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WEAK DISTRIBUTIVITY IMPLYING

DISTRIBUTIVITY

DAN HATHAWAY

Abstract. Let B be a complete Boolean algebra. We show that if
λ is an infinite cardinal and B is weakly (λω, ω)-distributive, then
B is (λ, 2)-distributive. Using a similar argument, we show that
if κ is a weakly compact cardinal such that B is weakly (2κ, κ)-
distributive and B is (α, 2)-distributive for each α < κ, then B is
(κ, 2)-distributive.

1. Introduction

Given sets A and B, AB denotes the set of functions from A to B.
In this article, λ and κ will denote ordinals, although usually they can
be assumed to be infinite cardinals. As defined in [6], given λ and κ,
we say that a complete Boolean algebra B is (λ, κ)-distributive iff

∏

α<λ

∑

β<κ

uα,β =
∑

f :λ→κ

∏

α<λ

uα,f(α)

for any 〈uα,β ∈ B : α < λ, β < κ〉. Given maximal antichains A1, A2 ⊆
B, we say that A2 refines A1 iff (∀a2 ∈ A2)(∃a1 ∈ A1) a2 ≤B a1. It is
a fact that B is (λ, κ)-distributive iff each size λ collection of maximal
antichains in B each of size κ has a common refinement. There is also
a useful characterization in terms of forcing (which can be found in [6]
as Theorem 15.38):

Fact 1.1. A complete Boolean algebra B is (λ, κ)-distributive iff

1 B (∀f : λ̌ → κ̌) f ∈ V̌ .

Unfortunately, the definition of weakly distributive varies in the lit-
erature (for example [7]). We will use the one given by Jech (see [6]).
That is, we say that a complete Boolean algebra B is weakly (λ, κ)-
distributive iff

∏

α<λ

∑

β<κ

uα,β =
∑

g:λ→κ

∏

α<λ

∑

β<g(α)

uα,β.

A portion of the results of this paper were proven during the September 2012
Fields Institute Workshop on Forcing while the author was supported by the Fields
Institute. Work was also done wile under NSF grant DMS-0943832.
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This definition has a natural characterization in terms of forcing. Given
a set X and f, g : X → κ, we write f ≤ g iff g everywhere dominates
f . That is,

(∀x ∈ X) f(x) ≤ g(x).

Fact 1.2. A complete Boolean algebra B is weakly (λ, κ)-distributive
iff

1 B (∀f : λ̌ → κ̌)(∃g : λ̌ → κ̌) g ∈ V̌ ∧ f ≤ g.

We will show the following:

Theorem (A). Let λ be an infinite cardinal. If

1) B is weakly (λω, ω)-distributive,

then B is (λ, 2)-distributive.

Theorem (B). Let κ be a weakly compact cardinal. If

1) B is weakly (2κ, κ)-distributive and
2) B is (α, 2)-distributive for each α < κ,

then B is (κ, 2)-distributive.

We will then discuss why Theorem (B) does not hold when we have
κ = ω1 instead of κ being weakly compact, and we will show one way to
fix the situation using the tower number. Finally, we use the same idea
using the tower number to prove a variation of Theorem (A) involving
weak (λκ, κ)-distributivity for κ > ω.

2. Functions from λω to ω

The proof of the following lemma uses the fact that well-foundedness
of trees is absolute. It is crucial, for what follows, that this lemma does
not require ωλ ⊆ M . See [4] for motivation and discussion.

Lemma 2.1. For each A ⊆ λ, there is a function f : ωλ → ω such that
whenever M is a transitive model of ZF such that λ ∈ M and some
g : (ωλ)M → ω in M satisfies

(∀x ∈ (ωλ)M) f(x) ≤ g(x),

then A ∈ M .

