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QUOTIENTS OF STRONGLY PROPER FORCINGS AND

GUESSING MODELS

SEAN COX AND JOHN KRUEGER

Abstract. We prove that a wide class of strongly proper forcing posets have
quotients with strong properties. Specifically, we prove that quotients of forc-
ing posets which have universal strongly generic conditions on a stationary set
of models by certain nice regular suborders satisfy the ω1-approximation prop-
erty. We prove that the existence of stationarily many ω1-guessing models in
Pω2

(H(θ)), for sufficiently large cardinals θ, is consistent with the continuum
being arbitrarily large, solving a problem of Viale and Weiss [13].

Many consistency results in set theory involve factoring a forcing poset Q over
a regular suborder P in a forcing extension by P, and applying properties of the
quotient forcing Q/ĠP. We will be interested in the situation where Q has strongly

generic conditions for elementary substructures, and we wish the quotient Q/ĠP to

have similar properties. For example, the quotient Q/ĠP having the approximation
property is useful for constructing models in which there is a failure of square
principles or related properties.

We introduce some variations of strongly generic conditions, including simple and
universal conditions. Our main theorem regarding quotients is that if Q is a forcing
poset with greatest lower bounds for which there are stationarily many countable
elementary substructures which have universal strongly generic conditions, and P is
a regular suborder of Q which relates in a nice way to Q, then P forces that Q/ĠP

has the ω1-approximation property. Several variations of this theorem are given, as
well as an example which shows that not all quotients of strongly proper forcings
are well behaved.

Previously Weiss introduced combinatorial principles which characterize super-
compactness yet also make sense for successor cardinals ([13], [14]). Of particular
interest to us is the principle ISP(ω2), which asserts the existence of stationarily
many ω1-guessing models in Pω1

(H(θ)), for sufficiently large regular cardinals θ.
This principle follows from PFA and has some of same consequences, such as the
failure of the approachability property on ω1. It follows that ISP(ω2) implies that
2ω ≥ ω2.

Viale and Weiss [13] asked whether this principle settles the value of the contin-
uum. We solve this problem by showing that ISP(ω2) is consistent with 2ω being
arbitrarily large. The solution is an application of the quotient theorem described
above and the second author’s method of adequate set forcing ([3]).
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2 SEAN COX AND JOHN KRUEGER

Section 1 provides background on regular suborders and quotients, as well as
guessing models and ISP. Section 2 introduces simple universal strongly generic
conditions and proves the main result on quotients. Section 3 discusses products
of strongly proper forcings. Section 4 provides two variations of the main quotient
theorem. Section 5 gives an example showing that not all quotients of strongly
proper forcings are well behaved. Section 6 describes a strongly proper collapse
using the method of adequate set forcing. Section 7 constructs a model in which
ISP(ω2) holds and 2ω is arbitrarily large.

1. Background

In this section we provide the background necessary for reading the paper. We
assume that the reader is already familiar with the basics of proper forcing and
generalized stationarity. First, we will review some well-known results about regu-
lar suborders and quotients; since these ideas are central to the paper we provide
a thorough treatment. Secondly, we review the idea of a guessing model, the ap-
proximation property, and the principle ISP(ω2).

For the remainder of the section fix a forcing poset Q which has greatest lower
bounds. In other words, for all compatible conditions p and q in Q, a greatest lower
bound p∧ q exists. A suborder of Q is a set P ⊆ Q ordered by ≤P:=≤Q ∩(P×P). A
suborder P of Q is said to be a regular suborder if (a) for all p and q in P, if p and
q are compatible in Q then p and q are compatible in P, and (b) if A is a maximal
antichain of P, then A is a maximal antichain of Q.

Lemma 1.1. Let P be a regular suborder of Q. Then for all q ∈ Q, there is s ∈ P

such that for all t ≤ s in P, q and t are compatible in Q.

Proof. Suppose for a contradiction that there is q in Q such that for all s ∈ P, there
is t ≤ s in P such that t is incompatible with q in Q. Let D be the set of t ∈ P

such that t is incompatible with q in Q. Then D is dense in P. Let A be a maximal
antichain of P contained in D. Since P is a regular suborder, A is maximal in Q.
Therefore q is compatible with some member of A, which contradicts the definition
of D. �

Definition 1.2. Let P be a regular suborder of Q. Then Q/ĠP is a P-name for the

poset consisting of conditions q ∈ Q such that for all s ∈ ĠP, q and s are compatible

in Q, with the same ordering as Q.

Note that if p ∗ q̌ is in P ∗ (Q/ĠP), then p and q are compatible, so p ∧ q exists.

Lemma 1.3. Let P be a regular suborder of Q. Let q ∈ Q and s ∈ P. Then the

following are equivalent:

(1) s 
P q ∈ Q/ĠP;

(2) for all t ≤ s in P, q and t are compatible in Q.

The proof is straightforward.

Lemma 1.4. Let P be a regular suborder of Q. Then P forces that whenever

q ∈ Q/ĠP and q ≤ p, then p ∈ Q/ĠP.

The proof is easy.

Lemma 1.5. Let P be a regular suborder of Q. If D is a dense subset of Q, then

P forces that D ∩ (Q/ĠP) is a dense subset of Q/ĠP.
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Proof. Suppose for a contradiction that p ∈ P and p forces that q is in Q/ĠP but q

has no extension in D ∩ (Q/ĠP). Then p is compatible with q. Fix r ≤ q ∧ p in D.
Apply Lemma 1.1 to find v in P such that every extension of v in P is compatible
with r. In particular, v is compatible with r and hence with p. Since v and p
are in P and P is a regular suborder, v and p are compatible in P. So without
loss of generality assume that v ≤ p. By Lemma 1.3, v forces that r is in Q/ĠP.

Since r ∈ D, v forces that r is an extension of q in D ∩ (Q/ĠP), contradicting that
v ≤ p. �

Lemma 1.6. Let P be a regular suborder of Q.

(1) Suppose that H is a V -generic filter on Q. Then H ∩P is a V -generic filter

on P and H is a V [H ∩ P]-generic filter on Q/(H ∩ P).
(2) Suppose that G is a V -generic filter on P and H is a V [G]-generic filter on

Q/G. Then H is a V -generic filter on Q, G = H∩P, and V [G][H ] = V [H ].

Proof. (1) Suppose that H is a V -generic filter on Q. Since any maximal antichain
of P is a maximal antichain of Q, H ∩ P meets every maximal antichain of P.
A straightforward density argument shows that H ∩ P is a filter. So H ∩ P is a
V -generic filter on P.

Since H is a filter, every member of H is compatible in Q with every member of
H ∩ P. So H ⊆ Q/(H ∩ P) and H is a filter on Q/(H ∩ P). We will show that H
meets every dense subset of Q/(H ∩ P) in V [H ∩ P].

Let Ḋ be a P-name for a dense subset of Q/ĠP and let D := ḊH∩P. We will
show that D∩H 6= ∅. Let D′ be the set of conditions in Q of the form p∧ q, where
p is in P and p forces that q is in Ḋ. Then D′ is dense in Q by a straightforward
argument using Lemmas 1.1 and 1.3. Fix p ∧ q in D′ ∩H . Then q ∈ H , and since
p ∈ H ∩ P, q ∈ D.

(2) By Lemma 1.4, H is closed upwards in Q, so H is a filter on Q. Let D
be a dense subset of Q in V , and we will show that H ∩ D 6= ∅. By Lemma 1.5,
D ∩ (Q/G) is a dense subset of Q/G. Since H is a V [G]-generic filter on Q/G, it
meets D ∩ (Q/G) and hence D.

