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THE HANF NUMBER FOR AMALGAMATION OF

COLORING CLASSES

ALEXEI KOLESNIKOV AND CHRIS LAMBIE-HANSON

Abstract. We study amalgamation properties in a family of ab-
stract elementary classes that we call coloring classes. The family
includes the examples previously studied in [3]. We establish that
the amalgamation property is equivalent to the disjoint amalga-
mation property in all coloring classes; find the Hanf number for
the amalgamation property for coloring classes; and improve the
results of [3] by showing, in ZFC, that the (disjoint) amalgamation
property for classes Kα studied in that paper must hold up to iα

(only a consistency result was previously known).

Introduction

Amalgamation in an abstract elementary class is a frequently made
assumption in various structure results; for example, the amalgamation
property is a standing assumption in Chapters 8–15 of [1] and is an as-
sumption in [6, 7, 8]. However, the exact strength of this assumption
is still unknown. In particular, it is an open problem, posed as Con-
jecture 9.3 in [5], whether there is a Hanf number for amalgamation.
An expanded version of this question also appears on the list of open
problems in [1] (Problem D.3).
More precisely, suppose that K is a family of abstract elementary

classes. Is there a cardinal λ(K) such that for every K ∈ K, the class
K has the amalgamation property in some µ > λ(K) if and only if
K has the amalgamation property in all µ > λ(K)? If the answer is
yes, then we will call the least such cardinal the Hanf number of K

for amalgamation. A typical example of a family K is the collection
of all abstract elementary classes K such that the Löwenheim–Skolem
number of K has a fixed size κ. A general discussion of the term “the
Hanf number for a property P” is in Chapter 4 of [1].
Partial advances were made in [3], where, for each infinite cardinal κ

and each α < κ+, a family of examples of abstract elementary classes
Kα+2 in a language Lα, |Lα| = κ, were given such that Kα has the
disjoint amalgamation property up to ℵα, but for which the disjoint
amalgamation property eventually fails. In fact, none of the classes Kα
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has arbitrarily large models. It was established that, consistently with
ℵα < iα, the disjoint amalgamation property for Kα+2 holds up to iα.
Thus, for the family of all AECs in a language of cardinality κ, the
Hanf number for disjoint amalgamation, if it exists, has to be at least
ℵκ+ and, consistently with ℵκ+ < iκ+ , has to be at least iκ+ . An error
in Proposition 3.6 of [3] was pointed out by Mirna Dzamonja, but it
was shown in [4] that the main consistency result (Theorem 3.10) still
holds. In this paper, we substantially improve the result by obtaining
the conclusion of Theorem 3.10 in ZFC. The paper [3] did not address
the amalgamation property.
A recent paper [2] addresses a more ambitious problem of classifying

possible amalgamation spectra for abstract elementary classes. The
paper presents a family of abstract elementary classes Kk, k < ω,
each axiomatized by a complete Lω1,ω-sentence and such that Kk has
disjoint amalgamation in ℵ0, . . . ,ℵk−2, but has neither amalgamation
nor disjoint amalgamation in ℵk−1. Amalgamation trivially holds in
ℵk, since every model of Kk of that size is maximal (so there are no
models of cardinality greater than ℵk).
In the present paper, we introduce a family of abstract elementary

classes that we call coloring classes. This family includes the examples
of [3], but does not include the examples of [2]. Our main results
include the following, which will be made more precise in the relevant
later sections.

(1) For an arbitrary coloring class, the disjoint amalgamation prop-
erty is equivalent to the amalgamation property. In particular,
the results of [3] also apply to the problem of finding the Hanf
number for amalgamation.

(2) We improve the results of [3] by showing in ZFC that, for the
classes Kα+2 studied in [3], the (disjoint) amalgamation prop-
erty holds up to iα.

(3) For the collection of all coloring classes in a language of a fixed
size κ, the Hanf number for (disjoint) amalgamation is precisely
iκ+ .

(4) Given an infinite cardinal κ, for every limit ordinal β < κ+

and every k < ω, there is a coloring class in a language of size
κ for which amalgamation first fails somewhere between iβ+k

and iβ+(k+3

2 ).

One of the new tools in the analysis is a rank of finite indiscernible
substructures of models in a class. The rank is implicit in the examples
of [3]. The values of the rank of one-element structures control both the
existence of arbitrarily large models and the (disjoint) amalgamation
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property. The method for constructing models of size iα is also new;
unlike most of the existing methods, the inductive argument uses the
entire family of coloring classes rather than a single class.
We assume that the reader is familiar with the basics of abstract

elementary classes (for example, the material in Part 2 of [1]).

Notation 0.1. If A is a set, then by [A]n we denote the set of all n-
element subsets of A. [A]<ω denotes the set of all finite subsets of A.
The symbol [n] denotes the set {1, . . . , n}; so [0] is the empty set. We
let ω+ := ω \ {0}.
The class sequence of cardinals κα (these cardinals are equal to iα

for α ≥ ω2) is defined at the start of Section 3.
If M is a model, then |M | denotes the universe of the model and

‖M‖ denotes the cardinality of the universe.
The notion of a set W of allowed diagrams appears in Definition 1.4;

the symbols Wn, n < ω are explained there. The notation of the form
WS is explained in 2.2; and W/w is in 3.2.

1. Coloring classes and the existence rank

1.1. Coloring classes.

Definition 1.1. Let L be a relational language whose set of relation
symbols is R =

⋃

1≤n<ω Rn, where, for each 1 ≤ n < ω, Rn is a non-
empty set of n-ary relation symbols. An L-structure M is called an
L-coloring structure if there is a function cM : [|M |]<ω → R such that
cM({a1, . . . , an}) = P if and only if M |= P (a1, . . . , an).
If M is an L-coloring structure given by the function cM , then we

refer to the function cM as the coloring function.