Proof. Fix A ⊆ λ. Define f : ωλ → ω by

f(x) :=

{

0 if (∀n < ω) x(n) 6∈ A,

n+ 1 if x(n) ∈ A but (∀m < n) x(m) 6∈ A.
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Let M be a transitive model of ZF such that λ ∈ M but A 6∈ M .
Suppose, towards a contradiction, that there is some g ∈ M satisfying
(∀x ∈ (ωλ)M) f(x) ≤ g(x). Let B be the set

B := {t ∈ <ωλ : g(x) ≥ |t| for all x in M extending t}.

Notice that B ∈ M . Let T ⊆ <ωλ be the set of elements of B all of
whose initial segments are also in B. Note that T is a tree and T ∈ M .
For all a ∈ λ, a ∈ A implies 〈a〉 ∈ B. Thus, there must be some

a0 ∈ λ such that a0 6∈ A but 〈a0〉 ∈ B. If there was not, then A could
be defined in M by A = {a ∈ λ : 〈a〉 ∈ B}.
Next, for all a ∈ λ, a ∈ A implies 〈a0, a〉 ∈ B. Thus, by similar

reasoning as before, there must be some a1 ∈ λ such that a1 6∈ A but
〈a0, a1〉 ∈ B. Continuing like this, we can construct a sequence x ∈ ωλ

satisfying (∀n < ω) x ↾ n ∈ B. Thus, (∀n < ω) x ↾ n ∈ T , so T is not
well-founded.
Since well-foundedness is absolute, there is some path x′ through T

in M . Since (∀n < ω) x′ ↾ n ∈ B, we have (∀n < ω) g(x′) ≥ n, which
is impossible. �

This implies the following lemma, whose order of quantifiers is not
as powerful, but the functions have the ordinal (λω)M instead of the
set of sequences (ωλ)M as their domains:

Lemma 2.2. Let M be a transitive model of ZF such that the ordinal
λ is in M and (ωλ)M can be well-ordered in M . Assume that for each
f : (λω)M → ω there is some g : (λω)M → ω in M such that f ≤ g.
Then P(λ) ⊆ M .

Proof. Consider any A ∈ P(λ). Use the lemma above with A to get

f̃ : ωλ → ω such that if g̃ : (ωλ)M → ω is any function in M which
satisfies

(1) (∀x ∈ (ωλ)M) f̃(x) ≤ g̃(x),

then A ∈ M . Since (ωλ)M can be well-ordered in M , fix a bijection

η : (λω)M → (ωλ)M

in M . Define f : (λω)M → ω by

f(α) := f̃(η(α)).
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That is, the following diagram commutes:

(ωλ)M
f̃ // ω

(λω)M .

η

OO

f

<<③③③③③③③③③

By hypothesis, let g : (λω)M → ω be a function in M which every-
where dominates f . Define g̃ : (ωλ)M → ω by

g̃(x) := g(η−1(x)).

We have that g̃ ∈ M and g̃ satisfies 1, so by the hypothesis on f̃ ,
A ∈ M . �

We now have the main result of this section:

Theorem (A). Let B be a complete Boolean algebra and λ be an in-
finite cardinal. If B is weakly (λω, ω)-distributive, then B is (λ, 2)-
distributive.

Proof. Let µ := λω. Assume B is weakly (µ, ω)-distributive. Force with
B. Every f : µ → ω in the extension can be everywhere dominated by
some g : µ → ω in the ground model, so applying the lemma above
in the extension (setting M to be the ground model) tells us that the
P(λ) of the extension is included in the ground model. Hence, B is
(λ, 2)-distributive. �

3. Functions from 2κ to κ with κ Weakly Compact

The first lemma in the previous section was the key to the theorem
there. We have a parallel lemma here which, instead of using the
absoluteness of trees being well-founded, uses the tree property to get
similar absoluteness. It is important that this lemma does not require
κ2 ⊆ M . By weakly compact, we mean strongly inaccessible and having
the tree property.