To show that V [G][H ] = V [H ], it suffices to show that G = H ∩ P. Since G and
H ∩P are both V -generic filters on P by (1), it suffices to show that every condition
in G is compatible with every condition in H ∩ P. But if q ∈ H ∩P, then q ∈ Q/G,
which implies that q is compatible in Q with every condition in G. Since P is a
regular suborder of Q, q is compatible in P with every condition in G. �

It follows that Q is forcing equivalent to P ∗ (Q/ĠP). In fact, the function which

sends a condition in P ∗ (Q/ĠP) of the form p ∗ q̌ to p ∧ q is a dense embedding

defined on a dense subset of P ∗ (Q/ĠP).
The next technical lemma will be used later in the paper.

Lemma 1.7. Let P be a regular suborder of Q. Suppose that q ∈ Q, p ∈ P, and p
forces in P that q is not in Q/ĠP. Then p and q are incompatible.

Proof. Suppose for a contradiction that p forces that q is not in Q/ĠP, but there is
r ≤ p, q in Q. Let H be a V -generic filter on Q such that r ∈ H . Then p and q are
in H . Since P is a regular suborder of Q, H ∩P is a V -generic filter on P by Lemma
1.6. As p ∈ H ∩ P, q is not in Q/(H ∩ P). Therefore q is incompatible in Q with
some member of H ∩ P. But this is impossible since q ∈ H and H is a filter. �
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We now provide the necessary background on guessing models, the approxima-
tion property, and ISP.

Definition 1.8. A set N is said to be ω1-guessing if for any set of ordinals d ⊆ N
such that sup(d) < sup(N ∩ On), if d satisfies that for any countable set b ∈ N ,

d ∩ b ∈ N , then there exists d′ ∈ N such that d = d′ ∩N .

Definition 1.9. Let W1 and W2 be transitive with W1 ⊆ W2. We say that the

pair (W1,W2) has the ω1-approximation property if whenever d ∈ W2 is a bounded

subset of W1∩On and satisfies that b∩d ∈ W1 for any set b ∈ W1 which is countable

in W1, then d ∈ W1.

Lemma 1.10. Let N be an elementary substructure of H(χ) for some uncountable

cardinal χ. Then the following are equivalent:

(1) N is an ω1-guessing model;

(2) the pair (N, V ) has the ω1-approximation property, where N is the transitive

collapse of N .

Proof. Let σ : N → N be the transitive collapsing map.
(1 ⇒ 2) Assume that N is an ω1-guessing model. To show that (N, V ) has the

ω1-approximation property, let d be a bounded subset of N ∩On and assume that
whenever N models that b is a countable set of ordinals, b ∩ d ∈ N . We will prove
that d ∈ N .

Let e := σ−1[d]. Then e is a subset of N ∩On and sup(e) < sup(N ∩ On). Let
b ∈ N be a countable set of ordinals, and we show that e∩ b ∈ N . Since N ≺ H(χ),
N models that b is countable. Therefore N models that σ(b) is countable. It follows
that d ∩ σ(b) ∈ N . Hence σ−1(d ∩ σ(b)) ∈ N . Since b and d ∩ σ(b) are countable,
σ−1(d ∩ σ(b)) = σ−1[d ∩ σ[b]] = σ−1[d] ∩ σ−1[σ[b]] = e ∩ b. Therefore e ∩ b is in N .

Since N is an ω1-guessing model, fix e′ ∈ N such that e = e′∩N . Then σ(e′) ∈ N
and σ(e′) = σ[e′ ∩N ] = σ[e] = d. It follows that d is in N , as desired.

(2 ⇒ 1) Suppose that (N, V ) has the ω1-approximation property. Let d ⊆ N∩On
be given with sup(d) < sup(N ∩On), and assume that for any countable set b ∈ N ,
d ∩ b ∈ N . Let e := σ[d], which is a bounded subset of N ∩ On. Suppose that
N models that b is a countable set of ordinals. Then σ−1(b) is a countable set
in N , so d ∩ σ−1(b) ∈ N . Since b and d ∩ σ−1(b) are countable, σ(d ∩ σ−1(b)) =
σ[d ∩ σ−1[b]] = σ[d] ∩ b = e ∩ b. Hence e ∩ b is in N . By the ω1-approximation
property, e is in N . Hence d′ := σ−1(e) is in N . But d = d′ ∩N , as can be easily
checked. �

Definition 1.11. We say that the principle ISP(ω2) holds if for all sufficiently large

regular uncountable cardinals χ, there are stationarily many N in Pω2
(H(χ)) such

that N ∩ ω2 ∈ ω2, N ≺ H(χ), and N is an ω1-guessing model.

The principle ISP(ω2) was introduced by Weiss ([13], [14]), in a different form
which asserts the existence of an ineffable branch for any slender Pω2

(λ)-list, for
all cardinals λ ≥ ω2. Roughly speaking, ISP(ω2, λ) is a Pω2

(λ) version of the
tree property, where usual the tree property on ω2 states that every ω2-tree has
a cofinal branch. The equivalence of this principle with Definition 1.11 is proven
in [13, Section 3]. See [13, Section 2] for the alternative definition of ISP and a
discussion of the principle.
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2. Quotients of Strongly Proper Forcings

In this section we prove our main theorem on quotients of strongly proper forc-
ings. We introduce the idea of a simple universal strongly N -generic condition, and
show that under some circumstances quotients of forcing posets which have such
conditions for stationarily many N are well behaved.

The following definition was introduced by Mitchell in a slightly different form
([9]).

Definition 2.1. Let Q be a forcing poset, q ∈ Q, and N a set. We say that q is

a strongly (N,Q)-generic condition if for any set D which is dense in the forcing

poset N ∩Q, D is predense in Q below q.

If Q is understood from context, we just say that q is a strongly N -generic
condition.

For a forcing poset Q, let λQ denote the smallest uncountable cardinal λ such
that Q ⊆ H(λ). Note that for any set N , a condition q ∈ Q is strongly N -generic
iff q is strongly (N ∩H(λQ))-generic.

The next lemma was basically proven in [9, Proposition 2.15]. We include a
proof for completeness.

Lemma 2.2. Let Q be a forcing poset, q ∈ Q, and N a set. Then the following are

equivalent:

(1) q is strongly N -generic;

(2) there is a function r 7→ r ↾ N defined on conditions r ≤ q satisfying that

r ↾ N ∈ N ∩Q and for all v ≤ r ↾ N in N ∩Q, r and v are compatible.

Proof. For the forward direction, suppose that there is r ≤ q for which there does
not exist a condition r ↾ N all of whose extensions in N ∩ Q are compatible with
r. Let D be the set of w ∈ N ∩Q which are incompatible with r. The assumption
on r implies that D is dense in N ∩Q. But D is not predense below q since every
condition in D is incompatible with r. So q is not strongly N -generic.

Conversely, assume that there is a function r 7→ r ↾ N as described. Let D be
dense in N ∩ Q and let r ≤ q. Fix v ≤ r ↾ N in D. Then r and v are compatible.
So D is predense below q. �

We introduce two strengthenings of strong genericity, namely simple and univer-
sal.

Definition 2.3. Let Q be a forcing poset, q ∈ Q, and N a set. We say that q
is a universal strongly (N,Q)-generic condition if q is a strongly (N,Q)-generic
condition and for all p ∈ N ∩Q, p and q are compatible.

Definition 2.4. Let Q be a forcing poset, q ∈ Q, and N a set. We say that q
is a simple strongly (N,Q)-generic condition if there exists a set E ⊆ Q which is

dense below q and a function r 7→ r ↾ N defined on E such that for all r ∈ E,

r ↾ N ∈ N ∩Q, r ≤ r ↾ N , and for all v ≤ r ↾ N in N ∩Q, r and v are compatible.

The difference between simple and ordinary strongly generic conditions as de-
scribed in Lemma 2.2(2) is the additional assumption in simple that r ≤ r ↾ N . But
if the forcing poset has greatest lower bounds, then the two ideas are equivalent;
see Lemma 2.5 below.
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Note that if q is a simple strongly N -generic condition, then q is strongly N -
generic. Namely, given r ≤ q not in E, first extend r to s in E and then define
r ↾ N to be s ↾ N .

