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ON PRODUCTS OF ELEMENTARILY INDIVISIBLE

STRUCTURES

NADAV MEIR

Abstract. We say a structure M in a first-order language L is indivisible
if for every coloring of its universe in two colors, there is a monochromatic
substructure M′ ⊆ M such that M′ ∼= M. Additionally, we say that M is
symmetrically indivisible if M′ can be chosen to be symmetrically embedded in
M (that is, every automorphism ofM′ can be extended to an automorphism of
M). Similarly, we say that M is elementarily indivisible if M′ can be chosen
to be an elementary substructure. We define new products of structures in a
relational language. We use these products to give recipes for construction of
elementarily indivisible structures which are not transitive and elementarily
indivisible structures which are not symmetrically indivisible, answering two
questions presented by A. Hasson, M. Kojman and A. Onshuus.

1. Introduction

The notion of indivisibility of relational first-order structures and metric spaces
is well studied in Ramsey theory. ([DLPS07], [EZS93], [EZS94], and [KR86] are
just a few examples of the extensive study in this area.) Recall that a structure M
in a relational first-order language is indivisible, if for every coloring of its universe
in two colors, there is a monochromatic substructure M′ ⊆ M such that M′ ∼= M.
Rado’s random graph, the ordered set of natural numbers and the ordered set of
rational numbers are just a few of the many examples. Weakenings of this notions
have also been studied (see [Sau14]). A known extensively studied strengthening
of this notion is the pigeonhole property (see [BCD00], [BD99]). For an extensive
survey on indivisibility see [Fra00, Appendix A].

In [GK11], several induced Ramsey theorems for graphs were strengthened to a
“symmetrized” version, in which the induced monochromatic subgraph satisfies that
all members of a prescribed set of its partial isomorphisms extend to automorphisms
of the original graph. In [HKO11], following [GK11], a new strengthening of the
notion of indivisibility was introduced:

Definition 1.1. We say a substructure N ⊆ M is symmetrically embedded in M
if every automorphism of N extends to an automorphism of M.

We say that M is symmetrically indivisible if for every coloring of its universe
in two colors, there is a monochromatic M′ ⊆ M such that M′ is isomorphic to
M and M′ is symmetrically embedded in M.
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In [HKO11], several examples of symmetrically indivisible structures were inves-
tigated. Examples include the random graph ([GK11]), the ordered set of rational
numbers, the ordered set natural numbers, and the universal n-hypergraph.

In the last section of [HKO11], another strengthening of the notion of indivisi-
bility was introduced:

Definition 1.2. we say that M is elementarily indivisible if for every coloring of
its universe in two colors, there is a monochromatic M′ ⊆ M such that M′ is
isomorphic to M and M′ is an elementary substructure of M.

Classic examples for this notion, as given in [HKO11], are the random graph,
the ordered set of rational numbers, and the colorful graph described below.

Example 1.3. Let C be the class of all finite complete graphs with edges colored
in ω-many colors, i.e. all finite {Ri}i∈ω-structures such that {Ri}i∈ω are disjoint,
irreflexive, symmetric binary relations whose union is the complete graph. This is
a Fräıssé class and we call its Fräıssé limit the colorful graph.

In Example 2.5 we present an example from [HKO11] of an elementarily indivis-
ible structure which does not admit quantifier elimination and is, in fact, not even
model complete. Despite this example, in view of Lemma 2.20, every elementarily
indivisible structure can be considered as a reduct of an indivisible structure who
admits quantifier elimination.

A classic example of a symmetrically indivisible structure which is not elemen-
tarily indivisible is the ordered set of natural numbers, since every singleton is
∅-definable. (In fact, there are no proper elementary substructures of 〈ω,<〉.)

In view of the above example, indivisibility should be viewed as a property of
the pair (M,L) of a structure and the language in which it is given. Elementary
indivisibility seems to be the right analogous property of the structure only (i.e.,
independent of its language). This statement is given a precise meaning in Lemma
2.20.

In [HKO11], The following questions were asked regarding the properties of ele-
mentarily indivisible structures, as well as the relation between this notion and the
notion of symmetric indivisibility:

Question 1. Does elementary indivisibility imply symmetric indivisibility?

Question 2. Is every elementarily indivisible structure homogeneous?

Question 3. Is there a rigid elementarily indivisible structure?

In the literature the precise definition of homogeneity tends to vary; for example,
in [Mac11], a structure is said to be homogeneous if it is what we call ultrahomo-
geneous. Here we follow the conventions of [Hod93] and [Mar02], as presented in
Definitions 1.6 and 1.7.

To quote [DLPS07] in a similar context, “The uncountable case is different as
the indivisibility property may fail badly”. In view of this, since the dawn of
mankind (i.e. all the study mentioned above), indivisibility of first-order structures
has been mostly studied in the countable context, since in the uncountable case set
theoretic phenomena come into play. We note that while all results mentioned in
this paper hold under the restriction to countable structures, in fact the countability
assumption is superfluous.
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In this paper, we investigate a construction we call the lexicographic product
M[N ] of two relational structures M and N , presented in Definition 1.8. We
note this construction is very similar to the “composition” defined in [HKO11] and
it generalizes the lexicographic order and the lexicographic product of graphs, as
known in graph theory. In Section 2, We show that if M and N both admit
quantifier elimination and every two singletons in M satisfy the same first-order
formulas (i.e. the theory of M is transitive in the sense of Definition 1.12 below),
then M[N ]s admits quantifier elimination as well. We use this result to show that
if M and N are both elementarily indivisible, then so are M[N ] and M[N ]s.

We further generalize the quantifier elimination result to a generalized product
construction we introduce in Definition 1.9.

Applying the results mentioned above, in Section 3 we give general constructions
of elementarily indivisible structures which are not transitive and in Section 4 of el-
ementarily indivisible structures which are not symmetrically indivisible, answering
Questions 1 and 2 negatively. Question 3 remains open.

1.1. Preliminaries. Unless otherwise specified, we do not distinguish between a
structure M and its universe (or underlying set). Throughout this paper all lan-
guages are relational so there is no distinction between subsets and substructures
of a given structure. The notation for both is B ⊆ M. We denote the cardinality
of a structure M by |M|.

Definition 1.4. If M and N are L-structures and B ⊆ M, we say that f : B → N
is a partial elementary map if M |= ϕ

(
b̄
)

⇐⇒ N |= ϕ
(
f
(
b̄
))

for all L-formulas

ϕ and all finite sequences b̄ from B.
If B = M we just say f is an elementary embedding.
A substructure M ⊆ N is an elementary substructure if the inclusion map ι is

an elementary embedding, in which case we denote M � N .

Definition 1.5. If M and N are L-structures and B ⊆ M, we say that f : B → N
is a partial isomorphism if M |= ϕ

(
b̄
)

⇐⇒ N |= ϕ
(
f
(
b̄
))

for all quantifier-free

(or equivalently, atomic) L-formulas ϕ and all finite sequences b̄ from B.

Definition 1.6. We say a structure M is homogeneous if whenever A ⊂ M with
|A| < |M| and f : A→ M is a partial elementary map, there is an automorphism
σ ∈ Aut(M) such that σ ↾ A = f .

Definition 1.7. We say a structure M is ultrahomogeneous if whenever A ⊂ M
with |A| < |M| and f : A→ M is a partial isomorphism, there is an automorphism
σ ∈ Aut(M) such that σ ↾ A = f .