Lemma 3.1. For each a ∈ κ2, there is a function f : κ2 → κ such that
whenever M is a transitive model of ZF such that κ ∈ M , <κ2 ⊆ M ,
(κ2)M can be well-ordered in M , (κ is weakly compact)M , and some
g : (κ2)M → κ in M satisfies

(∀x ∈ (κ2)M) f(x) ≤ g(x),

then a ∈ M .



WEAK DISTRIBUTIVITY IMPLYING DISTRIBUTIVITY 5

Proof. Fix a ∈ κ2. Let f : κ2 → κ be the function

f(x) :=

{

0 if (∀α < κ) x(α) = a(α),

α + 1 if x(α) 6= a(α) but (∀β < α) x(β) = a(β).

Let M be an appropriate transitive model of ZF. Suppose g : (κ2)M →
κ in M satisfies (∀x ∈ (κ2)M) f(x) ≤ g(x). We will show that a ∈ M .
Suppose, towards a contradiction, that a 6∈ M . Let

B := {t ∈ <κ2 : g(x) ≥ Dom(t) for all x in M extending t}.

Note that by definition, there cannot be any x ∈ κ2 in M satisfying
(∀α < κ) x ↾ α ∈ B because if there was such an x, we would have
(∀α < κ) g(x) ≥ α, which is impossible. Since B need not be a tree, let
T ⊆ <κ2 be the tree of those elements of B all of whose initial segments
are also in B. Again, T cannot have a length κ path in M . Note that
for each α < κ, a ↾ α ∈ B. This is because any x ∈ κ2 in M which
extends a ↾ α differs from a (since a 6∈ M), and the smallest γ such
that x(γ) 6= a(γ) must be ≥ α, so

g(x) ≥ f(x) = γ + 1 > γ ≥ α = Dom(a ↾ α).

Since (∀α < κ) a ↾ α ∈ B, also (∀α < κ) a ↾ α ∈ T .
Now, B ∈ M (since <κ2 ⊆ M and g ∈ M) and so T ∈ M .

Since (∀α < κ) a ↾ α ∈ T , (T has height κ)M . Since (κ is strongly
inaccessible)M , we have (T is a κ-tree)M . Since (κ has the tree property)M ,
there is a length κ path through T in M , which we said earlier was im-
possible. �

As before, this implies the following lemma, whose order of quanti-
fiers is not as powerful, but the functions have the ordinal (2κ)M instead
of the set of sequences (κ2)M as their domains:

Lemma 3.2. Let M be a transitive model of ZF such that the ordinal
κ is in M , <κ2 ⊆ M , (κ2)M can be well-ordered in M , and (κ is
weakly compact)M . Assume that for each f : (2κ)M → κ there is some
g : (2κ)M → κ in M such that f ≤ g. Then P(κ) ⊆ M .

Proof. The proof is similar to that of Lemma 2.2. �

As before, the main result of this section follows:

Theorem (B). Let B be a complete Boolean algebra and κ be a weakly
compact cardinal. If B is weakly (2κ, κ)-distributive and B is (α, 2)-
distributive for each α < κ, then B is (κ, 2)-distributive.

Proof. This follows from the lemma above just as Theorem (A) followed
from Lemma 2.2. �
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4. The Tower Number

One might hope that Theorem (B) holds when κ = ω1 instead of
κ being weakly compact. That is, one might hope that if a com-
plete Boolean algebra B is weakly (2ω1 , ω1)-distributive and (ω, 2)-
distributive, then it is (ω1, 2)-distributive. Unfortunately, this cannot
be proved in ZFC because B could be a Suslin algebra (a Suslin algebra
is c.c.c. and therefore is weakly (λ, ω1)-distributive for any λ). How-
ever, if we add the assumption that 1 B (ω1 < t), where we will define
t soon, then B is (ω1, 2)-distributive. The argument is simpler than
that of Theorem (A) and Theorem(B) and does not need the hypoth-
esis of weak (2ω1, ω1)-distributivity. As a final twist, we will combine
several ideas to prove a variation of Theorem (A).
Recall that t, the tower number, is the smallest length of a sequence

〈Sα ∈ [ω]ω : α < κ〉

satisfying (∀α < β < κ)Sα ⊇∗ Sβ but there is no S ∈ [ω]ω satisfying
(∀α < κ)Sα ⊇∗ S (where S1 ⊆∗ S2 means S1 − S2 is finite). It is
not hard to see that ω1 ≤ t ≤ 2ω. See [1] for more on t and related
cardinals. The following lemma is the key. The idea is borrowed from
Farah in [3], who got the idea from Dordal in [2], who got the idea from
Booth.

