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REDUCED PRODUCTS OF METRIC STRUCTURES: A METRIC

FEFERMAN-VAUGHT THEOREM

SAEED GHASEMI

Abstract. We extend the classical Feferman-Vaught theorem to logic for metric struc-
tures. This implies that the reduced powers of elementarily equivalent structures are
elementarily equivalent, and therefore they are isomorphic under the Continuum Hypoth-
esis. We also prove the existence of two separable C*-algebras of the form

⊕
i
Mk(i)(C)

such that the assertion that their coronas are isomorphic is independent from ZFC, which
gives the first example of genuinely non-commutative coronas of separable C*-algebras
with this property.

1. introduction

In classical model theory S. Feferman and R.L. Vaught ([16] and [5, §6.3]) gave an
effective (recursive) way to determine the satisfaction of formulas in the reduced products
of models of the same language, over the ideal of all finite sets, Fin. They showed the
preservation of the elementary equivalence relation ≡ by arbitrary direct products and
also by reduced products over Fin. Later Frayne, Morel and Scott ([17]) noticed that the
results extend to arbitrary reduced products (see also [26]). Even though reduced products
have been vastly studied for various metric structures, e.g., Banach spaces, C*-algebras,
etc., unlike classical first order logic, their model theory has not been studied until very
recently in [20] and [15]. The classical Feferman-Vaught theorem effectively determines
the truth value of a formula ϕ in reduced products of discrete structures {Aγ : γ ∈ Ω}
over an ideal I on Ω, by the truth values of certain formulas in the models Aγ and in the
Boolean algebra P (Ω)/I.

In the present paper we prove a metric version of the Feferman-Vaught theorem (The-
orem 3.3) for reduced products of metric structures, which also implies the preservation of
≡ by arbitrary direct products, ultraproducts and reduced products of metric structures.
This answers a question stated in [20]. We also use this theorem to solve an outstanding
problem on coronas of C*-algebras (§5).

In the last few years the model theory for operator algebras has been developed and
specialized from the model theory for metric structures. The reader may refer to [13] for
a detailed introduction to the model theory of operator algebras, and [10] for an overview
of the applications of logic to operator algebras. This has proved to be very fruitful
as many properties of C*-algebras and tracial von Neumann algebras have equivalent
model theoretic reformulations ([13], [11], . . . ). In particular for a sequence of C*-algebras
{An : n ∈ N} the asymptotic sequence algebra

∏

nAn/
⊕

nAn is the reduced product over
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the Fréchet ideal and is an important example of corona algebras. If An = A for all n, we
write ℓ∞(A)/c0(A) instead of

∏

nAn/
⊕

nAn In section 2.1 we briefly recall some of the
basic concepts regarding corona algebras and the isomorphisms between them.

In model theory saturated structures have many intriguing properties. A transfinite
extension of Cantor’s back-and-forth method shows that for any uncountable cardinal κ,
two elementarily equivalent κ-saturated metric structures (in the same countable language
L) of density character κ, are isomorphic (see e.g., [13] or [2]). Recall that for a topological
space X, the density character of X is the smallest cardinality of a dense subset of X.
In [15] Farah-Shelah (Theorem 4.3) showed that for any sequence {An : n ∈ N} of met-
ric structures the reduced product

∏

nAn/
⊕

nAn over the Fréchet ideal is ℵ1-saturated
(we will usually say “countably saturated” instead of ℵ1-saturated). Hence the question
whether two such reduced products of the density character ℵ1 are isomorphic reduces
to the weaker question of whether they are elementarily equivalent. For instance if A is
separable C*-algebra, the asymptotic sequence algebra ℓ∞(A)/c0(A) is the corona algebra
of the separable C*-algebra ℓ∞(A) and therefore it is non-separable (see [1, Theorem 2.7]).
Thus under the Continuum Hypothesis, the asymptotic sequence algebras of two separable
C*-algebras A and B are isomorphic if and only if they (the asymptotic sequence algebras)
are elementarily equivalent. One of the main consequences of our metric Feferman-Vaught
theorem (Proposition 3.6) implies that if separable A and B are elementarily equivalent,
so are their asymptotic sequence algebras and therefore ℓ∞(A)/c0(A) is isomorphic to
ℓ∞(B)/c0(B), under the Continuum Hypothesis.

