SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE
MODULES

LUC BELAIR! AND FRANCOISE POINT?

ABSTRACT. We consider valued fields with a distinguished contractive map as val-
ued modules over the Ore ring of difference operators. We prove quantifier elimina-
tion for separably closed valued fields with the Frobenius map, in the pure module
language augmented with functions yielding components for a p-basis and a chain
of subgroups indexed by the valuation group.

1. INTRODUCTION

Let K be a valued field of prime characteristic p, and let F'rob, denote the Frobenius
map z +— 2P, and v the valuation map. In [21], Rohwer studied the additive structure
(K, +, Frob,) in a formalism taking into account the valuation through the chain of
subgroups Vs = {z : v(z) > 4}, and he proved model-completeness for such models
as K = F,((T)) and K = E,((T)), ]Al*;p being the algebraic closure of [F,. We recall
that the corresponding full theory of valued fields has been studied (see [1]), but is in
general very far from being fully understood (see e.g. [9]), in particular for the above
two examples. In [2], we investigated the additive theory of valued fields but with a
distinguished isometry (at the opposite of the Frobenius map) and we could obtain
results similar to Rohwer’s, even at the level of quantifier elimination for such models
as K = F,((T)) with the isometry ¢(>_ a,T") = Y aT". In contrast with Rohwer,
our starting point does not address directly the structure of some specific classes of
definable sets, but is in the spirit of classical elimination of quantifiers algorithms in
the theory of modules. In this paper, we show that our methods can be applied to the
Frobenius map for separably closed valued fields (Proposition 6.3), a case not covered
by Rohwer (Lemma 4.16). In order to describe the theory of modules over the Ore
ring of difference operators, we will use the formalism of A-functions introduced by
G. Srour ([22], see also [8], [12]), and follow the approach undertaken, for instance,
in [5], [6] and [19]. Finally let us mention that new results have been obtained by G.
Onay on the model theory of valued modules ([15]), both in the isometric case and
the contractive case (the Frobenius map case).

We mostly use the notation of [2], with some slight modifications.
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2. RINGS OF POWER SERIES AS MODULES

Let D be a ring with a distinguished endomorphism o and let Ay := DJt; o] the
corresponding skew polynomial ring with the commutation rule a.t = ¢.a” ([3] chapter
2). Recall that any element of Ay can be written uniquely as Y t".a;, with a; € D
([3] Proposition 2.1.1 (i)) and one has a degree function deg : Ay \ {0} — N sending
Yor o tha; with a, # 0, to n € N, and with the convention that deg(0) = —co < N.
Whenever we consider D as a right Ag-module, by interpreting scalar multiplication
by t by the action of ¢ on D, we will denote it by D.

In addition, we will assume that D is a right Ore domain, namely that D has no
zero-divisors and for all nonzero a, b there are nonzero ¢, d such that a.c = b.d, and
that o is injective, which yields that Ay has no zero-divisors ([3] Proposition 2.1.1
(i)).

Under these assumptions, Aq satisfies the generalized right division algorithm: for
any q1(t), q2(t) € Ap with deg(q1) > deg(qa), there exist a € D — {0}, d € N and ¢,
rin Ag with deg(r) < deg(qs) such that ¢;.a? = gz.c + 1 (see e.g. [2], Lemma 2.2).

Since D is a right Ore domain, it has a right field of fractions K and we denote
the extension of ¢ on K by the same letter.

In the following, we will always assume that D is a commutative ring (and so K
will always be commutative); let A := K]|t;o]. Note that A is a principal right ideal
domain (and so right Ore) ([3] Proposition 2.1.1 (iii)).

Let K the subfield of K consisting of the image of K under o. We fix a basis C
of K viewed as a K7 vector-space; we will call such basis a o-basis.

Moreover we will assume that C can be chosen in D and that any element of D has
a decomposition along that basis with coefficients in D?. This is the case for instance
if K has characteristic p and o is the Frobenius endomorphism.

For simplicity, we will assume that C is finite, that it contains 1 and we present C as
a finite tuple of distinct elements (1 = ¢g, - - - , ¢,—1). However the infinite-dimensional
case is not essentially different (see [19]).

Later we will need both Ag and A, but for the moment we will denote by the letter
A a skew polynomial ring of the form D[t; o], where D satisfies the above hypothesis
(which encompasses the case where D is a commutative field).

We will adopt the usual convention to denote by the corresponding script letter the
structure and by a capital letter its domain. We will consider A-modules M which
have a direct sum decomposition as follows : M = @}~ M.tc;. We will add new unary
function symbols \;, ¢ € n = {0,--- ,n — 1} to the usual language of A-modules in
order to ensure the existence of such decomposition in the class of A-modules we will
consider. These functions will be additive and so we will stay in the setting of abelian
structures (see for instance [20]).

Definition 2.1. Let L4 := {+,—,0,-a;a € A} be the usual language of A-modules.
Let A\;, i € n = {0,--- ,n—1}, be new unary function symbols. Let L4 = L U{\;;i €
n}, and let T, be the following L 4-theory:

(1) the La-theory of all right A-modules
(2) Vo (=3 i, \i(@) - ti)
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Note that D is a model ot T, when viewed as an A-module as before.

We will need later that the functions \;, i € n are defined in any model of T, by
the following £4-formula: \;(z) =y iff (3yo---Iyn—1 =3, y; - te; and y; = y)
M (Vyo - Vyno1 =325,y t¢; = yi=y).

Such theories T, have been investigated in [5], [6] and [19], when D is a separably
closed field of characteristic p and o is the Frobenius endomorphism. Let us recall
some of the terminology developed there.

Notation 2.2. An element ¢(t) of A is o-separable if ¢(0) # 0. In writing down an
element of A, we will allow ourselves to either write it as g or ¢(t) when stressing the
fact that it is a polynomial in .

In order to reduce divisibility questions to divisibility by separable polynomials, it
is convenient to introduce the following notation.

Notation 2.3. (See Notation 3.2, Remark 2 and section 4 in [5].)

Given ¢ € A, we will define ¢/q and ¢7. First, for a = >, af¢; € D, where the
elements a; belong to D and ¢;’s to C, set a'/? := " a;c;. Observe that (a”)Y/? = q,
but unless a € A7, (a'/?)7 and a are distinct. Then, for ¢ = Y7 (#/a; € A with
a; € D, set g/q:=>7_ tja}/o. We also define ¢7 as )" t/af, we have t¢” = qt.

Iteration of o/ m times is denoted by o7/ Let a = Z?:_Ol ajc; € D, where

: _ n—1 o
a; € D and ¢; € C. Decompose each a; along the basis C, a; = > 7 afc;, so
o __ n-1 52 o _ n—1 o2 o _ o™ _
al = Zj:() af; ¢ and a = ZZ =0 af; cfci. More generally, a = > denm 0 ¢g, Where
7 m—1
d::<d17"'7dm)€nm’CJ::cgl ...Cdm.

Given q € A, we write it as ¢ = ), ¢;¢; with ¢; = Ej tjafj, a;; € D. Therefore, we
have that ¢/g; = >_; t’a;j, so
tq = Z J/qitc;.

Indeed, Y, ¢/qitci = 3, > Pagte; = 35, 3 ' afie; = tq.

Similarly, t™q = Y zc.m V@t Cq-

For example, let F' be a field of characteristic p, D = F[z] and ¢ be the Frobenius

map on D. We consider D as a module over D[t;o]. The notion of o-separable
polynomials ¢(t) coincides with the notion of p-polynomials Y " a;a?" ", with a,, #
0, introduced by O. Ore [17] (see also [5]), by making the identification ¢(¢) with
x.q(t) (recalling that x.t = 27 = aP). In case F is perfect, a o-basis for Fx] is
{1,z,--- ,2P71}. In general, let B be a p-basis of F'. Then D is equal to F°[z?] and

there is a direct sum decomposition of D as @,c(p2.5,.. wr-1.8yD7 - ¢;.

We now assume that (K, v) is a valued commutative field with valuation ring O,
maximal ideal my and residue field K. Let K* = K\ {0}, we denote the value group
v(K*) by I

We will set @ = a + mg, the image of a under the residue map from Ok to K.
Moreover, as before K is endowed with an endomorphism ¢ which is (valuation)
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increasing on Q. This implies that ¢ is an isometry on the elements of valuation
zero and strictly decreasing on the elements of negative valuation. In particular o
induces an endomorphism o, of (I, 4+, <, 0) defined by

op(v(a)) :==v(o(a)).

Note that o, is injective. We will denote the image by o, of an element v € T either by
77> or by 0,(77). In the example above where o is the Frobenius map, we have o,(v) =
py. This action induced by ¢ on the value group makes it a multiplicative ordered
difference abelian group in the terminology used by K. Pal ([18]), who investigated
the model theory of such structures arising in the context of valued difference fields.