Lemma 4.1. Let κ be such that ω1 ≤ κ < t. Let M be a transitive
model of ZFC such that κ ∈ M and (∀α < κ)P(α) ⊆ M . Then
P(κ) ⊆ M .

Proof. Fix κ and M . Since κ ∈ M and (∀α < κ)P(α) ⊆ M , we have
<κ2 ⊆ M . Let F : <κ2 → [ω]ω be a function in M such that for all
t1, t2 ∈

<κ2,

1) t1 ⊑ t2 ⇒ F (t1) ⊇
∗ F (t2), and

2) t1 ⊥ t2 ⇒ F (t1) ∩ F (t2) is finite.

Such functions are easy to construct by induction (and the Axoim of
Choice). The construction will not get stuck at a limit stage γ < κ

because given t ∈ γ2 ⊆ M and 〈F (t ↾ α) : α < γ〉, since γ < t there
is some S ∈ [ω]ω ⊆ M such that (∀α < γ)S ⊆∗ F (t ↾ α). The set
F (t) can be defined to be the least such S accoding to some fixed
well-ordering of [ω]ω.
Now, consider any a ∈ κ2. We will show that a ∈ M . The sequence

〈F (a ↾ α) : α < κ〉 is a ⊇∗-chain (in V) of length κ. Since κ < t, fix
some S ∈ [ω]ω satisfying

(∀α < κ)S ⊆∗ F (a ↾ α).
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Since P(ω) ⊆ M , in particular S ∈ M . Within M , the function F and
the set S can be used together to define a:

a =
⋃

{t ∈ <κ2 : S ⊆∗ F (t)}. �

By applying the lemma above inductively, we get an improvement:

Lemma 4.2. Let κ be such that ω1 ≤ κ < t. Let M be a transitive
model of ZFC such that P(ω) ⊆ M . Then P(κ) ⊆ M .

This last lemma is closely related to the fact that 2κ = 2ω when-
ever κ < t. A proof of this using an argument similar to Lemma 4.1
can be found in [1]. Martin’s Axiom (MA) implies t = 2ω, but the
original proof [8] that MA implies 2κ = 2ω whenever κ < 2ω used the
almost disjoint coding poset. We now have the application to complete
Boolean algebras:

Proposition 4.3. Let κ be an infinite cardinal. Let B be a complete
Boolean algebra such that B is (ω, 2)-distributive and 1 B (κ̌ < t).
Then B is (κ, 2)-distributive.

Proof. Apply Lemma 4.2 in the forcing extension with M equal to the
ground model. �

Let κ be such that ω1 ≤ κ < t. Any A ∈ [ω]ω can be partitioned into
2ω infinite sets with pairwise finite intersection. Thus, fixing λ ≤ 2ω,
the function F : <κ2 → [ω]ω in Lemma 4.1 can be replaced by a function
F : <κλ → [ω]ω satisfying the same conditions. Slightly modifying the
proof of Lemma 4.1, we get that if M is a transitive model of ZFC such
that λ ∈ M and (∀α < κ) αλ ⊆ M , then κλ ⊆ M . Inductively applying
this fact yields an improvement:

Lemma 4.4. Let κ and λ be such that ω1 ≤ κ < t and λ ≤ 2ω. Let
M be a transitive model of ZFC such that λ ∈ M and ωλ ⊆ M . Then
κλ ⊆ M .