We say an ideal I on N is atomless if the Boolean algebra P (N)/I is atomless. The
metric extension of the Feferman-Vaught theorem is used to prove the following theorem.

Theorem 1.1. Suppose A is a metric L-structure and ideals I and J on N are atomless,
then the reduced powers of A over I and J are elementarily equivalent.

Therefore in particular if A is a separable C*-algebra then under the Continuum
Hypothesis such reduced powers of A, if they are countably saturated, are all isomorphic
to ℓ∞(A)/c0(A).

For an ultrafilter U  Loś’s theorem implies that a metric structure A is elementarily
equivalent to its ultrapower AU . Therefore Farah-Shelah’s result shows that under the
Continuum Hypothesis if A is a separable C*-algebra, ℓ∞(A)/c0(A) is isomorphic to its
ultrapower associated with any nonprincipal ultrafilter on N ([15, Corollary 4.1]). Theorem
1.1 can be used (§4) to show that under the Continuum Hypothesis any reduced power of
an asymptotic sequence algebra ℓ∞(A)/c0(A) over a large class of atomless ideals is also
isomorphic to ℓ∞(A)/c0(A) itself.

In Section 5 we show there are two reduced products (of matrix algebras) which are
isomorphic under the Continuum Hypothesis but there are no “trivial” isomorphisms (see
2.1) between them. Commutative examples of such reduced products are well-known, for
example under the Continuum Hypothesis C(βω \ ω) ∼= C(βω2 \ ω2) (note that ℓ∞/c0 ∼=
C(βω \ ω)), since by a well-known result of Parovičenko ([22]) under the Continuum
Hypothesis βω\ω and βω2\ω2 are homeomorphic. However under the proper forcing axiom
they are not isomorphic (see [6] and [7, Chapter 4]). A naive way to obtain nontrivial
isomorphisms, under the Continuum Hypothesis, between non-commutative coronas is
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by tensoring C(βω \ ω) and C(βω2 \ ω2) with a full matrix algebra. However, such
nontrivial isomorphisms are just amplifications of the nontrivial isomorphisms between
their corresponding commutative factors (see Section 5 for details). It has been asked by
I. Farah to give examples of genuinely non-commutative corona algebras which are non-
trivially isomorphic under the Continuum Hypothesis, for non-commutative reasons. Let
Mn denote the space of all n × n matrices over the field of complex numbers. In [18] it
has been proved that it is relatively consistent with ZFC that all isomorphisms between
reduced products of matrix algebras over analytic P-ideals (e.g., the corona of

⊕

Mk(n))
are trivial (cf. Theorem 5.1).

Theorem 1.2. There is an increasing sequence of natural numbers {k∞(i) : i ∈ N} such
that if {g(i)} and {h(i)} are two subsequences of {k∞(i)}, then under the Continuum Hy-
pothesis, Mg =

∏

iMg(i)/
⊕

Mg(i) is isomorphic to Mh =
∏

iMh(i)/
⊕

Mh(i). Moreover,

the following are equivalent.

(1) Mg and Mh are isomorphic in ZFC.

(2) Mg and Mh are trivially isomorphic, i.e., {g(i) : i ∈ N} and {h(i) : i ∈ N} are
equal modulo finite sets.

Thus if {g(i) : i ∈ N} and {h(i) : i ∈ N} are almost disjoint, this gives an example
of two genuinely non-commutative reduced products for which the question “whether or
not they are isomorphic?”, is independent from ZFC. We will also show (Theorem 5.4)
that there is an abundance of different theories of reduced products of sequences of matrix
algebras, by exhibiting 2ℵ0 pairwise non-elementarily equivalent such reduced products.

ACKNOWLEDGMENTS. I would like to thank my Ph.D supervisor Ilijas Farah
for eye-opening supervision and numerous comments and remarks. Many thanks to Vini-
cius Cifú Lopes, Seyed Mohammad Bagheri, Christopher Eagle and Martino Lupini for
the comments, and to Bradd Hart for introducing me to some different aspects of the
topic. I would also like to thank the referee for many suggestions and remarks.