In [HKO11], a construction very similar to the following was introduced. We
note that while our construction is slightly different, in fact, in the context of
binary relational languages these two definitions coincide. We further note that
the notation below is classic for structures in a binary language (e.g. [Che98]
and [Lac87]) and in fact coincides with the lexicographic (partial) order and the
lexicographic product of graphs (sometimes referred to as wreath product). Having
said that, [HKO11, Definition 2.1] and [HKO11, Definition 2.3] are the earliest
occurrences the author was able to find of such a product for languages of arbitrary
arity.
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Definition 1.8. Let M, N be structures in a relational language, L. Let M,N
be their universes, respectively. The lexicographic product M[N ] is the L-structure
whose universe is M ×N where for every n-ary relation R ∈ L we set

RM[N ] :=
{ (

(a1, b1) , . . . , (an, bn)
) ∣∣ ∧

1≤i,j≤n ai = aj and N |= R (b1, . . . , bn)
}

∪
{ (

(a1, b1) , . . . , (an, bn)
) ∣∣ ∨

1≤i6=j≤n ai 6= aj and M |= R (a1, . . . , an)
}
.

Let M[N ]s be M[N ] expanded by a binary relation s /∈ L interpreted as
{ (

(a1, b1) , (a2, b2)
)
∈ (M ×N)2

∣∣ a1 = a2
}
.

For the purposes of this paper, we generalize the definition above to the following.

Definition 1.9. Let M, {Na}a∈M be structures in a relational language, L. Let
M, {Na}a∈M be their universes, respectively. The generalized product M[Na]a∈M

is the L-structure whose universe is
⋃

a∈M{a} ×Na where for every n-ary relation
R ∈ L we set

RM[Na]a∈M :=
{ (

(a, b1), . . . , (a, bn)
) ∣∣ a ∈M and Na |= R(b1, . . . , bn)

}
∪

{ (
(a1, b1), . . . , (an, bn)

) ∣∣ ∨
1≤i6=j≤n ai 6= aj and M |= R(a1, . . . , an)

}
.

Let M[Na]
s
a∈M be M[Na]a∈M expanded by a binary relation s /∈ L interpreted

as { (
(a, b1), (a, b2)

) ∣∣ a ∈ M and b1, b2 ∈ Na

}
.

Note that if there is a fixed N such that Na = N for all a ∈ M, then this
definition coincides with M[N ] and M[N ]s.

Remark 1.10. Notice that the interpretation of unary predicates in the product
does not depend on their interpretation in M, i.e. for a unary predicate U ∈ L,

M[Na]a∈M |= U((a, b)) ⇐⇒ Na |= U(b).

Remark 1.11. Notice that if M, {Na}a∈M are structures in a relational language
L and a ∈ M, then the substructure {a} × Na is isomorphic to Na.

Definition 1.12. We say a theory T is transitive if for every φ(x) in one free
variable, either T |= ∀xφ(x) or T |= ∀x¬φ(x) (i.e. T has a unique 1-type).

Definition 1.13. We say an L-structure M is transitive if for every x, y ∈ M,
there is an automorphism σ ∈ Aut(M) such that σ(x) = y.

Lemma 1.14. Th(M) is transitive for every elementarily indivisible L-structure
M.

Proof. If Th(M) is not transitive, then there is an L-formula in one free variable
φ(x) such that Th(M) 6|= ∀xφ(x) and Th(M) 6|= ∀x¬φ(x). By completeness,
Th(M) |= ∃x¬φ(x) and Th(M) |= ∃xφ(x). Define a coloring c : M → {red, blue}
as follows:

c(x) :=

{
blue if M |= φ(x)
red if M |= ¬φ(x).

It is clear that no c-monochromatic substructure is elementary. �
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Note that obviously if M is a transitive structure, then Th(M) is transitive, but
the converse is not necessarily true – in fact, in Section 3 we will see examples of
elementarily indivisible structures which are not transitive. Having said that, we
do have:

Remark 1.15. If M is homogeneous, then M is transitive iff Th(M) is transitive.

Corollary 1.16. Every homogeneous elementarily indivisible structure is transi-
tive. �

2. Elimination of quantifiers

In this paper we stick to the definition of quantifier elimination presented in
[Mar02]:

Definition 2.1. We say that an L-theory T admits quantifier elimination (QE) if
for every L-formula φ there is a quantifier-free L-formula ψ such that

T |= φ↔ ψ.

We say an L-structure M admits QE if Th(M) admits QE.

Remark 2.2. If T admits QE and N ,M |= T , N ⊆ M then N � M. So if M is
indivisible and admits QE, then it is elementarily indivisible.

Furthermore: this remark can be extended to any infinitary logic. For simplicity,
we restrict ourselves to Lω1,ω:

Definition 2.3. We say that an Lω1,ω-theory T admits quantifier elimination (QE)
if for every Lω1,ω-formula φ there is a quantifier-free Lω1,ω-formula ψ such that

T |= φ↔ ψ.

We say an L-structure M admits Lω1,ω-QE if its Lω1,ω-theory admits QE.

Remark 2.4. It is an easy exercise to verify that for every countable structure M
in a countable relational language, M is ultrahomogeneous iff M admits Lω1,ω-QE,
which, in turn, implies that every embedding is elementary. So we have that every
indivisible ultrahomogeneous countable structure is elementarily indivisible.

In view of the remarks above, we present below an example from [HKO11, Corol-
lary 6.6] of an elementarily indivisible structure which does not admit QE and is
not ultrahomogeneous, in a finite language.

Example 2.5. Let G be the colorful graph described in Example 1.3. Let χ : [G]2 →
ω be the function taking each edge {a, b} ∈ [G]2 to its color. Let G< be G expanded
by a quaternary relation symbol R such that G< |= R(a, b, c, d) iff χ(a, b) < χ(c, d).
Notice that R is definable in Lω1,ω by the formula

∨
i<j∈ω Ri(a, b)∧Rj(c, d). Since

G is indivisible, so is G<. By Remark 2.4, since G is ultrahomogeneous, G< is
also ultrahomogeneous and thus elementarily indivisible. Now G< ↾ {R} is also
elementarily indivisible and G< ↾ {R} does not eliminate quantifiers; for example
∃z, wR(z, w, x, y) cannot be eliminated.

Notation 2.6. For a set of L-structures S and an L-theory T we denote S |= T if
M |= T for all M ∈ S.
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2.1. The elimination. In this subsection we prove the following theorem which
is the main result of the section.

Theorem 2.7. Let L be a relational language and let T1, T2 be L-theories, not nec-
essarily complete. If T1 and T2 both admit QE and T1 is transitive then there is an
L∪{s}-theory T (not necessarily complete) admitting QE, such that M[Na]

s
a∈M |=

T whenever M |= T1 and {Na}a∈M |= T2.

In particular, if M and N are L-structures both admitting QE and Th(M) is
transitive then M[N ]s admits QE.

Before proving this theorem, we note that the requirement of transitivity is
necessary and provide a simple example in which M and N both admit QE, but
M[N ]s does not:

Example 2.8. Let L := {R,A,B } where R is a binary relation and A, B are
unary predicates. Let M be an L-structure satisfying:

•
∣∣AM

∣∣ = 1,
∣∣BM

∣∣ = ℵ0.

• AM ∩BM = ∅.
• RM :=

{
(a, b)

∣∣ a ∈ AM, b ∈ BM
}
.

Let N be an L-structure with a countably infinite universe interpreting all relations
in L as empty. Then M and N both admit QE but M[N ]s does not admit QE.
Obviously N admits QE.

It is also obvious that M ↾ {A,B} admits QE (where M ↾ {A,B} is the restric-
tion of M to the language {A,B}). To show M admits QE, we note that RM is
quantifier free ∅-definable from {AM, BM}.

