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Abstract

We prove that if the linear-time and polynomial-time hierarchies co-
incide, then every model of Π1(N)+¬Ω1 has a proper end-extension to
a model of Π1(N), and so Π1(N) +¬Ω1 ⊢ BΣ1. Under an even stronger
complexity-theoretic assumption which nevertheless seems hard to dis-
prove using present-day methods, Π1(N)+¬Exp ⊢ BΣ1. Both assump-
tions can be modified to versions which make it possible to replace
Π1(N) by I∆0 as the base theory.

We also show that any proof that I∆0 + ¬Exp does not prove a
given finite fragment of BΣ1 has to be “non-relativizing”, in the sense
that it will not work in the presence of an arbitrary oracle.

The work presented below aims at a better understanding of the fol-
lowing notoriously hard open problem about moderately weak theories of
arithmetic:

Does I∆0 + ¬Exp prove BΣ1? (⋆)

Here I∆0 is induction for bounded formulas in the language of ordered rings,
Exp is the axiom ∀x∃y (y = 2x) with y = 2x expressed by an appropriate
∆0 formula, and BΣ1 is the Σ1 collection scheme,

∀x≤u∃y ϕ(x, y) ⇒ ∃w ∀x≤u∃y≤wϕ(x, y),

where ϕ is ∆0 and may contain parameters.
It is well-known and easy to show that I∆0 6⊢ BΣ1 [Par70], but all known

proofs of this (e.g. [Par70, PK78, Ada88, Bek98]) use objects of at least expo-
nential size, often in the form of a definition of satisfaction for Σ1 formulas.

Problem (⋆) was first explicitly stated in [WP89]. The expected answer is
negative, and there have been a number of results of the form “the answer to
(⋆) is negative under some complexity-theoretic assumptions” [WP89, Fer94,
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AKP12]. However, even though the assumptions used to obtain a negative
answer have been varied in spirit and in some cases mutually contradictory,
an unconditional negative answer remains elusive.

Below, we try to explain part of the difficulty with (⋆) by pointing out
a complexity-theoretic assumption which implies that the answer to the
question “does ¬Exp prove BΣ1?” is actually positive, over Π1 truth if the
assumption is true and over plain I∆0 if the assumption is provable in I∆0

(which has to be stated in a special way). The assumption is not at all likely
to be true; what seems much more likely, however, is that disproving it might
be beyond the reach of present-day methods of complexity theory.

Earlier work had already revealed the possibility of complexity-theoretic
assumptions implying the provability of fragments of BΣ1 from ¬Exp, but
those fragments have been rather weak. Ferreira [Fer96] showed that some
extremely restricted instances of Σ1 collection are actually unconditionally
provable from ¬Exp; his work is related to the correspondence between
the relativized linear-time hierarchy and polynomial-size bounded-depth cir-
cuits. Recently, Cordón Franco et al. [CFL14] came up with a computational
condition exactly equivalent to the provability of parameter-free Σ1 collec-
tion in Π1(N) + ¬ exp. Their condition concerns the complexity of search
problems, and it is not obvious how it relates to the well-studied complexity
hierarchies of decision problems.

Our assumption is just one among many statements of the general form
“(a level of) an apparently larger time hierarchy is contained in (a higher
level of) an apparently smaller time hierarchy”, which tend to imply the
provability of BΣ1 from an axiom negating the totality of a suitable function
f . Before discussing f(x) = 2x, we first consider the simpler case of f(x)

equal to ω1(x) = 2log
2 x.

The connection between assumptions of this sort and Σ1 collection in-
volves end-extensions of models. A few specific constructions used to prove
containments between computational complexity classes have also led to
end-extension theorems [Fer96, Zam97]. We observe that essentially any con-
tainment between levels of typical time hierarchies defined by different time
bounds implies the existence of end-extensions for models of corresponding
theories. Our focus is on the case where the smaller time bounds are linear,
so the corresponding theory is I∆0. As is well-known, any model of I∆0 with
a proper end-extension has to satisfy BΣ1.

We also apply the technique of building end-extensions from complexity-
theoretic containments to show a result about theories in a language ex-
panded by a new “oracle” predicate. Roughly speaking, our theorem says
that for every finite fragment of BΣ1, a proof that ¬Exp does not imply the
fragment has to be “non-relativizing”, in the sense that it will not work in
the presence of an arbitrary oracle. To show this, we go through a lemma
in computational complexity: for every k, there exists an oracle relative to
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which the k-th level of the exponential-time hierarchy is contained in the
linear-time hierarchy.

The paper is structured as follows. We review the necessary definitions
and background in Section 1. We prove a very simple version of our “end-
extensions from containments” result in Section 2 and the version about
¬Exp in Section 3. The result about relativization is proved across Sections
4 and 5. The short Section 6 contains some concluding remarks.

1 Preliminaries

We assume that the reader is well-acquainted with weak theories of arith-
metic as described for instance in [Kra95]. In particular, we assume famil-
iarity with the theory I∆0, the axioms Ω1 and Exp, and with Buss’ formula
classes Σb

k and theories T2, T
k
2 , n ∈ N. LPA is the language of Peano Arith-

metic, or in other words the language of ordered rings. LBA is Buss’ language
for bounded arithmetic. The class of bounded formulas in LBA is denoted
Σb
∞; the symbol ∆0 always stands for the bounded formulas of LPA only.