While these definitions are new, most strongly generic conditions in the literature
satisfy them. For example, all of the adequate set type forcings described in [3] have
simple universal strongly generic conditions for countable elementary substructures.

It turns out that for forcing posets with greatest lower bounds, every strongly
generic condition is simple.

Lemma 2.5. Let Q be a forcing poset with greatest lower bounds. Let N be a

set and q ∈ Q. If q is a strongly N -generic condition, then q is a simple strongly

N -generic condition.

Proof. Let r0 ≤ q, and we will find r ≤ r0 and r ↾ N ∈ N ∩Q such that r ≤ r ↾ N ,
and for all v ≤ r ↾ N in N ∩ Q, r and v are compatible. Since q is strongly N -
generic, there is a condition u ∈ N ∩Q such that for all v ≤ u in N ∩Q, r0 and v are
compatible. In particular, r0 and u are compatible. Let r := r0 ∧u and r ↾ N := u.
Then r ≤ r0, r ↾ N ∈ N ∩Q, and r ≤ r ↾ N .

Let v ≤ r ↾ N be in N ∩Q, and we will show that r and v are compatible. Then
v ≤ u, so by the choice of u, r0 and v are compatible. Therefore r0 ∧ v exists. But
r0 ∧ v ≤ v, and since v ≤ u, r0 ∧ v ≤ r0 ∧ u = r. So r and v are compatible. �

Definition 2.6. A forcing poset Q is strongly proper if for all large enough regular

cardinals χ, there are club many countable elementary substructures N of H(χ)
satisfying that whenever p ∈ N ∩ Q, there exists a strongly N -generic condition

below p.

This definition, introduced by Mitchell, is defined in a way similar to the usual
definition of proper forcing. But by standard arguments and the comments after
Definition 2.1, this definition is equivalent to the existence of club many countable
sets N in Pω1

(H(λQ)) such that every p ∈ N∩Q has a stronglyN -generic extension.

Definition 2.7. Let Q be a forcing poset. We say that Q is strongly proper on a
stationary set if there are stationarily many N in Pω1

(H(λQ)) such that whenever

p ∈ N ∩Q, there is q ≤ p which is a strongly N -generic condition.

By standard arguments we get an equivalent property by replacing λQ with any
regular cardinal λ ≥ λQ; similar comments apply to the following definition.

Definition 2.8. A forcing poset Q is said to have universal strongly generic con-
ditions on a stationary set if there are stationarily many N in Pω1

(H(λQ)) such

that there exists a universal strongly N -generic condition.

For a forcing poset Q with greatest lower bounds, we will consider suborders P
of Q satisfying the following compatibility property. This property will be crucial
for the rest of the paper.

∗(P,Q): for all x in P and y, z in Q, if x, y, and z are pairwise compatible, then x
is compatible with y ∧ z.

Note that ∗(Q,Q) implies that ∗(P,Q) for all suborders P of Q. A large num-
ber of forcing posets Q satisfy the property ∗(Q,Q). These include Cohen forcings,
collapsing forcings, adding a club by initial segments, and many side condition forc-
ings. In general, forcing posets where greatest lower bounds are given by unions
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tend to satisfy it. In contrast, most Boolean algebras do not satisfy the property.
For example, consider a field of sets, and let A and B be sets with nonempty inter-
section and relative complements. Then A, B, and A△B have pairwise nonempty
intersections, but A has empty intersection with B ∩ (A△B) = B \A.

Our main theorem on quotients Theorem 2.11 states that if Q has universal
strongly generic conditions on a stationary set, and P is a regular suborder satis-
fying ∗(P,Q), then P forces that the quotient Q/GṖ has universal strongly generic
conditions on a stationary set.

Lemma 2.9. Let Q be a forcing poset which has greatest lower bounds, and let P

be a regular suborder of Q which satisfies ∗(P,Q). Then P forces that for all r and

s in Q/ĠP, if r and s are compatible in Q then r ∧ s is in Q/ĠP.

Proof. Let G be a V -generic filter on P, and suppose that r and s are in Q/G and
are compatible in Q. To show that r ∧ s is in Q/G, let p be in G and we will show
that p is compatible with r∧s. Since r and s are in Q/G, they are each compatible
with p. By property ∗(P,Q), p is compatible with r ∧ s. �

The next lemma will be used in the proof of Theorem 2.11, which is our main
theorem on quotients. We will use it again in Section 4 when we prove a variation
of the main theorem.

Lemma 2.10. Let Q be a forcing poset which has greatest lower bounds, and let P

be a regular suborder of Q satisfying property ∗(P,Q). Let χ be a regular cardinal,

N ≺ H(χ), P,Q ∈ N , and suppose that q is a strongly (N,Q)-generic condition.

Assume that z is in P and z forces that q̌ is in Q/ĠP. Then z forces that N [ĠP]∩V ⊆
N and q̌ is a strongly (N [ĠP],Q/ĠP)-generic condition.

Proof. To show that z forces that N [ĠP]∩ V ⊆ N , assume for a contradiction that
z′ ≤ z in P, ȧ is a P-name in N , and z′ forces that ȧ is in V \N . Since ȧG = ȧG∩P

whenever G is a V -generic filter on Q, it follows that z′ forces in Q that ȧ is in
V \N . Let D be the dense set of conditions v ∈ Q such that v decides in Q whether
ȧ is in V , and if it decides that it is, it decides the value of ȧ. Since ȧ ∈ N , it
follows by elementarity that D ∈ N , and hence D ∩N is dense in N ∩Q.

Since z forces that q̌ is in Q/ĠP, z
′ is compatible with q in Q. As q is strongly

(N,Q)-generic and q ∧ z′ ≤ q, fix v ∈ D ∩N which is compatible with q ∧ z′. As z′

forces that ȧ is in V \N , so does v ∧ q ∧ z′. Since v ∈ D ∩N , by the elementarity
of N there is b ∈ N such that v forces that ȧ = b̌. But then v ∧ q ∧ z′ forces that
ȧ ∈ N , which is a contradiction.

Now let GP be a V -generic filter on P which contains z. We will show that
in V [GP], q is a strongly (N [GP],Q/GP)-generic condition. Since q is a strongly
(N,Q)-generic condition in V , by Lemma 2.5 fix a set E ⊆ Q in V which is dense
below q and a function r 7→ r ↾ N defined on E satisfying that for all r ∈ E,
r ↾ N ∈ N ∩Q, r ≤ r ↾ N , and for all v ≤ r ↾ N in N ∩Q, r and v are compatible.
By Lemma 1.5, E ∩ (Q/GP) is dense below q in Q/GP.

In V [GP] define a map r 7→ r ↾ N [GP] on the set E ∩ (Q/GP) by letting r ↾

N [GP] := r ↾ N . For all r ∈ E ∩ (Q/GP), r ↾ N [GP] is in N and hence in N [GP],
and r ≤ r ↾ N = r ↾ N [GP]. By Lemma 1.4, r ↾ N [GP] is in Q/GP. Consider
v ∈ N [GP] ∩ (Q/GP) below r ↾ N [GP]. Since N [GP] ∩ V ⊆ N as shown above,
v ∈ N ∩ Q and v ≤ r ↾ N in Q. So v is compatible with r in Q. As r and v are
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both in Q/GP, r ∧ v is in Q/GP by Lemma 2.9. Hence r and v are compatible in
Q/GP. �

Theorem 2.11. Let Q be a forcing poset which has greatest lower bounds, and

let P be a regular suborder of Q satisfying property ∗(P,Q). Assume that Q has

universal strongly generic conditions on a stationary set. Then P forces that Q/ĠP

has universal strongly generic conditions on a stationary set. In particular, P forces

that Q/ĠP is strongly proper on a stationary set.