Now we may combine Lemma 4.4 with the argument in Lemma 2.1.
The case κ = ω of this next lemma is already handled by Lemma 2.1.

Lemma 4.5. Let κ and λ be such that ω ≤ κ < t and λ ≤ 2ω. For
each A ⊆ λ, there is a function f : κλ → κ such that whenever M is
a transitive model of ZFC such that ωλ ⊆ M (and therefore κλ ⊆ M)
and some g : κλ → κ in M satisfies f ≤ g, then A ∈ M .

Proof. Fix κ, λ, and A. Define f : κλ → κ by

f(x) :=

{

0 if (∀α < κ) x(α) 6∈ A,

α + 1 if x(α) ∈ A but (∀β < α) x(β) 6∈ A.
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This is the analogue of the function f defined in Lemma 2.1. Now fix
M and some g : κλ → κ in M satisfying f ≤ g. Note that 2ω ∈ M so
therefore κ, λ ∈ M . Let

B := {t ∈ <κλ : g(x) ≥ Dom(t) for all x extending t}.

Since <κλ ∪ {κ, λ, g} ⊆ M , also B ∈ M .
Assume towards a contradiction, that A 6∈ M . Arguing just as in

Lemma 2.1, there is some x ∈ κλ satisfying (∀α < κ) x ↾ α ∈ B. Since
κλ ⊆ M , we have x ∈ M , and in particular x is in the domain of g.
We now have (∀α < κ) g(x) ≥ α, which is impossible. �

Lemma 4.6. Let κ and λ be such that ω ≤ κ < t and λ ≤ 2ω. Let M be
a transitive model of ZFC such that ωλ ⊆ M (and therefore κλ ⊆ M).
Assume that for each f : (λκ)M → κ there is some g : (λκ)M → κ in
M satisfying f ≤ g. Then P(λ) ⊆ M .

Proof. This follows immediately from the previous lemma. �

Now follows the theorem:

Theorem 4.7. Let B be a complete Boolean algebra. Let κ and λ

be such that 1 B (κ̌ < t) and 1 B (λ̌ ≤ 2ω). Assume that B is
(ω, λ)-distributive and weakly (λκ, κ)-distributive. Then B is (λ, 2)-
distributive.

5. Suslin Algebras and MA(ω1)

The theorems in this paper relied on absoluteness results concerning
trees. We can get a counterexample to a generalization of these theo-
rems by using a Suslin tree (a tree of height ω1 such that every branch
and antichain is at most countable). Recall the following definition:

Definition 5.1. A Suslin algebra is a complete Boolean algebra that
is atomless, (ω, κ)-distributive for each cardinal κ, and c.c.c.

It is a theorem of ZFC that there exists a Suslin algebra iff there
exists a Suslin tree. Furthermore, given a Suslin algebra B, there is a
Suslin tree (turned upside down) that completely embeds into B, so B is
not (ω1, 2)-distributive (see [6]). Immediately, we see that Theorem (B)
cannot be changed by simply replacing the weakly compact cardinal κ
with ω1:

Counterexample 5.2. Let B be a Suslin algebra. Then B is weakly
(2ω1, ω1)-distributive and B is (ω, 2)-distributive, but B is not (ω1, 2)-
distributive.
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Proof. The only claim left to be verified is that B is weakly (2ω1, ω1)-
distributive. In fact, we will show that B is weakly (λ, ω1)-distributive

for all λ. To see why, fix λ and fix a B-name ḟ such that

1 B ḟ : λ̌ → ω1.

Since B has the c.c.c., there are only countably many possible values
for a given term in the forcing language. In particular, for each α < λ,
there are only countably many possible values for ḟ(α̌). For each α < λ,
let g(α) < ω1 be the supremum of these possible values. We now have

1 B (∀α < λ̌) ḟ(α) ≤ ǧ(α).

Since ḟ was arbitrary, by Fact 1.2 B is weakly (λ, ω1)-distributive. �

Unfortunately, the counterexample above used a Suslin algebra, which
ZFC does not prove exists. In particular, we ask the following:

Question 5.3. Is it consistent with ZFC that every complete Boolean
algebra that is both (ω, κ)-distributive for all κ and weakly (λ, ω1)-
distributive for all λ must also be (ω1, 2)-distributive?