2. Some preliminaries

2.1. Corona algebras and trivial isomorphisms. The reader may refer to [3] for a
detailed book on C*-algebras. A C*-algebra A is a Banach *-algebra over the field of
complex numbers which satisfies the C*-identity

‖xx∗‖ = ‖x‖2

for all x ∈ A. The Gelfand-Naimark theorem states that every commutative C*-algebra
is isomorphic to some C0(X), the algebra of all continuous functions on a locally compact
Hausdorff space X which vanish at infinity, with the pointwise multiplication. In general
a C*-algebra may not have a unit element. For a non-unital C*-algebra A there are
various ways in which A can be embedded as an (essential) ideal in a unital C*-algebra.
If A = C0(X) is commutative this corresponds to the ways in which the locally compact
Hausdorff space X can be embedded as an open (dense) set in a compact Hausdorff
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space Y . The analogue of the Čech-Stone compactification for (non-commutative) C*-
algebras is called the multiplier algebra of A. The multiplier algebra M(A) of A is the
unital C*-algebra containing A as an essential ideal, which is universal in the sense that
whenever A is an ideal of a unital C*-algebra D, the identity map on A extends uniquely
to a *-homomorphism from D into M(A) (cf. [3, II.7.3]). The quotient C*-algebra
C(A) = M(A)/A is called the corona of A. A few well-known examples are corona
algebras are listed below.

(i) If A is unital, then M(A) = A. Therefore the corona of A is trivial.

(ii) If A = K(H), the algebra of all compact operators on a Hilbert space H, then
M(A) = B(H), the algebra of all bounded linear operators on H. The corona of A is the
Calkin algebra C(H).

(iii) If X is a locally compact Hausdorff space, then M(C0(X)) ∼= C(βX), which is
isomorphic to the C*-algebra Cb(X) of bounded continuous complex-valued functions on
X. The corona of C0(X) is isomorphic to the C*-algebra Cb(X)/C0(X) ∼= C(X∗), where
X∗ is the Čech-Stone remainder βX \X of X.

(iv) Suppose An is a sequence of unital C*-algebras and let

∞
∏

n

An = {(xn) : xn ∈ An and sup
n

‖xn‖ <∞}

∞
⊕

n

An = {(xn) ∈
∏

n

An : ‖xn‖ → 0}.

If A =
⊕

nAn then M(A) =
∏

nAn and the corona of A is
∏

nAn/
⊕

nAn.

(v) If A is a C*-algebra and X is a locally compact Hausdorff space, let

Cb(X,A) = {f : X → A : f is a norm continuous and bounded function}

C0(X,A) = {f : X → A : f is continuous and vanishes at ∞},

then the M(C0(X,A)) ∼= Cb(X,A). Therefore C(C0(X,A)) ∼= Cb(X,A)/C0(X,A) ∼=
C(X∗, C(A)).

Our notion of trivial isomorphisms between corona algebras follows the one in [14],
where it is considered more generally for isomorphisms between quotients of algebraic
structures.

Definition 2.1. Assume A and B are non-unital C*-algebras. A *-homomorphism Φ :
C(A) → C(B) is trivial if there is a *-homomorphism Φ∗ : M(A) → M(B) such that

M(A) M(B)

C(A) C(B)

Φ∗

πA πB

Φ

commutes, where πA and πB are the canonical quotient maps.
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In the case of automorphisms, this notion of triviality is clearly weaker than the
automorphisms being inner, i.e., being implemented by a unitary element. The question
of whether the automorphisms, or generally the isomorphisms, between corona algebras are
trivial turns out to be very sensitive to the additional set-theoretic assumptions. The most
notorious results concerning the triviality of automorphisms of corona of non-commutative
C*-algebras concern the Calkin algebra. It has been shown ([23] and [8]) that the statement
that all the automorphisms of the Calkin algebra are inner, is independent from ZFC. Refer
to [18, §1] for a short overview of the some of the important results about triviality of the
isomorphisms between corona algebras.