Proof. Let χ be a regular cardinal such that Q ∈ H(χ). Then Q forces that χ is

regular and λQ/ĠP
≤ χ. Let Ḟ be a P-name for a function Ḟ : (H(χ)V [ĠP])<ω →

H(χ)V [ĠP], and let s ∈ P. We will find an extension of s in P which forces that

there exists a countable set M ⊆ H(χ)V [ĠP] which is closed under Ḟ such that there

exists a universal strongly (M,Q/ĠP)-generic condition.
Define H : H(χ)<ω → H(χ) by letting H(ȧ0, . . . , ȧn) be a P-name in H(χ) which

P forces is equal to Ḟ (ȧ0, . . . , ȧn), for any P-names ȧ0, . . . , ȧn in H(χ). Since Q has
universal strongly generic conditions on a stationary set, we can fix a countable set
N ≺ H(χ) such that P, Q, and s are in N , N is closed under H , and there is a
universal strongly (N,Q)-generic condition qN .

Since s ∈ N ∩Q and qN is universal, qN is compatible with s. As P is a regular
suborder of Q, fix z in P such that every extension of z in P is compatible with
qN ∧s in Q. By Lemma 1.3, z forces that qN ∧s is in Q/ĠP. By Lemma 1.4, z forces

that qN is in Q/ĠP. Since z is compatible with qN ∧ s in Q, z is compatible with s
in Q. As P is a regular suborder of Q and s and z are in P, z is compatible with s
in P. Extending z if necessary in P, we may assume without loss of generality that
z ≤ s.

Since N is closed under H , P forces that N [ĠP] is closed under Ḟ . So it suffices to

show that z forces that qN is a universal strongly (N [ĠP],Q/ĠP)-generic condition.
Let G be a V -generic filter on P with z ∈ G. By Lemma 2.10 applied to z and qN ,
we get that N [G] ∩ V ⊆ N and qN is a strongly (N [ĠP],Q/ĠP)-generic condition.
Finally, if p ∈ N [G] ∩ (Q/G), then p ∈ N ∩Q, so p and qN are compatible in Q by
the universality of qN . As p and qN are in Q/G, they are compatible in Q/G by
Lemma 2.9. �

Recall the following definition of Mitchell, which plays a prominent role in [9].

Definition 2.12. A forcing poset Q is said to have the ω1-approximation property
if Q forces that whenever X is a subset of V such that for every set N which is

countable in V , N ∩X is in V , then X is in V .

In other words, Q has the ω1-approximation property iff Q forces that the pair
(V, V [ĠQ]) has the ω1-approximation property.

Proposition 2.13. Let Q be a forcing poset and assume that Q is strongly proper

on a stationary set. Then Q satisfies the ω1-approximation property.

Proposition 2.13 is a special case of [8, Lemma 6]. The proof goes roughly as

follows. Suppose for a contradiction that a condition p forces that Ẋ is a coun-
terexample to the approximation property. Fix N an elementary substructure with
p, Ẋ ∈ N and q ≤ p which is a strongly N -generic condition. Extend q to r which
decides the value of N ∩Ẋ . Then r ↾ N has extensions v and w in N which disagree
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on whether a certain set in N is in Ẋ . Since r decides the value of N ∩ Ẋ, it cannot
be compatible with both v and w, giving a contradiction.

As an immediate consequence of Theorem 2.11 and Proposition 2.13, we get the
following corollary.

Corollary 2.14. Let Q be a forcing poset which has greatest lower bounds, and

assume that Q has universal strongly generic conditions on a stationary set. Let P

be a regular suborder of Q satisfying ∗(P,Q). Then P forces that Q/ĠP satisfies the

ω1-approximation property.

3. Products

We will show that some of the properties studied in the previous section are
preserved under products.1 This information will be used in our consistency result
on ISP(ω2).

Note that if P and Q have greatest lower bounds, then so does P× Q. Namely,
(p0, q0) ∧ (p1, q1) = (p0 ∧ p1, q0 ∧ q1).

Lemma 3.1. Suppose that P and Q are forcing posets with greatest lower bounds

which both satisfy the property that whenever x, y, and z are pairwise compatible

conditions, then x is compatible with y ∧ z. Then P × Q satisfies this property as

well.

The proof is straightforward.

Lemma 3.2. Let P and Q be forcing posets with greatest lower bounds. Let λ be

a cardinal such that λP, λQ ≤ λ and let S be a subset of Pω1
(H(λ)). Suppose that

P and Q both have universal strongly generic conditions on S. Then P × Q has

universal strongly generic conditions on S.

Proof. Let N be in S. Fix a universal strongly (N,P)-generic condition p and a
universal strongly (N,Q)-generic condition q. We claim that (p, q) is a universal
strongly (N,P×Q)-generic condition.

So let (u, v) be in N ∩ (P×Q). Then by universality, p and u are compatible in
P, and q and v are compatible in Q. Hence (p ∧ u, q ∧ v) ≤ (p, q), (u, v). So (p, q)
and (u, v) are compatible in P×Q.

Let r 7→ r ↾ N be a map from conditions r ≤ p in P to N ∩ P witnessing that
p is a strongly (N,P)-generic condition. Similarly, let s 7→ s ↾ N be a map from
conditions s ≤ q in Q to N ∩ Q witnessing that q is a strongly (N,Q)-generic
condition.

For (r, s) ≤ (p, q) in P × Q, define (r, s) ↾ N = (r ↾ N, s ↾ N), which is clearly
in N ∩ (P × Q). Assume that (y, z) ≤ (r ↾ N, s ↾ N) is in N ∩ (P × Q). Then y
is compatible with r in P and z is compatible with s in Q. So (r ∧ y, s ∧ z) is in
P×Q and is below (r, s) and (y, z). So every extension of (r, s) ↾ N in N ∩ (P×Q)
is compatible with (r, s). �

A similar argument shows that if P and Q are strongly proper, then so is P×Q.
In other words, strong properness is productive. This is in contrast to properness,
which is not productive; see [12, Chapter XVII, 2.12].

1Similar results were obtained previously by Friedman [2, Lemma 3] and Neeman [11, Claim
3.8].
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4. Variations

We consider two variations of Theorem 2.11 on quotients of strongly proper
forcings. First, we discuss factoring a forcing poset over an elementary substructure
below a condition. Secondly, we introduce a weakening of strongly proper which
is called non-diagonally strongly proper, and show that this property is sometimes
preserved under taking quotients.

Definition 4.1. Let P and Q be forcing posets. A function f : P → Q is a regular
embedding if:

(1) for all p and q in P, q ≤ p implies f(q) ≤ f(p);
(2) for all p and q in P, if f(p) and f(q) are compatible in Q, then p and q are

compatible in P;

(3) if A is a maximal antichain of P, then f [A] is a maximal antichain of Q.

It is straightforward to show that if f : P → Q is a regular embedding, then f [P]
is a regular suborder of Q.

Previously we have focused on strongly generic conditions for countable models.
The next lemma and theorem are useful when the model under consideration is
uncountable.

Recall that P/q = {r ∈ P : r ≤ q}, where P is a forcing poset and q ∈ P.

Lemma 4.2. Let P be a forcing poset with greatest lower bounds, χ ≥ λP a regular

cardinal, and N ≺ (H(χ),∈,P). Suppose that q is a universal strongly N -generic

condition. Applying the universality of q, define a function f : (N ∩ P) → (P/q) by
f(p) = q ∧ p.

Then f is a regular embedding. Moreover, for any V -generic filter G on N ∩ P,

for all r ∈ P/q, r ∈ (P/q)/f [G] iff r is compatible with every condition in G.

Proof. We prove first that f is a regular embedding. If t ≤ s in N ∩ P, then easily
q ∧ t ≤ q ∧ s. Now let s and t be in N ∩ P and assume that w ≤ q ∧ s, q ∧ t. Then
w ≤ s, t. By the elementarity of N , there is a condition w′ in N ∩ P such that
w′ ≤ s, t.