Remark 1.2. It is clear that M is a coloring structure if and only
if every P ∈ Rn is a relation on n-element subsets of |M | and the
realizations of the relations in Rn partition [|M |]n.

Everywhere below, we fix a relational language L that has at least
one relation of each arity.

Definition 1.3. Let N be an L-coloring structure with the correspond-
ing coloring function cN and suppose that M is a substructure of N .
We say that M is L-monochromatic if for each n, for all A,B ∈ [|M |]n

we have cN(A) = cN(B).
If M is an n-element L-monochromatic substructure of N , the dia-

gram of M is the function dM : [n] → R given by dM(k) := cN(A)
for some (any) k-element subset A of M . If M is an infinite L-
monochromatic substructure, then the diagram of M is the function
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dM : ω+ → R defined similarly: dM(k) := cN(A) for some (any) k-
element subset A of M .

In the language of model theory, an L-monochromatic substructure
of N is a subset of N indiscernible with respect to quantifier-free for-
mulas in L and the diagram dM codes the quantifier-free type of the
indiscernible substructure. For the purposes of this paper, we find
it convenient to work with functions, and hence we will be using the
terminology of colorings.

Definition 1.4. A set of allowed diagrams is a non-empty subset W
of the set of functions {w : [n] → R | n < ω,w(k) ∈ Rk for 1 ≤ k ≤ n}
such that for all w ∈ W, w : [n] → R, if m ≤ n, then w ↾ [m] ∈ W.
We use the symbol Wn to denote the set of functions in W with

domain [n]. Note that W0 = {∅}.
Given a set W of allowed diagrams, the class K(W) is the class of all

L-coloring structures N such that dM ∈ W for every finite monochro-
matic substructure M ⊂ N .

Remark 1.5. It is easy to check that, for a set W of allowed diagrams
in a relational language L, the pair (K(W),⊂), where ⊂ is the sub-
structure relation, forms an abstract elementary class with countable
Löwenheim–Skolem number. Indeed, it follows from the definition of
the substructure relation that all the axioms of abstract elementary
classes hold, except for the union of chains axiom and the existence of
a Löwenheim–Skolem number. The latter two axioms follow since the
membership of an L-structure in K is determined by the properties of
its finite substructures.

Definition 1.6. If c : [|M |]<ω → R is a coloring function such that
the L-structure M given by c is in the class K(W), then we call c a
well-coloring with respect to W, or simply a W-coloring.
An abstract elementary class K in a relational language L is a col-

oring class if K = K(W) for some set of allowed diagrams W.

Note that, if W is a set of allowed diagrams, then (W,⊂) is a tree,
the root of the tree is ∅, and, for n < ω, Wn is the n-th level of the
tree. The interesting cases will be those in which this tree is well-
founded, i.e. in which there is no d : ω+ → R such that, for all
n < ω, d ↾ [n] ∈ W. Such a function d would correspond to an infinite
monochromatic structure in K(W). With this in mind, we introduce
a rank function on the elements of W. This is simply the usual rank
function on well-founded trees, but we provide an explicit definition for
completeness.
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Definition 1.7. Fix a set W of allowed diagrams in the language L.
Define an existence rank ER(w;W) with respect to W on the elements
of w ∈ W by induction as follows. If n < ω and w : [n] → R is an
element of Wn, then:

(1) ER(w;W) ≥ 0;
(2) if α is a limit ordinal, then ER(w;W) ≥ α provided ER(w;W) ≥

β for all β < α;
(3) if α = β + 1, then ER(w;W) ≥ α if there is w′ ∈ Wn+1 such

that w′ ⊃ w and ER(w′;W) ≥ β.

If ER(w;W) ≥ α and ER(w;W) 6≥ α+ 1, then we say ER(w;W) = α.
If ER(w;W) ≥ α for all ordinals α, then we say ER(w;W) = ∞.

Proposition 1.8. Let W be a set of allowed diagrams. The following
are equivalent:

(1) ER(w;W) = ∞;
(2) ER(w;W) ≥ |L|+;
(3) There is an infinite monochromatic structure M ∈ K(W) such

that dM ⊃ w.

Proof. (1) ⇒ (2) is immediate.
(2) ⇒ (3) will follow once we prove that for every 1 ≤ n < ω and

every w ∈ Wn such that ER(w1;W) ≥ |L|+, there exists a proper
extension w∗ ∈ Wn+1 of w such that ER(w∗;W) ≥ |L|+. Indeed,
given w as above, for every β < |L|+, there is uβ ∈ Wn+1 such that
ER(uβ;W) ≥ β. Since there are at most |L| distinct such extensions,
there is w∗ ∈ W such that w∗ = uβ for unboundedly many β < |L|+.
But then ER(w∗;W) ≥ |L|+.
(3) ⇒ (1) Suppose N is an infinite monochromatic structure in

K(W). By induction on α, one can show that ER(dM ;W) ≥ α for
all finite monochromatic M ⊂ N . This is easy, as every finite sub-
structure of N extends to a larger monochromatic well-coloring. �

It follows that if W contains an infinite-rank element, then the col-
oring class K(W) contains a model of arbitrarily large size.

1.2. Amalgamation is equivalent to disjoint amalgamation in

coloring classes.

Definition 1.9. Fix a set of allowed diagrams W and a cardinal λ. A
pair of W-colorings {c1, c2} is a special (λ, 2)-system if there is a set X
of size λ and elements a1, a2 /∈ X such that

(1) the domain of ci is [X ∪ {ai}]
<ω for i = 1, 2;

(2) c1 ↾ [X ]<ω = c2 ↾ [X ]<ω.
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Remark 1.10. In the language of model theory, a special (λ, 2)-system
{c1, c2} carries the following information. Each of the functions ci,
i = 1, 2, defines an L-structure Mi ∈ K(W) with the universe X∪{ai}.
The structures M1 and M2 contain a common substructure M with the
universe X . The coloring function of M is the common restriction to
[X ]<ω of the functions c1 and c2.
An inductive argument shows that a class K = K(W) has disjoint

amalgamation for models of size λ if and only if for every special (λ, 2)-
system of colorings {c1, c2} there is a W-coloring c ⊃ c1 ∪ c2.