Recall from [KPT91] that PVk+1 functions are canonically defined sym-
bols for polynomial-time functions with a Σp

k oracle, where Σp
k is the k-th

level of the polynomial-time hierarchy PH. The set of PVk+1 functions con-
tains a symbol for the characteristic function of every Σp

k relation and is
closed under operations corresponding to composition and bounded recur-
sion on notation. PVk+1 also stands for a theory in the language with all
PVk+1 functions, axiomatized by the defining axioms for the function sym-
bols and induction for all quantifier-free formulas. PVk+1 is an extension by
definitions of T k

2 (with some subtleties for k = 0, cf. [Jeř06, BK10]), and can
be identified with T k

2 for all intents and purposes.
Most of the computational complexity theory we use is very old-school,

and can be found for instance in [BDG95, BDG90]. Recall that a function f
is time-constructible if there is a Turing machine which on inputs of length
n runs for exactly f(n) steps. Essentially, a time-constructible function is
one which makes sense as a time bound. For k ≥ 1, a Σk machine is one
that begins its computation in an existential (nondeterministic) state, and
switches between existential and universal (co-nondeterministic) states at
most k−1 times. Thus, for instance, Σp

k is Σk-TIME(nO(1)). The linear-time
hierarchy LinH is

⋃

k Σk-TIME(O(n)). A relation on the natural numbers is
in LinH exactly if it can be defined by a ∆0 formula [Wra78].

A decision tree is a finite binary tree T with leaves labelled by 0 or 1, with
internal nodes labelled by boolean variables xi, and the two outgoing edges
from an internal node labelled by 0 and by 1. We also assume that on any
single branch of T each variable appears as a label at most once. The height
of T is the length of the longest branch in T . Any boolean assignment α
determines a branch through T : from a node labelled by xi, the branch takes

3



the edge labelled by α(xi). A decision tree T with internal nodes labelled
by variables from {x1, . . . , xn} computes (or decides) a boolean function f
on {0, 1}n if for every 〈α(x1), . . . , α(xn)〉 ∈ {0, 1}n, f(α) equals the label of
the leaf on the branch determined by α.

2 Simplest case

Theorem 1. If PH = LinH, then every model M |= Π1(N) has an end-
extension to K |= T2.

Proof. Assume that PH = LinH. This implies that for every Σb
∞ formula

ψ(x) there exists a ∆0 formula ψlin(x) such that ψ and ψlin are equivalent
in the standard model of arithmetic.

Let M |= Π1(N). M has a ∆0-elementary extension to a model N satis-
fying the true theory of the natural numbers in LBA. Define K to be the clo-
sure of M in N under Skolem functions for Σb

∞ formulas, where the Skolem
function for ∃y≤ t ϕ(x̄, y) is the (Σb

∞-definable) function which outputs the
smallest y ≤ t such that ϕ(x̄, y), or 0 if there is no such y.

Clearly, K is a Σb
∞-elementary substructure of M and a model of T2. We

need to show that K ⊇e M.
Let g be the Skolem function for a Σb

∞ formula ∃y≤ t ϕ(x̄, y) and assume
that for ā, b ∈ M, we have gN (ā) ≤ b. Then N |= ∃y ≤ b (y = g(ā)), and
thus also

N |= ∃y≤b (y = g(x̄))lin[ā/x̄].

By ∆0-elementarity, the same formula holds in M, so there is c ∈ M such
that M |= (y = g(x̄))lin[ā/x̄, c/y]. Thus N |= (y = g(x̄))lin[ā/x̄, c/y] and
N |= c = g(ā), which means that gN (ā) ∈ M.

If we want to end-extend an arbitrary model of I∆0, rather than just a
model of Π1(N), to a structure satisfying T2, we need a stronger assumption.

Theorem 2. Assume that there is a translation ψ 7→ ψlin of Σb
∞ into ∆0

formulas such that T2 + {∀x (ψ(x) ⇔ ψlin(x)) : ψ ∈ Σb
∞} is Π1-conservative

over I∆0. Then every model M |= I∆0 has an end-extension to K |= T2.

Proof. Consider M |= I∆0. Under the assumption of the theorem, M has
a ∆0-elementary extension to a model N satisfying T2 in which each Σb

∞

formula ψ is equivalent to ψlin. Define K to be the closure of M in N under
Skolem functions for Σb

∞ formulas and repeat the remainder of the proof of
Theorem 1.

It can be argued that the assumption of Theorem 2 is a reasonable way
of making precise the statement “I∆0 ⊢ PH = LinH”. In essence, what the
assumption says is that a model of I∆0 can be extended to another structure
in which the LinH properties are preserved, the PH properties are reasonably
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well-behaved (in other words, T2 is satisfied) and the PH properties are in
fact in LinH. Our use of this assumption gives rise to the following open
problem:

Open problem. Is it true that if T2 is Π1-conservative over I∆0, then in fact
the assumption of Theorem 2 holds?

Note that one other possible formulation of “I∆0 ⊢ PH ⊆ LinH”, namely
that provably in I∆0, if x#x, x#x#x, . . . exist, then each Σb

∞ formula ψ(x)
has a ∆0 translation ψlin(x), is unreasonably weak. In fact, it is weaker than
T2 ⊢ PH = LinH.

Corollary 3. If PH = LinH, then Π1(N) + ¬Ω1 ⊢ BΣ1. If the assumption
of Theorem 2 holds, then I∆0 + ¬Ω1 ⊢ BΣ1.

Proof. If M |= Π1(N) + ¬Ω1, then the end-extension given by Theorem 1
is of necessity proper, so M |= BΣ1. Similarly for M |= I∆0 + ¬Ω1 and
Theorem 2.