Now let A be a maximal antichain of N ∩ P, and we will show that f [A] is pre-
dense below q. Since f preserves incompatibility, it follows that f [A] is a maximal
antichain of P/q. Let D be the set of p ∈ N ∩ P for which there is s ∈ A such that
p ≤ s. Then D is dense in N ∩ P. Since q is strongly N -generic, D is predense
below q. Consider r ∈ P/q. Then there is u ∈ D and t such that t ≤ r, u. By the
definition of D, there is s ∈ A such that u ≤ s. Then t ≤ r, s. As t ≤ q, we have
that t = q ∧ t ≤ q ∧ s = f(s). Hence r is compatible with f(s), and f(s) ∈ f [A].

Let G be a V -generic filter on N ∩ P. Let r ≤ q be given. Assume that
r ∈ (P/q)/f [G], which means that r is compatible with every condition in f [G].
Consider s ∈ G. Fix t ≤ r, f(s). Since f(s) = q ∧ s ≤ s, it follows that t ≤ r, s. So
r and s are compatible. Conversely, assume that r ≤ q and r is compatible with
every condition in G. Let f(s) in f [G] be given, where s ∈ G. Since s ∈ G, r and
s are compatible, so fix t ≤ r, s. Then t ≤ q, so t ≤ q ∧ s = f(s). Hence r and f(s)
are compatible. �

For a V -generic filter G on N∩P, let (P/q)/G denote the forcing poset consisting
of conditions in P/q which are compatible with every condition in G. By the lemma,

(P/q)/G = (P/q)/f [G].
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Since N∩P is forcing equivalent to f [N∩P], it follows that P/q is forcing equivalent
to the two-step iteration

(N ∩ P) ∗ ((P/q)/ĠN∩P).

If H is a V -generic filter on P which contains q, then by Lemma 1.6(1), H∩f [N∩P]
is a V -generic filter on f [N ∩ P]. Since f is a dense embedding, f−1[H ∩ f [N ∩ P]]
is a V -generic filter on N ∩ P. But this latter set is just equal to H ∩ N . For if
f(p) = q ∧ p is in H , then since q ∧ p ≤ p, p is in H . And if p ∈ H ∩ N , then
since q ∈ H , f(p) = q ∧ p ∈ H . By Lemma 1.6(1), it follows that H ∩ N is a
V -generic filter on N ∩ P, Hq := {r ∈ H : r ≤ q} is a V [H ∩ N ]-generic filter on
(P/q)/(H ∩N), and V [H ] = V [H ∩N ][Hq].

Theorem 4.3. Let P be a forcing poset with greatest lower bounds satisfying ∗(P,P),
χ ≥ λP a regular cardinal, and N ≺ (H(χ),∈,P). Suppose that P has universal

strongly generic conditions on a stationary set, and q is a universal strongly N -

generic condition.

Then the forcing poset N ∩ P forces that the quotient (P/q)/ĠN∩P has universal

strongly generic conditions on a stationary set. Moreover, whenever H is a V -

generic filter on P which contains q, we have that V [H ] = V [H∩N ][K], where H∩N
is a V -generic filter on N ∩ P, K is a V [H ∩N ]-generic filter on (P/q)/(H ∩N),
and the pair (V [H ∩N ], V [H ]) satisfies the ω1-approximation property.

Proof. We claim that the forcing poset N ∩P forces that the quotient (P/q)/ĠN∩P

has universal strongly generic conditions on a stationary set. In particular, N ∩ P

forces that (P/q)/ĠN∩P is strongly proper on a stationary set, and hence has the
ω1-approximation property.

Let f : N ∩P → P/q be the function f(p) = q∧p. By Theorem 2.11, it suffices to
show that the regular suborder f [N ∩ P] of P/q satisfies property ∗(f [N ∩ P],P/q).
But this follows immediately from the fact that P satisfies ∗(P,P).

The second conclusion of the theorem follows from this claim together with the
analysis given prior to the statement of the theorem. �

An example of factoring a forcing poset over an uncountable elementary sub-
structure appears in the final argument of Mitchell’s theorem on the approachabil-
ity ideal in [9, Section 3]. Mitchell uses the existence of what he calls tidy strongly
generic conditions to show that the quotient has the ω1-approximation property.
Theorem 4.3 provides a different justification for Mitchell’s argument which avoids
tidy conditions.

For our second variation of Theorem 2.11, we introduce a weakening of strong
properness which is useful in situations where we desire quotients to have the ω1-
approximation property but universal conditions do not exist.

Definition 4.4. A forcing poset Q is non-diagonally strongly proper if for every

condition p in Q, there are stationarily many N in Pω1
(H(λQ)) such that p ∈ N

and there exists q ≤ p such that q is a strongly N -generic condition.

As usual, if we replace λQ with any cardinal χ ≥ λQ in the definition we get an
equivalent statement.

Proposition 4.5. Let Q be a non-diagonally strongly proper forcing poset. Then

Q satisfies the ω1-approximation property.
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The proof is the same as the one sketched after Proposition 2.13.

Theorem 4.6. Suppose that Q is a forcing poset with greatest lower bounds satis-

fying that for every condition p in Q, there are stationarily many N in Pω1
(H(λQ))

such that p ∈ N and there exists a strongly N -generic condition extending p. Let

P be a regular suborder of Q satisfying property ∗(P,Q). Then P forces that Q/ĠP

is non-diagonally strongly proper. In particular, P forces that Q/ĠP has the ω1-

approximation property.

Proof. Let χ be a regular cardinal such that Q ∈ H(χ). Then Q forces that χ is

regular and λQ/ĠP
≤ χ. Let Ḟ be a P-name for a function Ḟ : (H(χ)V [ĠP])<ω →

H(χ)V [ĠP], let s ∈ P, and suppose that s forces that ṗ is a condition in Q/ĠP.
We will find an extension of s in P which forces that there exists a countable
set M ⊆ H(χ)V [ĠP] which is closed under Ḟ , contains ṗ, and there is a strongly

(M,Q/ĠP)-generic condition below ṗ.
Extending s if necessary, assume that for some p ∈ Q, s forces that ṗ = p̌. Since

s forces that ṗ is in Q/ĠP, s forces that ṗ is compatible with every condition in ĠP.
In particular, s forces that ṗ is compatible with s. So p and s are compatible.

Let H : H(χ)<ω → H(χ) be a function such that P forces that H(ȧ0, . . . , ȧn) =

Ḟ (ȧ0, . . . , ȧn) for all P-names ȧ0, . . . , ȧn in H(χ). Since Q is non-diagonally strongly
proper, fix a countable set N ≺ H(χ) closed under H such that P, Q, s, and p are
in N and there is q ≤ p ∧ s which is a strongly (N,Q)-generic condition.

As P is a regular suborder of Q, fix z in P such that every extension of z in P is
compatible with q. Then z forces that q is in Q/ĠP. Since z is compatible with q
in Q and q ≤ s, z is compatible with s in Q. Since P is a regular suborder and z
and s are in P, z and s are compatible in P. So without loss of generality assume
that z ≤ s.

Since N is closed under H , P forces that N [ĠP] is closed under Ḟ . By Lemma

2.10, z forces that q is a strongly (N [ĠP],Q/ĠP)-generic condition. Also z ≤ s, and

since p ∈ N , z forces that ṗ = p̌ is in N [ĠP]. �

We give an example of a non-diagonally strongly proper forcing poset which is
not strongly proper on a stationary set.

Consider a stationary set S ⊆ ω1. Recall the forcing poset PS for adding a club
subset of S with finite conditions ([1, Theorem 3]). A condition in PS is a finite set
p of ordered pairs 〈α, β〉 such that α ∈ S and α ≤ β < ω1, and whenever 〈α, β〉 and
〈α′, β′〉 are in p then it is not the case that α < α′ ≤ β. Let q ≤ p in PS if p ⊆ q.

Proposition 4.7. Let N be a countable elementary substructure of (H(ω1),∈, S)
such that N ∩ω1 ∈ S, and let p ∈ N ∩PS. Then p∪{〈N ∩ω1, N ∩ω1〉} is a strongly

(N,PS)-generic condition.