2.2. Logic for metric structures. A main reference for logic for metric structures is [2],
see also [19]. A metric structure, in the sense of [2], is a many-sorted structure in which
each sort is a complete bounded metric space. A slightly modified version of the this
logic was introduced in [13] which does not require the structures to be bounded, and it is
more suited while working with operator algebras. A key feature of this logic is that each
structure A is equipped with domains of quantification, bounded subsets of A on which
all functions and predicates are uniformly continuous (with a fixed modulus of uniform
continuity) which the quantification is allowed. For simplicity in notations we follow [2]
in this paper and assume that the metric structures are bounded, but the arguments can
be adapted, in the obvious way, to unbounded metric structures as in [13]. For a language
L for metric structures, as usual a metric L-structure is a complete bounded metric space
(for each sort, in the case of many-sorted structures) with appropriate interpretations for
predicates, functions and constant symbols in L. Each predicate and function symbol is
equipped with a modulus of uniform continuity. In particular for every L-formula ϕ, the set
of all evaluations of ϕ in any L-structure with the diameter less than a fixed constant, is a
bounded subset of the real numbers. Throughout this and the following section we assume
formulas are [0, 1]-valued. This is not always an assumption in continuous model theory
(e.g., formulas in the model theory for operator algebras). However, since the ranges of
(evaluations of) formulas are always bounded in all interpretations allowing [0.∞)-valued
or even negative evaluations results in equivalent logics; see [10, 4.1] for more details on
this. We assume that the reader is familiar with the basic definitions of model theory for
metric structures, e.g., terms, atomic formulas, formulas, types, etc.

For a topological space X, let χ(X) denote the density character of X, i.e., the smallest
cardinality of a dense subset of X. Suppose κ is an infinite cardinal. A model A is κ-
saturated if every consistent type t over X ⊆ A with |X| < κ, is realized in A. If A
is χ(X)-saturated then A is called saturated. We say A is countably saturated if it is
ℵ1-saturated.

We let Fn be the set of all formulas whose free variables are included in {x1, . . . , xn}.
For a metric structure A we usually abbreviate a tuple (a1, . . . , an) of elements of A by ā,
when there is no confusion about the length of the tuple, and ϕ(ā)A is the interpretation
of ϕ in A at ā.

Define the theory of A to be

Th(A) = {ϕ ∈ F0 : ϕA = 0}.
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Two metric structures A and B are elementarily equivalent, A ≡ B, if Th(A) = Th(B).
The universal theory Th∀(A) of A is the subset of Th(A) consisting of sentences of the
form supx̄ ϕ(x̄) where ϕ is a quantifier-free formula and x̄ is a finite tuple.

Lets recall some requirements regarding the connectives from [2, Chapter 6], which
will be used throughout this paper. Connectives are continuous functions from [0, 1]n to
[0, 1] for some n ≥ 1.

Definition 2.2. A closed system of connectives is a family F = (Fn : n ≥ 1) where each
Fn is a set of connectives f : [0, 1]n → [0, 1] satisfying the following conditions.

(i) For each n, Fn contains the projection onto the jth coordinate for each j = 1, . . . , n.
(ii) For each n and m, if u ∈ Fn, and v1, . . . , vn ∈ Fm, then the function w : [0, 1]m →

[0, 1] defined by w(t) = u(v1(t), . . . , vn(t)) belongs to Fm.

Definition 2.3. Given a closed system of connectives F , the collection of F-restricted
formulas is defined by induction.

(1) Atomic formulas are F-restricted.
(2) If u ∈ Fn and ϕ1, . . . , ϕn are F-restricted formulas, then u(ϕ1, . . . , ϕn) is also an

F-restricted formula.
(3) If ϕ is an F-restricted formula, so are supx ϕ and infx ϕ.

Define a binary function .− : [0, 1]2 → [0, 1] by

x .− y =

{

x− y x ≥ y

0 otherwise

and let F0 = (Fn : n ≥ 1) be the closed system of connectives generated from {0, 1, x/2, .−}
by closing it under (i) and (ii) (where 0 and 1 are constant functions with one variable).

Proposition 2.4. [2, Proposition 6.6] The set of all F0-restricted L-formulas are uni-
formly dense in the set of all L-formulas; that is, for any ǫ > 0 and any L-formula
ϕ(x1, . . . , xn), there is an F0-restricted L-formula ψ(x1, . . . , xn) such that for all L-structures
A we have

|ϕ(a1, . . . , an) − ψ(a1, . . . , an)| < ǫ

for all a1, . . . , an ∈ A. In particular if L is countable, there is a countable set of L-formulas
which is uniformly dense in the set of all L-formulas.