To show M[N ]s does not admit QE, by Remark 1.10, M[N ]s |= U((x, y)) ⇐⇒
N |= U(y) for every unary predicate U ∈ L. Since N interprets all relations in L as
empty, M[N ]s interprets all unary predicates as empty. Thus every quantifier-free
formula in one variable is equivalent to either “x = x” or “x 6= x”. Let φ(x) :=
∃y R(x, y). Notice that M[N ]s |= φ((a, c)) for a ∈ AM and M[N ]s 6|= φ((b, c)) for
b ∈ BM. So φ(x) is neither equivalent to “x = x” nor to “x 6= x” and thus M[N ]s

does not admit QE.

We continue with a few definitions and lemmas needed for the proof of Theorem
2.7.

Throughout this section, we use the following abbreviations:

Notation 2.9.

• v̄ := (v1, . . . , vn) is an n-tuple of variables.

• Ę(a, b) :=
(
a1, b1), . . . , (an, bn)

)
is an n-tuple of elements in the product

(generalized or not).

• Whenever Ę(a, b) =
(
(a1, b1), . . . , (an, bn)

)
, we denote ā := (a1, . . . , an) and

b̄ := (b1, . . . , bn).

So whenever v̄ and Ę(a, b) appear together, they are of the same length and, unless
otherwise specified, we denote their length by n.

Notation 2.10. Let φ be an L-formula. We denote φ̃ the L∪{s}-formula obtained
from φ by replacing the equality symbol ‘=’ with s, namely:

• If φ is atomic of the form R (v̄) for R ∈ L, then φ̃ := φ.
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• If φ is atomic of the form “x = y”, then φ̃ := s(x, y).

• If φ is of the form α ∗ β where ∗ ∈ { ∧,∨,→ }, then φ̃ := α̃ ∗ β̃.

• If φ is of the form ¬β, then φ̃ := ¬β̃.
• If φ is of the form ∗xβ where ∗ ∈ { ∀, ∃ } then φ̃ := ∗x β̃.

Lemma 2.11. Let M, {Na}a∈M be L-structures. If φ (v̄) is a quantifier-free L-
formula, a ∈ M, b1, . . . , bn ∈ Na, then

M[Na]a∈M |= φ ((a, b1), . . . , (a, bn)) ⇐⇒ Na |= φ(b1, . . . , bn).

Proof. Define ea : Na → M[Na]a∈M by ea(b) := (a, b). By definition ofM[Na]a∈M

this is an L-embedding and thus the claim follows. �

Definition 2.12. Let M, {Na}a∈M be L-structures. Let φ (v̄) be an L-formula,
Ę(a, b) ∈ M[Na]a∈M. We say Ę(a, b) is an admissible assignment for φ when for all
R ∈ L, if R(vi1 , . . . , vik) occurs in φ, then

∨
1≤l<m≤k ail 6= aim .

Lemma 2.13. If φ (v̄) is a quantifier-free L-formula and Ę(a, b) ∈ M[Na]a∈M is an
admissible assignment for φ, then

M[Na]
s
a∈M |= φ̃

(
Ę(a, b)

)
⇐⇒ M |= φ (ā) .

In particular, If φ (v̄) is a quantifier-free L-formula such that the equality symbol
does not occur in φ, then

M[Na]
s
a∈M |= φ

(
Ę(a, b)

)
⇔ M |= φ (ā) .

Proof.

• If φ is of the form “v1 = v2”, this follows by definition of s.
• If φ is of the form R(vi1 , . . . , vik), since

Ę(a, b) is an admissible assignment,
by definition of M[Na]

s
a∈M,

M[Na]
s
a∈M |= φ

(
Ę(a, b)

)
⇐⇒ M |= φ (ā)

and φ̃ = φ.
• For a general quantifier-free φ the claim follows by induction on the com-
plexity of φ.

�

Definition 2.14. A formula φ (v̄) is called a complete equality diagram if it is a
consistent conjunction of formulas of the form “x = y” and “x 6= y” such that for
all 1 ≤ i, j ≤ n, either φ (v̄) ⊢ vi = vj or φ (v̄) ⊢ vi 6= vj .

Lemma 2.15. Let T be a transitive theory. For every quantifier-free L-formula
ϕ (v̄) there is a quantifier-free L∪{s}-formula ϕ′ (v̄) such that if M |= T, {Na}a∈M

are L-structures, Ę(a, b) ∈ M[Na]
s
a∈M, then

M |= ϕ (ā) ⇐⇒ M[Na]
s
a∈M |= ϕ′

(
Ę(a, b)

)
.

Proof. Let {ψj}j∈J be all complete equality diagrams on v̄. Notice that

⊢ ϕ (v̄) ↔


ϕ (v̄) ∧

∨

j∈J

ψj (v̄)


↔

∨

j∈J

(ϕ (v̄) ∧ ψj (v̄)) .
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So by dealing with each disjunct separately, it suffices to find a quantifier-free
L∪{s}-formula ϕ′ (v̄) such that for all L-structuresM, {Na}a∈M such that M |= T

and for all Ę(a, b) ∈ M[Na]
s
a∈M,

M |= ϕ (ā) ∧ ψ (ā) ⇐⇒ M[Na]
s
a∈M |= ϕ′

(
Ę(a, b)

)

where ψ is a complete equality diagram.
Next, for every vj , vk such that j < k and ψ (v̄) ⊢ vj = vk, we can replace every

occurrence of vk with vj , so we may assume ψ (v̄) =
∧

1≤j<k≤n vj 6= vk. Secondly,

since T is transitive, every formula of the form R(x, . . . , x) is equivalent either to
“x = x” or to “x 6= x”, so we may assume there are no such occurrences in ϕ. Let

ψ̃, ϕ̃ be the formulas obtained from ψ, ϕ respectively, by replacing ‘=’ with s. We
claim that for all L-structures M |= T, {Na}a∈M and Ę(a, b) ∈ M[Na]

s
a∈M,

M |= ϕ (ā) ∧ ψ (ā) ⇐⇒ M[Na]
s
a∈M |= ϕ̃

(
Ę(a, b)

)
∧ ψ̃

(
Ę(a, b)

)
.

Indeed: by definition, M |= ψ (ā) ⇐⇒ M[Na]
s
a∈M |= ψ̃

(
Ę(a, b)

)
. Assuming

M |= ψ (ā), since there are no occurrences of the form R(x, . . . , x) in ϕ, Ę(a, b) is an
admissible assignment for ϕ. So by Lemma 2.13,

M |= ϕ (ā) ⇐⇒ M[Na]
s
a∈M |= ϕ̃

(
Ę(a, b)

)
.

�

Before continuing to the main proof – one last definition, that stand at the core
of the proof of Theorem 2.7:

Definition 2.16. An {s}-formula φ (v̄) is called a complete s-diagram if it is a
conjunction of formulas of the form s(x, y) or ¬s(x, y) such that for every 1 ≤ i, j ≤
n, either φ(v1, . . . , vn) ⊢ s(vi, vj) or φ (v̄) ⊢ ¬s(vi, vj) and φ is consistent with s
being an equivalence relation.

Notice that φ is a complete s-diagram iff it is of the form ψ̃ for some complete
equality diagram ψ.

Proof of Theorem 2.7. We provide a technical proof, noting that this proof is in
fact constructive, using the elimination of quantifiers from T1 and T2.

Let φ = ∃w
∧

i∈I θi (v̄, w) such that {θi}i∈I are atomic and negated atomic for-
mulas. We need to find a quantifier-free L ∪ {s}-formula ϕ such that whenever
M |= T1 and {Na}a∈M |= T2,

M[Na]
s
a∈M |= φ (v̄) ↔ ϕ (v̄) .