The proof is straightforward. The forcing poset PS preserves all cardinals and
adds a club subset of S; see [1] for the details.

Now consider S0 and S1 which are disjoint stationary subsets of ω1. Define Q

as the forcing poset consisting of conditions of the form (i, p), where i ∈ {0, 1} and
p ∈ PSi

. Let (j, q) ≤ (i, p) if i = j and q ≤ p in PSi
.

Proposition 4.8. The forcing poset Q is non-diagonally strongly proper.

Proof. Let (i, p) be a condition in Q and let F : H(ω1)
<ω → H(ω1) be a func-

tion. Since Si is stationary, we can fix a countable elementary substructure N
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of (H(ω1),∈, F, S0, S1) such that N ∩ ω1 ∈ Si and (i, p) ∈ N . Then Proposition
4.7 implies that (i, p ∪ {〈N ∩ ω1, N ∩ ω1〉}) is a strongly (N,Q)-generic condition
extending (i, p). �

Proposition 4.9. The forcing poset Q is not strongly proper on a stationary set.

Proof. Let Ċ be a Q-name for the club subset of ω1 added by Q. Suppose that N
is an elementary substructure of H(χ) for some regular χ > ω1 such that S0, S1,

Q, and Ċ are in N . Since S0 and S1 are disjoint, N ∩ ω1 cannot be in both S0 and
S1. Fix j ∈ {0, 1} such that N ∩ω1 is not in Sj . We claim that the condition (j, ∅),
which is in N ∩ Q, does not have a strongly N -generic extension. In fact, it does
not have an N -generic extension.

Suppose for a contradiction that (j, q) ≤ (j, ∅) is N -generic. Then (j, q) forces

that N [Ġ]∩V = N , and in particular, N [Ġ]∩ω1 = N ∩ω1. Since Ċ ∈ N , Q forces

that N [Ġ] ∩ ω1 ∈ Ċ. So (j, q) forces that N ∩ ω1 ∈ Ċ. Since (j, q) forces that Ċ is
a subset of Sj , (j, q) forces that N ∩ ω1 ∈ Sj . But N ∩ ω1 is not in Sj , so we have
a contradiction. �

5. A Counterexample

We give an example of a strongly proper forcing poset Q and a regular suborder
P of Q such that P forces that Q/ĠP is not strongly proper on a stationary set. We
will make use of the following well known fact.

Lemma 5.1. If Q is strongly proper on a stationary set, then any generic extension

of V by Q contains a V -generic Cohen real.

Proof. (Sketch) Let G be a V -generic filter on Q. By a density argument, there
exists a countable elementary substructure N with Q ∈ N and a strongly N -generic
condition q ∈ G. Then N ∩ G is a V -generic filter on N ∩ Q. But N ∩ Q is a
countable nontrivial forcing poset, and hence is forcing equivalent to Cohen forcing
Add(ω). �

So it suffices to define a strongly proper forcing poset Q and a regular suborder P
of Q such that P forces that Q/ĠP is nontrivial and does not add reals over V [ĠP].

Assume that 2ω = ω1 and 2ω1 = ω2. Let X denote the set of all countable
elementary substructures of H(ω3). The forcing poset Q consists of finite coherent
adequate subsets of X , ordered by inclusion. The definition of coherent adequate
is beyond the scope of the paper, although we give additional information about
adequacy in the next section. Roughly speaking, a coherent adequate set of models
satisfies that any two models in it are membership comparable up to some initial
segment of the models, and if the models are equal up to some initial segment, then
they are isomorphic. For the complete definition, see [6, Section 1].

The following lists the properties of the forcing poset Q which we will use. For
a proof of (1) and (2) see [6]. For a proof of (3) see [10].

Proposition 5.2. The following statements hold:

(1) Q is strongly proper and ω2-c.c.

(2) Q forces CH.

(3) Q forces that there exists an ω1-Kurepa tree with ω3 many distinct branches.
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Since Q does not have greatest lower bounds, we will consider the Boolean com-
pletion of Q, which we denote by B. Then easily B has the ω2-c.c., preserves all
cardinals, and forces CH. Also a straightforward argument shows that since Q is
strongly proper, so is B.

Let us find a regular suborder P of B which forces that B/ĠP is nontrivial and

does not add reals over V [ĠP]. Since B forces CH, we can fix a sequence 〈ṙi : i < ω1〉
of B-names for subsets of ω such that B forces that every subset of ω is equal to ṙi
for some i < ω1. Moreover, we assume that each name ṙi is a nice B-name given by
a sequence of antichains 〈Ai

n : n < ω〉. So (p, ň) is in the name ṙi iff p ∈ Ai
n. Since

B is ω2-c.c., each antichain Ai
n has size at most ω1.

Fix a regular cardinal χ > ω3 such that Q, B, 〈ṙi : i < ω1〉, and 〈Ai
n : n < ω〉

for all i < ω1 are members of H(χ). Let N be an elementary substructure of H(χ)
containing these parameters such that N has size ω2 and Nω1 ⊆ N . This is possible
since we are assuming that 2ω1 = ω2. Now let P := N ∩ B.

Proposition 5.3. The forcing poset P is a regular suborder of B which forces that

B/ĠP is a nontrivial forcing which does not add reals.

Proof. Suppose that p and q are in P and are compatible in B. Then p and q are
in N , so by elementarity, p ∧ q is in N ∩ B = P. So they are compatible in P. Now
let A be a maximal antichain of P. Then A is an antichain of B and is a subset
of B ∩ N . Since B is ω2-c.c., A has size at most ω1. But Nω1 ⊆ N , so A ∈ N .
Suppose for a contradiction that A is not a maximal antichain of B. Then there is
a condition in B which is incompatible with every member of A. Since A ∈ N , by
elementarity there is a condition in N ∩ B = P which is incompatible with every
member of A. But then A is not maximal in P, which is a contradiction.

The forcing poset P has size ω2 and is ω2-c.c. Since 2ω1 = ω2 in the ground
model, P forces that 2ω1 = ω2 by a standard nice name argument. But B forces
that there is an ω1-tree with ω3 many distinct branches, and hence 2ω1 ≥ ω3. It
follows that P forces that B/ĠP is a nontrivial forcing.

To show that P forces that B/ĠP does not add reals, let G be a V -generic filter
on B. Let GP := G ∩N , which is a V -generic filter on P. Let r be a subset of ω in
V [G], and we will show that r is in V [GP]. By assumption, there is i < ω1 such that
r = ri, where ri := ṙGi . For each n < ω, n ∈ ri iff Ai

n ∩G 6= ∅. But Ai
n is in N and

hence is a subset of N since Ai
n has size at most ω1. So n ∈ ri iff Ai

n ∩G ∩N 6= ∅
iff Ai

n ∩GP 6= ∅. It follows that ri, and hence r, is in V [GP]. �

We note that in fact P forces that B/ĠP does not have the ω1-approximation
property. Recall that Q forces that there exists an ω1-tree with ω3 many distinct
branches. By looking at the details of the definition of this tree as presented in
[10], one can argue that this tree already exists in a generic extension by P. Since

2ω1 = ω2 in the generic extension by P, P forces that Q/ĠP adds new branches to
the tree. But any initial segment of such a branch lies in the extension by P, and
this easily implies that the quotient does not have the ω1-approximation property.

6. A strongly proper collapse

We now turn towards proving our consistency result. We will construct a model
in which ISP(ω2) holds and the continuum is greater than ω2. The forcing poset used
to obtain this model will be of the form P×Add(ω, λ), where P is a strongly proper
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forcing which collapses a supercompact cardinal κ to become ω2, and Add(ω, λ) is
the forcing which adds λ many Cohen reals.