2.3. Reduced products of metric structures. Lets recall some definitions and ba-
sic theorems regarding reduced products of metric structures from [15] and [20]. Fix a
language L in logic of metric structures. Throughout this paper L can be many-sorted,
but in order to avoid distracting notations we shall assume it is one-sorted. Assume
{(Aγ , dγ), γ ∈ Ω} is a family of metric L-structures indexed by a set Ω, all having diam-
eter ≤ K for some constant K. Consider the direct product

∏

Ω

Aγ = {〈a(γ)〉 : a(γ) ∈ Aγ for all γ ∈ Ω}.
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Let I be an ideal on Ω. Define a map dI on
∏

ΩAγ by

dI(x, y) = lim sup
γ→I

dγ(x(γ), y(γ)) = inf
S∈I

sup
γ /∈S

dγ(x(γ), y(γ))

where x = 〈x(γ) : γ ∈ Ω〉 and y = 〈y(γ) : γ ∈ Ω〉. Note that the limit notation
above corresponds to the notation limγ→I rγ = L meaning that for every ǫ > 0 the set
{γ ∈ Ω : |rγ − L| ≥ ǫ} belongs to the ideal I.

The map dI defines a pseudometric metric on
∏

Ω Aγ . For x, y ∈
∏

ΩAγ define x ∼I y
to mean dI(x, y) = 0. Then ∼I is an equivalence relation and the quotient

∏

I

Aγ = (
∏

Ω

Aγ)/ ∼I

with the induced metric dI is a complete bounded metric space. We will use π
I

to denote
the natural quotient map from

∏

ΩAγ onto
∏

I Aγ . For a tuple ā = (a1, . . . , ak) of elements
of

∏

ΩAγ we write π
I
(ā) for (π

I
(a1), . . . , π

I
(ak)) and by ā(γ) we denote the corresponding

tuple (a1(γ), . . . , ak(γ)) of elements of Aγ .

Let R be a predicate symbol in L and ā be a tuple of elements of
∏

ΩAγ of appropriate
size. Define

R(π
I
(ā)) = lim sup

I

R(ā(γ)).

If f is a function symbol in L for an appropriate ā define

f(π
I
(ā)) = π

I
(〈f(ā(γ))〉),

and if c ∈ L is a constant symbol let

c
∏

I Aγ = π
I
(〈cAγ 〉).

The quotient
∏

I Aγ is called the reduced product of the family {(Aγ , dγ) : γ ∈ Ω} over
the ideal I. Note that if I is a maximal (prime) ideal, then

∏

I Aγ is the ultraproduct
of the family {Aγ , γ ∈ Ω} over the ultrafilter U consisting of the complements of the
elements of I, usually denoted by

∏

U Aγ or (
∏

Ω Aγ)U or
∏

Ω Aγ/U . Also, in the case
when L includes a distinguished constant symbol for 0 (e.g., the language of C*-algebras)
the reduced product of L-structures {Aγ , γ ∈ Ω} over I is the quotient of

∏

ΩAγ over its
closed ideal

⊕

I Aγ defined by
⊕

I

Aγ = {a ∈
∏

Ω

Aγ : dI(a, 0
∏

Ω Aγ ) = 0},

and usually denoted by
∏

ΩAγ/
⊕

I Aγ (see [15]).

Proposition 2.5. The structure 〈
∏

I Aγ , dI〉 in the language L with the interpretations
of constants, functions and predicates as above, is a metric L-structure.

Proof. We only have to check that each function and predicate symbol has the same
modulus of uniform continuity. we shall prove this only for a function symbol f of arity
k. Let ∆ : [0, 1] → [0, 1] be the modulus of uniform continuity of f , i.e., for ǫ > 0 and
x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yk) tuples in each Aγ we have

dγ(x̄, ȳ) < ∆(ǫ) → dγ(f(x̄), f(ȳ)) ≤ ǫ,
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where dγ(x̄, ȳ) < ∆(ǫ) means dγ(xi, yi) < ∆(ǫ) for ever i = {1, . . . , k}.

Suppose ā and b̄ in (
∏

ΩAγ)k are such that dI(πI(ā), π
I
(b̄)) < ∆(ǫ). Then by

the definition of dI there is an I-positive set S ⊆ Ω such that for every γ ∈ S we
have dγ(ā(γ), b̄(γ)) < ∆(ǫ), and therefore dγ(f(ā(γ)), f(b̄(γ))) ≤ ǫ. This implies that
dI(π

I
(f(ā)), π

I
(f(ȳ))) ≤ ǫ. �

Lemma 2.6. Assume I is an ideal on Ω. If ϕ(ȳ) is an atomic L-formula and ā is a tuple
of elements of

∏

ΩAγ, then

ϕ(π
I
(ā))

∏
I Aγ = lim sup

I

ϕ(ā(γ))Aγ .