We now show that, for sufficiently rich coloring classes, the amalga-
mation property is equivalent to the disjoint amalgamation property.

Proposition 1.11. Let L be a relational language such that |Rk| > 1
for infinitely many k ≥ 2. Let W be a set of allowed diagrams, and
suppose that, for every w ∈ W1, there is n < ω and w1, w2 ∈ Wn such
that w ⊂ w1, w2 and w1(n) 6= w2(n).
The class K = K(W) has the amalgamation property for models

of size λ if and only if it has the disjoint amalgamation property for
models of size λ.

Proof. It is clear that the disjoint amalgamation implies amalgama-
tion (in any class); it suffices to establish that the converse holds in a
coloring class.
Let K = K(W) be a coloring class that has the amalgamation prop-

erty in λ and suppose that L and W satisfy the assumptions of the
proposition. To establish the disjoint amalgamation property in λ,
it is enough to show that for a set X of size λ any two W-colorings
ci : [X ∪ {ai}]

<ω → R, i = 1, 2, that agree on [X ]<ω can be extended
to a W-coloring of [X ∪ {a1, a2}]

<ω. Let M0 ∈ K be determined by
the common restriction of c1, c2 to [X ]<ω, and let M1 and M2 be the
structures determined by c1 and c2. We split the argument into three
cases.
Case 1: c1({a1} ∪ C) 6= c2({a2} ∪ C) for some C ∈ [X ]<ω.
If M∗ is the amalgam of M1 and M2 over M0 and fi : Mi → M∗ are

the corresponding embeddings, then the substructure f1(M1)∪ f2(M2)
of M∗ is the disjoint amalgam of M1 and M2 over M0, since it cannot
be the case that f1(a1) = f2(a2).
Case 2: c1({a1} ∪ C) = c2({a2} ∪ C) for all C ∈ [X ]<ω and there

is k < ω and w ∈ Wk such that w ⊃ d{a1} and w 6= dB for every
monochromatic B ∈ [X ∪ a1]

k.
Note that k ≥ 2. We can then define a well-coloring c of X∪{a1, a2}

amalgamating c1 and c2 as follows. Note that, to define c, we only have
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to specify its values on sets of the form C ∪{a1, a2}, where C ∈ [X ]<ω.
For all 0 ≤ i ≤ k − 2 and all C ∈ [X ]i, let c(C ∪ {a1, a2}) = w(i+ 2).
Note that, with this definition, if B ∈ [X ]ℓ for some ℓ > k − 2, then it
is impossible for {a1, a2} ∪ B to be monochromatic with respect to c.
Thus, c can be extended to larger sets arbitrarily. It is easily verified
that the L-structure given by c is in K(W).
Case 3: c1({a1}∪C) = c2({a2}∪C) for all C ∈ [X ]<ω and, for every

k < ω and every w ∈ Wk such that w ⊃ d{a1}, there is a monochromatic
B ∈ [X ∪ a1]

k with dB = w.
We modify the coloring c1 to get a different coloring c′1 of X∪{a1} so

that the pair {c′1, c2} satisfies the assumptions of Case 1. The coloring
c′1 will coincide with c1 for all but one subset of X ∪ {a1}. Fix n < ω
and distinct w1, w2 ∈ Wn such that w1, w2 ⊃ d{a1} and w1(n) 6= w2(n).
Find B1, B2 ∈ [X ]n−1 such that, for i = 1, 2, d({a1}∪Bi) = wi. By
the assumptions of the Proposition, there is k > 2n − 1 such that
|Rk| > 1. Let C ⊇ {a1} ∪B1 ∪B2 be a k-element subset. Define c′1(C)
to be a distinct color from c1(C) and let c′1(D) := c1(D) for all finite
D 6= C. The coloring c′1 is easily seen to be a W-coloring. Indeed, no
monochromatic subset can contain C. Now amalgamation in λ implies,
by Case 1, that c′1 and c2 can be extended to a coloring c′. The coloring
c′ can easily be turned into a W-coloring extending c1 and c2 simply
by appropriately changing the value on C. �

2. Amalgamation in one large power implies

amalgamation in all powers

The main goal of this section is to prove the following result.

Theorem 2.1. Let K = K(W) be a coloring class, let λ ≥ i|L|+,
and suppose that Kλ is non-empty. Then K has no maximal models
and, if Kλ has the (disjoint) amalgamation property, then Kµ has the
(disjoint) amalgamation property for all µ ≥ i|L|+.

In particular, the above theorem shows that the Hanf number (for
the existence of models) is i|L|+ for the family of coloring classes in
the language L. Note that, for general abstract elementary classes, the
Hanf number is i(2|L|)+ .
We analyse a coloring class with the set of allowed diagrams W

by examining coloring classes with smaller, “pruned,” sets of allowed
diagrams.

Notation 2.2. If S ⊆ W, let WS denote the set {w ∈ W | for some
u ∈ S, w ⊆ u or u ⊆ w}.
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Remark 2.3. In the language of trees, forming WS from W amounts
to pruning the tree associated with W to leave only those nodes that
are comparable with elements of S.

Proposition 2.4. Let W be a set of allowed diagrams in L.

(1) If u, w ∈ W and u ⊆ w, then ER(w;W{u}) = ER(w;W).
(2) Suppose ER(∅;W) = α + k, where α is a limit ordinal and

k < ω. Then there is w ∈ Wk such that ER(w;W) = α.
Moreover, there are disjoint sets {Si ⊂ (W{w})

k+1 | i < cf(α)}
such that ER(∅;WSi

) = α + k for every i < cf(α).

