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THE MODEL COMPANION OF DIFFERENTIAL FIELDS

WITH FREE OPERATORS

OMAR LEÓN SÁNCHEZ AND RAHIM MOOSA

Abstract. A model companion is shown to exist for the theory of partial
differential fields of characteristic zero equipped with free operators that com-
mute with the derivations. The free operators here are those introduced in
[R. Moosa and T. Scanlon, Model theory of fields with free operators in char-

acteristic zero, Preprint 2013]. The proof relies on a new lifting lemma in
differential algebra: a differential version of Hensel’s Lemma for local finite
algebras over differentially closed fields.
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1. Introduction

A new rather general formalism for the model theory of fields with operators was
introduced and developed by the second author and Thomas Scanlon in [7]. That
theory treats differential fields and difference fields uniformly, and also allows for a
wide variety of other additive operators, or systems of operators, whose multiplica-
tive rules are induced by a ring homomorphism from the field to a finite algebra over
the field. These were called free operators in [7], and we delay recalling the precise
definition until §4 below. A model companion was shown to exist in characteristic
zero, and both the basic model theory as well as versions of the Canonical Base
Property and the Zilber Dichotomy for the model companion were established. An
important shortcoming of [7] is that the theories dealt with in that paper cannot
impose any commutativity on the operators (this is partly why they are called
“free”). Indeed, at the level of generality of [7] it is known that commutativity
cannot always be imposed: the theory of a pair of commuting automorphisms has
no model companion. Nevertheless, there are several natural examples of theo-
ries of commuting operators that have very well behaved and understood model
companions. In this paper we extend [7] to deal with some of these commuting
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2 OMAR LEÓN SÁNCHEZ AND RAHIM MOOSA

situations; namely the context where the fields come already equipped with several
commuting derivations and the new operators are assumed to commute with the
derivations. That is, we prove that the theory of partial differential fields of char-
acteristic zero equipped with free operators that commute with the derivations has
a model companion. This is done in §6.

A particular case is the theory of partial differential fields equipped with an au-
tomorphism. The existence of the model companion for this theory was established
by the first author in [5], and served as a model for us.

There are two main obstacles in passing from fields to differential fields. The first
is that in order to to extend the geometric characterisation of the existentially closed
models that appears in [7] one requires lifting nonsingular solutions of systems of
differential polynomial equations from a differentially closed field to a local finite
algebra over that field. Such a differential analogue of Hensel’s Lemma appears
new and should be of independent interest. It is established here as Theorem 3.1.

The second obstacle is that the geometric characterisation one obtains quantifies
over irreducible differential varieties. Because irreducibility of Kolchin closed sets
is not known to be a definable property of the parameters, one has to modify the
characterisation into a provably first-order axiomatisation of the existentially closed
models. Here we follow the method established by the first author in [4] and [5],
which uses characteristic sets of prime differential ideals.

A word about the proofs: we have tried to focus on those aspects of the arguments
where the differential setting poses a significant challenge. Whenever the results
of [7] extend automatically, or by using well known standard methods, we either
omit proofs or content ourselves with brief sketches.

2. Some Preliminaries on Differential Algebra

While we will be assuming familiarity with the model theory of differential fields
and the differential algebra that it entails, we take this opportunity to fix some
notation and also to recall some of the more technical aspects of differential algebra
that may not be top of mind among model theorists. For further details we suggest
Chapters I and IV of [2].

Suppose R is a unital and commutative ring (all of our rings will be so) equipped
with m commuting derivations ∆ = {δ1, . . . , δm}. For x = (x1, . . . , xn) a tuple of
indeterminates, we denote by R{x} the ∆-ring of ∆-polynomials over R, and by
R〈x〉 the ∆-field of ∆-rational functions. We denote by Θ the free commutative
monoid generated by ∆, and consider the set of algebraic indeterminates

Θx = {θxi : 1 ≤ i ≤ n, θ ∈ Θ}

So the underlying R-algebra structure on R{x} is that of the polynomial ring R[Θx].
For Λ ⊆ R{x} we will use [Λ] to denote the ∆-ideal and (Λ) to denote the (usual
algebraic) ideal, generated by Λ.

There is a canonical ranking on Θx given by

δemm · · · δe11 xi < δrmm · · · δr11 xj ⇐⇒
(∑

ek, i, em, . . . , e1

)
<
(∑

rk, j, rm, . . . , r1

)

where the ordering on the right-hand-side is the lexicographic one. This allows us
to view Θx as a sequence enumerated with respect to the above linear ordering. Let
f ∈ R{x} \ R. The leader of f , vf , is the highest ranking algebraic indeterminate
that appears in f . The degree of f , df , is the degree of vf in f . The rank of f is
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the pair (vf , df ) under the lexicographic ordering. By convention, an element of R
has lower rank than all the elements of R{x} \ R. The separant of f , Sf , is the
formal partial derivative of f with respect to vf . The initial of f , If , is the leading
coefficient of f when viewed as a polynomial in vf . Note that both Sf and If have
lower rank than f . Given a finite subset Λ ⊂ R{x}, we set HΛ :=

∏
f∈Λ IfSf .

Definition 2.1. A subset Λ ⊂ R{x} \ R is said to be coherent if the following
properties are satisfied:

(1) Autoreducedness. For each f 6= g in Λ, no proper derivative of vf appears
in g, and if vf appears at all in g then it does so with strictly smaller degree.

(2) Coherency Condition. Suppose that for some f 6= g in Λ, there are deriva-
tives θf and θg such that θfvf = θgvg =: v. Suppose moreover that v is
the least algebraic indetermiate for which this happens. Then for some N ,

HN
Λ (Sgθff − Sfθgg) ∈ (Λ)v

where (Λ)v is the ideal generated by {θf : f ∈ Λ, vθf < v}.

Remark 2.2. Autoreducedness implies that Λ is finite and that distinct elements
of Λ have distinct leaders.

Lemma 2.3. Let φ : R → S be a homomorphism of differential rings. Suppose
Λ is a coherent subset of R{x}, and let Λφ := {fφ : f ∈ Λ}, where fφ ∈ S{x} is

obtained by applying φ to the coefficients of f . If Hφ
Λ 6= 0 then HΛφ = Hφ

Λ and Λφ

is coherent.