3 The case of ¬Exp

We now consider the task of formulating an assumption which would imply
provability of BΣ1 from ¬Exp rather than just from ¬Ω1. As previously, we
first work with Π1(N) as our base theory.

The natural idea would be to replace the polynomial time hierarchy in the
statement of Theorem 1 by the smaller of the two well-known “exponential
time hierarchies”, which is defined by letting Σe

k be Σk-TIME(2O(n)) and EH
be

⋃

k∈N Σe
k. By an argument similar to the proof of Theorem 1, we could

show that if EH = LinH, then every M |= Π1(N) has an end-extension to
K |= T2 such that M = LogK, where LogK equals {a ∈ K : 2a exists in K}.
If M |= ¬Exp, the extension is proper, so M |= BΣ1.

Unfortunately, the assumption EH = LinH is too strong for our purposes,
because it is known to be false. The following proposition is apparently
folklore.

Proposition 4. EH 6= LinH.

Proof. For each k ∈ N, Σk-TIME(O(n)) ( Σe
k by the nondeterministic time

hierarchy theorem. So, if LinH = Σk-TIME(O(n)), then LinH ( Σe
k.

On the other hand, E = DTIME(2O(n)) contains LinH and has a problem
which is complete via linear-time reductions. Thus, if LinH does not collapse
to a finite level, we have LinH ( E ⊆ Σe

1.

Proposition 4 means that we have to consider time bounds whose growth
rate is “fractional-exponential”:
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Definition 5. The function f : N → N, f(n) = O(2n), has fractional-
exponential growth rate if there exists ℓ ∈ N such that

f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

ℓ times

≥ 2n.

Functions of fractional-exponential growth rate appear naturally in some
contexts in computational complexity theory [MVW99]. There are time-
constructible functions of arbitrarily slow fractional-exponential growth:

Lemma 6. For every ℓ ∈ N, there exists a non-decreasing time-constructible
function such that

f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

ℓ times

= o(2n),

but for some m > ℓ,
f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

m times

≥ 2n.

Proof. We present aa very straightforward construction which suffices for
our purposes. For more subtle results on iterative roots of exp as a function
of a real variable, see e.g. [Kne50], [Sze62].

Define expk(n) by setting exp0(n) := n, expk+1(n) = 2expk(n).
Let f2 be defined as follows. For n ≤ 2, f2(n) equals 3. For n ≥ 3, f2(n)

is the smallest element of the sequence

3, 4, 23, 24, 22
3
, 22

4
, . . .

which is strictly greater than n. A routine calculation shows that f2(n) = o(2n),
but f2 ◦ f2 ◦ f2(n) > 2n.

For general k ≥ 1, define fk as follows. For n ≤ expk−1(2), fk(n) equals
expk−1(2) + 1. For n ≥ expk−1(2) + 1, fk(n) is the smallest element of the
sequence

expk−1(2) + 1, expk−1(2) + 2, . . . , expk(2),

exp(expk−1(2) + 1), exp(expk−1(2) + 2), . . . , expk+1(2),

exp2(expk−1(2) + 1), exp2(expk−1(2) + 1), . . .

which is strictly greater than n. A calculation shows that

fk ◦ fk ◦ . . . ◦ fk
︸ ︷︷ ︸

ℓ times

= o(2n), fk ◦ fk ◦ . . . ◦ fk
︸ ︷︷ ︸

ℓ+2 times

> 2n

for ℓ := expk(2) − expk−1(2) − 1.
It is not immediately obvious if the functions fk are time-constructible.

However, let f̃k(n) be the time needed to compute fk on argument n with
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both input and output in unary (on a fixed machine). By definition, f̃k is
time-constructible. Moreover, it is clear from the definition of fk that for a
reasonable choice of a machine computing fk, f̃k will be non-decreasing and
satisfy:

fk ≤ f̃k = O(fk),

which also implies
f̃k ◦ f̃k ◦ . . . ◦̃fk
︸ ︷︷ ︸

ℓ−1 times

= o(2n),

for ℓ as above.

For every time-constructible f of fractional-exponential growth, it is still
the case LinH is strictly contained in

⋃

k Σk-TIME(f), the quantifier hier-
archy determined by f (cf. [HP93, Theorem V.2.21]). This is because a
straightforward padding argument shows that

⋃

k Σk-TIME(f) ⊆ LinH im-
plies

⋃

k Σk-TIME(f ◦ f) ⊆
⋃

k Σk-TIME(f) and so on, eventually reaching
EH ⊆ LinH; but this contradicts Proposition 4.

However, the following statement, although highly implausible, appears
to be consistent with present knowledge, and disproving it may well be
beyond the reach of known methods:

“for every k there is some f of fractional-exponential growth

such that ΣfO(1)

k ⊆ LinH”. (♠)

By the discussion above, f , or more precisely the number ℓ of iterations of f
needed to reach exp, would have to depend on k. A very slight modification of
statement (♠) is the assumption we use to prove that Π1(N)+¬Exp ⊢ BΣ1.

Theorem 7. If there exists a non-decreasing time-constructible function f
of fractional-exponential growth such that DTIME(fO(1))Σ

p
k ⊆ LinH, then

every model M |= Π1(N) + ¬Exp has a proper end-extension to K |= T k
2 .

Proof. Assume that f is non-decreasing, has fractional-exponential growth,
and DTIME(fO(1))Σ

p
k is contained in LinH. Let h be the time-constructible

function defined by h(x) = 2f(|x|). Note that for an input x with |x| = n,
the value h(x) (written in binary) is computable in deterministic time f(n).
Because of this and the monotonicity of f , for every PVk+1 formula ψ(x, y),
the formula ψ(x, h(y)) defines a property in DTIME(fO(1))Σ

p
k . Therefore, by

our assumption, there exists a ∆0 formula ψf→lin(x, y) such that ψ(x, h(y))
and ψf→lin(x, y) are equivalent in N.