From now on, A := Klt;o], Ay = Oklt;o]. We extend the residue map to Ay by
sending q(t) = 3>, ta; to 4(t) := >_, ’a;. We denote by T the set of elements of Ay
which have at least one coefficient of valuation 0 (or equivalently g(t) # 0). Note that
unlike the case where ¢ is an isometry of K, one cannot extend the valuation v of
K> to A or to A, but the product of two elements of Z still belongs to Z. (To see
this last property, let g(t), h(t) € T with g(t) = Y7 #/b; and h(t) = 7" t*ex. Let
Jo (respectively ky) be minimal such that v(b;) = 0 (respectively v(cy) = 0). Then
the coefficient of to** in g(t).h(t) has value zero.)

Definition 2.4. Let (K, 0,v) be a valued field endowed with an endomorphism o.
We will say that K is separably o-linearly closed if any separable linear difference

polynomial ¢(x), namely ¢(z) is of the form p(z,x°,- - ,2°") with each 7", 0 < i < n,
occurring non-trivially with degree at most 1 and d,p(z, 2%, -+ ,2°") # 0, has a zero
in K.

Proposition 2.5. Assume that (K,v,0) is separably o-linearly closed. Then the
o-separable elements of I factor into linear factors belonging to L.

Proof: This follows from [16, chapter I, theorem 3|, where the author dealt with
p-polynomials.

First let us simply assume that ¢(t) € A with ¢(0) # 0. Write ¢(t) := Zf:o td=ia,
with ap # 0 and ay # 0. We apply the Euclidean algorithm in A and so for any
(t — f) € A, there exists ¢1(t) such that q(t) = (t — f)q1(t) + a, for some a € K
and ¢q(t) € A. We want to show that we can choose f such that a = 0. Write
q(t) = S0 t9%a; and ¢ (t) = Z;l;é t3179p;. Then we calculate (t — f)q:(t) and
we express that a = 0. We obtain that f has to be a root of some polynomial in
Klz,z%,--- ,x"dﬁl] with coefficients ag, - -+ ,a9. Namely, we get ag = by, a; = by —
F7 b0y a = by — £ (a1 + f7° ag), and finally ag = — fby_y = — faq1— [ f7a4_>—
oo — ffof o f7" ay. We consider the difference polynomial p(z, 27, --- 27" =
Tag 1 + 13%ag o+ -+ 22°2% -2°" "ag + ag. Since Opp(w, 2%, -+ 27 = ag_1 +
g0+ 4272 17 ag £ 0, we get a zero f € K — {0} of that polynomial
(f is non zero since a4 # 0).

So, we have ¢(t) = (t — f).q1(t) with by # 0 and b;_; # 0 and so we can iterate
the same process with ¢;(t). We finally obtain ¢(t) = (¢t — f1) -+ (t — fa—1)(t.ao — fa)
with f; € K — {0}, 1 <i < d.
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Now let us assume that in addition ¢(t) € Z. If f; ¢ Ok, then write (t — f;) =
((tfiY) —1)f;, 1 <4 < d—1 and the last factor is written as (t(ao.f; ') — 1).f4 if
aofcjl € Ok or (t — feagt).aq if fiag' € Ok.

Proceeding successively, we obtain a factorization of ¢(t) into linear factors of the
form (tf/ — 1) or (t — f!) with f/ € Ok, 1 <i < d, together with a constant factor

say ¢ € K. Since each of these linear factors belong to Z and that Z is closed under
product, we get that ¢ € Ok \ mg. a

Corollary 2.6. Assume K is a separably closed valued field of characteristic p and
consider the skew polynomial ring K|t; o], where o acts as the Frobenius. Let q(t) € T
be a o-separable polynomial, then there exists a factorization of q(t) into o-separable
linear factors belonging to . O

Notation 2.7. For ¢(t) € A and p € K — {0}, denote by ¢*(¢) the element of A
equal to p.q(t).p. Soif q(t) = >, t'a;, a; € K, ¢*(t) = >, t'u" a;u".
Note that if ¢(t) € Ag and p € Ok, then ¢*(t) € A,.

3. VALUED MODULES

We keep the same notation as in the previous section with a fixed (K,v,0), I' =
v(K*) endowed with the induced endomorphism o,, A the skew polynomial ring
K|t; o] etc.

We will define the notion of o-valued A-modules, or simply valued A-modules.
Notions of valued modules occur in various places with many variations, see for
instance [4] or [14](§2). The following generalizes the notion in [2].

Definition 3.1. (Cf. [11], [10], [2]) A wvalued A-module is a two-sorted structure
(M, (A U{+o0},<,+7;v € I'),w), where M is an A-module, (A U {+o0},<) is a
totally ordered set for which +o0o is a maximum, + is an action of v € I' on A, and
w is a map w: M — AU {+oo} such that

(1) for all §,d1,00 € A, if 6; < 09 then §; +v < 9y + 7, for each v € T', and

8+ < 6+ 7, for each 4, <y, € T !

(2) for all my,me € M, w(my + mg) > min{w(m,), w(ms)}, and w(m,) = +oo

(3) for all my,me € M, w(my) < w(msg) iff w(m; -t) < w(ms - t);

(4) for all m € M — {0}, w(m - p) = w(m) + v(p), for each p € K*.
We denote the corresponding two-sorted language by L,, and the corresponding the-
ory by T,.

Taking M = K and w = v, A =T, then K is a valued A-module with ¢ acting as
o and I' acting on itself by translation.

From the axioms above, we deduce as usual the following properties : w(m) =
w(—m), and if w(m;) < w(msz), then w(m, +ma) = w(my).

This axiom should replace axiom (1) in the definition given in [2].
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Note also, from axiom (1), that for each my, mg € M and p € K>, if w(m;) #
w(me) implies w(my.p) # w(ma.pu).

Note that (w(M), <) is a substructure of (A U {400}, <), and that ¢ induces an
endomorphism 7 on (w(M), <) defined by w(m.t) = 7(w(m)). It is well-defined since
by axiom (3), if w(m;) = w(msz) then w(my - t) = w(my - t).

From now on, we will impose a growth condition on the action of ¢ by introducing
the following additional structure on A. This will induce in particular that the
action of ¢ on the corresponding class of valued A-modules will be uniform, with a
compatibility condition between the action of (I', o,) and the action of 7.

Definition 3.2. Let (A, <,0a,7,+7;7 € I') be a totally ordered set with a distin-
guished element Oan, +7v an action of v € I' on A, and 7 a fixed endomorphism of
(A, <).

We assume that for all 9, d1,05 € A, if 6; < 09 then 67 +v < b9+, for each v € T,
and d + 7, < 0 + 9, for each y; <5 €T

The endomorphism 7 satisfies the conditions, viz. : §; < dp — 7(01) < 7(d2),7(0a) =
0a,0 > 0a — 7(5) > 0,0 < 0o — 7(0) < 6, and finally a compatibility condi-
tion between the action of o, on I' and the action of 7: for all v € I' we have
T(6+7) =71(5) +~°.

We will sometimes write 0 instead of Oa, for ease of notation.

Let us denote the corresponding language by La . and the corresponding theory
by TA,T-

Let Ly, := Ly, U La 7; we will consider the the class ¥, ; of L, ,-structures
(M, (AU{+o0}, <, 7,0a,+7;7 € I'),w) satisfying the following properties :

(1) (M, (AU {+o0},<,+7v;v €T),w) is a valued A-module;
(2) (A, <, 7,0a,+7;7 €T) is a model of Th ;;
(3) w(m -t) = 7(w(m)).

Note that if M € ¥, ,, then if w(m) > 0a, then w(m -t) > w(m), if w(m) = Oa,
then w(m - t) = w(m), and if w(m) < 0a, then w(m - t) < w(m). Moreover, letting
' :={yel: ~v>0}if vy € TF, then o,(7) > 7. (Indeed, 0o + vy > 0a, S0
7(0a + ) > 0a + . By the compatibility condition, 7(0a + ) = 0a + 0,(7) and so
ou(7) >7.)

4. ABELIAN STRUCTURES

In order to stay into the setting of abelian structures, we will use a less expressive
language. This language was used by T. Rohwer while considering the field of Laurent
series over the prime field F, with the usual Frobenius map y — y? ([21]). Instead
of the two-sorted structure (M, A, w), where M is a valued A-module, he considered
the one-sorted abelian structure (M, (M;s)sen), where My = {x € M : w(z) >
d}. Similarly, given a valued A-module M with a direct sum decomposition M =
@I~ M te;, we will add the functions ); and consider the one-sorted abelian structure

(M, (Ai)ien, (Ms)sen).
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We will consider theories of abelian structures satisfying strong divisibility proper-
ties. The basic example is the separable closure of F,((7")). Note that this example
is not covered by Rohwer, as we will indicate below, following Lemma 4.13.