Proof. In general, every algebraic indeterminate that appears in fφ appears in f .
Moreover,

∂fφ

∂vf
=

(
∂f

∂vf

)φ

= Sφ
f

It follows that if Sφ
f 6= 0, then f and fφ have the same leader and Sfφ = Sφ

f . In

this case, if Iφf 6= 0 we get also that Ifφ = Iφf .

Since Hφ
Λ 6= 0, it follows from the above that Λ and Λφ have the same leaders

and that HΛφ = Hφ
Λ. Since the algebraic indeterminates of fφ appear in f with

the same degree, we also get that Λφ is autoreduced. To see that the coherency
condition is satisfied we need only observe that if g ∈ (Λ)v then gφ ∈ (Λφ)v. �

Suppose K is a ∆-field of characteristc zero. While it is not the case that all
prime ∆-ideals of K{x} are finitely generated as ∆-ideals (though they are finitely
generated as radical ∆-ideals), something close is true; they are determined by
certain canonical finite subsets. There is a natural ranking of the autoreduced
subsets of K{x} that is roughly lexicographical, see [2, §I.10] for the definition.
If I ⊂ K{x} is a prime ∆-ideal then a characteristic set Λ for I is a minimal
autoreduced subset of I with respect to this ranking. These always exist, are in
addition coherent, and determine the ideal I in the sense that

(1) I = {f ∈ K{x} : for some ℓ ≥ 0, Hℓ
Λf ∈ [Λ]}

Taking zero sets in some differentially closed extension of K we have that

V (I) \ V (HΛ) = V (Λ) \ V (HΛ)

A consequence of the minimality of Λ is that HΛ /∈ I, and hence the above equality
says that V (I) and V (Λ) agree off a proper Kolchin closed subset.
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3. A Differential Lifting Lemma

The following theorem, which we will use later but which may also be of independent
interest, is a differential analogue of the artinian case of Hensel’s Lemma.

Theorem 3.1. Suppose L is a differentially closed field and R is a local finite L-
algebra, equipped with a differential structure extending that of L, and such that the
maximal ideal of R is a ∆-ideal. Suppose Λ = {f1, . . . , fs} ⊂ R{x} is a coherent set
of differential polynomials in one variable over R. Suppose, finally, that a ∈ L is
such that res(f)(a) = 0 for all f ∈ Λ but res(HΛ)(a) 6= 0. Then there exists b ∈ R
such that res(b) = a and f(b) = 0 for all f ∈ Λ.

Remark 3.2. A proof of this theorem in the special case when R = L[ǫ]/(ǫ2) and
ǫ is a ∆-constant can be extracted from Kolchin [3, Chapter 0, §4], and served as
a model for us. In the ordinary case, when ∆ = {δ}, other special cases are also
known. For example the case of R = L[ǫ]/(ǫn+1) with ǫ a δ-constant follows from
Scanlon’s D-Hensel’s Lemma [9, Proposition 6.1]. The main difficulty that our
proof below must contend with is the presence of several commuting derivations.

Proof of Theorem 3.1. Let m be the maximal ideal of R. Note that as L is alge-
braically closed, the residue field of R is L.

We will recursively define a sequence b1, b2, . . . in R such that

• res(b1) = a
• bi+1 ≡ bi mod mi, and
• f(bi) ≡ 0 mod mi for each f ∈ Λ

As m is nilpotent, this will produce, in finitely many steps, the desired root of Λ
lifting a. For the base case, we may take any b1 ∈ R with res(b1) = a. Suppose
i ≥ 1 and we have found bi with the desired properties.

As m is a ∆-ideal, and R is a finite dimensional vector space over L, we have
that mi/mi+1 is a finite dimensional ∆-module over L. That is, each δj induces an
additive map on mi/mi+1, which we also denote by δj, and which satisfies δj(rv) =
δj(r)v+rδj (v) for all r ∈ L and v ∈ mi/mi+1. The existence of fundamental systems
of solutions to integrable linear differential equations in differentially closed fields
[10, Appendix D] implies that mi/mi+1 has an L-basis made up of ∆-constants. We
can therefore find ǫ1, . . . , ǫn ∈ mi whose image is an L-basis for mi/mi+1, and such
that δ(ǫk) ≡ 0 mod mi+1 for all δ ∈ ∆ and all k = 1, . . . , n.

Let λ1, . . . , λk : mi → L be the L-linear maps that satisfy

v ≡
n∑

k=1

λk(v)ǫk mod mi+1

for all v ∈ mi. The fact that we have chosen the basis to be made up of ∆-constants
modulo mi+1, implies that the λk’s will commute with ∆.

We are looking for y1, . . . , yn ∈ L such that

(2) f(bi +

n∑

k=1

ykǫk) ≡ 0 mod m
i+1 for all f ∈ Λ

Indeed, we could then set bi+1 := bi +
∑

ykǫk, and the construction would be
complete.

To compute the left-hand-side of (2), we write f(x) = F (Θx), where F is an
algebraic polynomial in the variables Θx = (θx : θ ∈ Θ), and then apply a Taylor
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expansion to F
(
Θbi+Θ(

∑n

k=1 ykǫk)
)
. Note that as the ǫk’s are ∆-constants modulo

mi+1, Θ(
∑n

k=1 ykǫk) ≡
∑n

k=1 Θ(yk)ǫk mod mi+1. Hence, the higher order terms
in the Taylor expansion will vanish. The upshot is that

f(bi +
n∑

k=1

ykǫk) ≡ f(bi) +
∑

θ∈Θ

∂F

∂(θx)
(Θbi) ·

( n∑

k=1

θ(yk)ǫk
)

mod mi+1

≡
n∑

k=1

λk(f(bi))ǫk +
n∑

k=1

(
∑

θ∈Θ

∂F

∂(θx)
(Θbi) · θ(yk)

)
ǫk mod mi+1

≡
n∑

k=1

[
λk(f(bi)) +

∑

θ∈Θ

res

(
∂F

∂(θx)
(Θbi)

)
θ(yk)