Let M |= Π1(N)+¬Exp. Since the totality of f implies the totality of the
exponential function, LogM is not closed under f , so there must be d ∈ M
such that h(d) /∈ M. As in the proof of Theorem 1, M has a ∆0-elementary
extension to a model N satisfying true arithmetic in the language LBA. Of
course, N contains h(d). Define K to be the closure of M ∪ {h(d)} in N
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under PVk+1 functions. By construction, K is a proper extension of M, a
PVk+1-elementary substructure of M and a model of T k

2 ; we only need to
show that K ⊇e M.

Let g be a PVk+1 function and assume that for ā, b ∈ M, we have
gN (ā, h(d)) ≤ b. Then N |= ∃z<b (z = g(ā, h(d))), and thus also

N |= ∃z<b (z = g(x̄, y))f→lin[ā/x̄, d/y].

By ∆0-elementarity, the same formula holds in M, so there is c ∈ M such
that

M |= (z = g(x̄, y))f→lin[ā/x̄, d/y, c/z].

Thus also
N |= (z = g(x̄, y))f→lin[ā/x̄, d/y, c/z],

which means that N |= c = g(ā, h(d)). In other words, gN (ā, h(d)) ∈ M.

As in the context of ¬Ω1, end-extending arbitrary models of I∆0 +¬ exp
rather than just models of Π1(N) + ¬ exp requires a stronger assumption.
The assumption in Theorem 8 below can be seen as a formalization of the
statement “I∆0 ⊢ DTIME(fO(1))Σ

p
k ⊆ LinH”.

The assumption in Theorem 8 is more complicated than the one in The-
orem 2, and it mentions an additional constant. Another way of formulating
the assumption would involve a two-sorted language. The main reason for
the complications is that if we introduce a symbol for a function of fractional-
exponential growth and allow terms involving nesting of the new function
symbol, we will get a theory which proves the totality of exp and thus has
no chance of being Π1-conservative over I∆0.

Theorem 8. Assume that there is a time-constructible function f which is
provably non-decreasing in I∆0 and satisfies the following:

(i) for some ℓ ∈ N,

I∆0 ⊢ ∀x∀y (y = f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

ℓ times

(x) ⇒ ∃z≤y (z = 2x)).

(ii) for d a new individual constant, there is a translation ψ 7→ ψf→lin of
PVk+1 into ∆0 formulas such that

T k
2 + ∃y (y = 2f(|d|)) + {∀x (ψ(x, 2f(|d|)) ⇔ ψf→lin(x, d)) : ψ ∈ PVk+1}

is Π1(d)-conservative over I∆0.

Then every model M |= I∆0 +¬Exp has a proper end-extension to K |= T k
2 .

Proof. It suffices to modify the proof of Theorem 7 in the same way as the
proof of Theorem 1 was modified to obtain Theorem 2.
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Corollary 9. If for every k ∈ N there is a non-decreasing time-constructible
f of fractional-exponential growth such that Σk-TIME(fO(1)) ⊆ LinH, then
Π1(N)+¬Exp ⊢ BΣ1. If the assumption of Theorem 8 holds for every k ∈ N,
then I∆0 + ¬Exp ⊢ BΣ1.

Proof. To prove the first statement, notice that DTIME(fO(1))Σ
p
k is con-

tained in Σk-TIME(fO(1)). Hence, if Σk-TIME(fO(1)) ⊆ LinH, then by
Theorem 7 every model M |= Π1(N) + ¬Exp has an proper end-extension
to a model of T k

2 . If this happens for every k, then M has a proper end-
extension to a model of T k

2 for every k, which, by the usual argument, implies
M |= BΣ1.

The second statement is proved in a similar way, using Theorem 8 instead
of Theorem 7.

4 A relativized result

In this section, we take up the question whether a proof of I∆0+¬ exp 6⊢ BΣ1

could relativize to an arbitrary oracle. The ideal result here would be to
construct an oracle relative to which statement (♠) holds, and use that to
show that a proof of I∆0+¬ exp 6⊢ BΣ1 would have to be “non-relativizing”.
Our theorem below is weaker than that; nevertheless, it is strong enough to
highlight a major difference with the case without ¬Exp.

In attempting to discuss relativizations of I∆0 + ¬ exp 6⊢ BΣ1, we en-
counter the problem that it is less obvious how to relativize an unprovability
statement than a provability statement. If α is a new predicate symbol (rep-
resenting a potentially arbitrary oracle) and two theories T and S are such
that it makes sense to speak of their relativized versions T (α), S(α), then
“T ⊢ S does not relativize” is simply “T (α) 6⊢ S(α)”. However, what does
“T 6⊢ S does not relativize” mean? “T (α) ⊢ S(α)” is far too strong, and
in particular implies T ⊢ S. On the other hand “there are additional ax-
ioms about α such that T (α) extended by the new axioms proves S(α)” is
obviously too weak, because the new axioms could include S(α) itself.

In the specific case of I∆0 + ¬Exp 6⊢ BΣ1, we are in the fortunate sit-
uation that the right-hand side of the 6⊢ symbol has higher quantifier com-
plexity than the left-hand side. This lets us explicate “I∆0 + ¬Exp 6⊢ BΣ1

does not relativize” as “there are low-complexity axioms about α such
that I∆0(α) + ¬Exp is consistent and proves BΣ1(α)”, where the “low-
complexity axioms” can for instance say that some local conditions on α
are satisfied at every input; in other words, they can be Π1(α) sentences.