First, since ⊢ ∃w
(
χ (v̄, w) ∧ θ (v̄)

)
↔ ∃w

(
χ (v̄, w)

)
∧ θ (v̄) we may assume that

w occurs in θi for all i ∈ I.
In order to proceed with the proof we will use complete s-diagrams, in a way

similar to the way complete equality diagrams were used in the proof of Lemma
2.15:

Let Tequiv be the {s}-theory stating that s is an equivalence relation and let

{ψ̃j}j∈J be all the complete s-diagrams on v̄, w. There are finitely many such and

Tequiv |= ∃w
∧

i∈I

θi (v̄, w) ↔ ∃w
( ∧

i∈I

θi (v̄, w) ∧
∨

j∈J

ψ̃j (v̄, w)
)

↔ ∃w
∨

j∈J

(
ψ̃j (v̄, w) ∧

∧

i∈I

θi (v̄, w)
)
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↔
∨

j∈J

∃w
(
ψ̃j (v̄, w) ∧

∧

i∈I

θi (v̄, w)
)
.

Since M[Na]
s
a∈M |= Tequiv for every M and {Na}a∈M, we may assume φ is of the

form ∃w
(
ψ̃ (v̄, w) ∧

∧
i∈I θi (v̄, w)

)
where ψ̃ is a complete s-diagram, θi are atomic

and negated atomic formulas such that w occurs in each θi.
Next, let

I2 :=
{
i ∈ I

∣∣∣ ψ̃ ⊢ s(v, w) for all v occuring in θi

}

I1 :=
{
i ∈ I

∣∣∣ ψ̃ ⊢ ¬s(v, w) for some v occuring in θi

}
= I \ I2

and separate v̄ to v̄1, v̄2, where v̄2 are the variables occurring in
∧

i∈I2
θi (v̄, w) and

v̄1 the ones not occurring there. So φ is of the form

∃w

(
ψ̃
(
v̄1, v̄2, w

)
∧
∧

i∈I1

θi
(
v̄1, v̄2, w

)
∧
∧

i∈I2

θi
(
v̄2, w

)
)

where ψ̃ is a complete s-diagram. We may further assume ‘=’ and s do not occur in∧
i∈I1

θi
(
v̄1, v̄2, w

)
, for such an occurrence would be either superfluous with respect

to ψ̃ or inconsistent with ψ̃.
If v̄1 =

(
v11 , . . . , v

1
n1

)
, v̄2 =

(
v21 , . . . , v

2
n2

)
, let

ā1 =
(
a11, . . . , a

1
n1

)
, b̄1 =

(
b11, . . . , b

1
n1

)

ā2 =
(
a21, . . . , a

2
n2

)
, b̄2 =

(
b21, . . . , b

2
n2

)

and denote

Ę(a, b)
1
:=
((
a11, b

1
1

)
, . . . ,

(
a1n1

, b1n1

))
Ę(a, b)

2
:=
((
a21, b

2
1

)
, . . . ,

(
a2n2

, b2n2

))
.
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Claim. The following are equivalent:

(1)

M[Na]
s
a∈M |=

∃w

(
ψ̃
(

Ę(a, b)
1
, Ę(a, b)

2
, w
)
∧
∧

i∈I1

θi

(
Ę(a, b)

1
, Ę(a, b)

2
, w
)
∧
∧

i∈I2

θi

(
Ę(a, b)

2
, w
))

(2) There is an a ∈ M such that: a2j = a for all 1 ≤ j ≤ n2,

M |= ∃w

(
ψ
(
ā1, ā2, w

)
∧
∧

i∈I1

θi
(
ā1, ā2, w

)
)

and Na |= ∃w

(∧

i∈I2

θi
(
b̄2, w

)
)

Proof of Claim.
(⇒) Let c ∈ M and d ∈ Nc such that

M[Na]
s
a∈M |=

ψ̃
(

Ę(a, b)
1
, Ę(a, b)

2
, (c, d)

)
∧
∧

i∈I1

θi

(
Ę(a, b)

1
, Ę(a, b)

2
, (c, d)

)
∧
∧

i∈I2

θi

(
Ę(a, b)

2
, (c, d)

)
.

By definition, M |= ψ
(
ā1, ā2, c

)
, and since ψ

(
ā1, ā2, c

)
implies that

Ę(a, b)
1
, Ę(a, b)

2
, (c, d) is an admissible assignment for

∧
i∈I1

θi
(
v̄1, v̄2, w

)
, by Lemma

2.13,

M |=
∧

i∈I1

θi
(
ā1, ā2, c

)
.

Furthermore, by the definition of I2,

ψ
(
ā1, ā2, c

)
⊢


 ∧

1≤j≤n2

a2j = c


 ∧


 ∧

1≤j,k≤n2

a2j = a2k


 .

So letting a := c, in fact

M[Na]
s
a∈M |=

∧

i∈I1

θi
((
a, b21

)
, . . . ,

(
a, b2n2

)
, (a, d)

)

so by Lemma 2.11,

Na |=
∧

i∈I2

θi
(
b̄2, d

)
.

(⇐) Let a ∈ M be such that for all 1 ≤ j ≤ n2, a
2
j2

= a, and let c ∈ M and d ∈ Na

be such that

M |= ψ
(
ā1, ā2, c

)
∧
∧

i∈I1

θi
(
ā1, ā2, c

)
and Na |=

∧

i∈I2

θi
(
b̄2, d

)
.

Since ψ
(
ā1, ā2, c

)
⊢
∧

1≤j≤n2
a2j = c, in fact c = a, so d ∈ Nc and

Nc |=
∧

i∈I2

θi
(
b̄2, d

)
,

thus by Lemma 2.11,

M[Na]
s
a∈M |=

∧

i∈I2

θi

(
Ę(a, b)

2
, (c, d)

)
.
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Since ψ
(
ā1, ā2, c

)
implies that Ę(a, b)

1
, Ę(a, b)

2
, (c, d) is an admissible assignment for

φ1, by Lemma 2.13,

M[Na]
s
a∈M |= ψ̃

(
Ę(a, b)

1
, Ę(a, b)

2
, (c, d)

)
∧
∧

i∈I1

θi

(
Ę(a, b)

1
, Ę(a, b)

2
, (c, d)

)
.

� Claim

Assuming M |= T1 and {Na}a∈M |= T2, by QE of T1 and T2, let ϕ1 (v̄) , ϕ2 (v̄)
be quantifier-free L-formulas such that

T1 |= ∃w

(
ψ̃
(
v̄1, v̄2, w

)
∧
∧

i∈I1

θi
(
v̄1, v̄2, w

)
)

↔ ϕ1

(
v̄1, v̄2

)
and

T2 |= ∃w

(∧

i∈I2

θi
(
v̄2, w

)
)

↔ ϕ2

(
v̄2
)
.

So (2) from the claim is equivalent to:

(3) There is an a ∈ M such that: a2j = a for all 1 ≤ j ≤ n2,

M |= ϕ1

(
ā1, ā2

)
and Na |= ϕ2

(
b̄2
)
.

By Lemmas 2.11 and 2.15, there is an L-formula ϕ′
1 such that (3) above is

equivalent to:

(4)
∧

1≤j,k≤n2
a2j = a2k and

M[Na]
s
a∈M |= ϕ′

1

(
Ę(a, b)

1
, Ę(a, b)

2
)

and M[Na]
s
a∈M |= ϕ2

(
Ę(a, b)

2
)
,

which, in turn, is equivalent to
(5)

M[Na]
s
a∈M |=


 ∧

1≤j,k≤n2

s
((
a2j , b

2
j

)
,
(
a2k, b

2
k

))

 ∧ ϕ′

1

(
Ę(a, b)

1
, Ę(a, b)

2
)
∧ ϕ2

(
Ę(a, b)

2
)
.