Definition 4.1. Let (A, <,7,+,0a,+00) be a model of Tx ;. We set the language
Ly =Ly U{Vs:§ € A}, where Vj is a unary predicate.
Let Ty be the Ly -theory with the following axioms, with § € A:

Vmy Vmy (Vs(ma) & Vs(ma) — Vs(ma + ma));
vm (Vs(m) = Vsyo( (m.p)), where p € K*;
) Vm (Vs(m) < Vi (m.t))

%
) Vm (Vs,(m) — Vs, (m)), whenever §; < da, 1, 9y € A;
)
)

If (M, A, w) is a valued A-module with a direct sum decomposition M = @;¢,, M.tc;,
and we let My = (M,+,0, (.r)rea, (N)ien, (Ms)sen), then My is a model of Ty,
where Vj is interpreted as M.

The structure My is an abelian structure and one gets as in the classical case of
(pure) modules that any formula is equivalent to a boolean combination of positive
primitive formulas (p.p.) and index sentences (namely, sentences telling the index of
two p.p.-definable subgroups of the domain of My in one another (see [19])) and this
p.p. elimination is uniform in the class of such structures.

Note that the pure module theory of separably closed fields of characteristic p and
fixed non-zero imperfection degree has quantifier elimination in the presence of the
functions \; ([5]).

We want to axiomatize a class of abelian structures which contains the class of
valued separably closed fields of characteristic p. Note that the theory of valued
separably closed fields has been shown to be model-complete in the language of
valued fields augmented with predicates expressing p-independence ([7]) and to admit
quantifier elimination in the language of valued fields augmented with the \; functions
(113).

In the remainder of the section, we will formalise certain properties of separably
closed fields viewed as modules over the corresponding skew polynomial rings in order
to axiomatize the class of modules we will be working with.

Notation 4.2. Let 6 € A, then we denote by Ms+ = {x € M : w(x) > 6}.

Corollary 4.3. Assume that K is separably o-linearly closed. Let M be a A-module
with the following divisibility properties: given any a € Ok \ {0}, any ny,ny € My,
there exists my,mg € My, such that my - (t —a) = ny, and my - (ta — 1) = na.

Then given any o-separable polynomial q(t) € Z and any element n of My, there
exists m € My, such that m-q(t) = n. Moreover, if n € My, \MOJAF, then there exists

m € My, \ My such that m - q(t) = n.

Proof: By Proposition 2.5, it suffices to prove it for linear polynomials of the form
(t—a) or (ta—1) with a € Ok \{0}. Let n € My,. Then by assumption, there exists
m € My, such that n = m-(t—a) (respectively n = m-(ta—1)). If n € MOA\MOJAr and
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m € My, then min{w(m - t),v(m - a)} > 0 (respectively min{w(m - ta), v(m)} > 0),
a contradiction. O

In the following (see Lemma 4.8), under a further condition on A, we will show that
given n € M and ¢(t) € Z, if we can find an element m € M such that n = m - q(¢),
then we can find one whose value w(m) can be determined in terms of the values of
the coefficients of ¢(t) and w(n).

Definition 4.4. We will say that (A, <,0a,7,+7;7v € T') is ordered linearly closed
(0.l.-closed) if given any finite subset {7; € I;0 < i < d}, for any 6 € A there exists
p € A such that 6 = ming<;<4{7" (1) + i}

Lemma 4.5. Assume that T is surjective on . Then A is o.l.-closed.

Proof: Let q(t) € A, q(t) = Z?:o tia;, and let {; = v(a;) : a; #0, 0 < i < d}.
Given dy € A, let us show that there exists § € A such that dy = ming<;<q 7°(8) + ;-

Consider the functions f; on A defined by f;(6) = 79(8) + v, 0 < i < d. Since
7 is assumed here to be surjective, so is 7°. Thus there exists §; € A such that
(50 + <—’71) = TZ((Sz) and so (50 = fl(éz)

Each function f; is strictly increasing: if §; < dy, then 7°(8;) < 7%(d2) and 7'(61) +
v < 7(d2) + ;. So the maximum p of the §;’s such that f;(d;) = dg is well-defined.
Since 0; < u, we have that 69 = f;(0;) < fi(p) (f; is increasing), 0 < i < d. So,
do = ming<;<, fi(p), namely Y(q,dp) = p. O

Notation 4.6. Assume 7 is surjective on A. Given q(t) € A, ¢(t) = 0, t'a;, given
d and {v; := v(a;) : a; # 0, 0 < i < d}, by the above Lemma, there exists p such
that 6 = min{7*(u) +,; : 0 <i < d}. We will denote that p by T(g,d). We also set
T (g, 1) =96

As soon as A is o.l.-closed, the functions TY=! and YT are well-defined and we
have the following relationship between T~ and Y. Let ¢(t) € Z, u,d € A, then
T (q(t), Y(q(t),0)) = & and Y(q(t), Y (q(t),;)) = pu. Moreover, for m € M we
always have w(m.q(t)) > YT (q(t),w(m)). And finally since each of the functions
7'+, are strictly increasing on A, T(q, po) < p1 <> po < Y7 (q, py). This last equiv-
alence implies that T is increasing and since it is injective, it is strictly increasing.

When the action of I' is transitive on A, because of the compatibility condition on
the two actions, whenever o, is surjective on I', 7 is surjective on A and so A o.l.-
closed. Note that if K is separably closed of characteristic p and o is the Frobenius
map, then o,(v) = py, and I' = vK is divisible.

Definition 4.7. Assume that 7 is surjective on A and that (A, <,0a,7,+7;7 €
) = Ta.-, then let T} be the following Ly-theory:

(1) Tv,

(2) Vn (n e Vo — (Im (m € Vo &m-q(t) =n))), for all ¢(t) € Z, q(t) o-separable.
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Lemma 4.8. Let M be a valued A-module which is a model of T\f. Assume that T
acts transitively on A. Let q(t) € T be o-separable, § € A and let v := Y (q,0). Then,
for any n € M with w(n) = 6, there exists m € M such that m - q(t) =n & w(m) =
w. Moreover u has the additional property that for any m € M with w(m) = p,
w(m - q(t)) > 6.

Proof: Let q(t) = 3. ta; € I, with ag # 0. By axiom scheme (2) of Tjf, for
any ng € M with w(ng) = Oa, there exists my € M such that mg - q(t) = ng and
w(mg) = 0a. Note that the axiom scheme (2) only gives us that w(mg) > 0a, but
since at least one coefficient of ¢(t) has value 0, we get that w(mg) cannot be strictly
bigger than 0. Since the action of I' on A is transitive, there exist ks, k, € K such
that 0a + v(ks) = ¢ and 05 + v(k,) = p.

Let n € M with w(n) = & and consider the polynomial §(t) := >, t'k7 a;k; ' =
¢* (k,k;"). Then by construction ¢(t) € Z and is still o-separable.

Now w(n - k;') = 0, so by hypothesis there exists my € My, such that mg - G(t) =
n- ka_l. So, mg - Y, tikziai = n and so mg - k,q(t) = n. Set m = mq - k,, we have
w(m) = p and m - q(t) = n.

Moreover, if w(m) = p, then by the compatibility condition between 7 and o, we
have w(m - ¢(t)) > min; 78(w(m)) + v(a;) > 6. 0

Lemma 4.9. Let M be a model of Tyf and assume that T' acts transitively on A. Let
q(t) € I be o-separable and 6 € A. Then, for any n € Ms, there exists m € My (g

such that m - q(t) = n. Moreover Y(q,9) is such that for any m € My s, m-q(t) €
Ms.

Proof: 1t follows from the proof of the above Lemma, replacing equalities of the form
w(m) =49 € A, by m € Ms. O

The separable closure of a valued field of characteristic p is dense in its algebraic
closure. This translates as follows in the case of models of T}t .

Lemma 4.10. If M is a valued A-module which is a model of T};, and if the action
of T' on A is transitive and satisfies the following (%%): for all 1,09 € A, there exists
v € I such that 6y + (0,(y) — ) = 2. Then for any § and m with w(m) < §, there
exists n such that w(m —mn -t) = 4.

Proof: W.l.o.g. we may assume that § > w(m) (otherwise it suffices to choose n = 0).
First choose k € K such that w(m) + v(k?) < 0.

By Lemma 4.8 M is (t — 1)-divisible, so there exists n € M such that m - k7 =
n - (t — 1) and necessarily w(n) < 0. So 7(w(n)) < w(n) and therefore w(n - t) =
w(m) + 0,(v(k)) and w(n) = 7 (w(m) + oy (v(k,))).

We have that m =n-k™'t —n- k7.