]
ǫk mod mi+1

where in the last step we use the fact that for all r ∈ R, rǫk ≡ res(r)ǫk mod mi+1.
Hence, solving the system of congruences (2) is thereby reduced to solving, for
each fixed k = 1, . . . , n, the following inhomogeneous system of linear differential
equations in yk over L:

(3) λk(f(bi)) +
∑

θ∈Θ

res

(
∂F

∂(θx)
(Θbi)

)
θ(yk) = 0 for all f ∈ Λ

Note that i, bi, and k are all fixed.
Let us denote the linear differential polynomial over L that is the left-hand-side

of (3) by ℓf . So

ℓf (yk) := λk(f(bi)) +
∑

θ∈Θ

res

(
∂F

∂(θx)
(Θbi)

)
θ(yk)

To complete the proof of the theorem, therefore, we need to show that the linear
differential system {ℓf(yk) = 0 : f ∈ Λ} has a solution in L. This would follow if
we knew that ℓΛ := {ℓf : f ∈ Λ} was a coherent set in L{yk}. Indeed, any coherent
set of linear differential polynomials generates a prime differential ideal (see for
example statement (2) on page 399 of [8]), and hence the differentially closed L
would contain a root of ℓΛ. Actually the situation is a little more complicated
as ℓΛ need not be coherent. But we will find a coherent set of linear differential
polynomials that generate the same differential ideal as ℓΛ, and that will of course
suffice for the above argument to go through.

Note that ℓf is defined for any f ∈ R{x} with the property that f(bi) ∈ mi.
Consider the ∆-ideal V := {f ∈ R{x} : f(bi) ∈ mi} of R{x}, and the map ℓ : V →
L{yk} given by f 7→ ℓf . By the induction hypothesis, Λ ⊂ V .

Claim 3.3. The map ℓ : V → L{yk} satisfies the following properties:

(a) it is a homomorphism of ∆-modules over L,
(b) if f ∈ V then, for any g ∈ R{x}, ℓgf = res(g)(a)ℓf ,
(c) for f ∈ V , f and ℓf have the same leaders (though in x and yk, respectively),

and moreover, the separant of ℓf is res(Sf )(a).

Proof of Claim 3.3. That ℓ is L-linear is clear, so for part (a) we need to show that
for all δ ∈ ∆, δ(ℓf ) = ℓδf . This can be directly verified from the definition of ℓ,
using the fact that λk and res commute with δ. The computation is tedious but
routine, and we leave it to the reader.
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For part (b), suppose f ∈ V . By construction ℓgf (yk) is the coefficient of ǫk in
the expansion of

gf


bi +

n∑

j=1

yjǫj


 = g


bi +

n∑

j=1

yjǫj


 f


bi +

n∑

j=1

yjǫj




modulo mi+1. We have already seen that for any y1, . . . , yn ∈ L, f
(
bi +

∑n

j=1 yjǫj

)

is an L-linear combination of {ǫ1, . . . , ǫn} and hence lands in mi. It follows that,

working modulo mi+1, the only contribution of g
(
bi +

∑n

j=1 yjǫj

)
to the above

product will be res
(
g
(
bi +

∑n

j=1 yjǫj

))
= res(g)(a). This proves part (b).

Finally, for part (c), note that if an algebraic indeterminate θ(yk) appears in

ℓf ∈ V , then res
(

∂F
∂(θx)(Θbi)

)
6= 0, and so θx must appear in f . On the other hand,

if vf = θx is the leader of f , then the coefficient of θ(yk) in ℓf is res
(
∂F
∂vf

(Θbi)
)
=

res
(
Sf (bi)

)
= res(Sf )(a), which is nonzero because by assumption res(HΛ)(a) 6= 0.

It follows that f and ℓf have the same leaders (though in x and yk, respectively). �

We use the claim to prove that ℓΛ := {ℓf : f ∈ Λ} ⊂ L{yk} satisfies the
coherency condition, that is, part (2) of Definition 2.1. Suppose f 6= g in Λ and
there are derivatives θf and θg such that θfvℓf = θgvℓg =: v, and v is the least
such occurrence. We show that Sℓgθf ℓf − Sℓf θgℓg ∈ (ℓΛ)v. Indeed, by 3.3(c), we
have that v = θfvf = θgvg, and this is the least such occurrence for Λ. Since Λ
is coherent, there is N such that h := HN

Λ (Sgθff − Sfθgg) ∈ (Λ)v. It follows by
Claim 3.3 parts (a) and (b) that ℓh ∈ (ℓΛ)v. But, also by 3.3,

ℓh = res(HΛ)(a)
(
res(Sg)(a)θf ℓf − res(Sf )(a)θgℓg

)

= res(HΛ)(a)
(
Sℓgθf ℓf − Sℓf θgℓg

)

Since res(HΛ)(a) 6= 0, we get that Sℓgθf ℓf − Sℓf θgℓg ∈ (ℓΛ)v, as desired.
It may not be the case, however, that ℓΛ is autoreduced. The leaders of distinct

members are distinct, and it is partially autoreduced in the sense that no proper
derivative of the leader of ℓf appears in ℓg for f 6= g in Λ. Indeed, this follows
from the fact that Λ is autoreduced, that ℓf and f have the same leader, and that
every algebraic indeterminate appearing in ℓg also appears in g. The obstacle to
autoreducedness is that the leader of ℓf may still appear in ℓg, just not as its leader.
But now a standard reduction process (see the second paragraph of the proof of
Proposition 5 of [3, Chapter 0, §4], for example) can be used to transform ℓΛ into
an autoreduced set. The kinds of transformations we have in mind are as follows: if
vℓf appears with coefficient c in ℓf and coefficient d in ℓg, then we can replace ℓg by

ℓg −
d
c
ℓf . This process will produce a coherent set of linear differential polynomials

Γ ⊂ L{yk} such that [Γ] = [ℓΛ]. It follows, as explained earlier, that [ℓΛ] is a prime
differential ideal and so the system (3) has a solution in L. This completes the
proof of Theorem 3.1. �

Remark 3.4. The above theorem remains true even if we remove the assumption
that R is local. In this case one replaces the maximal ideal by the Jacobson radical
J of R, the residue map by the quotient map pr : R → R/J, and the condition
res(HΛ)(a) 6= 0 by pr(HΛ)(a) being a unit.
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Proof. The general case reduces to the local case of Theorem 3.1 by the following
claim: Suppose (K,∆) ⊆ (R,∆) is an extension of differential rings where K is

a field of characteristic zero and R is a finite K-algebra. If R =
∏t

i=0 Ri is the
decomposition of R into local K-algebras, then ∆ induces a differential structure
on each Ri. Moreover, if the Jacobson radical of R is a ∆-ideal, then so is the
maximal ideal of each Ri. To prove the above claim, for each i = 0, . . . , t, and each
r ∈ Ri, let r̂ denote the element of R whose Ri-th co-ordinate is r and whose Rj-th

co-ordinate is 0Rj
for all j 6= i. Let R̂i = {r̂ : r ∈ Ri}. Then for all δ ∈ ∆ and

r ∈ Ri we have

δ(r̂) = δ(r̂1̂Ri
) = r̂δ(1̂Ri

) + δ(r̂)1̂Ri
∈ R̂i

which shows that δ(R̂i) ⊆ R̂i. So we get an induced ∆-structure on each Ri. For

the “moreover” clause, note that if mi is the maximal ideal of Ri, then
∏t

i=0 mi is
the Jacobson radical of R.

Note that the reduction to the local case also uses the fact that the co-ordinate
projectionR → Ri of a coherent set is again coherent. This follows from Lemma 2.3;
one uses the assumption that pr(HΛ)(a) is a unit to see that the co-ordinate pro-
jection of HΛ is nonzero and so Lemma 2.3 applies. �

4. D-Differential fields

We wish to study differential fields (K,∆) equipped with additional linear opera-
tors, or stacks of operators, that commute with the derivations in ∆. The behaviour
of these operators with respect to multiplication in the field should be governed by
a fixed finite K-algebra, in a way that we now make precise.

Fix throughout the rest of the paper the following data:

• a base field k of characteristic zero,
• a finite k-algebra B with the property that for each of the (finitely many)
maximal ideals m of B, B/m = k,

• a k-algebra homomorphism π : B → k, and
• a k-basis (ǫ0, . . . , ǫℓ) of B such that π(ǫ0) = 1 and π(ǫi) = 0 if i 6= 0.

Note that the condition on the residue fields above is automatically satisfied if k is
algebraically closed.

Given any k-algebra R we let

D(R) := B ⊗k R

denote the base extension, which will be a finite and free R-algebra whose corre-
sponding basis we will also denote by (ǫ0, . . . , ǫℓ). We can also lift π : B → k to a
surjective R-algebra homomorphism πR : D(R) → R, by base extension.

Now, if R is equipped with k-linear derivations ∆ = {δ1, . . . , δm}, then we can
canonically make D(R) a ∆-ring by defining δj on D(R) to be the unique B-linear
derivation that extends δj on R; that is, by defining δj(b⊗ r) := b⊗ δj(r).

Definition 4.1. A D-differential ring is a differential k-algebra (R,∆) equipped
with a sequence of operators ∂ = (∂1, . . . , ∂ℓ) such that e : R → D(R) given by

r 7→ rǫ0 + ∂1(r)ǫ1 + · · ·+ ∂ℓ(r)ǫℓ

is a homomorphism of differential k-algebras.
An equivalent formulation of (R,∆, ∂) being a D-differential ring is that:
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(a) R is a k-algebra
(b) ∆ = (δ1, . . . , δm) are commuting k-linear derivations on R
(c) (R, ∂) is a D-ring in the sense of [7]; that is, the map e : R → D(R) defined

above is a homomorphism of k-algebras, and
(d) the ∂ commute with the ∆.

Indeed, it is an easy computation to see that e will preserve the differential structure
if and only if each operator in ∂ commutes with each operator in ∆.

Thus, all the examples of free operators described in §3 of [7] have D-differential
analogues by imposing the further condition that they commute with ∆. In par-
ticular, difference-differential rings are D-differential where D is given by setting
B = k × k and taking the standard basis.

Remark 4.2. As in [7], we often identify a D-differential structure on (R,∆) with
a differential k-algebra homomorphism e : R → D(R) having the property that
πR ◦ e = id. Indeed, given such an e, if we let ∂i be the operator that takes r to
the ǫi-coefficient of e(r) in D(R), then (R,∆, ∂) is a D-differential ring.

Associated to a D-differential ring (R,∆, ∂) we have canonical endomorphisms
of (R,∆). Indeed, these are precisely the endomorphisms of R associated to (R, ∂)

in [7, §4]. To describe them, let B =

t∏

i=0

Bi be the decomposition of B into local

k-algebras. By assumption the residue field of each Bi is k, and so we get surjective
k-algebra homomorphisms πi : B → k obtained by precomposing the residue map
Bi → k with the co-ordinate projection B → Bi. Now, given a k-algebra R, we

have the corresponding decompositionD(R) =

t∏

i=0

Bi⊗kR, and surjective R-algebra

homomorphisms πR
i : D(R) → R. Note that because the maximal ideal of Bi is

nilpotent, if L is any field extension of k then Bi ⊗k L is again a local L-algebra
with residue field L. Hence in this case πL

i is the composition of the co-ordinate
projection D(L) → Bi ⊗k L with the residue map Bi ⊗k L → L.

If (R, ∂) is a D-ring then the associated endomorphisms of R introduced in [7]
are the maps σi := πR

i ◦ e. If, moreover, (R,∆, ∂) is a D-differential ring, then
πR
i and e : R → D(R) both preserve the differential structure, and so the σi are

endomorphisms of (R,∆). We may, and do, assume that π0 = π, so that σ0 = id.
Extending D-differential structure will entail extending the associated endomor-

phisms. In order to pass from an integral domain to the fraction field it is therefore
necessary that the associated endomorphisms be injective. In fact this is sufficient:

Lemma 4.3. Suppose R is a ∆-subring of a ∆-field (L,∆), extending k. Suppose e :
R → D(L) is a k-linear homomorphism of ∆-rings, such that for all i = 0, 1, . . . , t,
the maps πL

i ◦ e : R → L are injective. Then there is a unique extension of e to(
Frac(R),∆

)
.

