statement, apply Proposition 6.5 and Proposition 8.1.
Corollary 8.4. Under the same hypotheses on K, Δ and Γ, let \mathcal{M}, \mathcal{N} be two valued A-modules. Suppose that their \mathcal{L}_{V}-reducts are models of $T_{V}^{s e p} \cup T_{\text {tor }}$ and that Fix (σ) is finite. Then \mathcal{M} and \mathcal{N} are elementary equivalent as \mathcal{L}_{V}-structures.

Suppose that Fix (σ) is infinite, and let $T_{a n}$ be any extension of $T_{V}^{s e p}$ containing the list of axioms telling for each separable $q \in \mathcal{I}$ whether the annihilator of that element
is trivial or not. Suppose that the \mathcal{L}_{V}-reduct of \mathcal{M} respectively \mathcal{N} are models of $T_{\text {an }}$, then they are elementarily equivalent.

Proof: For the first statement, apply Proposition 6.5, Corollary 7.10 and Proposition 8.1. For the second one, apply Proposition 6.5 and Proposition 8.1.

Acknowledgments: We would like to thank the referee for his/her useful remarks.

References

[1] Azgin S., Valued fields with contractive automorphisms and Kaplansky fields, J. Algebra 324 (2010) 2727-2785.
[2] Bélair L., Point F., Quantifier elimination in valued Ore modules, J. Symb. Logic 75 (2010) 1007-1034. Corrigendum : J. Symb. Logic 77 (2012) 727-728.
[3] Cohn P.M., Skew fields, Encyclopedia of mathematics and its applications (G.-C. Rota, Editor), vol. 57, Cambridge University Press, 1995.
[4] Conrad P.F., Embedding Theorems for Abelian Groups with Valuations, American Journal of Mathematics 75 (1953), no. 1, 1-29.
[5] P. Dellunde, F. Delon, F. Point, The theory of modules of separably closed fields 1, Journal of Symbolic Logic 67 (2002), no. 3, 997-1015.
[6] Dellunde, P., Delon F., Point F., The theory of modules of separably closed fields-2, Ann. Pure Appl. Logic 129 (2004), no. 1-3, 181-210.
[7] Delon F., Quelques propriétés des corps valués en théorie des modèles, Thèse d'état Paris 7, 1982.
[8] Delon F., Idéaux et types sur les corps séparablement clos, Mém. Soc. Math. France (N.S.) No. 33 (1988), 76 pages.
[9] Denef, J., Schoutens, H., On the decidability of the existential theory of $\mathbb{F}_{p}[t]$, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), 43-60, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.
[10] van den Dries L., Quantifier elimination for linear formulas over ordered and valued fields, in: Proceedings of the Model Theory Meeting (Univ. Brussels, Brussels/Univ. Mons, Mons, 1980), Bull. Soc. Math. Belg. Sr. B 33 (1981), no. 1, 19-31.
[11] Fleischer I., Maximality and ultracompleteness in valued normed modules, Proc. Amer. Math. Soc., volume 9, number 1 (1958), 151-157.
[12] Haran D., Quantifier elimination in separably closed fields of finite imperfection degree, Journal of Symbolic Logic, vol. 53, no. 2 (1988), 463-469.
[13] Hong J., Immediate expansions by valuations of fields, PhD thesis McMaster, august 2013.
[14] Lazard M., Groupes p-adiques analytiques, Inst. Hautes Etudes Sci. Publ. Math. 26 (1965), 389-603.
[15] Onay G., Modules valués, PhD Thesis Paris 7, december 2011.
[16] Ore O., On a special class of polynomials, Trans. Amer. Math. Soc. 35 (1933), 559-584.
[17] Ore O., Theory of non-commutative polynomials, Ann. Math. 34 (1933), 480-508.
[18] Pal K., Multiplicative valued difference fields, The Journal of Symbolic Logic 77, number 2, June 2012, 545-579.
[19] Point F., Asymptotic theory of modules of separably closed fields, J. Symb. Logic 70 (2005), 573-592.
[20] Prest M., The model theory of modules, L.M.Soc. Lecture Notes Series 130, Cambridge University Press, 1988.
[21] Rohwer T., Valued difference fields as modules over twisted polynomial rings, PhD thesis, University of Illinois at Urbana-Champaign, 2003.
[22] Srour G., The independence relation in separably closed fields, Journal of Symbolic Logic, vol. 51 (1986), 715-725.

Luc Bélair, Département de mathématiques, Université du Québec-UQAM, C.P. 8888 succ. centre-ville, Montréal, Québec, H3C 3P8, Canada.

E-mail address: belair.luc@uqam.ca
Françoise Point, Département de Mathématique (Le Pentagone), Université de Mons, 20, place du Parc, B-7000 Mons, Belgium.

E-mail address: point@math.univ-paris-diderot.fr

[^0]: Date: June 4, 2015.
 ${ }^{1}$ Partially supported by NSERC.
 ${ }^{2}$ Research Director at the "Fonds de la Recherche Scientifique FNRS-FRS", partially funded by the FNRS-FRS Research Credit 14729555.

[^1]: ${ }^{1}$ This axiom should replace axiom (1) in the definition given in [2].