We have w(m — n - k='t) = w(n) — v(k?) = 771 (w(m)) + (v(k) — o,(v(k))). Now,
by the extra assumption, there is k; such that 771 (w(m)) + (v(ky) — o, (v(k1))) = 6.
It suffices to see that this forces w(m) + v(k7) < 0, so that the preceding discussion
applies to k; as well, and we are done. But we have w(m)+v(kJ) = 7(6 +v(k{)) and
w(m) + v(k]) < 0 +v(k]). So if w(m) + v(ky) > 0, we would get 0 < § + v(k]) <
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7(6 +v(k7)), and then w(m) +v(k]) < 7(d +v(k{])) which is absurd. Hence we must
have w(m) + v(ky) < 0, as wanted. O

Remark 4.11. Note that in case the action of I' on A is transitive, to meet the
hypothesis (%), we can require that the action of ¢, — 1 is surjective on T'.

Definition 4.12. Recall that Tt := {y € T : v > 0}. We will say that o, is
2-contracting on ' if Vy € T g,(7) > v + 7.

Lemma 4.13. Suppose M is a model of Ty} and assume I acts transitively on A. If

o, 1§ 2-contracting on I, then for any 6 € A and for all m € M, there exists n such
that Vs(m —n -t) holds.

Proof: 1t follows from the proof of the above lemma, noting that we only need in this
setting that V9, € AVdy € ATy € T' 61 + (0,(7) — ) > d2. W.lo.g., we may assume
that d; < d9. So given d; < d9 € A, by transitivity of the action of I' on A, we get
that there exists 4 € I't such that §; +7 = 0. Since o, is 2-contracting we get that
0o(¥) >+ 7. So 61 +0,(7) > d+ 7 and so 01 + 0,(F) — 7 > Ja. O

Definition 4.14. Assume that 7 is surjective on A and that (A, <,0a,7,+7;7 €
I') = Ta .. Let Ty be the Ly-theory:
(1) Ty,
(2)Vn (n € Vs = (Im (m € Vygs&m - q(t) = n))), for all ¢(t) € I, q(t)
o-separable and for all § € A.
(3) YVm 3In Vs(m —n-t), for all § € A.

In particular, if K is separably closed of characteristic p, then K viewed as a
Kt; o]-module with o acting as the Frobenius map, is a model of T7”.

More generally, if (Kv, o) is separably o-linearly closed and if o, is 2-contracting
on I', then again K viewed as a A-module is a model of 777

Further note that if I' acts transitively on A and o, is 2-contracting on I', then a
model of T}f is a model of 7”7 (by Lemmas 4.9 and 4.13).

We will prove in the next sections that 7y eliminates quantifiers up to index
sentences.

Before doing that, we now check that the basic example of the separable closure
of F,((7)) is not covered by Rohwer (see [21], pp. 40-41), since it does not have a
weak valuation basis.

Definition 4.15. Let M := (M, +,0,.r;r € A, \;,i € n) be a model of T,. Then M
is a valued A-module with a weak o-valuation basis if there exists r € K such that for
each m € M we have: w(m) < min;{w(\;(m) -t) +v(c;) +v(r) : ¢; € C}h (%)

Lemma 4.16. Let K be any valued separably closed field K of finite imperfection
degree, then K does not have a weak o-valuation basis, with o the Frobenius endo-
morphism.



SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE MODULES 11

Proof: By way of contradiction, let c¢i,cy,... be a linear basis of K over K? and
suppose that it is a weak o-valuation basis and let § be the corresponding v(r). By
adjusting 0 and since v(K*) is p-divisible, we may always assume that ¢; = 1. Let
0" € I" such that &' > {v(e2),d,v(c2)+d}. By Lemma 4.13 let a, b such that co = a?+b
with v(b) > ¢'. If v(a?) # v(ce), then that would contradict the required inequality
(*) for a? — cy. Otherwise, v(a”) = v(cz2), and again this contradicts (*) for a? — cs.
O

5. SPECIAL CASES

In order to eliminate quantifiers in 777", we need some basic cases and reductions,
which are treated in the following lemmas.

Our main tools will be axiom schemes (2) and (3) of T/ and we will use Notation
4.6. We will treat the general case in the next section.

We will use the notation u - r =5 m to mean that Vs(u - r — m) holds. We place
ourselves in any model of Ty and the b;’s that will occur in the systems are £ 4-terms
in some tuple of variables .

Lemma 5.1. Consider a system of the form
Ju u-t Elll bl
u-r =, by,
where r € T is separable. Then this system is equivalent to a congruence of the form
by - 17 =, by - 1.
Proof: We distinguish two cases.
(i) T71(r°, 1) > 7(p2). Then the system above is equivalent to
b1 -re Er(uz) bg - t.

One implication is straightforward. For the reverse implication, since we are in a
model of Ty", by axiom (3), there exists u such that w-t =, b1. Sou-tr? =y-1
by 17 S0 u -1t =7, bo -t and so u-r =, by.

(it) Y71(r?, 1) < 7(p2). Then the system above is equivalent to

T,01)

b1 -9 ETfl(r",,u,l) bg - T.

One implication is straighforward. For the reverse implication, choose p such that
YT 1ro, ) > 7(ps) (and so u > py). Again by axiom (3), there exists u such that
u-t =m bl. So u - tre =1-1(ro,m) bl -9 =Y-1(r 1) b2 - L.

Since we are in a model of 7% by axiom (2), there exists u” such that u” -7 = (u-
r—by)-t with w(u”) > py (by definition of Y=1(r7, u1)). Let v’ be such that '-t =, u”.
Then o' - rt =’ - tr? =(,,) (u-r —by) - t, which implies that (u — ') - rt =;(,,) b2 - t
and so (u—u')-r =, by, which finishes the proof since (v —v') -t =, u-t—u" =, b;.
O

Lemma 5.2. Consider a system of the form

u-r = b
Ju 1 B 1
u-re =5, b,
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where r1, 9 € I are separable and assume that deg(ry) > deg(rs). Then this system
1s equivalent to the following system

U-ry9 = b2
Elu{ u-rs =5 by-a—0by-s,

where 6 = Y7 (ria, T(rq, 82)), for some a € O, and deg(ry) > deg(rs).

Proof: By the generalized euclidean algorithm, there exists a € Ok such that ra =
Tos + r3 with deg(rs) < deg(rs).

Suppose u is a solution of the first system. Let «’ be such that u'-ry = u-ro—by. We
can find such «' with w(u’) > Y (r2,d2). So (u—u')-re.s4+(u—u')-r3 = (u—u')-ra =
by-a—u -riaie (u—u) -rg=b-a—by-s—u-ra.

Conversely, let u” satisfy the second system. Then u”-ra = u”-ros+u" 13 =5 by - .
So let v be such that v -r; = «” - r; — by and we have to make sure that we can
choose «” such that w(u"” - ry) > d9. In other words, Y (ric,d) = T(rq, da). O

Lemma 5.3. Consider a system of the form

Elu{ u-r =5 b

u-To 552 b2

where 11, T9 € T are separable and Y (ry,01) < Y(re,d2). Then this system is equiva-
lent to the following system
Elu{ u-7m E(gl bl

U-T9 = bg

Proof: Indeed, we can choose u' such that w(u') > YT(re,d2) and such that v’ - ry =
by —u - 19 and so (u + ') - 1y = by. Moreover w(u' - r1) > 07. O

Lemma 5.4. Consider a system of the form
u-r = b
Elu{ u-t =5 b17
where r € T 1is separable. Then this system is equivalent to the following system

u-r =y b
u { u-t =5 bl,
where §' is chosen such that 7(Y(r,d")) > 4.

Proof: Let us show the non-trivial implication. Since r is separable, there exists u/
such that ' - = (u-r —b) and we can choose such v’ with w(u’) > Y(r,0’). Since
7(Y(r,0")) > §, we get that w(v' -t) > § and so (u — u') is a solution of the first
system. d

Lemma 5.5. Consider a system of the form

= u-To = bg
/\?:1 u - tn E(Si bi;
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where rg € Ok, 7o # 0. Then this system is equivalent to congruences of the following
form

{ by =s b

/\?:2 bll =0 b;>

where the b, are La-terms in § obtained from the b;’s by scalar multiplication by
elements of A.

Proof: We first proceed as in Lemma 5.4, replacing the equation u - rg = by by a
congruence u - rg =g by where ¢ is chosen such that 7"(Y(rg,d")) > {d; : 1 <i < d}.
So it remains to consider a system of the form:

| u-rg =g by
! { /\(ii:l u- 1" =35 bi7
Now we proceed as in Lemma 5.1. First we note that u-rot" =5 bo-t" is equivalent
to u - rog =g by. We rewrite the first formula as w - t"r§" =;n(y) by - t".