In this section we will describe the forcing poset P. Essentially this forcing is
the pure side condition forcing consisting of finite adequate subsets of κ ordered by
inclusion, where the notion of adequate set is the same as that defined by Krueger
in [3], except that ω2 is replaced by a strongly inaccessible cardinal κ.2

Assume for the rest of the section that κ is a strongly inaccessible cardinal. In
particular, H(κ) has size κ. Fix a bijection π : κ → H(κ). Then the structure
(H(κ),∈, π) has definable Skolem functions. For any set a ⊆ κ, let Sk(a) denote
the closure of a under some (or equivalently any) set of definable Skolem functions.

Let C be the club set of α < κ such that Sk(α) ∩ κ = α. Let Λ be the set of
cardinals β < κ such that β is a limit point of C with uncountable cofinality, and
for all γ < β, γω < β. Note that Λ is stationary in κ. Let X be the set of countable
subsets a of κ such that Sk(a) ∩ κ = a and for all γ ∈ a, sup(C ∩ γ) ∈ a.

Using κ in place of ω2 and the sets C, Λ, and X just described, it is possible to
develop the basic ideas of adequate sets word for word as in [3]. We will give an
overview some of the main points. The interested reader is invited to read Sections
1–4 of [3] for the complete details.

For a set M ∈ X , define ΛM as the set of β ∈ Λ such that

β = min(Λ \ sup(M ∩ β)).

By Lemma 2.4 of [3], for all M and N in X , ΛM ∩ ΛN has a largest element. This
largest element is defined as βM,N , the comparison point of M and N .

One of the most important properties of the comparison point of M and N is
expressed in the following inclusion:

(M ∪ lim(M)) ∩ (N ∪ lim(N)) ⊆ βM,N .

This is proved in [3, Proposition 2.6].

Definition 6.1. A finite set A ⊆ X is adequate if for all M and N in A, either
M ∩ βM,N ∈ Sk(N), N ∩ βM,N ∈ Sk(M), or M ∩ βM,N = N ∩ βM,N .

Note that A is adequate if for all M and N in A, {M,N} is adequate. Since
ω1 ≤ βM,N , if {M,N} is adequate then M ∩ βM,N ∈ Sk(N) iff M ∩ ω1 ∈ N , and
M ∩ βM,N = N ∩ βM,N iff M ∩ ω1 = N ∩ ω1.

Proposition 6.2. If A is adequate, M ∈ X , and A ∈ Sk(M), then A ∪ {M} is

adequate.

See [3, Proposition 3.5].
If N ∈ X and β ∈ Λ, then N ∩ β is in X ([3, Lemma 1.10]). Let us say that an

adequate set A is N -closed if for all M ∈ A, M ∩ βM,N ∈ A.

Proposition 6.3. Let A be adequate and N ∈ A. Then there exists an adequate

set B such that A ⊆ B and B is N -closed.

This follows from [3, Proposition 3.4]. The next result appears as [3, Proposition
3.9].

Proposition 6.4. Let A be adequate, N ∈ A, and suppose that A is N -closed. Let

B be adequate such that A ∩ Sk(N) ⊆ B ⊆ Sk(N). Then A ∪B is adequate.

2Mitchell [9] was the first to define a strongly proper collapse of an inaccessible to become ω2.
Neeman [11] gives another example using his method of sequences of models of two types.
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Now we are ready to define the forcing poset P. Let P consist of conditions A
such that A is a finite adequate subset of X . Let B ≤ A in P if A ⊆ B.

Lemma 6.5. The forcing poset P has greatest lower bounds. Namely, for compatible

conditions A and B in P, A ∧B equals A ∪B.

Proof. Suppose that A and B are compatible, and let C ≤ A,B. Since the ordering
of P is inclusion, A∪B ⊆ C. For all M and N in A∪B, {M,N} is adequate since
they are in C. So A ∪B is adequate. Hence A ∪B ∈ P and C ≤ A ∪B. �

Lemma 6.6. For all A, B, and C in P which are pairwise compatible, A is com-

patible with B ∪ C.

Proof. Let M and N be in A ∪ (B ∪C). Then M and N are either both in A∪B,
A∪C, or B∪C. Since each of these three sets is adequate, {M,N} is adequate. �

Proposition 6.7. The forcing poset P has universal strongly generic conditions on

a club.

Proof. Note that X is a club subset of Pω1
(κ). Clearly λP = κ. Consider any set N

in Pω1
(H(κ)) such that N ∩ κ ∈ X . We claim that {N ∩ κ} is a universal strongly

N -generic condition.
If A is a finite adequate set inN = Sk(N∩κ), then by Proposition 6.2, A∪{N∩κ}

is adequate and hence is in P. Therefore A and {N ∩ κ} are compatible.
To show that {N ∩κ} is a strongly N -generic condition, let E be the set of B in

P such that {N ∩ κ} ⊆ B and B is N -closed. By Proposition 6.3, E is dense below
{N ∩ κ}. Define C 7→ C ↾ N for C ∈ E by letting C ↾ N := C ∩N . Clearly C ∩N
is adequate and hence is in P, C ∩N ∈ N , and C ≤ C ∩N . If B is a condition in
N extending C ↾ N , then Proposition 6.4 implies that B ∪ C is a condition in P

below B and C, showing that C and B are compatible. �

Proposition 6.8. The forcing poset Q is κ-c.c.

The proof of this proposition is identical to the proof of [3, Proposition 4.4], so
we omit it.

Lemma 6.9. The forcing poset P forces that κ equals ω2.

Proof. Since P preserves ω1 and κ by the preceding propositions, it suffices to show
that for any regular cardinal µ such that ω1 < µ < κ, P collapses µ to have size ω1.
So let such a µ be given and let G be a V -generic filter on P.

Given any condition A and any ordinal γ < κ, we can fix M in X such that A,
γ, and µ are in Sk(M). Then A ∪ {M} is a condition in P by Proposition 6.2. It
follows by a density argument that the set

F = {M : ∃A ∈ G (M ∈ A ∧ µ ∈ M)}

has union equal to κ. In particular,
⋃
{M ∩ µ : M ∈ F} = µ.

Now for any M and N in F , µ ∈ M ∩N implies that µ < βM,N . Fix A in G such
that M and N are in A. Since A is adequate and µ < βM,N , M ∩ µ and N ∩ µ are
either equal or one is a proper subset of the other. Moreover, since M ∩βM,N ⊆ N
iff M ∩ω1 ≤ N ∩ω1, it follows that the set {M ∩µ : M ∈ F} is a chain well-ordered
by inclusion. As each set in this chain is countable, it must have length at most
ω1. So µ is the union of ω1 many countable sets, which implies that µ is collapsed
to have size ω1 in V [G]. �
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This completes our treatment of a strongly proper collapse. We note that some
variations are possible. By [5], it is possible to eliminate N -closure which is used
in Propositions 6.4 and 6.7, so that the family of models X can be chosen not to
be closed under intersections. An alternative development of these ideas can be
made in the context of coherent adequate set forcing as described in [4] and [6], to
produce a strongly proper collapse which preserves CH.

We also point out that if κ is a Mahlo cardinal, then the forcing poset P above
forces that there are no special Aronszajn trees on ω2, and if κ is weakly compact
then P forces that there are no Aronszajn trees on ω2. These facts follow by
arguments similar to Mitchell’s original proof in [7] using Corollary 2.14. Neeman
obtained similar results in [11, Section 5].

7. The consistency result

We start with a model in which GCH holds, κ is a supercompact cardinal, and
λ is a cardinal of uncountable cofinality with κ ≤ λ. We will define a forcing poset
P×Q which collapses κ to become ω2, forces 2

ω = λ, and forces that ISP(ω2) holds.
Let P be the forcing poset described in the preceding section consisting of finite

adequate collections of countable subsets of κ, ordered by inclusion. Let Q be
Add(ω, λ). Conditions in Q are finite partial functions from ω × λ into 2, ordered
by inclusion.