Proof. (1) is immediate from the definitions, so we only provide a proof
of (2). We first find w ∈ Wk with ER(w;W) = α. Using the definition
of the existence rank and the fact that ER(∅;W) = α+k, we can easily
recursively define a sequence 〈wj | j ≤ k〉 such that:

• w0 = ∅;
• for all j ≤ k, wj ∈ Wj ;
• for all j0 < j1 ≤ k, wj0 ⊂ wj1;
• for all j ≤ k, ER(wj ;W) = α + k − j.

Then, letting w = wk, we see that w is as required in the statement of
the proposition.
For the ‘moreover’ clause, note that, since ER(w;W) = α and α is

a limit ordinal, we can find {uη | η < cf(α)} such that:

• for all η < cf(α), uη ∈ Wk+1 and w ⊂ uη;
• letting αη = ER(uη;W) for all η < cf(α), we have that 〈αη |
η < cf(α)〉 is a strictly increasing sequence, cofinal in α.

Partition cf(α) into disjoint cofinal sets {Ai | i < cf(α)} and, for
i < cf(α), let Si = {uη | η ∈ Ai}. Then, for all i < cf(α), it is easy to
check by the definitions that Si ⊂ (Ww)

k+1 and ER(∅;WSi
) = α+k. �

The following lemma establishes that, if ER(∅;W) is bounded, then
there is a bound on the size of the models in K(W).

Lemma 2.5. Let W be a set of allowed diagrams in L, and let K =
K(W) be the corresponding coloring class. Let w : [n] → R be an
element of W such that ER(w;W) < β + k, where β is either a limit
ordinal or 0 and k is a natural number. Then for any M ∈ K(W{w})
we have ‖M‖ ≤ iβ+nk+k(k−1)/2(|L|).
In particular, if ER(∅;W) = α < ∞, α = β + k for a limit ordinal

β and a natural number k, then any model of K(W) has size at most
iβ+(k+1

2 )(|L|).
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Proof. We use induction on α = β + k. If ER(w;W) < 1, then M has
at most n elements. If α is a limit ordinal and ER(w;W) < α, then
ER(w;W) < γ for some successor ordinal γ < α, and the conclusion
follows from the inductive hypothesis.
It remains to consider the successor case. Suppose for contradic-

tion that w : [n] → R is a function in W such that ER(w;W) <
β + k + 1, but there is M ∈ K(W{w}), with coloring function cM ,
such that ‖M‖ ≥ (iβ+(k+1)n+k(k+1)/2(|L|))

+. By the Erdős–Rado the-
orem, there is a substructure M1 ⊂ M of size (iβ+nk+k(k+1)/2(|L|))

+ =
(iβ+(n+1)k+k(k−1)/2(|L|))

+ and P ∈ Rn+1 such that cM(A) = P for all
A ∈ [M1]

n+1. Now we extend w to the function w′ : [n+1] → R by let-
ting w′(n+ 1) := P . Note that w′ ∈ W and that M1 ∈ K(W{w′}). By
the induction hypothesis, ER(w′;W) ≥ β + k, and thus ER(w;W) ≥
β + k + 1, a contradiction.
For the last statement, the assumption implies that ER(∅;W) <

β + k + 1, and the bound established above (with n = 0) gives the
needed result. �

Corollary 2.6. Let K = K(W) be a coloring class, let λ ≥ i|L|+, and
suppose that Kλ is non-empty. Then

(1) K has models in all powers;
(2) moreover, K has no maximal models; and
(3) for any triple of models M1 ⊂ M2,M3 of K and any set X

disjoint from |M2|∪|M3|, there is a triple of models N1 ⊂ N2, N3

in K such that Mi ⊂ Ni and |Ni| = |Mi| ∪X for i = 1, 2, 3.

Proof. SinceK has a model of size i|L|+ = i|L|+(|L|), the rank ER(∅;W)
is at least |L|+ by Lemma 2.5. Using Proposition 1.8, we get an infinite
monochromatic structure M ∈ K(W) with diagram d := dM . There-
fore, the monochromatic structure on µ with the diagram d is a model
in Kµ.
The second statement follows from the third by taking M1 = M2 =

M3 and X a set containing elements not in |M1|. So we prove the third
statement.
Take M1 ⊂ M2,M3 and X as in (3). For each i = 1, 2, 3, define the

coloring function cNi
on |Ni| := |Mi| ∪X as follows. For A ∈ [|Ni|]

n, if
A ⊂ |Mi|, then cNi

(A) := cMi
(A); otherwise, let cNi

(A) := d(n).
It remains to check that the resulting coloring functions give the

needed models in K(W). We first fix i ∈ {1, 2, 3}, and show that
Ni ∈ K(W). Take an arbitrary non-empty finite monochromatic sub-
structure A of Ni and let n = ‖A‖. If A ⊂ Mi, then the diagram of A is
in W since Mi ∈ K(W). Suppose now that the universe of A contains
elements of the set X . We claim that in that case, the diagram dA of A
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is equal to d ↾ [n] (recall that d is the diagram of the infinite structure
in K that was used to define Ni). Indeed, for any k ∈ [n], there is a
substructure Ak of A such that |Ak| ∩ X 6= ∅. By definition, we have
cNi

(Ak) = d(k). Since A is monochromatic, every k-element substruc-
ture of A has the same color; thus dA(k) = d(k). Since d ↾ [n] ∈ W,
the diagram of A is in W, so Ni ∈ K.
Now we check N1 ⊂ Ni, i = 2, 3. For this, it suffices to check that

every finite substructure A of N1 is a substructure of Ni, i = 2, 3.
We do this by induction on ‖A‖ (in this case, we may start with the
empty substructure). Take A ⊂ N1, ‖A‖ = n, and suppose that all
proper substructures of A are substructures of N2, N3. If A ⊂ M1,
then A ⊂ M2,M3 and it immediately follows from the definitions that
A ⊂ N2, N3. If A 6⊂ M1, then |A| ∩ X 6= ∅, so dNi

(|A|) = d(n) for
i = 1, 2, 3. Since all proper substructures of A are substructures of N2,
N3 by the induction hypothesis, it now follows that A ⊂ N2, N3.
The remaining properties follow directly from the definitions. �

Lemma 2.7. Let K = K(W) be a coloring class, let λ ≥ i|L|+, and
suppose that Kλ is non-empty and has the disjoint amalgamation prop-
erty. Then for every w ∈ W, we have ER(w;W) = ∞.