We conjecture the following:

Conjecture. Let α be a new unary relation symbol. There exists a con-
sistent recursively axiomatized Π1(α) theory T (α) ⊇ I∆0(α) such that
T (α) + ¬Exp ⊢ BΣ1(α).
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Currently, we are only able to obtain a weaker theorem:

Theorem 10. Let α be a new unary relation symbol. Then for every finite
fragment B(α) of BΣ1(α) there exists a consistent recursively axiomatized
Π1(α) theory TB(α) ⊇ I∆0(α) such that TB(α) + ¬Exp ⊢ B(α).

Already this result contrasts with the situation without the ¬Exp axiom.

Proposition 11. Let α be a new unary relation symbol. There is a finite
fragment B(α) of BΣ1(α) such that for every set S(α) of Π2(α) sentences
which is consistent with I∆0(α) + Exp (in particular, for every consistent
extension of I∆0(α) by a set of Π1(α) sentences), S(α) 6⊢ B(α).

Proof. Take a nonstandard model M |= I∆0(α) + Exp + S, a nonstan-
dard element a ∈ M, and let K consist of those elements of M which
are Σ1(α)-definable with parameter a. By the usual Paris-Kirby argument,
K 6|= BΣ1(α), but K 4Σ1(α) M, so in particular K |= S. This completes the
proof, since BΣ1(α) is finitely axiomatizable over I∆0(α) + exp.

Our proof of Theorem 10 is based on the following computational lemma.

Lemma 12. For every k, there is an oracle α such that Σe
k(α) ⊆ LinH(α).

We first show how the theorem follows from the lemma and then devote
the remainder of the section to a proof of the lemma.

Assume that Lemma 12 holds and let B(α) be a finite fragment of
BΣ1(α). Let k be such that every model of I∆0(α) with a proper end-
extension to a model of T k

2 (α) satsifies B(α). Let TB(α) consist of the Π1(α)
consequences of the theory I∆0(α) + Exp + “Σe

k(α) ⊆ LinH(α)”, where the
containment is expressed as the equivalence of some fixed formula defining
a property which is Σe

k(α)-complete via linear-time reductions with a ∆0(α)
formula. By Lemma 12, TB(α) is consistent, and since it has a recursively
enumerable axiomatization it is also recursively axiomatized.

By relativizing the proof of Theorem 8, which presents no significant
obstacles, we show that every model of TB(α) + ¬Exp has a proper end-
extension to a model of T k

2 (α). Thus, TB(α)+¬Exp ⊢ B(α), which completes
the proof of Theorem 10 from Lemma 12.

Proof of Lemma 12. For k = 0, 1, the result is known [Dek76, Hel84]. For
k ≥ 2, our strategy will be to apply a variant of “H̊astad’s second switch-
ing lemma” (Lemma 6.3 in [H̊as86]) k times. As a result, we will partially
determine the oracle α in such a way that a given Σe

k(α) property will be-
have roughly like a deterministic exponential-time property (more precisely,
an exponential-height decision tree) relative to the undetermined part of
α, whereas a well-chosen LinH property will behave like a nondeterministic
linear-time property. At that point, it will remain to repeat the construction
of an oracle relative to which E ⊆ NLIN as presented in [Hel84].
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We describe in detail the case of k = 2. We choose some reasonable
coding of tuples and assume that all inputs to α are quadruples of the form
〈a, y1, y2, y3〉, where y1, y2 < 24|a|, y3 < 22|a|. We also use the convention that
whenever a appears in the proof, N stands for 2|a|, and whenever b appears
in the proof, M stands for 2|b|. Note that a computation on input a is linear-
time if it takes time linear in |a| and exponential-time (as understood in the
definition of EH) if it takes time polynomial in N .

There is a problem in Σ2-TIME(2(1/110)n)(α) which is complete for Σe
2(α)

via linear-time reductions. Therefore, it suffices to construct α so that the
property ϕα(a):

∃x1<2N
1/110

∀x2<2N
1/110

ψα(a, x1, x2),

where ψα makes at most N1/110 queries to α, is for sufficiently large a
equivalent to

∀y1<N
4 ∃y2<N

4 ∀y3<N
2 α(a, y1, y2, y3).

We think of each instance α(b, y1, y2, y3) as a propositional variable,
which is set to 1 exactly if 〈b, y1, y2, y3〉 ∈ α. For each fixed a, ϕα(a) can
be viewed as a propositional formula in the variables α(b, y1, y2, y3). The

formula is a disjunction of 2N
1/110

CNF’s, each of which is a conjunction of
disjunctions of at most N1/110 atoms (an N1/110-CNF).

We will refer to a partial assignment to the propositional variables as a
restriction. We choose a random restriction ρ by the following process:

• divide all possible inputs to α into blocks of the form 〈b, y1, y2, ·〉, where
each block consists of M2 elements corresponding to the possible values
of y3,

• for each input 〈b, y1, y2, y3〉 independently, set α(b, y1, y2, y3) to 1 with
probability 1− 1

M and “set it to ∗” (in other words, leave it unassigned,
or “starred”) with probability 1

M ,

• for each block 〈b, y1, y2, ·〉 in which not all the values have been set to
1, make it a “0-block” (setting 〈b, y1, y2, y3〉 to 0 for all y3 for which
this was previously set to ∗) with probability 1 − 1

M and make it a
“∗-block” (keeping the variables currently set to ∗ unassigned) with
probability 1

M .