We order the ¢; and w.l.o.g. assume that 6; > max{d; : 1 <i < d}. Our system is
then equivalent to:

{ bo -t" E'I‘—l(rgn,61) b1 : Tgn
/\:{ 2 bl =s; bia

Indeed, by axiom (3), there exists u such that u-t" =5, by. So, if T Lre™ 6y) > 77(d")
(x), we get that u - t"r§ =y-1em 5 b1 - ré" and so since by - 1" =y- 1rg™ 8y bo - 87,
we get by (%), that u - 7"0 =s by.

Now assume that T=1(rg",d;) < 7°(8"). So we choose ¢” such that YT=1(rg",§") >
T(4").

Again, by axiom (3), there exists u such that u - t" =5, by. So we get

n

— ol n
:T_l(rgn,51) bl T :T_I(Tgn,51) bo A

"

By axiom (2), there exists u” such that u” - r7" = (u-r — by) - t" with w(u”) > 4.
By axiom (3), there exists v such that u'-t" =5 u”. Then v’ -7t" = ' - t"17" =,n (g
(u-7r—bo) - ", which implies that (u—u') - 71" =n(5y by - t" and so (u—u') -1 =g by.
Since w(u”) = 601, we may add to the other congruences v’ = u’ - " without
perturbing them. |

6. QUANTIFIER ELIMINATION
We now prove that 7} admits quantifier-elimination up to index sentences.

Notation 6.1. Let d = (dy,- - - ,d,,) € n™ be a m-tuple of natural numbers between

0 and n — 1. We denote by )\(dm) the composition of the m A-functions: Ay, o A4, ©
-0 )\dm'

Lemma 6.2. In any model of Ty, a system of equations /\Z Lu - = ti(y), where
ti(y) is a La-term and r; € A with at least one r; o-separable, is equivalent to one
equation of the form u-r = t(y), where r € A is separable together with a conjunction
of atomic formulas in .
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Proof: We apply the Euclidean algorithm and do some bookeeping to check that we
always keep a separable coefficient. Assume that r; is separable. Let us consider the
system:

(1) { u'. 7; = 1(5),
with ¢ # 1.

If r; is not separable and if deg(r1) > deg(r;), then for some ', " € A, we have
r1 = r;r' + 1" then r” # 0 and r” is separable. So, the system is equivalent to:

u-r; = t(y)
? Lo 200
with deg(r”) < deg(r;) and r” separable.

If r; is not separable and if deg(r;) < deg(r;), then for some ', r” € A, we have
r; = r18' + s”, then either s” = 0 and the system is equivalent to:

u-ry = ti(y)
3 _ 7
) { ti(y) s = t(y),
or s” # 0 and the system is equivalent to:

u-r = h(y)
(4) { u-s" = ti(y) —t(y) - s
If r; is separable, then w.l.o.g. deg(ry) > deg(r;). For some ', " € A, we have

r1 =17’ + r”. Either »” = 0 and the system is equivalent to:

) _ d
©) { h@) = )7,
or " # 0 and the system is equivalent to

(6) {U'T’i = ()

et = () - ),

Il

~+
—
~~
<
~—

with r; separable.

In each case, we showed that the system of two equations with the pair of coeffi-
cients (r, s;) where r separable, was equivalent with another system with a pair of
coefficients consisting of a separable coefficient and such that the sum of the degrees
of the coefficients decreased. If one of the coefficient is zero, we consider another
equation, if applicable, of the conjunction. If both coefficients are nonzero, we repeat
the procedure until either we considered all of the equations occurring in the con-
junction, or one of the coefficient has degree zero which allows us to eliminate the
variable u. |

Proposition 6.3. InT}/", every Ly p.p. formula is equivalent to a positive quantifier-
free formula.

Proof: As usual, we proceed by induction on the number of existential quantifiers,
so it suffices to consider a formula existential in just one variable Ju¢(u,y), where
¢(u,y) is a conjunction of atomic Ly -formulas.
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Note first that terms in u are L-terms in u, \;(u), i € n, for some £ > 1, where
Ai denotes the composition of ¢ functions A;, j € n (see [5, Notation 3.3]). One uses
the fact that the A; functions are additive and that A\;(u - ¢(t)) with ¢(¢) € A, can
be expressed as an L-term in \;(u), j € n. Moreover since u = Y, .. Ai(u) - tc;, we
may assume that the terms are terms in only the \;(u), i € n* (see [5] Lemma 3.2,
and Notation 2.3).

Therefore we may replace the quantifier 3u by n® quantifiers Ju,,e-1 - - - Jug A\ ient Ui =
Ai(u). We first tackle the quantifier Jug and for convenience, let us replace ug by u.

Since A is right Euclidean, we can always assume that we have at most one atomic
formula involving u, of the form w - ro(t) = to(y), where to(y) is a L-term.

Claim 6.4. We may assume that r( is separable.

Proof of Claim: Write ro = t™r, where m € N and rj separable. Express ry =

> denm TogCa With the property that r, € A7 [t;0] e.g. 1y = > t/ag; , with aq; €

K. Recall that \/rjy = >, t/aaj, s0 ™75 =3 4c,m “\/Toat™ca (see Notation 2.3).
Using this equality, replace the atomic formula w - t™r{ = ¢, by the system

A we V=2 (k)

den™

(see Notation 6.1). Note that for at least one tuple d, \/rj, is separable. So
by Lemma 6.2, we may assume that we have just one equation with a separable
coefficient together a conjunction of atomic formulas in . O

Moreover, for any element r(t) = > t/a; € A, there exists p € K such that
r(t)u € T (take pu := a;', where v(ay) = 9(r(t)). So, we transform the atomic
formula: w-r(t) = t(y) multiplying both sides by p and we transform w-r(t) =5 t(y),
6 €A, into u- () Zsqo) ty) - 4

So we reduced ourselves to consider an existential formula of the form Ju ¢(u,y),
where ¢(u,y) is of the form

u-ro=1to(y) & /\ u-rE =5, te(y) & 0(y)
k=1
with 7, € Z, 0(y) a quantifier-free Ly -formula, ¢;(y) are La-terms, and & € A.

Note that in case 1y # 0, we can always assume that deg(rg) > deg(ry), for all k.
Indeed, suppose that deg(rg) < deg(ry), for some k, say k = 1. By the g.r. Euclidean
algorithm in Ay, there exists u € Ok such that rpu = ror + 7] with deg(r}) < deg(ro)
and r, r} € Ag. So, we have that u-rip=u-ror +u-r; =ty -r+u-rj, and we can
replace u -1 =5, t1(y) by u- 71 +to(y) - 7 =5, 40w 1Y) - 1.

First, we will assume that the equation present in ¢(u,y), u.ro = to(y), is non
trivial, namely that ro # 0. We will concentrate on the system formed by this
equation and the congruences. For ease of notation, we replaced to(y) by by and ¢;(y)
by b;. So consider a system of the form

u-To = bo
(7) Fu { /\?:1 u-thir, =5 by,
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where rg, r; € Z, 1o, 1; are o-separable, n; € N, 1 <17 < d.

We will call Z?:o deg(r;) the separability degree of that system, and we proceed by
induction on that number.

We consider two cases : either there is 1 < i < d such that n; > 1, or for all
1 <7 <d, n; =0. We will refer to the latter systems as separable systems, namely
those for which rq, r; are o-separable and n; = 0 for all 1 <7 <n.

Case A: let ng := max{n; : 1 <1i < d} and suppose ng > 1. Then there exists &
such that the system (7) is equivalent to

u-rg =5 by

(8) Elu{ /\leu St =g by,

where ¢ is chosen such that Y(rg,d) > max{77"(5;) : 1 <7 < d} (see Lemma 5.4).
Then system (8) is equivalent to

u - ’l”otno ET"O (6) bo . tno
(9 =T VI B
/\Z:1 u - tn’TitnO ni ET"()*"i (61) bZ . tnO nz7
We re-write system (9) as follows:
U - tno,ro'n() = ny 5 bO . tno
1 3 wd 70 (9)
( 0) u { /\;1:1 U - tnoria 0" 57"0—"1(50 bz . tno—ni7

If all r; € Ok, then we are done by Lemma 5.5. Otherwise we replace u - t"° by ug
and we consider the following separable system of congruences, assuming that one of

the r; ¢ Ok:
=.n b . tﬂo
11 Ju To 770 (5) 0 |
" ’ { /\?:1 up 1y Spneem 5, bi- 10T,

Suppose we can solve that system (see Lemma 5.3). Then by Lemma 4.13, there exists
u such that u - "0 =5, ug, where we can choose dy > maxy<;<4{7"°(d), 77" (5;) }.
Now we order the set {Y(r¢" "™ 707" (4;)), Y(rg"’, 7(4)) : 1 < i < d} and we
replace one of the congruences (the one corresponding to the maximum index) by
the corresponding equation. Then we apply the g.r. Euclidean algorithm in order to
obtain a system with separability degree strictly smaller than that of system (11).