Setting

ϕ
(
v̄1, v̄2

)
:=


 ∧

1≤j,k≤n2

s
(
v2j , v

2
k

)

 ∧ ϕ′

1

(
v̄1, v̄2

)
∧ ϕ2

(
v̄2
)
,

we get that for all Ę(a, b)
1
∈
(
M[Na]

s
a∈M

)n1

and Ę(a, b)
2
∈
(
M[Na]

s
a∈M

)n2

:

M[Na]
s
a∈M |= φ

(
Ę(a, b)

1
, Ę(a, b)

2
)

⇐⇒ M[Na]
s
a∈M |= ϕ

(
Ę(a, b)

1
, Ę(a, b)

2
)
.

So

M[Na]
s
a∈M |= φ

(
v̄1, v̄2

)
↔ ϕ

(
v̄1, v̄2

)

and ϕ is quantifier-free.
Let ϕφ be the quantifier-free L ∪ {s}-formula obtained from φ by the above

process. Let T be the logical closure (all the logical consequences) of

Tequiv ∪

{
φ↔ ϕφ

∣∣∣∣∣ φ is of the form ∃w

(
ψ̃ (v̄, w) ∧

∧

i∈I

θi (v̄, w)

)}
.
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T admits QE and by the above process, M[Na]
s
a∈M |= T for all M |= T1,

{Na}a∈M |= T2. �

Note that in the proof above, transitivity of T is used to get from (3) to (4) as
ϕ1 can include occurrences of the form R(x, . . . , x) that would be interpreted in the
product differently in each copy of Na, and in general we cannot use Lemma 2.15
if Th(M) is not transitive.

We note that if T1 and T2 are complete, so is T and thus:

Corollary 2.17. If M1 ≡ M2 and { Na | a ∈ M1 ∪M2 } are pairwise elementar-
ily equivalent then M1[Na]a∈M1

≡ M2[Na]a∈M2
.

We leave it as an exercise to show that s is necessary; i.e. find L-structures M
and N (even elementarily indivisible), such that M and N both admit QE but
M[N ] does not (not even model complete).

2.2. Application to elementary indivisibility. In this subsection, we provide
an immediate application of Theorem 2.7 to elementary indivisibility, mainly prov-
ing that the lexicographic product of two elementarily indivisible structures is ele-
mentarily indivisible. Here we only use the result of QE for M[N ]s, though in the
following sections the full power of Theorem 2.7 regarding the generalized product
will be needed.

Definition 2.18. Let M and M′ be structures with the same universe, not nec-
essarily in the same language.

We say M′ is a language reduct of M if M′ = M ↾ L0 for some L0 ⊆ L.
We say M′ is a definitional reduct of M if every ∅-definable relation in M′ is

∅-definable in M.

Notation 2.19. Let L̂ be an expansion of L such that for each L -formula φ (v̄)
with n free variables, we add an n-ary relation Rφ (we denote by φR (v̄) the formula
that defined R).

For any L-structure M, we define M̂ an L̂ -structure whose universe is the

universe of M , and for every n-ary relation symbol R ∈ L̂ we set

RM̂ =

{
RM if R ∈ L

{ ā ∈ Mn | M |= φR (ā) } if R ∈ L̂ \ L

We call M̂ the Morleyzation of M. It is well-known and an easy exercise to verify

that M̂ admits QE.

We note that while it is obvious that if M is (elementarily) indivisible and M′ is
a language reduct of M, then M′ is also (elementarily) indivisible, this is not true
for definitional reducts. For example consider the ordered natural numbers 〈ω,<〉.
The following lemma implies this is not the case in the elementarily indivisible
context. Because of this, and following [Mac11] and the extensive study done in
the subject, we use reduct as an abbreviation for definitional reduct.

Lemma 2.20. Let M be an L-structure. The following are equivalent:

(1) M is elementarily indivisible.
(2) every reduct of M is elementarily indivisible.
(3) every reduct of M is indivisible.
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(4) M̂ is indivisible.

(5) M̂ is elementarily indivisible.

Proof.

• (2)⇒(3)⇒(4) is obvious, since M̂ is a reduct of M.
• (4)⇒(5) is by quantifier elimination of the Morleyzation, and model com-
pleteness (Remark 2.2).

• (5)⇒(1) is due to elementary indivisibility respecting language reducts.
• (1)⇒(2) LetM′ be a reduct ofM in a language L′. Let c : M → {0, 1} be a
coloring and let N ⊆ M be a monochromatic elementary substructure iso-
morphic to M with universe N . We will show the induced L′-substructure
of M′ on N is an elementary substructure isomorphic to M′. Since M′ is
a reduct of M, for every L′-formula φ, there is an L-formula ϕφ such that
M′ |= φ (ā) ⇐⇒ M |= ϕ (ā) for every ā ∈ M. In particular, for every
R ∈ L′, there is an L-formula ϕR such that M′ |= R (ā) ⇐⇒ M |= ϕR (ā).

Let N ′ be the L′-structure whose universe is N and for every R ∈ L′

RN ′

:= { ā | N |= ϕR (ā) } .

Since N ∼= M, also N ′ ∼= M′. Since N ≺ M, for every R ∈ L′ we have

N ′ |= R (ā) ⇐⇒ N |= ϕR (ā) ⇐⇒ M |= ϕR (ā) ⇐⇒ M′ |= R (ā) ,

so, in fact, N ′ coincides with the induced L′-substructure of M on N . But
the above equivalence can also be achieved for L′-formulas:

N ′ |= φ (ā) ⇐⇒ N |= ϕφ (ā) ⇐⇒ M |= ϕφ (ā) ⇐⇒ M′ |= φ (ā) .

So N ′ is an elementary substructure of M′.

�

The following proposition is in fact almost identical to a part of [HKO11, Propo-
sition 2.14], but for the sake of completeness we give a simple proof here.

Proposition 2.21. If M and N are both indivisible then so is M[N ]s

Proof. Let c : M[N ]s → {0, 1} be a coloring of M[N ]s. So for each a ∈ M, c
induces a coloring of {a} × N and {a} × N ∼= N , so {a} × N is indivisible. So for
each a ∈ M there is N (a) ⊆ {a} × N s.t. |c[N (a)]| = 1 and N (a) ∼= N . Now,
let us define a coloring C : M → {{0}, {1}} as follow: C(a) := c[N (a)]. From
the previous statement it follows that C is well-defined. So C is a coloring of M
and since M is indivisible, there is as C-monochromatic substructure M0 ⊆ M
isomorphic to M. Let A ⊆ M[N ]s be the substructure

⋃

a∈M0

N (a).

By its construction, A is c-monochromatic. To show A ∼= M[N ]s, let f : M0

∼=
→

M be an isomorphism and for every a ∈M0, let ga : N (a)
∼=
→ N be an isomorphism.

We define F : A → M[N ]s by

F ((a, b)) = ( f(a), ga((a, b)) ) .

We leave it to the reader to verify that F is indeed an isomorphism.
�
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Theorem 2.22. If M and N are elementarily indivisible, then so are M[N ] and
M[N ]s.

Proof. First note that M[N ] is a reduct of M[N ]s, so it suffices to show elementary
indivisibility only for M[N ]s.