Proof. This easily follows from the definition of dI and the interpretation of atomic for-
mulas. �

3. An extension of Feferman-Vaught theorem for reduced products of

metric structures

The evaluation of a non-atomic formula in reduced products turns out to be more com-
plicated than the atomic case, see [20]. In this section we give an extension of Feferman-
Vaught theorem to reduced products of metric structures, which just like its classical
version, gives a powerful tool to prove elementary equivalence of reduced products.

Suppose {Aγ : γ ∈ Ω} is a family of metric structures in a fixed language L and I is
an ideal on Ω. For the purposes of this section let

AΩ =
∏

Ω

Aγ , AI =
∏

I

Aγ .

For an L-formula ϕ(x̄), a tuple ā of elements of A and

X = {γ ∈ Ω : ϕ(ā(γ))Aγ > r}

for some r ∈ R, we use X̃ to denote the set

X̃ = {γ ∈ Ω : ϕ(ā(γ))Aγ ≥ r}.

Definition 3.1. For an F0-restricted L-formula ϕ(x1, . . . , xl), we say ϕ is determined up
to 2−n by (σ0, . . . , σ2n ;ψ0, . . . , ψm−1) if

(1) Each σi is a formula in the language of Boolean algebras with at most s = m2n

many variables, which is monotonic, i.e.,

TBA ⊢ ∀y1 . . . , ys, z1, . . . , zs(σi(y1, . . . , ys) ∧
s
∧

i=1

yi ≤ zi

→ σi(z1, . . . , zs)).

(Here, TBA denotes the theory of Boolean algebras.)
(2) Each ψj(x1, . . . , xl) is an F0-restricted L-formula for j = 0, . . . ,m− 1.
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(3) For any indexed set Ω, an ideal I on Ω, a family {Aγ : γ ∈ Ω} of metric L-
structures and a1, . . . , al ∈ AΩ the following hold:
for every ℓ = 0, . . . , 2n

P (Ω)/I � σℓ([X
0
0 ]I , . . . , [X

0
2n ]I , . . . , [X

m−1
0 ]I , . . . , [X

m−1
2n ]I)

=⇒ ϕ(π
I
(ā))AI > ℓ/2n,

and

ϕ(π
I
(ā))AI > ℓ/2n

=⇒ P (Ω)/I � σℓ([X̃
0
0 ]I , . . . , [X̃

0
2n ]I , . . . , [X̃

m−1
0 ]I , . . . , [X̃

m−1
2n ]I)

where Xj
i = {γ ∈ Ω : ψj(ā(γ))Aγ > i/2n} for each j = 0, . . . ,m − 1 and

i = 0, . . . , 2n.

Using Lemma 2.4 we can generalize this definition to all L-formulas.

Definition 3.2. We say an L-formula ϕ is determined up to 2−n if there is an F0-
restricted L-formula ϕ̃ which is uniformly within 2−n−1 of ϕ and ϕ̃ is determined up to
2−n by some (σ0, . . . , σ2n ;ψ0, . . . , ψm−1).

Theorem 3.3. Every formula is determined up to 2−n for any given n ∈ N.

Proof. By Definition 3.2 and Lemma 2.4, without loss of generality, we can assume that
formulas are F0-restricted. Assume ϕ is an atomic L-formula and for each i ≤ 2n define

σi(y0, . . . , y2n) := yi 6= 0.

We show that ϕ is determined up to 2−n by (σ0, . . . , σ2n ;ϕ). Conditions (1) and (2)
of Definition 3.1 are clearly satisfied. For an indexed set Ω, an ideal I on Ω, a family
{Aγ : γ ∈ Ω} of metric L-structures and a1, . . . , al ∈ AΩ let

Xi = {γ ∈ Ω : ϕ(ā(γ))Aγ > i/2n},

since ϕ(π
I
(ā))AI = lim supI ϕ(ā(γ))Aγ we have

P (Ω)/I � σℓ([X0]I , . . . , [X2n ]I) ⇐⇒ Xℓ /∈ I

⇐⇒ ϕ(π
I
(ā))AI > ℓ/2n.