Case B: suppose that for all ¢,n;, = 0. We have a system of the form

u-To = bo

(12) Hu{ Nju-ri =5 b,

We order the set {Y(r;,d;) : 1 < i < d} and we show that system (12) is equivalent
to another system where both the degrees of ry and of r;, 1 < ¢ < d have decreased.
We proceed as in Lemma 5.2 with d, replaced by the element of A realizing the
maximum of the set above. Considering the equation with each of the congruences,
we obtain a system where the coefficient appearing in the equation is separable and
has degree strictly less than ry and the coefficients occurring in the congruences have
each a strictly smaller degree but may no longer be separable. Then we use the
previous Case A, to obtain an equivalent system where now all the coefficients of the
congruences are separable and the degrees of the coefficients of both the equation
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and the congruences either stayed the same or have decreased. We obtain a system
with strictly smaller separability degree.

Second, we will assume that there is no equation present in ¢(u,y). So, we consider
a system formed by congruences and for ease of notation, as before, we replace ¢;(y)
by b;. Consider a system of the form

(13) Ju AL u-thir =,

bi7
where r; € Z, r; is separable, n; e N, 1 <1 < d.

Again we distinguish the two cases : either there is 1 < ¢ < d such that n; > 1, or
forall 1 < <d, n; =0.

Case A’: let ng := max{n; : 1 <1i < d} and suppose nyg > 1. Then the system
(13) is equivalent to

(14) Ju /\?:1 U - tnoritno—ni ET"O_"i(éi) bz . gno—n;

First note that if all r; € Ok, it implies since r; € Z, that r{l € O NZ. In this
case, w.l.o.g. we may assume that system (13) is of the form

(15) Ju AL u-th =5 b,

System (15) is equivalent to the following system:

(16) Ju AL u-tm = no-ni(s) Di 17O

We order the elements {7"07"(¢;) : 1 < i <n}. Let a be a permutation of {1, - ,n}

and suppose that 707" (§4(1)) < -+ - < 707 (0y()). We claim that system (16)
is equivalent to:

(17) /\;l:_l1 ba(i) . 10— Na(i) = no—na() () ba(i+1).tnofna<i+1)

We use Lemma 4.13 in order to find u such that u - " = n;—n, 6;) b; -t"°~" and then
we use the congruences.

Now assume that r; ¢ Ok for some i in system (14). Replace u - " by ug and
consider the system :

(18) ElUO /\?:1 Ug - rgnofni = ng—n; @) bz . o= ny

Suppose we can solve that system. Then by Lemma 4.13, there exists u such that
w - 1" =5, ug, where we can choose dy > max{7™7"i(§;) : 1 <1 <d}.

Now we order the set {Y(r¢" " 7m07"(§;)) : 1 < i < d} and we replace one of
the congruences by an equation, the one corresponding to the maximum index. So
we are in the case of a separable system treated before.

Case B’: supppose that for all 1 <7 < d,n; = 0. We have the system
(19) Ju /\?:1 u-r =g, b;

We order the set {Y(r;,d;) : 1 < i < d} and we replace one of the congruences by an
equation, the one corresponding to the maximum index. So we are in the case of a
separable system treated before. O

Corollary 6.5. In Ty, any Ly -formula is equivalent to a quantifier-free Ly -formula
up to index sentences.
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Recall that index sentences in particular tell us the sizes of the annihilators (of the
separable) polynomials and the index of the subgroups Ms, .t"™ /Ms,.t"2, with §; < do,
ni,ns € N. Also, the image of M by a L4-term u(x) with one free variable x is equal
to M.t", for some n € N and we can determine the n from the term u(x), but since
our language £ 4 contains A functions, we need to consider terms in several variables.

In the next section, under the assumption that K is separably o-linearly closed,
we will show that if we add a list of axioms specifying the torsion to 777, then the
torsion submodule is determined up to isomorphism (Corollary 7.10). Then in the
last section, we will consider the class of torsion-free models of Ty and we will show
that any two elements are elementary equivalent (Corollary 8.3).

7. TORSION

In this section, we will work under the assumption that K is separably o-linearly
closed and that the action of I' on A is transitive.

Let M |= Ty7; denote by M, the submodule of M consisting of torsion elements.
Note that My, is a L4-substructure of M ([5, Proposition 3.5]. Moreover by our
quantifier elimination result (Proposition 6.3) M;,, is a pure submodule of M. So
taking an ultrapower M* of M which is (JA| + Ny)T-saturated, the corresponding
ultrapower of My, is a direct summand of M*, namely M* = (M,,.)* & M;s, where
M,y is a torsion-free A-module, an £ 4-substructure and a model of Ty,

We will show that if we add to the theory T/ a list of axioms specifying the
torsion for each separable polynomial, then the submodule consisting of the torsion
elements is unique up to isomorphism as an L-substructure in any valued A-module,
model of that extended theory.

We will show on one hand that we can determine all the valuations taken by the
elements in the annihilator of a o-separable polynomial belonging of Z and on the
other hand that given a non-zero element n of valuation ¢ and a separable polynomial
q(t) € Z, we can determine all the valuations taken by the elements m such that
m.q(t) = n.

We will use axiom (2) of T{ together with the factorization of such polynomials
q(t) into linear factors of the form tb — 1, t — a, ¢ with a,b,c € Ok, v(c) = 0,v(a) >
0,v(b) > 0 (see Proposition 2.5).

Notation 7.1. Let ¢(t) € A and let M be an A-module, then denote ann(q(t)) :=
{me M :m-q(t) =0}

Since we assume here that the action of I' on A is transitive, the following Lemma
is straightforward.

Lemma 7.2. Let v € I, then there exists at most one 6 € A such that 7(0) = § + .
Moreover if there exists 0y such that 7(6o) = 09 + 7y, then we have for § > &y that
7(0) > d + 7 and for 6 < &y that 7(§) < 0 + 7. O

Notation 7.3. Let v € I and suppose § € A is such that 7(§) = 6 4+, then we will
denote § by (7 —1)7!(y). In particular, 7((r — 1)7' (7)) = (r — )7 () + 7.



SEPARABLY CLOSED FIELDS AND CONTRACTIVE ORE MODULES 19

Lemma 7.4. Let M be a valued A-module and suppose that M = Ty" and let
r(t) € T of degree 1.

(1) When m € ann(r(t)), then w(m) takes a unique value which can be expressed
in terms of the values of the coefficients of r(t).

(2) Let n € M — {0}, then there exists m € M such that n = m.r(t) and w(m)

can take at most two values which can be expressed in terms of w(n) and the values
of the coefficients of r(t).

Proof: We can restrict ourselves to consider r(t) of the form (¢ —a), or (tb — 1) with
v(a) > 0 and v(b) > 0.

(1) Suppose that m - (t —a) = 0 with m # 0, then m -t = m - a and so 7(w(m)) =
w(m)+v(a). By Lemma 7.2, w(m) is uniquely determined and we will use the above
notation: (7 —1)"(v(a)).

Suppose now that m - (tb — 1) = 0 and m # 0, then m - tb = m and so 7(w(m)) +
v(b) = w(m). We denote w(m) by (7 — 1)~ (—v(b)).

So in both cases, if there is such a non zero m, w(m) can only take one value.

(2) Now let n € M with w(n) =0 € A. By axiom (2) of Ty”, there exists mj such
that mg-r(t) = n with w(mg) = Y(r(¢),d) (and any other element m with m-r(t) =n
differs from mg by an element of the annihilator of r(¢)). Let us calculate explicitly
Y(r(t),d) in each case. Let T := T(r(t),0).

First, let us consider the case r(t) = (tb — 1).

Claim 7.5.
(i) If 6 > (t — 1)"*(—v(b)), then T = 4.
(ii) If § < (7 — 1) (=v(b)), then T = 7716 — v(D)).

Proof of Claim: By Lemma 7.2, there is at most one p € A such that p + (—v(b)) =
7(p) and we have denoted such a p by (7 — 1)71(—v(b)).

Moreover if p’ < (7—1)"(—v(b)), then p' > 7(p")+v(b) and if p > (7—1)"1(—v(D)),
then p' < 7(p’) + v(b).

We compare 4, respectively T to 7(8) + v(b) (equivalently to (7 — 1)~*(—v(b))),
respectively to 7(Y) 4+ v(b).

Moreover, by definition T is such that § = min{Y, 7(T) + v(b)}.

So, if T < 7(T)+v(b), then § = T and this corresponds to the case § < 7(0) +v(b)
or equivalently to § > (7 — 1)~} (—v(b)).