Proof. Suppose that there is w ∈ W with ER(w;W) = α < ∞. Then
by Lemma 2.5, the class K(W{w}) does not have a model of size i|L|+.
Therefore, there is some κ < i|L|+ and models M1 ⊂ M2,M3 in
K(W{w}) of size κ such that M2 and M3 cannot be disjointly amal-
gamated over M1. By Corollary 2.6(3), we can find models Ni ∈ K,
i = 1, 2, 3 of size λ. Then the disjoint amalgam of N2 and N3 over N1

gives the amalgam of M2 and M3 over M1, a contradiction. �

Proof of Theorem 2.1. The class contains no maximal models by Corol-
lary 2.6.
By Proposition 1.11, it is enough to establish that the disjoint amal-

gamation property of Kλ, λ ≥ i|L|+, implies the disjoint amalgama-
tion for Kµ, for any µ ≥ i|L|+. If Kλ has the disjoint amalgamation,
then by Lemma 2.7 we have ER(w;W) = ∞ for every w ∈ W1. By
Proposition 1.8, we have that for every w ∈ W1 there is an infinite
monochromatic structure Mw ∈ K with the diagram dw ⊃ w.
Take an arbitrary µ ≥ i|L|+ . Given a special (µ, 2)-system {c1, c2}

of colorings, ci : [X ∪ {ai}]
<ω → R, if c1(a1) 6= c2(a2), then the W-

coloring c ⊃ c1 ∪ c2 can be defined on finite sets of the form C ∪
{a1, a2} in an arbitrary way. If c1(a1) = c2(a2), then we find an infinite
monochromatic structure with diagram d such that d(1) = ci(ai) and
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define c(C∪{a1, a2}) := d(|C|+2). It is easy to check that the resulting
coloring function c is a W-coloring. �

3. Amalgamation may fail late

In the previous section, assuming ER(∅;W) < ∞, we established an
upper bound on the size of a maximal model of K(W) as well as an
upper bound on the power in which amalgamation fails provided there
is w ∈ W such that ER(w;W) < ∞.
In this section, we establish a lower bound on both the existence

of models of K(W) and on the size of models that can be disjointly
amalgamated.
Define a class sequence of cardinals 〈κα | α ∈ On〉 as follows:

For α < ω, κα = α.
If α is a limit ordinal, κα = sup({κβ | β < α}).
If β ≥ ω and α = β + 1, κα = 2κβ .

Note that κα = iα for α ≥ ω2.
The main result of this section is the following theorem.

Theorem 3.1. Suppose ER(∅;W) ≥ α. Then

(1) there is M ∈ K(W) such that ‖M‖ ≥ κα;
(2) If ER(w;W) ≥ β + 1 for all w ∈ W1, then K(W) has disjoint

amalgamation for models of size λ for all λ ≤ κβ.

The strategy will be as follows. We first establish the existence of
models of size κα (and thus, the existence of models in all smaller pow-
ers) for a coloring class given by a set W such that ER(∅;W) ≥ α. We
will then use the existence result to show that disjoint amalgamation
holds.

Notation 3.2. Suppose L is a relational language with the set of rela-
tion symbols R =

⋃

Rn and W is a set of allowed diagrams in L. Let
w ∈ Wk, k ≥ 1, be a fixed element. We define a new relational lan-
guage L/w and a set of allowed diagrams W/w in L/w as follows. Let
(R/w)n := Rn+k for 1 ≤ n < ω. If w ⊃ w is a function with domain
[k + n], let w/w denote the function i ∈ [n] 7→ w(k + i). Finally, let

W/w := {w/w | w ⊇ w,w ∈ W}.

Remark 3.3. This operation is most easily considered by thinking of
sets of allowed diagrams as trees. If W is a set of allowed diagrams,
1 ≤ k < ω, and w ∈ Wk, then W/w as a tree is isomorphic to the tree
whose root is w and whose n-th level is the (n + k)-th level of W{w}.
In other words, to produce the tree associated with W/w from that of
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W, we first prune the tree by passing to W{w} and then chop off the
stem of length k.

Proposition 3.4. Suppose W is a set of allowed diagrams in a rela-
tional language L, and suppose that w ∈ W. Then for every w ⊃ w, if
ER(w;W) ≥ α, then ER(w/w;W/w) ≥ α.

Proof. By induction on α. If α = 0, this is clear. If α is a limit
ordinal and ER(w;W) ≥ α, then ER(w;W) ≥ β for all β < α.
By the induction hypothesis, ER(w/w;W/w) ≥ β for all β < α, so
ER(w/w;W/w) ≥ α. If α = β + 1, let u ∈ W be such that w ⊂ u
and ER(u;W) ≥ β. w/w ⊂ u/w and, by the induction hypothesis,
ER(u/w;W/w) ≥ β, so ER(w/w;W/w) ≥ β + 1 = α. �

Lemma 3.5. Let L be a relational language and α an ordinal, and
suppose that W is a set of allowed diagrams in L such that ER(∅;W) ≥
α. Then there is M ∈ K(W) such that ‖M‖ ≥ κα.

Proof. We have already shown that, if ER(∅;W) ≥ |L|+, then K(W)
contains arbitrarily large models. Thus, it suffices to show that, if
ER(∅;W) = α < |L|+, then K(W) contains models of size κα. We use
induction on α and show that for every L and for every set of allowed
diagrams, if ER(∅;W) = α, then K(W) has a model of size κα.
First, suppose α < ω. If ER(∅;W) = α, then there is c ∈ W such

that dom(c) = [α]. If N is the monochromatic structure determined by
c, then N ∈ K(W) and N has the size κα = α. Note that, in general,
this is the best we can do.
Next, suppose α is a limit ordinal and ER(∅;W) = α. Let λ = cf(α).