The restriction ρ is then extended to g(ρ) which additionally sets to 1
all starred variables in a ∗-block except the one with the smallest value of
y3.

The following variant of H̊astad’s switching lemma will guarantee the
existence of a restriction ρ with some desirable properties. The proof of the
lemma is deferred until Section 5.
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Lemma 13. Let 0 < δ, ǫ ≤ 1 such that 12δ < ǫ. Assume N is large enough
and let ψ be an N δ-DNF. Then with probability at least 1− 2−Nǫ

, ψ|g(ρ) can
be decided by a decision tree of height less than N ǫ.

The probability that a random ρ sets all M2 variables in a given block
〈b, y1, y2, ·〉 to 1 is (1 − 1

M )M
2
, thus exponentially small in M . Similarly,

by Chernoff bounds, the probability that fewer than M2 of the M4 blocks
〈b, y1, y2, ·〉 for a given pair 〈b, y1〉 become ∗-blocks under ρ is exponentially
small in M . For any given M , there are only O(M9) triples 〈b, y1, y2〉 and
pairs 〈b, y1〉 with 2|b| = M ; and for any given N , there are no more than N
inputs a with 2|a| = N . Therefore, by Lemma 13 with δ = 1/110, ǫ = 1/9,
there exists a restriction ρ such that:

• for each sufficiently large b and each 〈b, y1, y2〉 there is at least one y3
such that α(b, y1, y2, y3)|ρ 6= 1,

• for each sufficiently large b and each 〈b, y1〉 there are at least M2 values
of y2 such that 〈b, y1, y2〉 is a ∗-block under ρ,

• for each sufficiently large a and each x1 < 2N
1/110

, the formula

(∀x2<2N
1/110

ψα(a, x1, x2))|g(ρ)

can be decided by a decision tree of height N1/9.

Take some ρ with these properties and assign 0/1 values to variables
α(b, y1, y2, y3) according to g(ρ). For each sufficiently large a, the formula
ϕα(a)|g(ρ), that is,

∃x1<2N
1/110

[∀x2<2N
1/110

ψα(a, x1, x2)]|g(ρ),

becomes an N1/9-DNF. Extend g(ρ) further to a restriction h(ρ) by turning
some ∗-blocks into 0-blocks so that for each 〈b, y1〉 with b sufficiently large
there are exactly M2 values of y2 for which 〈b, y1, y2, ·〉 remains a ∗-block.
In this way,

[∀y1<N
4 ∃y2<N

4 ∀y3<N
2 α(a, y1, y2, y3)]|h(ρ)

becomes ∧

y1<N4

∨

y2∈S(a,y1)

α(a, y1, y2, y3(a, y1, y2)),

where the set S(a, y1) consists of exactly N2 values of y2, and for each such
value, y3(a, y1, y2) is the unique y3 for which α(a, y1, y2, y3) has not been set
to 1.

We think of inputs to α|h(ρ) as triples 〈b, y1, y2〉 (since α(b, y1, y2, y3) can
be 0 for at most one value of y3). We divide the tuples into blocks of the
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form 〈b, y1, ·〉, so that a sufficiently large b corresponds to exactly M4 blocks
containing exactly M2 variables each. We define a random distribution on
restrictions ρ̂ similarly as before, but with α replaced by α|h(ρ), the old blocks
replaced by the new blocks, and with the roles of 0 and 1 interchanged. In
this setting, we can prove an analogue of Lemma 13 in which the requirement
12δ < ǫ can be weakened to 8δ < ǫ (the reason for the last change is that for
every b there are now M6 variables instead of M10). Applying this lemma
with δ = 1/9 and ǫ = 1, we get a restriction ρ̂ such that for each sufficiently
large a the formula ϕα(a)|h(ρ)g(ρ̂) can be decided by a decision tree of height
N , and extend g(ρ̂) to h(ρ̂) so that

[∀y1<N
4 ∃y2<N

4 ∀y3<N
2 α(a, y1, y2, y3)]|h(ρ)h(ρ̂)

becomes ∧

y1∈S(a)

α(a, y1, y2(a, y1), y3(a, y1)),

where S(a) is a set of size exactly N2.
We then complete the construction by copying the proof of Theorem 6 of

[Hel84]. For a = 0, 1, . . . , we first find the value of ϕα(a) by answering 1 to
each query to α which has not been already determined by h(ρ)h(ρ̃) and the
procedure for lower values of a. Assuming a is large enough, this involves an-
swering at most N queries, because ϕα(a)|h(ρ)h(ρ̂) can be decided by a height-
N decision tree. Afterwards, of the N2 variables α(a, y1, y2(a, y1), y3(a, y1))
remaining unset after h(ρ)h(ρ̃), at most aN +O(1) ≤ N logN +O(1) have
been set (to 1) during the procedure for 0, 1, . . . , a − 1, so at least one re-
mains unset. If ϕα(a) is false, we choose one such variable and set it to 0,
setting all other such variables to 1. If ϕα(a) is true, we set all such variables
to 1. In this way, we guarantee that ψα(a) is equivalent to

∀y1<N
4 ∃y2<N

4 ∀y3<N
2 α(a, y1, y2, y3)

for every large enough value of a.
This completes the proof of Lemma 12 for the case k = 2. The case

for general k is very similar: for a sufficiently large constant ℓ, we take a
property ϕα(a) which is complete for Σe

k via linear-time reductions and can
be written as

∃x1<2N
1/ℓ

∀x2<2N
1/ℓ

. . .Qxk<2N
1/ℓ
ψα(a, x1, x2, . . . , xℓ),

where ψ can be decided in deterministic time N1/ℓ. The aim is to construct
α so that this property becomes equivalent to