If 7(T) 4+ v(b) < T, then 6 = 7(T) + v(b) and so 6 < T and so 7(0) + v(b) <
7(T) + v(b) = 4, or equivalently § < (7 — 1)~!(—wv(b)).

If 7(T) +v(b) =7, then § =Y and so § = (7 — 1)~ (—v(b)). 0

Now suppose there exists m # mq such that m - r(t) = n, equivalently assume we
have my € ann(r(t)) — {0}. Then,

(i) If 6 > (7 — 1)"(—=v(b)), then w(mg + my) = (7 — 1)~} (—v(b)). So in this case
we have two possible values for w(m) with m - (tb — 1) = n. In fact we have one
element mg with w(mg) = ¢ (and mg - r(t) = n) and all the other elements m have
value (7 — 1)1 (—v(b)).
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(it) It 6 < (7 — 1) (—v(b)), then 7716 — v(b)) < (r — 1)~} (—v(b)). (Indeed,
p = (1 — 1)7(—v(b)) is defined by: 7(p) + v(b) = p. So we have to show that
d —v(b) < 7(p), equivalently that 6 < 7(p) + v(b) = p.)

So since Y = 771(6 — v(b)), we have w(mgy + my) = 771(§ — v(b)) and in this case
we have one possible value for w(m) with m.r(t) = n.

(ii7) It 6 = (17 — 1)~ (—v(b)), then w(mg + my) > (1 — 1)~ (—v(b)). Let us show
that we have equality by way of contradiction.

Suppose that w(mg + my) > (7 — 1)7'(—v(b)). By Lemma 7.2, this implies that
w(my+my) < T(w(mg +my)) + v(b), then w(n) = 6 = w(mo + m1), a contradiction.

So, we get that w(mg +m;) = (1 — 1) (—v(b)) = T = w(mg) and again in this
case we have only one possible value for w(m) with m.r(t) = n.

Second, let us consider the case r(t) = (t — a).

Claim 7.6.
(i) If§ > (1 — 1)"Y(v(a)), then T =6 — v(a).
(ii) If § < (1 — 1) (v(a)), then T = 771(§).

Proof of Claim: The proof is similar to the proof of the previous claim. But now, T
is such that 6 = min{7(Y), T 4+ v(a)}. As before, let mg such that n =mg-t —m-a
and w(mg) = Y. So, we have that 6 > min{7(Y), T + v(a)}. We compare both T
and § to 7(Y) +wv(a), respectively to 7(8) +v(a) and therefore also to (7 —1)"!(v(a)).
O

Again any other solution m of m- (t+a) = n differs from my by a non zero element
my of the annihilator of r(t). Let us evaluate w(mg + my).

(ia) If (1 — 1) (w(a)) < d < (1 — 1) (v(a)) + v(a).

By the Claim, w(mg) = 6 — v(a), and so we have w(mg +my) = — v(a).

(ib) If § > (1 — 1)L (v(a)) + v(a), then w(mg +my) = (1 — 1)"Y(v(a)) = w(m,).

(ic) If 6 = (1—1)"*(v(a)) +v(a), then w(mg+my) > (t—1)"'(v(a)). Suppose that
w(mo+my) > (1—1)"Y(v(a)), so w(me+my) > d—v(a). Since (mo+my)-(t+a) = n,
w((mo + my) - t) = d. On the other hand, by Lemma 7.2, 7(w(mgy + my)) > w(mg +
my) + v(a) > J, a contradiction. So, we also get in this case that w(mg + m;) =
(7 = )7 (v(a)) = w(m).

So in case (ia), we have two possible values depending on whether there is a non
zero element in the annihilator of r(¢).

(ii) If 6 < (7 — 1)"!(v(a)), then by the claim, w(mg) = 771(d); compare 7(w(mg))
to 7(w(m1))(=7((r — 1)~ (v(a)))).

We have 7((7 —1)"*(v(a))) = (t — 1) ' (v(a)) + v(a) > ¢ (see Notation above) and
so w(mg) < w(m;y) (7 respects < on A) and so w(mg + my) = w(mg) = 7(5). So
we have only one possible value.

(i17) It § = (1 — 1)} (v(a)), then w(mg) = § —v(a) = (1 — 1) Hv(a)) — v(a) <
(1 — 1) (v(a)) = w(my). Then w(mg + my) = w(mg) = & — v(a). So, again in this
case we have only one possible value.

Note that in each case w(m) can be expressed in terms of w(n) and the values of
the coefficients of r(t). O
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Proposition 7.7. Let M be a valued A-module and suppose that M = Ty, let
m € M and let q(t) € I of degree d. Then there is a finite subset Fyy C A of
cardinality at most 247" such that if m € ann(q(t)) — {0}, then w(m) € Fy). (N.B.
The elements of Fyuy whose values are taken by elements of ann(q(t)) only depend
on the values of the coefficients of the factors of degree 1 of q(t) and on which are
the non-trivial annihilators in M.)

Proof: We proceed by induction on d. For polynomials of degree 1, this is the content
of Lemma 7.4. Let us assume d > 2. By hypothesis on K, ¢(t) = r(t)q:(t), where
r(t), q1(t) € Z and r(t) has degree 1. Now m-¢(t) = 0 is equivalent to m-r(t) = 0 or
m-r(t) € ann(q(t)) —{0}. Since degree of g;(t) is strictly less than d, we can apply
the induction hypothesis and so we get at most 2¢~2 possible values for the elements
in ann(q:(t)) — {0}. By axiom (2) of T/*, for each n € ann(q(t)) — {0}, there is an
element m such that m - r(t) = n and by Lemma 7.4, for each of the values w(n), we
get at most 2 values for w(m). O

Proposition 7.8. Let M be a valued A-module and assume that M = Ty, Let
q(t) € T of degree d and let n € M — {0}. Then one can determine a finite set
Gy C A of cardinality at most 2 such that w(m) € Gy if and only if m-q(t) = n,
m € M. Moreover, Gy only depends on w(n),q(t) and on which are the non-trivial
annihilators in M.

Proof: We proceed by induction on d > 1. For polynomials of degree 1, this is the
content of Lemma 7.4. So let us assume d > 2. By hypothesis on K, q(t) = g2(t)r(t),
where r(t) has degree 1. Now m - ¢(t) = n is equivalent to m' - r(t) = n and
m - q(t) = m'. By Lemma 7.4, given w(n), we know that there is either one or
two values for w(m’) with m’ - r(t) = n depending on the respective positions of the
values of the coefficients of r(¢) and w(n), together whether ann(r(t)) is non-trivial.
By axiom 2 of T}, there exists m such that m - ¢2(t) = m’. Then we apply the
induction hypothesis to ¢o(t), so given each of these values for w(m'), the number
of values of such m are bounded by 2?7! (and we can determine the exact number
which depends on the relative position on the chain A of the values of the coefficients
and J together with which are the non-trivial annihilators). a

Now we extend Ty by specifying the torsion in our models. Note that in con-
sidering ann(q(t)), we may always assume that ¢(t) € Z, also that annihilators are
Fix(o)-vector spaces. If Fiz(o) is infinite then if we have two annihilators with one
strictly included in the other, then the index is infinite ([2, Lemma 2.4 (in Corrigen-
dum)]). So in this case we will add to the theory Ty a list of axioms specifying
which annihilators are non-trivial.

From now on let us assume Fiz(c) is finite. For instance, in the case where K is
a (valued) field of characteristic p and ¢ is the Frobenius endomorphism (or a power
of it), then Fixz(o) is finite. We will specify the torsion as follows.

Definition 7.9. Let T, be the theory of A-modules together with the following
scheme of axioms, for each element g € 7 of degree d: there exist exactly d elements

x1,- -+ ,xq which are linearly independent over Fixz(o) and such that x; - ¢ = 0, for
all 1 <i<d.
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We will consider now the theory Ty U T},,. A model of that theory is for instance
the separable closure of K.

Corollary 7.10. Let M, N be two valued A-modules, models of T;"UT,,, containing,
respectively, isomorphic Ly -structures My, Ny. Then we may extend this partial
isomorphism to a minimal submodel M{™ of M containing M.

Proof: We follow the proof of [5, Proposition 5.8] and we apply Proposition 7.8. In
particular, a main ingredient in [5, Proposition 5.8] is the following (see [5, Lemma
5.1]). Let N be an L 4-structure and Ny a substructure of N'. Let u € N — Ny and
assume that u - ¢ € Ny for some ¢ € Z. Then there is a unique (up to multiplication
by elements of Fiz(o)) element g, of Z such that u - g, € Np. O

8. TORSION-FREE MODELS OF Ty”

In this section, we show that the theory of torsion-free models of 77 is complete,
and we specify the other completions of T}/ (see Corollary 8.3).