Proof. Forgetting about ∆ for the moment, by Lemma 4.9 of [7], we can extend e
to a k-algebra homomorphism on Frac(R). But such an extension is unique and
automatically preserves the differential structure. �

The following proposition reduces the problem of extending D-differential struc-
ture to the much easier problem of extending difference–differential structure. It is
in here that our differential lifting lemma (Theorem 3.1) is used.
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Proposition 4.4. Suppose (R,∆) is a ∆-subring of a differentially closed field
(L,∆) extending k, and e : R → D(L) is a homomorphism of differential k-algebras
such that πL ◦ e : R → L is the inclusion map. Suppose moreover that we have
extensions of πL

1 ◦ e, . . . , πL
t ◦ e to endomorphisms of (L,∆), say σ1, . . . , σt. Then

there exists an extension of e to a D-differential field structure on L whose associated
endomorphisms are (σ1, . . . , σt).

Proof. The assumptions imply that the πL
i ◦ e are all injective on R. We can

therefore extend e canonically to K := Frac(R) by Lemma 4.3.
Suppose that for arbitrary a ∈ L we can extend e to a homomorphism on the ∆-

ring generated by a over K, denoted by K{a}, in such a way that πL
i ◦ e(a) = σi(a)

for all i = 0, . . . , t. It would then follow that each πL
i ◦ e agrees with σi on all of

K{a}, and hence is in particular injective. By Lemma 4.3 again, e would extend
to the ∆-field generated by a over K, denoted K〈a〉, and πL

i ◦ e would agree with
σi on all of K〈a〉. By a Zorn’s Lemma argument, using the arbitrariness of a, this
would complete the proof of the Proposition.

It suffices, therefore, to prove that for arbitrary a ∈ L, e extends to K{a} in
such a way that πL

i ◦ e(a) = σi(a) for all i = 0, . . . , t. Suppose first that a is ∆-
transcendental over K. Let bi ∈ Bi ⊗k L be any element with residue σi(a). Now,
by ∆-transcendentality, there is a unique extension of e to a homomorphism on
(K{a},∆) which takes a to (b0, b1, . . . , bt). By construction, πL

i ◦ e(a) = σi(a).
It remains to consider the case when a is ∆-algebraic overK. In order to extend e

to a homomorphism on (K{a},∆) we need to find b ∈ D(L) such that ge(b) = 0 for
all g ∈ I∆(a/K) := {f ∈ K{x} : f(a) = 0}. (Recall that ge denotes the differential
polynomial over D(L) obtained from g by applying e to the coefficients.) Moreover,
we require that πL

i (b) = σi(a) for all i = 0, . . . , t. The desired extension would then

send a to b. Using the decomposition D(L) =
t∏

i=0

(
Bi ⊗k L), it suffices to show:

(∗) Fix an arbitrary i ∈ {0, . . . , t}, let Ri := Bi⊗k L equipped with the unique
Bi-linear differential structure extending ∆ on L, and let ei : K → Ri be
the composition of e with the projection onto the ith factor. Then there
exists bi ∈ Ri such that gei(bi) = 0 for all g ∈ I∆(a/K), and such that
resLi (bi) = σi(a).

Indeed, b = (b0, . . . , bt) would then work.
We show (∗) by first lifting σi(a) to a root of Λei in Ri, where Λ is a characteristic

set for I∆(a/K). To do this we need to verify the hypotheses of Theorem 3.1. Note
that L is differentially closed by assumption (and this is the only place we use that
assumption), and Ri is a local finite differential L-algebra whose maximal ideal is
a ∆-ideal as it is generated by the maximal ideal of Bi which are all ∆-constants.
If f ∈ Λ then f(a) = 0, so that applying σi shows that res

L
i (f

ei) vanishes on σi(a).
On the other hand, since HΛ(a) 6= 0, applying σi shows that resLi (H

ei
Λ ) does not

vanish on σi(a). In particular, Hei
Λ is not zero in Ri{x} and so, by Lemma 2.3,

HΛei = Hei
Λ and Λei is coherent. Theorem 3.1 therefore applies, and we have bi ∈ Ri

with residue σi(a) and such that gei(bi) = 0 for all g ∈ Λ. It follows that gei(bi) = 0
for all g ∈ [Λ]. If g ∈ I∆(a/K) then, by (1) of §2, we have that HN

Λ g ∈ [Λ] for

some N , and so
(
HΛei (bi)

)N
gei(bi) = 0. But we know that HΛei (bi) 6= 0, since its

residue is σi

(
HΛ(a)

)
6= 0. It follows that gei(bi) = 0 for all g ∈ I∆(a/K). This

completes the proof of (∗), and hence of Proposition 4.4. �
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5. D-prolongations of ∆-varieties

Given a D-differential field (K,∆, ∂) and an affine ∆-variety V ⊆ A
n over K we

wish to define the D-prolongation of V . Taking our cue from the general theory
of abstract prolongations of algebraic varieties developed in [6], the construction
should look something like this: base change V to D(K) via the homomorphism
e : K → D(K) and then take the Weil restriction back down to K via the standard
K-algebra structure on D(K) = K ⊗k B. Since the theory of Weil restrictions is
not to our knowledge developed in the differential context, we will instead give this
construction explicitly in co-ordinates.

Let x := (x1, . . . , xn) be co-ordinates for An, and x :=
(
x = x(0), x(1), . . . , x(ℓ)

)

co-ordinates for A
(ℓ+1)n, where recall ℓ is such that that dimk B = ℓ + 1. Given

f ∈ K{x}, let f (0), . . . , f (ℓ) ∈ K{x} be such that

(4) fe
( ℓ∑

j=0

x(j)ǫj
)
=

ℓ∑

j=0

f (j)(x)ǫj

in D(K){x}. Note that D(K){x} = D(K{x}) is a free K{x}-module with basis
{ǫ0, . . . , ǫℓ}, so that these f (j) are uniquely determined.

Fix a differentially closed field (L,∆) extending (K,∆).

Definition 5.1. Suppose V ⊆ Ln is a ∆-closed set defined over K. The D-
prolongation of V , denoted by τ(V,D, e), or just τV for short, is the ∆-closed
subset of L(ℓ+1)n defined by the equations f (j)(x) = 0 for all f ∈ I∆(V/K) and all
j = 0, . . . , ℓ.