∀y1<N
4 ∃y2<N

4 . . .Qyk<N
4Qyk+1<N

2 α(a, y1, y2, . . . , yk, yk+1)

for large enough a. To achieve this, we assume that inputs to α have the
form 〈b, y1, . . . , yk, yk+1〉 for y1, . . . , yk < M4 and yk+1 < M2, divide the in-
puts into blocks of the form 〈b, y1, . . . , yk, ·〉, and iterate restricting α using
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analogues of Lemma 13, now k times instead of 2 times. For the i-th appli-
cation of the switching lemma, a block contains inputs corresponding to one
fixed tuple 〈b, y1, . . . , yk+1−i〉 and various possible values of yk+2−i, and the
requirement on δ and ǫ is 4(k + 2 − i)δ < ǫ. After k rounds of restricting
α, ϕα(a) becomes computable by a decision tree of height N and we can
complete the argument as in the case k = 2.

5 The switching lemma

We repeat the statement of Lemma 13. For definitions of N, ρ etc. refer to
the previous section.

Lemma 13. Let 0 < δ, ǫ ≤ 1 such that 12δ < ǫ. Assume N is large enough
and let ψ be an N δ-DNF. Then with probability at least 1− 2−Nǫ

, ψ|g(ρ) can
be decided by a decision tree of height less than N ǫ.

Proof. The argument is an essentially standard Razborov-style proof of a
switching lemma; our presentation is very strongly inspired by Thapen’s note
[Tha09]. One difference in comparison with the usual setting for switching
lemmas is that we simultaneously consider blocks of different sizes, and the
probability of assigning a value to a variable/block depends on the size of
the block. We deal with this by dividing blocks into “large” and “small”;
our decision tree will deal with the “small” blocks by brute-force search, and
with the “large” ones in the usual way.

Note that ψ contains only variables from finitely many blocks. For this
reason, we may think of our restrictions ρ as defined on finitely many blocks,
so that individual restrictions have non-zero probabilities.

Consider the tree T (ψ, ρ) defined as follows. T (ψ, ρ) first queries all the

≤ N
11
12

ǫ < N ǫ/2 variables from blocks 〈b, y1, y2, ·〉 with M < N ǫ/12 that
are starred in ρ. Let τ be the assignment to those variables given by a
specific branch of the tree. If τ is inconsistent with g(ρ), the branch ends
immediately in a leaf labelled (for example) 0. Otherwise, the subtree of
T (ψ, ρ) below τ , say T τ (ψ, ρ), is defined by the following process. Let C1 be
the first conjunction in ψ such that C1|ρτ 6≡ 0. Let β1 be the list of blocks
which contain a starred variable appearing in C1|ρτ . For each such block
〈b, y1, y2, ·〉, the tree queries αb,y1,y2,y3 for the unique y3 for which this is
starred in g(ρ) (even if this is not the variable appearing in C1|ρτ ). Let π1
be the assignment to the blocks in β1 given by g(ρ) together with the answers
to the queries made by the tree. If C1|ρτπ1 ≡ 1, the branch ends in a leaf
labelled 1. If not, let C2 be the first conjunction in ψ such that C1|ρτ 6≡ 0,
let β2 consist of all blocks containing a starred variable appearing in C2|ρτπ1

and continue as previously. If at any point Ci|ρτπ1...πi ≡ 1, the branch ends
in a leaf labelled 1. Otherwise, at some point all cojunctions in ψ have
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been falsified and the tree ends in a leaf labelled 0. By construction, T (ψ, ρ)
correctly determines the truth value of ψ|g(ρ).

Let S be the set of the ρ such that there exists τ for which T τ (ψ, ρ) has
height at least N ǫ/2. To prove the lemma, it suffices to show

Pr
ρ

[ρ ∈ S] ≤
1

2Nǫ .

Let ρ be in S, let τ be the first assignment such that T τ (ψ, ρ) has
height at least N ǫ/2, and let π be the first branch in T τ (ψ, ρ) of length
at least N ǫ/2. Let C1, . . . , Ck, β1, . . . , βk, π1, . . . , πk be the conjunctions,
sets of blocks, and assignments encountered in the first N ǫ/2 queries in π.
For i = 1, . . . , k, let γi be the set of the starred variables from blocks in βi
appearing positively in Ci.

For i = 1, . . . , k, the assignment σi is defined as follows. σ1 sets each
variable appearing in γi to 1 and sets all other starred variables from blocks
in βi to 0. Note that σi sets exactly the same variables as πi, so that the
σi’s have pairwise disjoint domains and thus σ = σ1 . . . σk is a well-defined
restriction. Note also that Ci|ρτπ1...πi−1σi 6≡ 0 (in fact, Ci|ρτπ1...πi−1σi ≡ 1 for
all i = 1, . . . , k − 1).