Fix 〈wγ | γ < λ〉 and 〈βγ | γ < λ〉 such that:

• For all γ < λ, wγ ∈ W1;
• 〈βγ | γ < λ〉 is a strictly increasing sequence of ordinals, cofinal
in α.

• For all γ < λ, ER(wγ;W) = βγ (and hence ER(∅;W{wγ}) =
βγ + 1).

For each γ < λ, fix, by the inductive hypothesis, Mγ ∈ K(W{wγ}),
with associated coloring cγ : [|Mγ|]

<ω → R, with ‖Mγ‖ = κβγ+1. We
may assume that the universes |Mγ|, γ < λ, are pairwise disjoint.
We will now define a structure M ∈ K(W). The universe of M will
be the disjoint union of the universes |Mγ | for γ < λ. The coloring
c : [|M |]<ω → R is defined as follows. IfX ∈ [|M |]<ω and there is γ < λ
such that X ⊆ |Mγ |, then let c(X) = cγ(X). If there is no such γ, then
let c(X) be an arbitrary element ofR|X|. Notice that, in the latter case,
there are x0, x1 ∈ X and γ0 < γ1 < λ such that x0 ∈ Mγ0 and x1 ∈ Mγ1 .
In this case, c({x0}) = cγ0(1) and c({x1}) = cγ1(1). Since wγ0 and wγ1
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are distinct elements of W1, we have wγ0(1) 6= wγ1(1). Thus, since cγ
is a Wwγ

-coloring for all γ < λ, we have cγ0(1) 6= cγ1(1), so X cannot
be monochromatic. It follows that, if X ∈ [M ]<ω is monochromatic,
then there is γ < λ such that X ⊆ Mγ. Then the fact that M ∈ K(W)
follows easily from the fact that each Mγ is in K(W).
Now suppose α = β+k, where β is a limit ordinal and 0 < k < ω. We

first consider the case β = ω, k = 1. In this case, we may fix w ∈ W1

with ER(w;W) = ω and, in turn, we may fix {wn | n < ω} ⊆ (W{w})
2

such that, for all m < n < ω, wm 6= wn. We now construct a model
M , with associated coloring c, in K(W) (in fact in K(W{w})) such
that ‖M‖ = κω+1 = 2ω. The universe of M will be ω2, the set of all
functions f : ω → 2. If f ∈ ω2, then let c({f}) = w(1). If f 6= g ∈ ω2,
let ∆(f, g) denote the least n < ω such that f(n) 6= g(n), and let
c({f, g}) = w∆(f,g)(2). This coloring ensures that no triple of distinct
functions {f, g, h} is monochromatic for c, since it cannot be the case
that ∆(f, g) = ∆(f, h) = ∆(g, h). Thus, for X ∈ [ω2]<ω with |X| ≥ 3,
we may let c(X) be an arbitrary element of R|X|.
Next, suppose β > ω and k = 1. Let µ = cf(β). Fix w ∈ W1 with

ER(w;W) = β, and fix an increasing, continuous sequence of ordinals
〈αi | i < µ〉 and, for each i < µ, a wi ∈ (W{w})

2 such that:

• α0 = 0, α1 > ω, and 〈αi | i < µ〉 is cofinal in β.
• For all i < µ, ER(wi;W) = αi+1.

For all i < µ, let αi+1 = βi+1 + ki+1, where βi+1 is a limit ordinal and
ki+1 < ω. By Proposition 2.4, we may fix w∗

i ∈ (W{wi})
ki+1+2 with

ER(w∗
i ;W) = βi+1 and find disjoint sets {Si

j ⊂ (W{w∗
i }
)ki+1+3 | j <

2ki+1+1} such that, for all j < 2ki+1+1, ER(∅;WSi
j
) = αi+1 + 2.

For all i < µ and j < 2ki+1+1, let U i
j = (WSi

j
)/w. Note that

ER(∅;U i
j) = αi+1 + 1. By the inductive hypothesis, fix, for each

i < µ and j < 2ki+1+1, a model M i
j ∈ K(U i

j), with associated col-

oring cij : [|M i
j |]

<ω → R/w, such that ‖M i
j‖ = καi+1

(we could do
better, but this is sufficient). We may in fact assume that the universe
of M i

j is the interval [αi, αi+1). We will construct a model M , with
associated coloring c, in K(W{w}), such that ‖M‖ = κα. The universe
of M will be κ2, where κ := κβ.
If f ∈ κ2, let c({f}) = w(1). If f 6= g ∈ κ2, then, as before,

let ∆(f, g) be the least ordinal η < κ such that f(η) 6= g(η). For
such f and g, let i < µ be such that ∆(f, g) ∈ [αi, αi+1), and let
c({f, g}) = wi(2). For i < µ, let Ai be the set of X ∈ [κ2]<ω such that,
for all f 6= g ∈ X , ∆(f, g) ∈ [αi, αi+1). If X ∈ [κ2]<ω, |X| ≥ 3, and
there is no i < µ such that X ∈ Ai, then X cannot be monochromatic



14 ALEXEI KOLESNIKOV AND CHRIS LAMBIE-HANSON

under c, and we can define c(X) to be an arbitrary element of R|X|. If
X ∈ Ai and |X| ≤ ki+1 +2, let c(X) = w∗

i (|X|). It remains to define c
on sets X with X ∈ Ai and |X| > ki+1 + 2.
Let ≺ denote the lexicographic ordering of κ2. We will think of

elements of [κ2]<ω as being finite sets linearly ordered by ≺, i.e. sets
{fi | i < n} such that, for every i < n − 1, fi ≺ fi+1. If X = {fi |
i < n} ∈ [κ2]<ω, let ∆(X) = 〈∆(fi, fi+1) | i < n − 1〉. Note that, if
f0 ≺ f1 ≺ f2, then ∆(f0, f1) 6= ∆(f1, f2), since if both quantities were
equal to some ordinal η, then this would imply f0(η) < f1(η) < f2(η),
which is impossible.
For all i < µ, enumerate ki+1+12 as {sij | j < 2ki+1+1}, where si0 is the

constant function taking value 0 and si1 is the constant function taking
value 1. If X ∈ Ai and |X| = ki+1 + 3, then define sX ∈ ki+1+12 by
letting, for all n < ki+1 + 1,

sX(n) =

{

0, if ∆(fn, fn+1) < ∆(fn+1, fn+2);

1, if ∆(fn, fn+1) > ∆(fn+1, fn+2).