Remark 5.2.

(a) A straightforward computation shows that if I∆(V/K) = [Λ] then in defin-
ing τV it suffices to consider f ∈ Λ. It follows that τ commutes with base
change, and so preserves D-differential fields of definition.

(b) The association a 7→
∑ℓ

j=0 a
(j)ǫj gives us a natural identification of τV with

the solutions in D(L)n of the set of equations {fe(x) = 0 : f ∈ I∆(V/K)}.
(c) In the pure D-fields case when ∆ = ∅, the prolongations introduced here

coincide with the D-prolongations introduced in [6] and used in [7].
(d) When D(R) = R × R, the prolongation introduced here is the difference-

differential prolongation V × V σ that was used in [5].

Recall that our basis elements were chosen so that the projection onto the ǫ0-
co-ordinate is the ring homomorphism π : B → k. It follows that the coefficient
of ǫ0 in ǫjǫk is 0 unless j = k = 0 in which case it is 1. This, together with the

fact that the ǫj are ∆-constants, implies that under the identification of x(0) = x,

f (0)(x) = f(x). Hence, the x(0)-coordinate projection maps τV to V . We denote
this morphism of ∆-closed sets by π̂ : τV → V .

On K-points, π̂ has a section denoted by ∇ : V (K) → τV (K), and given by
a 7→ (a, ∂1a, . . . , ∂ℓa). Indeed, if a ∈ V (K) and f ∈ I∆(V/K), then computing in
D(K)

0 = e(f(a)) = fe(a+ ∂1a+ · · ·+ ∂ℓa) =

ℓ∑

j=0

f (j)(a, ∂1a, . . . , ∂ℓa)ǫj

so that each f (j)(∇a) = 0, as desired.
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Finally, for each i = 0, . . . , t, we also have natural morphisms π̂i : τV → V σi ,
where V σi refers to the transform of V obtained by applying the associated endo-
morphism σi to the coefficients of the defining equations of V . This map is the

one given on L-points by a 7→
ℓ∑

j=0

a(j)πi(ǫj), where recall that πi is the composi-

tion of the k-algebra projection B → Bi in the decomposition B =
∏t

i=0 Bi, with
the residue map Bi → k. That this works is a consequence of the following easy
computation:

Lemma 5.3. Suppose f ∈ K{x} and a ∈ L(ℓ+1)n is such that f (j)(a) = 0 for all

j = 0, . . . , ℓ. Then for each i = 0, . . . , t,
∑ℓ

j=0 a
(j)πi(ǫj) is a root of fσi .

Proof. We compute in L,

0 = πL
i

( ℓ∑

j=0

f (j)(a)ǫj
)
= πL

i


fe

( ℓ∑

j=0

a(j)ǫj
)

 = fσi

( ℓ∑

j=0

a(j)πi(ǫj)
)

where the second equality is by (4) and the third is because πK
i ◦ e = σi. �

One checks easily that π̂0 = π̂. Note also that π̂i ◦ ∇(a) = σi(a), for all i.

6. D-differentially closed fields

The language in which we study D-differential rings is that of k-algebras equipped
with function symbols for the derivations in ∆ and the operators in ∂. Note that the
associated endomorphisms are 0-definable as they are in fact k-linear combinations
of the operators in ∂, as was pointed out in [7, §4.1].

Let K denote the class of D-differential rings that are integral domains and for
which the associated endomorphisms are injective. By Lemma 4.3, K is precisely
the set of models of the universal part of the theory of D-differential fields. Here is a
geometric characterisation of existentially closed D-differential fields that precisely
extends Theorem 4.6 of [7] to the differential setting.

Theorem 6.1. A D-differential ring (K,∆, ∂) is existentially closed in the class K
if and only if

I (K,∆) is a differentially closed field,
II the associated endomorphisms are automorphisms, and
III if V ⊆ Kn is an irreducible ∆-closed set and W ⊆ τV is an irreducible

∆-closed subset of the D-prolongation such that π̂i(W ) is ∆-dense in V σi

for all i = 0, . . . , t, then there exists a ∈ V with ∇(a) ∈ W .

Proof. The only aspect of the proof of [7, Theorem 4.6] that does not readily extend
to the differential context is the reliance on the extension theorems which in turn
rely on a Hensel’s Lemma for local finite algebras over algebraically closed fields.
So replacing those arguments in [7] with our extension theorem (Proposition 4.4
above), which followed from our differential Hensel’s Lemma (Theorem 3.1 above),
we get a proof Theorem 6.1 quite easily. Let us give a few details.

Suppose (K,∆, ∂) is existentially closed in K. Now, as the associated endomor-
phisms are isomorphisms between differential integral domains, and since DCF0,m

is the model completion of the theory of differential integral domains, the σ1, . . . , σt
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can be extended to automorphisms of some differentially closed field (L,∆), which
we also denote by σ1, . . . , σt. By Proposition 4.4, we can then extend the D-
structure on K to L so that (L,∆, ∂) is a D-differential field whose associated
endomorphisms are the automorphisms σ1, . . . , σt. As (K,∆, ∂) is existentially
closed, it follows that (K,∆) is already a differentially closed field and the associ-
ated endomorphisms are already surjective, thus establishing I and II.

For condition III, let (L,∆) be a differentially closed field extending (K,∆) such
that W (L) has a point a that is Kolchin generic over K. So a ∈ τV (L) and

a(0) ∈ V (L). Letting a′ =
∑ℓ

j=0 a
(j)ǫj , we see that a′ is a root in D(L)n of fe(x)

for all f ∈ I∆(V/K); see Remark 5.2(b). By the ∆-density of π̂(W ) in V , we have
that I∆(a

(0)/K) = I∆(V/K), and so we can extend e : K → D(L) to K{a(0)} by
sending a(0) 7→ a′. Just as in [7, Theorem 4.6], the ∆-density of π̂i(W ) in V σi , for
i = 1, . . . , t, will imply that the endomorphisms associated to e : K{a(0)} → D(L)
are injective. Now, as in the previous paragraph, extending these endomorphisms to
automorphisms of some (L′,∆) ⊇ (L,∆) and then using Proposition 4.4, we obtain
a D-differential structure on L′ extending e on K{a(0)}. So (L′,∆, ∂) ⊇ (K,∆, ∂)
and ∇(a(0)) = a. As (K,∆, ∂) is existentially closed, it follows that there must
exist a ∈ V (K) with ∇(a) ∈ W (K), as desired.