We can represent τ by a number below 3N
ǫ/2 (each of N ǫ/2 variables

can be set to 1, 0 or already evaluated in ρ). We code 〈β1, . . . , βk〉 as a tuple
β′ = 〈β′1, . . . , β

′
k〉, where for each block in βi, β

′
i contains the information

which of the N δ variables in Ci belong to the block and an additional bit
to determine whether the next block listed in β′ is still in βi or already in
βi+1. Since there are at most N ǫ/2 blocks in all the βi’s taken together, β′

can be represented by a number below (2N δ)N
ǫ/2. We code 〈π1, . . . , πk〉 as a

number π′ below 2N
ǫ/2 (a string of N ǫ/2 bits listing the answers to queries

given along π). Finally, we code 〈γ1, . . . , γk〉 as a tuple γ′ = 〈γ′1, . . . , γ
′
k〉,

where each γ′i contains the information which of the N δ variables in Ci

comprise γi. Since there are at most N ǫ/2 Ci’s, γ
′ can be represented by a

number below 2N
δ+ǫ/2.

We claim that the mapping:

S ∋ ρ 7→ 〈ρτσ, τ, β′, π′, γ′〉

is an injection. To see this, note that given 〈ρτσ, τ, β′, π′, γ′〉, we can find C1

as the first conjunction C in ψ such that C|ρτσ 6= 0. Knowing C1, we can
decode β′1 and γ′1 to find β1, γ1. We can now identify σ1 as the assignment
which sets all variables in γ1 to 1 and sets all the variables from blocks in
β1 which are set to 0 by ρτσ. Knowing σ1, γ1 and π′1, we can determine
π1, identify C2 as the first conjunction C in ψ such that C|ρτπ1σ2...σk

6= 0,
identify β2, γ2, σ2, π2, and so on. Eventually, we are able to recover all of σ
and therefore also ρτ . Since we are also given τ , this is enough to recover ρ.

For fixed values of τ, β′, π′, γ′, let Sτ,β′,π′,γ′ consist of those ρ ∈ S to
which these specific values are assigned. By the previous paragraph, the
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mapping ρ 7→ ρτσ restricted to Sτ,β′,π′,γ is an injection. For ρ ∈ Sτ,β′,π′,γ ,
the restriction ρτ is obtained from ρ by turning some ∗’s into 1’s and some
∗-blocks into 0-blocks, so certainly the probability of ρτ is no smaller than
that of ρ. Going from ρτ to ρτσ changes N ǫ/2 blocks which were previously
∗-blocks into 0-blocks, and changes some ∗’s into 1’s. Since all variables from
blocks with M < N ǫ/12 are assigned 0/1 values in ρτ , each change of a ∗-
block into a 0-block or of a ∗ into 1 increases the probability of a restriction
by a factor of at least

(

1 −
1

N ǫ/12

)/(
1

N ǫ/12

)

= N ǫ/12 − 1.

If we write ℓ to denote of ∗’s changed into 1’s, then ℓ equals the number
of positively appearing variables listed in γ′, so 0 ≤ ℓ ≤ N δ+ǫ/2. The ratio
Pr(ρτσ)/Pr(ρ) is at least

(

N ǫ/12 − 1
)Nǫ/2+ℓ

and the probabilities of the ρτσ’s cannot add up to more than 1, so

Pr
ρ

[ρ ∈ Sτ,β′,π′,γ ] ≤
(

N ǫ/12 − 1
)−Nǫ/2−ℓ

.

For fixed τ, β′, π′, write Sτ,β′,π′ for
⋃

γ′ Sτ,β′,π′,γ . We have

Pr
ρ

[ρ ∈ Sτ,β′,π′ ] =
∑

γ′

Pr
ρ

[ρ ∈ Sτ,β′,π′,γ′ ] =

=

Nδ+ǫ/2
∑

ℓ=0

∑

|γ′|=ℓ

Pr
ρ

[ρ ∈ Sτ,β′,π′,γ′ ] ≤

≤

Nδ+ǫ/2
∑

ℓ=0

(
N δ+ǫ/2

ℓ

)(

N ǫ/12 − 1
)−Nǫ/2−ℓ

=

=
(

N ǫ/12 − 1
)−Nǫ/2 (

N ǫ/12
/(

N ǫ/12 − 1
))Nδ+ǫ/2

≤

≤
(

N ǫ/12 − 1
)−Nǫ/2

eN
ǫ/2.

The last inequality holds for sufficiently large N by the assumption that
12δ < ǫ. Now, S =

⋃

τ,β′,π′ Sτ,β′,π′ , so by the union bound

Pr
ρ

[ρ ∈ S] ≤
(

12eN δ
)Nǫ/2 (

N ǫ/12 − 1
)−Nǫ/2

,

which is smaller than 2−Nǫ
for large enough N .
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6 Concluding remarks

We have formulated a complexity-theoretic statement that might be very
hard to disprove and would imply that BΣ1 is provable from ¬Exp. It would
be interesting to give evidence for the hardness of disproving the statement
(♠), for example by constructing a relativized world in which (♠) holds; this
would also lead to a proof of our conjecture from Section 4. On the other
hand, disproving (♠) would be no less interesting, and could lead to some
progress towards a proof that I∆0 + Exp 6⊢ BΣ1.

The question concerning provability of BΣ1 is just one of many classical
questions about weak arithmetic which do not explicitly mention complexity
theory but seem to have it lurking in the background. One other example is
the problem whether every model of I∆0+BΣ1 has a proper end-extension to
a model of I∆0. It could be interesting to find, on the one hand, “plausible”
complexity-theoretic statements implying the “expected” answers to these
questions, and on the other hand, “plausibly hard to disprove” statements
implying the “unexpected” answers. The former task, in fact, not yet fully
carried out even in the case of the question studied in this paper. The best
known complexity-theoretic statement implying I∆0 + Exp 6⊢ BΣ1, namely
PH↓, is usually conjectured to be false, while other such statements are more
obscure and seem hard to make any conjecture about.
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