The intuitive way to try to affirmatively answer the above question
is to consider a model of MA(ω1). By Proposition 4.3, we only need
to worry about those B such that 1 B (ω1 = t). We present another
result which shows we do not need to worry about complete Boolean
algebras that satisfy both a strong chain condition and enough weak
distributivity laws. The main idea is the following: if we have a size
λ collection C of antichains in B each of size κ′, then if B is weakly
(λ, κ′)-distributive, then there is a maximal antichain A ⊆ B such that
below each a ∈ A, each antichain in C has < κ′ non-zero elements.
Assuming also that B is (ω, |B|)-distributive, we can repeatedly apply
this construction countably many times until we produce a maximal
antichain Bω such that below each b′ ∈ Bω, each antichain of B has
only countably many non-zero elements. That is, Bω will witness that
B is “locally c.c.c.”. Then, we use a result of Baumgartner to conclude
that since B is locally c.c.c. and (ω, 2)-distributive, B is either (ω1, 2)-
distributive or a Suslin tree can be embedded into B. If we assume
there are no Suslin trees (which follows from MA(ω1)), we get that B
must be (ω1, 2)-distributive.

Theorem (D). Assume there are no Suslin trees. Let B be a complete
Boolean algebra such that B is (ω, |B|)-distributive, B is κ-c.c. for some
κ < ℵω1

, and (∀uncountable κ′ < κ)B is weakly (|B|κ
′

, κ′)-distributive.
Then B is (ω1, 2)-distributive.
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Proof. We will construct a sequence of maximal antichains

〈Bn ⊆ B : n ∈ ω〉

such that B0 := {1B} and (∀n < m < ω)Bm refines Bn. Each Bn will
have the property that for any maximal antichain A below an element
b ∈ Bn, for each b′ ∈ Bn+1 extending b, A will have < |A| non-zero
elements below b′. We will then define the maximal antichain Bω to
refine each Bn, and we will argue that below each bω ∈ Bω, B is c.c.c.
Let κ < ℵω1

be the least cardinal such that B is κ-c.c. Define B0 :=
{1B}. We will now define a maximal antichain B1 ⊆ B (which trivially
refines B0). Every antichain in B has size< κ. Consider an uncountable
cardinal κ′ = ℵα < κ. Let λ := |B|κ

′

. Let 〈Aβ : β < λ〉 be an
enumeration of the maximal antichains in B of size κ′. For each β < λ,
let 〈aβ,γ : γ < κ′〉 be an enumeration of the elements of Aβ. Let Ġ

be the canonical name for the generic filter. Fix a name ḟ such that
1  ḟ : λ̌ → κ̌′ and

1  (∀β < λ̌) ǎβ,ḟ(β) ∈ Ġ.

By hypothesis, B is weakly (λ, κ′)-distributive, so there is a maximal
antichain C0,α ⊆ B (which trivially refines B0) and a name ġ such that

1  ġ : λ̌ → κ̌′ and

1  (∀β < λ̌) ḟ(β) ≤ ġ(β).

Hence,
1  (∀β < λ̌)(∀γ < κ̌′) γ > ġ(β) ⇒ ǎβ,γ 6∈ Ġ.