As the readers can verify for themselves, the converse direction of Theorem 6.1 is
proved exactly as the corresponding direction of [7, Theorem 4.6], with algebraically
closed fields replaced by differentially closed fields and the Zariski topology replaced
by the Kolchin topology. �

Remark 6.2. Inspecting the proof of property III for (K,∆, ∂) existentially closed
reveals a stronger conclusion: given any nonempty ∆-open set O ⊆ W the a ∈ V
could be found so that ∇(a) ∈ O. The point is that a ∈ W (L), being generic
over K, must land in O(L).

As in the case of existentially closed difference-differential fields considered in [5],
we do not know if the above characterisation amounts to a first-order axiomatisation
because in differentially closed fields the property of being Kolchin irreducible is not
known to be a definable property of the parameters of a ∆-closed set. Our strategy
to avoid this difficulty is precisely the same as that of the first author in [5].

Recall that for Λ a finite subset of a ∆-polynomial ring over a ∆-field, HΛ is the
product of the initials and separants of the members of Λ. As was explained in §2,
when Λ is a characteristic set for a prime ∆-ideal I, the zero sets of Λ and I agree
off the proper ∆-closed hypersurface defined by HΛ. It will be useful to introduce
notation for this ∆-open set, we denote it by V ∗(Λ) := V (Λ) \ V (HΛ).

Proposition 6.3. Suppose (K,∆, ∂) is a D-differential field where (K,∆) is dif-
ferentially closed. Then condition III of Theorem 6.1 is equivalent to:

III′ Let x = (x1, . . . , xn) be co-ordinates for Kn and x =
(
x(0), x(1), . . . , x(ℓ)

)

co-ordinates for τ(Kn) = K(ℓ+1)n. Suppose Λ ⊂ K{x} and Γ ⊂ K{x} are
characteristic sets for prime ideals such that
(i) in τ(Kn), V ∗(Γ) ⊆ V

(
{f (j) : j = 0, . . . , ℓ, f ∈ Λ}

)
, and

(ii) in Kn, π̂i

(
V ∗(Γ)

)
contains a nonempty ∆-open subset of V ∗(Λσi), for

all i = 0, . . . , t.
Then there exists a ∈ V ∗(Λ) with ∇(a) ∈ V ∗(Γ).

Proof. Note that the π̂i referred to in (ii) is π̂i : τ(K
n) → (Kn)σi = Kn.
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Assume that III′ holds, and suppose V and W are as in III of Theorem 6.1. Let
Λ be a characteristic set for I∆(V/K) and Γ a characteristic set for I∆(W/K). The
fact that W ⊆ τ(V ) and V ∗(Γ) is contained in W implies assumption (i). Since Λσi

is a characteristic set for V σi , V ∗(Λσi) is ∆-open in V σi . Hence the fact that π̂i(W )
is ∆-dense in V σi implies, using quantifier elimination for differentially closed fields,
the truth of (ii). Therefore there exists a ∈ V ∗(Λ) ⊆ V with ∇(a) ∈ V ∗(Γ) ⊆ W ,
as desired.

For the converse we assume III and prove III′. Suppose Λ and Γ are given. Let
V ⊂ Kn denote the irreducible ∆-closed set defined by the prime ∆-ideal that has
Λ as a characteristic set, and let W ⊆ τ(Kn) be the irreducible ∆-closed set defined
by the prime ∆-ideal that has Γ as a characteristic set. Since W \V (HΓ) = V ∗(Γ),
assumption (i) implies that W ⊆ V

(
{f (j) : j = 0, . . . , ℓ, f ∈ Λ}

)
. But because

I∆(V/K) need not be [Λ], this does not imply that W ⊆ τV . Let us assume for
now, however, that W ⊆ τV . Since V ∗(Λσi) is ∆-open in V σi , assumption (ii) does
imply that π̂i(W ) is ∆-dense in V σi . We can apply III of Theorem 6.1, or rather
the refinement mentioned in Remark 6.2, to get a ∈ V ∗(Λ) with ∇(a) ∈ V ∗(Γ).

It therefore remains only to prove that W ⊆ τV . Since we know that W ⊆
V
(
{f (j) : j = 0, . . . , ℓ, f ∈ Λ}

)
, Lemma 5.3 implies that π̂i(W ) ⊆ V (Λσi) for all

i = 0, . . . , t. If we therefore let Oi be the nonempty ∆-open subset of V (Λσi) whose
existence is asserted by (ii), then π̂−1

i (Oi)∩W is a nonempty ∆-open subset of W .

Hence O := W ∩
t⋂

i=0

π̂−1
i (Oi) is a nonempty ∆-open subset of W . So to prove that

W ⊆ τV it suffices to prove that O ⊆ τV . Let b ∈ O. To show that b ∈ τV we
need to show that f (j)(b) = 0 for all f ∈ I∆(V/K) and j = 0, . . . , ℓ. We know this

is true for all f ∈ Λ since b ∈ W , and it is easy to see that the same must hold for
all f ∈ [Λ]. But as Λ is characteristic of I∆(V/K), if f ∈ I∆(V/K) then HN

Λ f ∈ [Λ]
for some N , see equality (1) of §2. Hence, using identity (4) of §5, we get that for
all f ∈ I∆(V/K)

0 =

ℓ∑

j=0

(HN
Λ f)(j)(b)ǫj

= (HN
Λ f)e(

ℓ∑

j=0

b(j)ǫj)

= (HN
Λ )e(

ℓ∑

j=0

b(j)ǫj) · f
e(

ℓ∑

j=0

b(j)ǫj)

= (HN
Λ )e(

ℓ∑

j=0

b(j)ǫj) · (
ℓ∑

j=0

f (j)(b)ǫj)

It therefore suffices to verify that (HN
Λ )e(

∑ℓ

j=0 b
(j)ǫj) is a unit in D(K), or equiv-

alently that for each i = 0, . . . , t, πK
i (HN

Λ )e(
∑ℓ

j=0 b
(j)ǫj) 6= 0 in K. But

πK
i (HN

Λ )e(

ℓ∑

j=0

b(j)ǫj) = (HN
Λ )σi(

ℓ∑

j=0

b(j)πiǫj) = (HN
Λσi )(π̂ib)
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and the latter is not zero because π̂i(b) ∈ Oi and Oi is disjoint of V (HΛσi ) by
assumption. This completes the proof that O ⊆ τV , and hence that W ⊆ τV . �

Corollary 6.4. The theory of D-differential fields has a model companion.