In particular, sX = si0 if and only if ∆(X) is strictly increasing, and
sX = s1 if and only if ∆(X) is strictly decreasing.
Now, to complete the coloring, if i < µ, X ∈ Ai, and |X| = ki+1+3,

find j such that sX = sij . If j ∈ {0, 1}, then let c(X) = cij(∆(X)). Note
that here we are considering ∆(X) as a set rather than a sequence,
and the fact that X ∈ Ai and ∆(X) is either strictly increasing or
strictly decreasing implies that ∆(X) ∈ [[αi, αi+1)]

ki+1+2. If j > 1,
then choose an arbitrary Y ∈ [[αi, αi+1)]

ki+1+2 and let c(X) = cij(Y ).
Notice that, if X0, X1 ∈ Ai, |X0| = |X1| = ki+1 + 3, and sX0

6= sX1
,

then c(X0) 6= c(X1). If X ∈ Ai and |X| > ki+1 + 3, consider ∆(X). If
∆(X) is strictly increasing, let c(X) = ci0(∆(X)). If ∆(X) is strictly
decreasing, let c(X) = ci1(∆(X)). Otherwise, let c(X) be an arbitrary
member of R|X|.
We must now verify that κ2, equipped with this coloring, c, is in

K(W), i.e. that the diagrams of all monochromatic finite subsets of κ2
are in W. Let X ∈ [κ2]<ω. As mentioned above, if there is no i < µ
such that X ∈ Ai, then X cannot be monochromatic. If X ∈ Ai and
|X| ≤ ki+1 + 2, then X is monochromatic and its diagram is equal to
w∗

i ↾ [|X|], which is in W. If X ∈ Ai, |X| = ki+1 + 3, and sX = sij,

then the diagram of X is in Si
j and is thus again in W.

It remains to consider the caseX ∈ Ai, |X| > ki+1+3. First, suppose
that X = {fn | n < n∗} and ∆(X) is neither strictly increasing nor
strictly decreasing. Without loss of generality, there is m∗ < n∗ − 3
such that ∆(fm∗ , fm∗+1) < ∆(fm∗+1, fm∗+2) and ∆(fm∗+1, fm∗+2) >
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∆(fm∗+2, fm∗+3) (the reverse case is handled in the same way). Let
ℓ∗ = min({m∗, n∗ − (ki+1 + 4)}). Let X0 = {fℓ∗+k | k < ki+1 + 3}
and X1 = {fℓ∗+k+1 | k < ki+1 + 3}. Re-enumerate X0 and X1 in
lexicographically increasing fashion as X0 = {gk | k < ki+1 + 3} and
X1 = {hk | k < ki+1+3}. Notice that, for all k < ki+1+2, hk = gk+1 and
that, for some k∗ < ki+1+1, gk∗ = fm∗ . Thus, by our assumptions about
∆(X), sX0

(k∗) = 0. However, hk∗ = fm∗+1, so sX1
(k∗) = 1. Thus,

X0, X1 ∈ [X ]ki+1+3 and c(X0) 6= c(X1), so X is not monochromatic.
Next, suppose that X ∈ Ai, X = {fn | n < n∗}, |X| > ki+1 + 3, and

∆(X) is strictly increasing. We need the following claim.

Claim 3.6. If X is monochromatic with respect to c, then ∆(X) is
monochromatic with respect to ci0.

Proof. Suppose X is monochromatic with respect to c. It suffices to
show that, if ℓ < n∗ − 1 and D ∈ [∆(X)]ℓ, then there is Y ∈ [X ]ℓ+1

such that ∆(Y ) = D. To this end, fix such an ℓ and D. Let D =
{∆(fnm

, fnm+1) | m < ℓ}, where {fnm
| m < ℓ} is enumerated in

≺-increasing fashion.
First note that, under our assumption that ∆(X) is strictly increas-

ing, if n < n′ < n′′ < n∗, then ∆(fn, fn′) = ∆(fn, fn′′). Thus, for all
m < ℓ − 1, ∆(fnm

, fnm+1) = ∆(fnm
, fnm+1

), so, if Y = {fnm
| m <

ℓ} ∪ {fn∗−1}, then Y ∈ [X ]ℓ+1 and ∆(Y ) = D. �

Suppose X is monochromatic with respect to c. Then ∆(X) is
monochromatic with respect to ci0 and thus has diagram u ∈ U i

0. But
then, by our construction, X has the diagram given by the function w
such that w(n− 1) = u(n) for 2 ≤ n ≤ |X| and w(1) = w(1). But this
w is in WSi

0
and hence in W.

The case in which X ∈ Ai, |X| > ki+1 + 3, and ∆(X) is strictly
decreasing is handled in the same way, mutatis mutandis.
We finally address the case in which β is a limit ordinal and k > 1.