The forcing poset Q is κ-Knaster. In other words, if {qi : i < κ} is a subset of
Q, then there is a cofinal set X ⊆ κ such that for all i < j in X , qi and qj are
compatible. This follows from the ∆-system lemma by a standard argument. Since
P is κ-c.c., it follows easily that P×Q is κ-c.c. Also P×Q has size λ. It follows by
a standard argument using nice names that P×Q forces that 2ω = λ.

Lemma 7.1. If p and q are in Q, then p ∪ q is the greatest lower bound of p and

q. If p, q, and r are pairwise compatible conditions in Q, then p is compatible with

q ∧ r.

The proof is easy.

Lemma 7.2. The forcing poset Q has universal strongly generic conditions on a

club.

Proof. Let N be a countable elementary substructure of H(λ). We claim that the
empty condition is a universal stronglyN -generic condition. Clearly it is compatible
with every condition in N ∩Q.

For each r ∈ Q, let r ↾ N := r ∩ N . Then r ↾ N ∈ N ∩ Q and r ≤ r ↾ N .
Suppose that v ≤ r ↾ N is in N ∩ Q. We claim that r and v are compatible.
If (i, n) ∈ dom(r) ∩ dom(v), then (i, n) ∈ dom(r) ∩ N . Also r(i, n) ∈ N , so
(i, n, r(i, n)) ∈ r ∩N . Since v extends r ∩N , r(i, n) = v(i, n). It follows that r ∪ v
is a condition below r and v. �

Proposition 7.3. The forcing poset P×Q satisfies:

(1) P×Q has greatest lower bounds;

(2) for all pairwise compatible conditions x, y, and z in P×Q, x is compatible

with y ∧ z;
(3) P×Q has universal strongly generic conditions on a club;

(4) P×Q is strongly proper.
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Proof. (1) and (2) follow from Lemmas 3.1, 6.5, 6.6, and 7.1. (3) follows from
Lemma 3.2, Proposition 6.7, and Lemma 7.2. �

Since P×Q is strongly proper it preserves ω1, and since it is κ-c.c., it preserves
all cardinals greater than or equal to κ. By Lemma 6.9, every cardinal µ with
ω1 < µ < κ is collapsed to have size ω1. It follows that P×Q forces that κ is equal
to ω2. As noted above, P×Q forces that 2ω = λ.

It remains to show that P × Q forces that ISP(ω2) holds. So fix a regular

cardinal χ such that P × Q ∈ H(χ). Let Ḟ be a (P × Q)-name for a function

Ḟ : (H(χ)V [ĠP×Q])<ω → H(χ)V [ĠP×Q]. We will prove that P × Q forces that there
exists a set N satisfying:

(1) N is in Pκ(H(χ));
(2) N ∩ κ ∈ κ;
(3) N ≺ H(χ);

(4) N is closed under Ḟ ;
(5) N is an ω1-guessing model.

Since κ is supercompact, we can fix an elementary embedding j : V → M with
critical point κ such that j(κ) > |H(χ)| and M |H(χ)| ⊆ M .

Lemma 7.4. In V , the function j ↾ P × Q is a regular embedding of P × Q into

j(P×Q). In particular, the forcing poset j[P×Q] is a regular suborder of j(P×Q).

Proof. Properties (1) and (2) of Definition 4.1 follow immediately from the fact
that j is an elementary embedding. For (3), let A be a maximal antichain of P×Q.
Since P × Q is κ-c.c., |A| < κ. Therefore j(A) = j[A]. By elementarity, in M the
set j(A) is a maximal antichain of j(P × Q). But being a maximal antichain is
upwards absolute, so j(A) = j[A] is a maximal antichain of j(P×Q). �

Since being a regular suborder is downwards absolute, j[P × Q] is a regular
suborder of j(P×Q) in the model M .

Let G×H be a V -generic filter on P×Q. Let F := ḞG×H . We will prove that
in V [G×H ], there exists a set N satisfying properties (1)–(5) above.

Since j ↾ P×Q is an isomorphism of P×Q onto j[P×Q], j[G×H ] is a V -generic
filter on j[P×Q] and V [G×H ] = V [j[G×H ]]. Let K be a V [G×H ]-generic filter on
the quotient forcing j(P×Q)/j[G×H ]. By Lemma 1.6(2), K is a V -generic filter on
j(P×Q) and V [G×H ][K] = V [K]. Also by Lemma 1.6(2), j[G×H ] = K∩j[P×Q].
In particular, j[G×H ] ⊆ K. Hence we can extend the elementary embedding j in
V [K] to j : V [G×H ] → M [K] by letting j(ȧG×H) = j(ȧ)K .

By the elementarity of j, it suffices to prove that M [K] models that there exists
a set N satisfying:

(1) N is in Pj(κ)(H(j(χ)));
(2) N ∩ j(κ) ∈ j(κ);
(3) N ≺ H(j(χ));
(4) N is closed under j(F );
(5) N is an ω1-guessing model.

Let N := j[H(χ)V [G×H]].
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First, we prove that N is in M [K]. Since P × Q ∈ H(χ)V , H(χ)V [G×H] =

H(χ)V [G × H ]. As M |H(θ)V | ⊆ M , H(θ)V and j ↾ H(θ)V are in M . By the
definition of the extended embedding j, N = {j(ȧG×H) : ȧ ∈ H(χ)V } = {j(ȧ)K :
ȧ ∈ H(χ)V }. Since H(χ)V , j ↾ H(χ)V , and K are in M [K], so is N .

Now let us check that N satisfies properties (1)–(5).

(1) Obviously N ⊆ H(j(χ)) in M [K]. Let f : |H(θ)V | → H(θ)V be a bijection
in V . The surjection g : |H(θ)V | → N given by g(α) = j(f(α))K is in M [K]. Since
j(κ) > |H(θ)V |, in M [K] we have that N ∈ Pj(κ)(H(j(χ))).

(2) As κ is the critical point of j, N ∩ j(κ) equals κ, which is in j(κ).

(3) Let L : (H(χ)V [G×H])<ω → H(χ)V [G×H] be a Skolem function for the struc-
ture (H(χ),∈). By elementarity, j(L) is a Skolem function inM [K] for the structure
(H(j(χ)),∈). Easily N is closed under j(L). So N ≺ H(j(χ)) in M [K].

(4) Since H(χ)V [G×H] is obviously closed under F , easily N is closed under j(F ).

(5) To show that N is an ω1-guessing model in M [K], by Lemma 1.10 it suf-
fices to show that the pair (N,M [K]) satisfies the ω1-approximation property,
where N is the transitive collapse of N . Since N = j[H(χ)V [G×H]] is isomor-
phic to H(χ)V [G×H], which is transitive, it follows that N = H(χ)V [G×H]. As
H(χ)V = H(χ)M , H(χ)V [G×H] = H(χ)M [G×H]. So it suffices to show that the pair
(H(χ)M [G×H],M [K]) satisfies the ω1-approximation property.

By Proposition 7.3, the forcing poset P × Q has greatest lower bounds and
has universal strongly generic conditions on a stationary set. And for all pair-
wise compatible conditions x, y, and z in P × Q, x is compatible with y ∧ z. By
elementarity, the same properties are satisfied by j(P × Q) in the model M . In
particular, by Lemma 7.4 j[P×Q] is a regular suborder of j(P×Q) satisfying prop-
erty ∗(j[P×Q], j(P×Q)). By Corollary 2.14, the forcing poset j(P×Q)/j[G×H ]
satisfies the ω1-approximation property in the model M [G × H ]. Hence the pair
(M [G×H ],M [K]) satisfies the ω1-approximation property.

In M [K] let d be a bounded subset of H(χ)M [G×H] ∩ On such that for any
countable set b ∈ H(χ)M [G×H], b ∩ d ∈ H(χ)M [G×H]. Since H(χ)M [G×H] contains
all of its countable subsets in M [G×H ] by the regularity of χ, the ω1-approximation
property of (M [G × H ],M [K]) implies that d ∈ M [G × H ]. But H(χ)M [G×H] is
closed under bounded sets of ordinals, so d ∈ H(χ)M [G×H].
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