From the assumption and by Lemma 2.20, M̂ and N̂ are elementarily indivis-

ible in L̂, thus by Proposition 2.21, M̂[N̂ ]s is indivisible in L̂. By Lemma 1.14,

Th
(
M̂
)
is transitive and since M̂ and N̂ both admit QE in L̂, by Theorem 2.7,

M̂[N̂ ]s admits QE. In conclusion, M̂[N̂ ]s is indivisible and admits QE, thus it is

elementarily indivisible and M[N ]s is a reduct of M̂[N̂ ]s to L. �

We observe that M̂[N̂ ]s is not the same structure as M̂[N ]s. Thus, Theorem 2.7
does not automatically imply QE relative to M and N , i.e., the QE assumption in
statement of the theorem cannot be dropped. The following proposition remedies
this situation.

Proposition 2.23. Let M,N be structures in a relational language such that
Th(M) is transitive. If φ (v̄) is any L ∪ {s}-formula, then there are L-formulas{
ϕj
1 (v̄) , ϕ

j
2 (v̄)

}k

j=1
such that for every Ę(a, b) ∈ M[N ]s:

M[N ]s |= φ
(

Ę(a, b)
)

⇐⇒
k∨

j=1

(
M |= ϕj

1 (ā) ∧ N |= ϕj
2

(
b̄
))

Proof. Since M[N ]s = M̂[N̂ ]s ↾ L ∪ {s} and since M̂[N̂ ]s admits QE, there is a

quantifier-free L̂ ∪ {s}-formula ϕ (v̄) such that

M[N ]s |= φ
(

Ę(a, b)
)

⇐⇒ M̂[N̂ ]s |= φ
(

Ę(a, b)
)

⇐⇒ M̂[N̂ ]s |= ϕ
(

Ę(a, b)
)

for every Ę(a, b) ∈ M[N ]s. By taking the disjunctive normal form (DNF) of ϕ (v̄),
conjuncting with the disjunction with all complete s-diagrams and using disjunc-

tions, we may assume ϕ (v̄) is of the form ψ̃ (v̄)∧
∧

i∈I θi (v̄) where θi are atomic and
negated atomic formulas. As in the proof of Theorem 2.7, there are quantifier-free

L̂-formulas ϕ̂1 (v̄) and ϕ̂2 (v̄) such that

M̂[N̂ ]s |= ϕ
(

Ę(a, b)
)

⇐⇒ M̂ |= ϕ̂1 (ā) and N̂ |= ϕ̂2

(
b̄
)

for every Ę(a, b) ∈ M[N ]s. Since M̂ and N̂ are reducts of M and N respectively,
there are L-formulas ϕ1 (v̄) and ϕ2 (v̄) such that

M̂ |= ϕ̂1 (ā) ⇐⇒ M |= ϕ1 (ā) and N̂ |= ϕ̂2

(
b̄
)

⇐⇒ N |= ϕ2

(
b̄
)

for every Ę(a, b) ∈ M[N ]s. �

3. The existence of non-transitive elementarily indivisible

structures

In this section, we give a construction for non-transitive elementarily indivisible
structures. Noting that every elementarily indivisible homogeneous structure is
transitive, this gives a negative answer to Question 2. In Subsection 3.1 we prove
the main result of this section and in Subsection 3.2, we generalize this result by
constructing elementarily indivisible structures with infinitely many orbits. The
generalization will be used in Section 4.
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3.1. Two orbits.

Definition 3.1. Let L be a relational language, an elementarily indivisible pair in
L is a pair of elementarily indivisible L-structures 〈M0,M1〉 such that M0 ≺ M1

and M0 6∼= M1.

The existence of such a pair is needed for our construction, and thus we hereby
present two key examples. While the first one is simpler, we give the second as an
example in a finite language. The following examples rely on the theory of Fräıssé,
developed in [Fra54] and outlined in detail in [Hod93, Section 7.1].

Example 3.2. Let n ≥ 2 (it wouldn’t harm to assume n = 2). Let L = {Ri}i∈ω

where all Ri are relation symbols of arity n.
Let C be the class of all finite n-uniform hypergraphs (for n = 2 this is simply

graphs) with edges colored in ω-many colors, i.e. all finite L-structures for which
each Ri form the edges of an n-uniform hypergraph and {Ri}i∈ω are disjoint. This
is a Fräıssé class and let M1 be its Fräıssé limit.

Let D ⊂ C be the class of all structures in C which are complete, i.e. satisfying
the property that every subset of size n form an edge (in some color c ∈ ω). Note
that D is not an elementary class, but it is a Fräıssé subclass of C. Let M0 be its
Fräıssé limit.

By universality, M0 embeds into M1, so we may assume M0 ⊂ M1. It is well
known and easy to verify that M1 ≡ M0 and they admit QE, so M0 ≺ M1 and
since age (M0) ( age (M1), M0 6∼= M1.

Indivisibility of both M0 and M1 can be shown either by generalizing the well
known proof of indivisibility (in fact of the pigeonhole property) of the random
graph (given in [Hen71, Corollary 1.5]) or by generalizing the proof of [HKO11,
Example 6.3] (the proof for D and n = 2 is given, for C and n ≥ 2 the proof is
exactly the same). Elementary indivisibility thus follows from QE and Remark 2.2.

Example 3.3. Let L := {Ri}i∈ω and let M := M1 be as in Example 3.2. Let
f : Mn → ω be such that f (ā) = i iff M |= Ri (ā). Let S be a binary relation on
ω. Let RS be a 2n-ary relation symbol and let MS be the {RS}-structure with the
same universe as M such that whenever ā, b̄ ∈ Mn are n-tuples, MS |= RS

(
ā, b̄
)

iff S
(
f (ā) , f

(
b̄
))
.

Consider the case S is the standard order on ω. Notice that the set of {R<}-
formulas

∆ :=

{
∃ȳ1, . . . , ȳn

n−1∧

i=1

R< (ȳi, ȳi+1)

∣∣∣∣∣ n ∈ ω

}

is finitely satisfiable in M<, but not realized in M<. Let M< ≺ N< be a countable
elementary extension realizing ∆ and let N be its universe.

We would like to show both M< and N< are elementarily indivisible. Let E be
the equivalence relation onNn defined by E

(
ā; b̄
)
iffN< |= ¬R<

(
ā, b̄
)
∧¬R<

(
b̄, ā
)
.

Since N is countable, we may assume [N ]n/E = ω and let π : [N ]n → ω be the
quotient map sending each A ∈ [N ]n to its E-equivalence class. Let N be the L-
structure whose universe is N such that N |= Ri (a1, . . . , an) iff π ({ a1, . . . , an }) =
i for every a1, . . . , an ∈ N . Since M< ≺ N<, in particular, N< satisfies the
following property:

(A) for every finite A ⊂ N and every f : [A]n−1 → Nn, there is some b ∈ N
such that N |= E (ā, b; f (ā)) for every ā ∈ An−1.
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By property (A), N is ultrahomogeneous and has the same age as M, so N ∼= M
and thus N< ∼= M⊳ for some non-standard order ⊳ on ω.

Finally, to prove M< and M⊳ are both elementarily indivisible, we will show
that MS is elementarily indivisible for every binary relation S on ω. For that, let

M̃S be M expanded by RS defined above. Notice that RS is definable in Lω1,ω, so

clearly M̃S is indivisible. By Remark 2.4, since M is ultrahomogeneous, so is M̃S

and thus M̃S is elementarily indivisible. Finally MS = M̃S ↾ {RS}. �

Definition 3.4. For L-structures M and N , we denote M ∼e N if both M can
be elementarily embedded in N and vice-versa.

Lemma 3.5. If M ∼e N then M is elementarily indivisible iff N is elementarily
indivisible.