This implies that below each c ∈ C0,α, each Aβ has < |Aβ| = κ′ non-
zero elements. That is, for each c ∈ C0,α and Aβ , there are < |Aβ|
many a ∈ Aβ such that c ∧ a 6= 0B.
For each ℵα < κ, we have such a maximal antichain C0,α ⊆ B. Since

κ < ℵω1
, the family 〈C0,α ⊆ B : ℵα < κ〉 is countable. Each C0,α

has size ≤ |B|, so since B is (ω, |B|)-distributive, we may fix a single
maximal antichain B1 ⊆ B which refines each C0,α. Note that B1 has
the property that for each maximal antichain A ⊆ B (below 1B) and
b′ ∈ B1, A has < |A| non-zero elements below b′.
We will now define B2. Consider an uncountable cardinal κ′ = ℵα <

κ. Let λ := |B|κ
′

. Let 〈Aβ : β < λ〉 be an enumeration of all size κ′

antichains that are each a partition of some element of B1. Since B is
weakly (λ, κ′)-distributive, we may use a similar argument as before to
get a maximal antichain C1,α which refines B1 such that below each c ∈
C1,α, each Aβ has < |Aβ| = κ′ non-zero elements. This completes the
construction of C1,α. As before, we may use the (ω, |B|)-distributivity
of B to get a common refinement B2 of every maximal antichain in the
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family 〈C1,α : ℵα < κ〉. Note that B2 has the property that for every
partition A of some element of B1 and b′ ∈ B2, A has < |A| non-zero
elements below b′.
We may continue this procedure to get a sequence 〈Bn : n ∈ ω〉

of maximal antichains of B. The following diagram depicts the maxi-
mal antichains which we have constructed, where an arrow represents
refinement:

B0

�� ""❊
❊❊

❊❊
❊❊

❊

((❘❘
❘❘

❘❘
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❘❘
❘❘

❘❘
❘❘

❘

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱

C0,1

��

C0,2

||②②
②②
②②
②②

C0,3
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❧❧
❧❧
❧❧
❧❧

...
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❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤

B1

�� ""❊
❊❊

❊❊
❊❊

❊

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱

C1,1

��

C1,2

{{✇✇
✇✇
✇✇
✇✇
✇

C1,3

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦

...

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

...

Using the (ω, |B|)-distributivity of B once more, we may get a single
maximal antichain Bω ⊆ B which refines each Bn. We will now argue
that given any maximal antichain A ⊆ B and bω ∈ Bω, A has only
countably many non-zero elements below b.
Fix an arbitrary maximal antichain A0 ⊆ B. Fix bω ∈ Bω. Let

κ0 := |A0|. If κ0 ≤ ω, we are done. If not, let b1 be the unique
element of B1 above bω. By the construction of B1, A0 has < κ0 non-
zero elements below b1. Let κ1 < κ0 be the number of such non-zero
elements. That is, letting

A1 := {a ∧ b1 : a ∈ A0},

we have |A1| = κ1 < κ0. If κ1 ≤ ω, we are done because |{a ∧ bω :
a ∈ A0}| ≤ |A1| ≤ ω. Otherwise, let b2 be the unique element of B2

above bω. By the construction of B2, A1 has < κ1 non-zero elements
below b2. Let κ2 < κ1 be the number of such non-zero elements. That
is, letting

A2 := {a ∧ b2 : a ∈ A1},

we have |A2| = κ2 < κ1. If κ2 ≤ ω, we are done by similar reasons
as before. If not, then we may continue the procedure. However, the
procedure will eventually terminate. This is because if not, then we
would have an infinite sequence of decreasing cardinals

κ0 > κ1 > κ2 > ...,
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which is impossible. Thus, A0 has only countably many non-zero ele-
ments below bω.
At this point, we have argued that below the maximal antichain Bω,

B has the c.c.c. Now, it must be that B is (ω1, 2)-distributive. Let
us explain. It suffices to show that B is (ω1, 2)-distributive below each
element of Bω. Fix any bω ∈ Bω. Below bω, B is c.c.c. and (ω, 2)-
distributive. Suppose, towards a contradiction, that B is not (ω1, 2)-
distributive. Quoting a result of Baumgartner 1, there exists a Suslin
tree which, when turned upside down, can be embedded into B below
bω. However, we assumed there are no Suslin trees. This completes the
proof. �
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