By Proposition 2.4, we may fix w ∈ Wk with ER(w;W) = β and find
disjoint sets {Si ⊂ (W{w})

k+1 | i < 2k−1} such that, for all i < 2k−1,
ER(∅;WSi

) = β + k.
For all i < 2k−1, let Ui = (WSi

)/(w ↾ [1]). Note that ER(∅;Ui) =
β + k − 1 = α− 1. By the inductive hypothesis, fix, for each i < 2k−1,
a model Mi ∈ K(Ui), with associated coloring ci : [|Mi|]

<ω → R/(w ↾

[1]), such that ‖Mi‖ = κα−1 =: κ. We may in fact assume that the
universe of each Mi is κ itself. We will construct a model M , with
associated coloring c, in K(W{w}). The universe of M will be κ2.
If X ∈ [κ2]≤k, then let c(X) = w(|X|). Enumerate k−12 as {sj |

j < 2k−1}, where s0 is the constant function taking value 0 and s1
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is the constant function taking value 1. As before, if X ∈ [κ2]k+1,
X = {fi | i < k+1}, then define sX ∈ k−12 by letting, for all i < k−1,

sX(i) =

{

0, if ∆(fi, fi+1) < ∆(fi+1, fi+2);

1, if ∆(fi, fi+1) > ∆(fi+1, fi+2).

If X ∈ [κ2]k+1, find i such that sX = si. If i = 0 or i = 1, then
let c(X) = ci(∆(X)). If i > 1, choose an arbitrary Y ∈ [κ]k and let
c(X) = ci(Y ). If X ∈ [κ2]<ω and |X| > k + 1, consider ∆(X). If
∆(X) is strictly increasing, let c(X) = c0(∆(X)). If ∆(X) is strictly
decreasing, let c(X) = c1(∆(X)). Otherwise, let c(X) be an arbitrary
element ofR|X|. The verification that κ2, equipped with this coloring c,
is in K(W), proceeds along the same lines as the case β > ω, k = 1. �

Proof of Theorem 3.1. Existence of the model is given by Lemma 3.5,
so we suppose that ER(w;W) ≥ β+1 for all w ∈ W1 and show disjoint
amalgamation for K(W) for models of size λ ≤ κβ.
Suppose that {c1, c2} is a special (λ, 2)-system, where ci is a coloring

of X ∪ {ai} for i = 1, 2 and |X| = λ. If c1(a1) 6= c2(a2), then the
function c1 ∪ c2 can be extended to a W-coloring of X ∪ {a1, a2} by
assigning arbitrary colors to the finite sets of the form Y ∪ {a1, a2} for
Y ⊂ X .
Thus, suppose that c1(a1) = c2(a2). Take w ∈ W2 such that w(1) is

equal to the common value of ci(a1) and ER(w;W) ≥ β (the latter is
possible by the assumption on the rank of colorings in W1).
Let U := W/w, and let c∗ be a U-coloring of X . Such a coloring

exists because |X| ≤ κβ and ER(∅;U) ≥ β by Proposition 3.4.
To define the coloring c ⊃ c1∪ c2, we only need to define c({a1, a2}∪

Y ) for all Y ∈ [X ]<ω. To this end, let c({a1, a2}) = w(2), and let
c(Y ∪ {a1, a2}) := c∗(Y ) for every non-empty finite subset Y ⊂ X . It
is easily verified that c is a W-coloring. �

4. A family Wα of rank α < |L|+

We conclude by showing that, for every infinite cardinal κ and every
α < κ+, there is a language L of size κ and a set of allowed diagrams
W in L such that ER(w;W) = α for all w ∈ W1. (In fact, a single
language L will work for all such α, namely a relational language with
κ distinct n-ary relations for all 0 < n < ω.) This shows that the
bound in Proposition 1.8(2) is the best possible and that, for every
λ < iκ+ , there is a coloring class that has the disjoint amalgamation
for models of size up to λ, but fails to have disjoint amalgamation for
arbitrarily large models. In particular, for every limit ordinal β with
ω2 ≤ β < κ+ and every k < ω, there is a set of allowed diagrams W
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for which ER(w;W) = β + k + 1 for all w ∈ W1. By the results of the
previous sections, the coloring class K(W) has disjoint amalgamation
for models of size ≤ iβ+k but fails to have amalgamation for models
of some size ≤ iβ+(k+3

2 ).

The family of examples is the same as described in [3].

Notation 4.1. Fix an infinite cardinal κ and an ordinal α with κ ≤
α < κ+. Let Lα contain unary predicates P1;γ,α for γ ≤ κ and n-ary
relation symbols Pn;γ,β for 2 ≤ n < ω, γ < κ, and β ≤ α.
Let W(α) be the set of all functions w : [n] → Lα such that for all

1 ≤ i < j ≤ n if w(i) = Pi,ζi,αi
and w(j) = Pj,ζj ,αj

, then αi > αj.

Claim 4.2. For all n < ω and all w : [n] → Lα such that w ∈ W(α)
we have w(n) = Pn,γ,β if and only if ER(w;W) = β.

Proof. Easy induction on β. If w(n) = Pn,γ,0, then there cannot
be a function in W that properly extends w, thus ER(w;W) = 0.
Conversely, if ER(w;W) = 0 and w(n) = Pn,γ,δ for δ > 0, then w
can be extended to a function w ∈ W(α) by letting, for example,
w(n+ 1) := Pn+1,0,0, so the rank of w cannot be 0.
If w(n) = Pn,γ,β+1, then every extension w ∈ W(α) of w satis-

fies w(n + 1) := Pn+1,γ′,δ for some γ′ ≤ κ and some δ ≤ β. Thus,
the induction hypothesis and the definition of the rank ER give that
ER(w;W(α)) = β + 1. For the converse, if ER(w;W) = β + 1 and
w(n) = Pn,γ,δ, then δ cannot be less than or equal to β by the induc-
tion hypothesis. If δ ≥ β+2, then we can define w(n+1) := Pn+1,0,β+1,
w ∈ W(α). Then the implication proved above gives ER(w;W(α)) =
β + 1, so ER(w;W(α)) ≥ β + 2, a contradiction.
The case of a limit ordinal β is proved by a similar argument. �
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