Proof. Because ∼e is an equivalence relation, it suffices to show one direction.
Suppose M is elementarily indivisible and assume, without loss of generality, M �
N . Let c : N → {red, blue} be a coloring of N , so c naturally induces a coloring
of M. Since M is elementarily indivisible, there is a c-monochromatic M′ ≺ M
such that M′ ∼= M. Now, since N can be elementarily embedded in M and
M′ ∼= M, in particular, there is some N0 ≺ M′ such that N0

∼= N and since M′

is monochromatic, so is N0. �

Lemma 3.6. Let M, {Na}a∈M be L-structures. For every (a1, b1) , (a2, b2) ∈
M[Na]

s
a∈M, if there is an automorphism σ ∈ AutM[Na]

s
a∈M such that σ ((a1, b1)) =

(a2, b2), then Na1

∼= Na2
.

Proof. σ sends s-equivalence classes to s-equivalence classes and {a} × Na is an
s-equivalence class for every a ∈ M . Therefore σ[{a1} × Na1

] = {a2} × Na2
, so

σ ↾ {a1}×Na1
: {a1}×Na1

→ {a2}×Na2
is an isomorphism, but {a1}×Na1

∼= Na1

and {a2} × Na2

∼= Na2
. �

Theorem 3.7. Let M be a transitive elementarily indivisible structure and 〈N0,N1〉
an elementarily indivisible pair. Let M′ ⊆ M1 ⊂ M be such that M′ ∼= M and
M′ ≺ M and let

Na :=

{
N1 if a ∈ M1

N0 if a /∈ M1.

Then the generalized product M[Na]
s
a∈M is elementarily indivisible and is not tran-

sitive.

Proof. To proveM[Na]
s
a∈M is elementarily indivisible, we may assume thatM,N0,N1

all admit QE. If not, by looking at M̂, N̂0, N̂1, the assumptions remain true and we

can, assuming QE, prove that M̂[N̂a]
s
a∈M is elementarily indivisible, soM[Na]

s
a∈M

is also elementarily indivisible, as a reduct of such.
We will show that M[Na]

s
a∈M ∼e M[N1]

s. By Theorem 2.22, M[N1]
s is el-

ementarily indivisible, thus by Lemma 3.5, M[Na]
s
a∈M will also be elementarily

indivisible.
Clearly M[N1]

s ∼= M′[N1]
s and M′[N1]

s ⊂ M[Na]
s
a∈M, so there is an embed-

ding e1 : M[N1]
s →֒ M[Na]

s
a∈M; on the other hand, clearlyM[Na]

s
a∈M ⊂ M[N1]

s,
so we have an embedding e2 : M[Na]

s
a∈M →֒ M[N1]

s.
Now by QE of M and of N0 ≡ N1 and by Theorem 2.7, there is an L∪{s}-theory

T admitting QE, such that M[N1]
s,M[Na]

s
a∈M |= T . By QE of T , e1 and e2 are

elementary embeddings. �
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Corollary 3.8. There is an elementarily indivisible structure (in a finite language)
that is not transitive and not homogeneous.

Proof. Let M be any transitive elementarily indivisible structure (all the classic
examples in the introduction are), let 〈N0,N1〉 be an elementarily indivisible pair
(in a finite language), e.g. Example 3.3. Let M1 ⊂ M be such that there is some
M′ ⊆ M1 satisfying M′ ∼= M and M′ ≺ M (by elementary indivisibility, there
are 2ℵ0 such but it does not harm to assume M1 is co-finite) and let

Na :=

{
N1 if a ∈ M1

N0 if a /∈ M1.

By Theorem 3.7, M[Na]
s
a∈M is elementarily indivisible and not transitive. By

Corollary 1.16, M[Na]
s
a∈M is not homogeneous. �

3.2. Infinitely many orbits. In this subsection, we generalize the result from
Subsection 3.1 and prove the existence of an elementarily indivisible structure with
infinitely many orbits. We will use such a structure in Section 4. Here, by an orbit
of a structure, we mean an orbit of the action of its automorphism group on its
universe, i.e:

Definition 3.9. Let M be an L structure with universe M . An orbit of M is a
set of the form { σ(a) | σ ∈ Aut(M) } where a ∈ M (i.e. a is a singleton).

For the construction, we need the following.

Lemma 3.10. There is an infinite set of elementarily indivisible pairwise-non-
isomorphic structures {Ai}i∈ω, such that Ai ∼e Aj for all i, j ∈ ω. Furthermore,
{Ai}i∈ω can be chosen to be in a finite language.

Proof. Let M be a transitive elementarily indivisible structure and 〈N0,N1〉 an
elementarily indivisible pair. Without loss of generality, they all admit QE. Let
M ⊇ M0 ) M1 ) M2 ) . . . be an infinite descending chain of substructures
satisfying the following:

• M can be embedded into Mi for every i ∈ ω.
• For every 0 ≤ i < j ≤ ω, either Mi 6∼= Mj or M\Mi 6∼= M\Mj .

By induction and indivisibility of M, given Mi, there are many appropriate choices
for Mi+1 (though there is no harm in assuming M0 = M1 and Mi+1 is just a co-
finite substructure of Mi).

For every i ∈ ω and a ∈M , denote

N i
a :=

{
N1 if a ∈ Mi

N0 if a /∈ Mi

and let Ai := M[N i
a]

s
a∈M . Clearly M[N1]

s ⊇ A0 ⊃ A1 ⊃ A2 ⊃ ... and they are
pairwise-non-isomorphic. Since M can be embedded into each Mi, and each Ai

embeds Mi[N1]
s, it follows that M[N1]

s can be embedded into each Ai. Each
Ai can be embedded into M[N1]

s via the inclusion map. By Theorem 2.7 these
embeddings are elementary, so Ai ∼e M[N1]

s for every i ∈ ω. By Theorem 2.22
the latter is elementarily indivisible and thus by Lemma 3.5 so are all Ai. If we
choose 〈N0,N1〉 to be in a finite language, then {Ai}i∈ω will also be in a finite
language. �
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Theorem 3.11. Let {Ai}i∈ω be as in Lemma 3.10 and let M be an elementarily
indivisible structure. If {Na}a∈M is a collection of structures satisfying

{ Na | a ∈ M } = { Ai | i ∈ ω }

(setwise), then M[Na]
s
a∈M is elementarily indivisible and has infinitely many orbits.

In particular, by Lemma 3.10, there is such a structure in a finite language.

Proof. Without loss of generality, T1 := Th(M) admits QE and there is an L-theory
T2, admitting QE, such that Na |= T2 for all a ∈ M. Let T be as guaranteed by
Theorem 2.7. So M[N ]s,M[Na]

s
a∈M |= T and obviously M[A0]

s can be embedded
into M[Na]

s
a∈M and vice versa. By QE of T , these embeddings are elementary, so

M[A0]
s ∼e M[Na]

s
a∈M. By Theorem 2.22, M[A0]

s is elementarily indivisible and
thus by Lemma 3.5 so is M[Na]

s
a∈M.

Now, since, by choice of {Na}a∈M , there are infinitely many pairwise non-
isomorphic Nas, by Lemma 3.6, M[Na]

s
a∈M has infinitely many orbits. �

4. An elementarily non-symmetrically indivisible structure

In this section we will provide an negative answer to Question 1.
But first, we provide a simpler construction of an indivisible structure that is

not symmetrically indivisible. This construction is given to provide the reader with
intuition for the continuation of this section and will be generalized in Proposition
4.3. The quick reader may skip the following example.

Example 4.1. Let L = {<}, let ω be the L-structure of ordered natural numbers
and let X a pure countably infinite set (letting <X= ∅). Then X [ω] is indivisible
but not symmetrically indivisible.