Proof. This is because conditions I and II of Theorem 6.1, and III′ of Proposi-
tion 6.3, are first-order axiomatisable. For the latter the main point is that, by a
criterion of Rosenfeld’s, being the characteristic set of a prime ∆-ideal is definable
in parameters. See [5] for a more detailed discussion. �

We call this model companion the theory of D-differentially closed fields and
denote it by D -DCF0,m. When m = 0 (so ∆ = ∅) we recover the theory of
existentially closed D-fields, D -CF0, introduced in [7]. On the other hand, when
D(R) = R × R we recover the theory of existentially closed difference-differential
fields DCF0,m A whose existence was established in [5].

7. Properties of D -DCF0,m

Given that the model companion exists it is by now routine to show that this model
companion is tame in the various ways one expects. We list below five basic model-
theoretic properties of D -DCF0,m that are readily verified using the results and
methods of [7, §5], which were themselves based on the work of Chatzidakis and
Hrushovski on difference fields [1]. As no serious complications arise in the differ-
ential setting, we omit proofs entirely. (See also [5] for the difference-differential
case when D(R) = R ×R.)

We will need a bit more notation. A D-differential field is said to be inversive
if the associated endomorphisms are surjective. Given a subset B of a model of
D -DCF0,m we denote by 〈B〉 the smallest inversive D-differential subfield that
contains B.

1. Completions. The completions of D -DCF0,m are determined by the action

of the associated endomorphisms on kalg. In fact, if (K,∆, ∂) and (L,∆′, ∂′)
are models of D -DCF0,m with a common algebraically closed inversive D-
differential subfield F , then (K,∆, ∂) ≡F (L,∆′, ∂′).

2. acl. If B is a subset of a model of D -DCF0,m then acl(B) = 〈B〉alg. In the
case when t = 0 (so B is a local k-algebra), dcl(B) = 〈B〉.

3. Quantifier reduction. Suppose (L,∆, ∂) |= D -DCF0,m, K is an inversive

D-differential subfield, and a, b ∈ Ln. Then tp(a/K) = tp(b/K) if and
only if there is an isomorphism between (K〈a〉,∆, ∂) and (K〈b〉,∆, ∂) that
fixes K, takes a to b, and extends to an isomorphism from (K〈a〉alg, σ)
to (K〈b〉alg, σ). In particular, if t = 0 then D -DCF0,m admits quantifier
elimination.

4 Simplicity. Every completion of D -DCF0,m is simple with the indepen-
dence theorem holding over (model-theoretically) algebraically closed sets.
Nonforking independence is given by A |⌣C

B if and only if 〈A〉 and 〈B〉

are algebraically disjoint over 〈C〉. In the case when t = 0, D -DCF0,m is a
complete stable theory.

5 Imaginaries. Every completion of D -DCF0,m eliminates imaginaries.

It is a little less straightforward to extend the methods of [7] to obtain the appro-
priate Canonical Base Property and Zilber Dichotomy. We expect these to hold
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in a more general setting of fields equipped with commuting free operators, and
therefore leave it as the subject of future work.

We conclude by discussing some of the natural reducts of D -DCF0,m.

Proposition 7.1. Suppose (K,∆, ∂) |= D -DCF0,m.

(i) For each associated automorphism σ, (K,∆, σ) |= DCF0,m A.
(ii) For any r ≤ m and ∆1 ⊆ ∆ a subset of r-many derivations, (K,∆1, ∂) |=

D -DCF0,r. In particular, (K, ∂) |= D -CF0.
(iii) For ∆1 as above, and setting ∆2 := ∆ \∆1, we have that (K∆2 ,∆1, ∂) |=

D -DCF0,r. Here K∆2 denotes the field of ∆2-constants.

Proof. The following are adaptations of the arguments of Proposition 4.12 of [7]
and Proposition 3.4 of [5].

(i) By the geometric characterization of the models of DCF0,mA given in [5], it
suffices to show that if V andW are irreducible ∆-closed sets such thatW ⊂ V ×V σ

projects ∆-dominantly onto each factor, then there is a ∈ V with (a, σa) ∈ W .
To prove this, consider the pull-back W ′ of W under τV → V × V σ, and apply
condition (III) of Theorem 6.1 to an irreducible component of W ′ that projects
∆-dominantly onto W .

(ii) Checking the axioms for D -DCF0,r, but working with (III′) of 6.3 rather
than (III) of 6.1, we see that it suffices to show that if Λ is a characteristic set of
a prime ∆1-ideal of the ∆1-polynomial ring over K, then Λ is also characteristic
for a prime ∆-ideal of K{x}. That this is indeed the case is part of the proof of
Kolchin’s Irreducibility Theorem [3, Chapter 0, §6].

(iii) We check that (K∆2 ,∆1, ∂) is an existentially closed D-∆1-field. Let φ(x)
be a quantifier free formula in the language of D-∆1-rings with parameters from
K∆2 and with a realisation in some D-∆1-field extension (F,∆1, ∂). We can ex-
pand (F,∆1, ∂) to a D-∆-field (F,∆, ∂) by interpreting all the derivation in ∆2 to
be trivial on F . So (F,∆, ∂) extends (K∆2 ,∆, ∂), and itself extends to a model
(L,∆, ∂) |= D -DCF0,m. Since K∆2 is a common algebraically closed inversive D-
differential subfield of (K,∆, ∂) and (L,∆, ∂), property (1) above implies that there
is b ∈ K such that

(K,∆, ∂) |= φ(b) ∧
∧

δ∈∆2

δ(b) = 0

Since φ is quantifier free and refers only to ∆1, we have (K∆2 ,∆1, ∂) |= φ(b), as
desired. �
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