Let M |= T” and assume that M is a torsion-free A-module. Given Gy, Gy two
p.p. definable subgroups of M, we wish to determinate the index of [Gq : G1].

Here we will assume that the residue field K is infinite, which is the case if K is
separably closed of characteristic p and finite (non-zero) imperfection degree, and so
K is algebraically closed (and so infinite) and that o acts on K as the Frobenius, or
more generally if (K, o) is separably o-linearly closed.

In the case where the map w is surjective and the action of I' is transitive on A, we
note that certain p.p. definable subgroups have infinite index. For instance, the index
[Mo, = My] is infinite, so there is an element a € M with w(a) = 0 and multiplying
a by elements of O — my with different images in K, we get elements of M, in
distinct cosets modulo My« (and so a fortiori modulo any M;s with § > 0). Since the
action of I" is transitive on A, we get the indices [M;s : Ms+] are also infinite, for any
d € A. Also the index of M.t in M is infinite (this follows from the fact that K7 is
infinite) ([6, Proposition 3.2]) and the index of M.t™*! in M.t™ as well.

Now let us consider the general case.

Proposition 8.1. Let M be a model of Ty and assume that M is a torsion-free
A-module. Then the index of any two p.p. definable subgroups G4 ; Gy of M 1is
infinite.

Proof: By the positive q.e. result (see Proposition 6.3), a p.p. definable subgroup of
M is defined by a positive quantifier-free formula of the following kind: A, ¢;(u) =
0 & A, tj(u) =5; 0, where t;, t; are La-terms and u one free variable. As noted
before a L 4-term t(u) is a La-term in u, A\;(u), i € n’, for some £ > 1. Using the
decomposition tg = ), g/t (see Notation 2.2), we may assume that each equation
contains a separable coefficient. (This process increases the number of equations but
decreases the degree of the coefficients, so it will eventually terminate.) Note that if
we have two equations containing a separable coefficient for \;(u), say qo, ¢1, then by
multiplying by an element of K*, we may assume that gy € Z (respectively ¢; € 7).
By the Ore property of A, there exist ¢, ¢; such that ¢oq; = ¢1¢; and note that
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we may choose ¢}, ¢y € Z. So we may just keep one equation with A\;(u) and assume
that it has a separable coefficient. Continuing like that we get a lower triangular
d x k-matrix D with non zero separable coefficients on its diagonal. Recall that such
matrix was called lower triangular separable (1.t.s.) of co-rank ¢ in [5, Definition 9]
where d — ¢ is the number of non-zero (or equivalently separable) elements on its
diagonal. We will call the corresponding system a l.t.s. system.

So we may assume that Gy (respectively G;) is defined by a l.t.s. system of co-
rank ¢ < d (respectively ¢; < ¢) equations (on the same variables) with in addition
congruences conditions.

Set ug—¢ := A\p(u), where A, (u) is the variable multiplied by the (d — ¢,d — ¢)-
coefficient of D. Let d;, i € m, be the elements of A occurring in the congruences.

Since G; C Gy, we may assume that G is defined by a l.t.s. system of co-rank
¢; < ¢ and with the same first d — ¢ equations.

Claim 8.2. Let g € Z, then in any torsion-free model of T, we have the following
equivalence: u =5 0 <> u - £"q =y-1(4,77(5)) 0.

Proof of Claim: By definition of T=! (see Notation 4.6), we get in any valued A-
module, that u =5 0 = w - t"q =y-1(g.m@e) 0. Now assume that w(u - t"q) >
T~1(q,7"(9)), since ¢ € Z, there exists v’ with w(u') > 7"(8) (T is increasing, see
Lemma 4.5) such that v’ - ¢ = w - t"q. Since M is torsion-free, v’ = w - t" and so
w(u) > 6. O

So if we have a 1.t.s. system of co-rank ¢ < d, with d > 1 and if u,,,, 1 < m < d—¥,
occurs in an equation with a separable coefficient and if it also occurs in a congruence
condition, we may replace it in the congruences conditions in terms of the other
variables (using the Ore property of Ay and the Claim above). So w.l.o.g., we may
assume that in the congruences none of the variables u,,, 1 < m < d — ¢ occur.

First we assume that ¢; < ¢, so we have at least one more equation in G of the
form wgq 11 Ga_e11+ -+ = 0 (). Denote by §(Gy) the minimum 6 € A such that
any tuple of elements each in My satisfies the congruence conditions appearing in the
definition of GGy and denote by y the conjunction of these congruences.

Take W = (Ug—r41, u_g) satisfying v and verify whether U satisfies equation (%).
If it does, add to ug—¢11 @ non-zero element us; € Msc,). So the tuple (un—r41 +

us.1, ug) still satisfies y (since (ug,1, 6)) satisfies x) but no longer equation (%) (ug—¢41
was uniquely determined in terms of wugj since we are in a torsion-free module).
Since the system is lLt.s. and M = Ty, we may find (uq,--- ,uq—¢) such that
(W1, Ugeg, Ug—pt1 + Us 1, US) € Gy, then choose in Mjg,) a non zero uss # s, .
The tuple (wg—e+1+us2, ug) still satisfies x but no longer equation (x). Again we may
complete this tuple to (uf, - - -, u)_,, Ug—es1+Us2, US) € Go, and so (u)—uy, -+ ,ul_,—
Ug—g, Us2 — Us1, 0) € Gy — Gy, (since (us2 — us1, 0) does not satisfy equation (x))
and we may continue infinitely often since Ms ) is infinite.

Then assume that ¢; = ¢ and so that the l.t.s. system of equations occurring in
the definition of Gy and (G is the same.

Then using the Claim 8.2, we triangularize further the system of congruences as
follows.
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Suppose we have the following system of two congruences with r;,7, € Z and
01 > 99 € A, occurring in the definition of G and for simplicity re-index the variables
by Ug, Upy "~ -

(20)

Ug - Ty + UL -T3F+ -+ =5 0
Up-To+ U T4+ =5, 0

By the right Ore property of Ay, there exist ¢;,q2 € Ag (and we may assume that
they belong to Z) such that gy = 2.

Assume Y7 1(gq,61) < T (g1, 02) (the other case is similar). Then system (20) is
equivalent to:

(21) { Uy~ To+ UL Ty + - =5 0

uy - (T3QQ - 7‘4(]1) +oee =T-1(g2,01) 0

Given a solution of the system (21), we multiply the first equation by ¢; and get
U+ Toq1 + Ut - T4qr + - =1-1(4,,5,) 0 and add the second equation to get ug - r1g2 +
Uy - T3q¢2 + - =y-1(g.,6,) 0. This last equation is equivalent by Claim 8.2 to ug - r1 +
Uy - Trg+--- =5 0.

So, w.l.o.g. we may assume that we have the following system of two congruences
with r, 79 € Z, the first one being the last one occurring in the definition of Gy and
the second one being the first one in G; and for simplicity re-index the variables by
Ug, Ui, - - - .

(22) {uo-r1+u1-r3+--- =5, 0

Uy = Tg+ - =5, 0

First choose (uy, ﬁ) such that the second equation does not hold (take u; & My-14, 5,))-
Then choose uy such that ug - 1 + uq - r3 + - - - = 0, which is possible whenever r is
separable and in the case r; is of the form #".r] with r] € Z separable and m > 1,
we proceed as follows. First choose, uj such that uf -7} + uy - 73 + -+ = 0 holds

and then ug with w(uy — ug) > 6; (see Lemma 4.13). So in both cases, (ug,us, ﬁ)
satisfies (22) and also the conjunction x of congruences occurring in the definition of
G but doesn’t satisfy those occurring in the definition of G;. Then continue to solve
the system in order to get an element in Gy using the fact we have put the system
in triangular form. Finally choose infinitely many such u; not congruent modulo
MT_I(T4,62)' D

Corollary 8.3. Assume that K is separably o-linearly closed and that the action of
I' on A is transitive. Then, the theory of torsion-free (as A-modules) models of Ty
1s complete.

Proof: For the first statement, apply Proposition 6.5 and Proposition 8.1. O

Corollary 8.4. Under the same hypotheses on K, A and T, let M, N be two valued
A-modules. Suppose that their Ly -reducts are models of Ty U Ty and that Fiz(o)
is finite. Then M and N are elementary equivalent as Ly -structures.

Suppose that Fiz(o) is infinite, and let Ty, be any extension of Ty containing the
list of axioms telling for each separable ¢ € T whether the annihilator of that element
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is triwial or not. Suppose that the Ly -reduct of M respectively N are models of Ty,
then they are elementarily equivalent.

Proof: For the first statement, apply Proposition 6.5, Corollary 7.10 and Proposition
8.1. For the second one, apply Proposition 6.5 and Proposition 8.1. O

Acknowledgments: We would like to thank the referee for his/her useful remarks.
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