Proof. X [ω] is indivisible by Proposition 2.21. As for symmetric indivisibility – let
{xi}i∈ω be an enumeration of X and c : X [ω] → {red, blue} be the coloring defined
as follows:

c ((xi, j)) :=

{
red if j ≤ i
blue if j > i.

Every monochromatic red substructure will have only finite <-chains, and thus
not isomorphic to X [ω]. It is left to show that there is no monochromatic blue
symmetrically embedded substructure isomorphic to X [ω]. Assume towards con-
tradiction B is such a structure and let (xi0 , j0) ∈ B. Since B ∼= X [ω]s, B has
infinitely many infinite <-chains and every chain is of the form B ∩ ({xi} × ω).
So let i1 > j0 be such that B ∩ ({xi1} × ω) 6= ∅. Let σ ∈ Aut(B) be such
that σ[B ∩ ({xi0} × ω)] = B ∩ ({xi1} × ω) and let (xi1 , j1) := σ ((xi0 , j0)). Since
(xi1 , j1) ∈ B and B is all-blue, j1 > i1 > j0. Since B is symmetrically embedded,
there is an automorphism σ̃ ∈ Aut (X [ω]s) extending σ. Define τ ∈ Aut (X [ω]s) as
follows:

τ ((xi, j)) :=





(xi1 , j) if i = i0
(xi0 , j) if i = i1
(xi, j) if i 6= i0, i1.

Namely, τ is the automorphism swapping {xi0} × ω and {xi1} × ω.
Now τ ◦ σ̃[{xi0} × ω] = {xi0} × ω, so τ ◦ σ̃ ↾ ({xi0} × ω) is an automorphism

of {xi0} × ω and τ ◦ σ̃ ((xi0 , j0)) = (xi0 , j1). This is a non-trivial automorphism of
{xi0} × ω, but ({xi0} × ω) ∼= ω is rigid. �
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Lemma 4.2. Let M,N be L-structures and let σ ∈ Aut(M). If σ̃ : M[N ]s →
M[N ]s is defined by σ̃ ((a, b)) = (σ(a), b), then σ̃ is an automorphism.

In particular, if M is transitive and A,B ⊂ M[N ]s are s-equivalence classes,
then there is an automorphism τ ∈ Aut (M[N ]s) such that τ [A] = B.

Proof. Clearly σ̃ is a bijection. Notice that σ̃−1 = (σ̃)
−1

, and since σ is arbitrary,
proving that σ̃ is a homomorphism will suffice. It is clear that σ̃ preserves s

Let R ∈ L be an n-ary relation, Ę(a, b) := ((a1, b1) , . . . , (an, bn)) ∈ M[N ]s and

assume M[N ]s |= R
(

Ę(a, b)
)
. From the definition of M[N ]s, one of the following

holds:

•
∨

1≤j,k≤n aj 6= ak and M |= R (a1, . . . , an), so since σ is an automorphism,∨
1≤j,k≤n σ (aj) 6= σ (ak) and M |= R (σ (a1) , . . . , σ (an)).

•
∧

1≤j,k≤n aj = ak and N |= R (b1, . . . , bn), so
∧

1≤j,k≤n σ (aj) = σ (ak) and

N |= R (b1, . . . , bn).

In any case,

M[N ]s |= R (σ̃ ((a1, b1)) , . . . , σ̃ ((a1, b1))) .

�

Proposition 4.3. If M is a transitive structure and N is a structure with infinitely
many orbits such that N can not be embedded into any finite union of orbits, then
M[N ]s is not symmetrically indivisible.

Proof. We generalize the proof of Example 4.1: let {ai}i∈ω be an enumeration of
M and {Oi}i∈ω an enumeration of the orbits of N . For b ∈ N , denote on(b) = j if
b ∈ Oj and define a coloring c : M[N ]s → {red, blue} as follows:

c (ai, b) :=

{
red if on(b) ≤ i
blue if on(b) > i.

For every all-red substructure, every s-equivalence class will be embedded in a
finite union of orbits, and thus not isomorphic N . It is left to show that there
is no all-blue symmetrically embedded substructure isomorphic to M[N ]. Assume
towards contradiction B is such a structure and let (ai0 , b) ∈ B. Denote j0 := on(b).
Since B ∼= M[N ]s, B has infinitely many infinite s-equivalence classes and every
s-equivalence class of B is of the form B ∩ ({a} × N ) for some a ∈M . Let i1 > j0
such that B∩ ({ai1} × N ) 6= ∅. Since M is transitive, by Lemma 4.2, for every two
s-equivalence classes A,B ⊂ M[N ]s, there is an automorphism τ ∈ Aut (M[N ]s)
such that τ [A] = B. Since B ∼= M[N ]s, this is true for B as well, so let τ ∈ Aut(B)
be an automorphism such that

τ [B ∩ ({ai0} × N )] = B ∩ ({ai1} × N ) .

Denote (ai1 , c) := τ ((ai0 , b)). Since (ai1 , c) is blue, on(c) > i1 > j0 = on(b).
Since B is symmetrically embedded, let τ̂ ∈ Aut (M[N ]s) extending τ . Let

σ ∈ Aut(M) such that σ (ai1) = ai0 and let σ̃ ∈ Aut (M[N ]s) as defined in Lemma
4.2. σ̃ ◦ τ̂ is an automorphism and σ̃ ◦ τ̂ [{ai0} × N ] = {ai0} × N , so

θ := σ̃ ◦ τ̂ ↾ {ai0} × N

is an automorphism of {ai0} × N . Define ι0 : N
∼=
→ {ai0} × N by ι0(b) := (ai0 , b).

ι−1
0 ◦ θ ◦ ι is an automorphism of N and ι−1

0 ◦ θ ◦ ι(b) = c, but this contradicts
on(c) > on(b). �
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Theorem 4.4. There is an elementarily indivisible structure (in a finite language)
that is not symmetrically indivisible.

Proof. Let A := M[Na]
s
a∈M as in Theorem 3.11 and let B be any elementarily

indivisible transitive structure (in a finite language). If we choose {Na}a∈M such
that { a ∈M | Ai = Na } is finite for every i ∈ ω, then by Lemma 3.6 every orbit
of A has only finitely many s-equivalence classes and A can not be embedded into
only finitely many orbits. By Theorem 2.22, B[A]s is elementarily indivisible, but
by Proposition 4.3, it is not symmetrically indivisible. �
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[KR86] Péter Komjáth and Vojtěch Rödl. Coloring of universal graphs. Graphs Combin.,
2(1):55–60, 1986.

[Lac87] A. H. Lachlan. Homogeneous structures. In Proceedings of the International Congress
of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 314–321. Amer. Math.
Soc., Providence, RI, 1987.

[Mac11] H. Dugald Macpherson. A survey of homogeneous structures. Discrete Math.,
311(15):1599–1634, 2011.

[Mar02] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002. An introduction.

[Sau14] Norbert W. Sauer. Age and weak indivisibility. European J. Combin., 37(0):24 – 31,
2014. Relational structures, ordered sets and graphs.



ON PRODUCTS OF ELEMENTARILY INDIVISIBLE STRUCTURES 21

Department of Mathematics, Ben-Gurion University of the Negev, P.O.B 653, Be’er

Sheva 8410501, ISRAEL

E-mail address: mein@math.bgu.ac.il


	1. Introduction
	1.1. Preliminaries

	2. Elimination of quantifiers
	2.1. The elimination
	2.2. Application to elementary indivisibility

	3. The existence of non-transitive elementarily indivisible structures
	3.1. Two orbits
	3.2. Infinitely many orbits

	4. An elementarily non-symmetrically indivisible structure
	Acknowledgements

	References