Since each Xj
i ⊆ X̃j

i , by the monotonicity of σℓ, ϕ(π
I
(ā))AI > ℓ/2n also implies that

P (Ω)/I � σℓ([X̃0]I , . . . , [X̃2n ]I). Thus ϕ is determined up to 2−n by (σ0, . . . , σ2n ;ϕ).

Assume ϕ(x̄) = f(α(x̄)) where f ∈ {0, 1, x/2} and α is some L-formula determined up
to 2−n by (σ0, . . . , σ2n ;ψ0, . . . , ψm−1). The cases where f ∈ {0, 1} are trivial; for example
if f = 0 then ϕ(x̄) is determined up to 2−n by (τ0, . . . , τ2n ; 0) where τi := 1 6= 1 for each
i = 0, . . . , 2n. If f(x) = x/2 then it is also straightforward to check that ϕ is determined
up to 2−n−1 by (σ0, . . . , σ2n , τ2n+1, . . . , τ2n+1 ; f(ψ0), . . . , f(ψm−1)), where each τi is a false
sentence (e.g, 1 6= 1).

Let ϕ(x̄) = α1(x̄) .− α2(x̄) where each αt (t ∈ {1, 2}) is determined up to 2−n by
(σt0, . . . , σ

t
2n ;ψt0, . . . , ψ

t
mt−1). We claim that ϕ is determined up to 2−n by (τ0, . . . , τ2n ;ψ1

0 , . . .
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, ψ1
m1−1, 1 − ψ2

0 , . . . , 1 − ψ2
m2−1) where the Boolean algebra formulas τk are defined by

τk(x
0
0, . . . , x

0
2n , . . . , x

m1−1
0 , . . . , xm1−1

2n , z00 , . . . , z
0
2n , . . . , z

m2−1
0 , . . . , zm2−1

2n ) :=

2n
∨

i0=k

[

σ1i0(x00, . . . , x
0
2n , . . . , x

m1−1
0 , . . . , xm1−1

2n )

∧¬σ2i0−k(−z02n , . . . ,−z
0
0 , . . . ,−z

m2−1
2n , . . . ,−zm2−1

0 )
]

,

(here −z is the Boolean algebra complement of z). Conditions (1) and (2) in Definition
3.1 are clearly satisfied. For (3) let AI be a reduced product of L-structures (indexed by
Ω and over an ideal I) and a1, . . . , al ∈ AΩ. Let

Xj
i = {γ ∈ Ω : ψ1

j (ā(γ))Aγ > i/2n} 0 ≤ j ≤ m1 − 1,

Y j
i = {γ ∈ Ω : ψ2

j (ā(γ))Aγ > i/2n} 0 ≤ j ≤ m2 − 1,

and

Zji = {γ ∈ Ω : 1 − ψ2
j (ā(γ))Aγ > i/2n} 0 ≤ j ≤ m2 − 1.

Note that Ỹ j
2n−i = (Zji )c for each i and j. Assume

P (Ω)/I � τk([X
0
0 ]I , . . . , [X

m1−1
2n ]I , [Z

0
0 ]I , . . . , [Z

m2−1
2n ]I),

then for some i0 ≥ k,

P (Ω)/I � σ1i0([X0
0 ]I , . . . , [X

m1−1
2n ]I) ∧ ¬σ2i0−k([(Z

0
2n)c]I , . . . , [(Z

m1−1
0 )c]I),

=⇒ P (Ω)/I � σ1i0([X0
0 ]I , . . . , [X

m1−1
2n ]I) ∧ ¬σ2i0−k([Ỹ

0
0 ]I , . . . , [Ỹ

m1−1
2n ]I),

and therefore

α1(π
I
(ā))AI > i0/2

n and α2(πI
(ā))AI ≤ (i0 − k)/2n.

Hence ϕ(π
I
(ā))AI > k/2n. To prove the other direction assume ϕ(π

I
(ā))AI > k/2n. For

some i0 ≥ k,

α1(π
I
(ā))AI > i0/2

n and α2(πI
(ā))AI ≤ (i0 − k)/2n.

By the induction assumptions

P (Ω)/I � σ1i0([X̃0
0 ]I , . . . , [X̃

m1−1
2n ]I) ∧ ¬σ2i0−k([Ỹ

0
0 ]I , . . . , [Ỹ

m1−1
2n ]I),

and note that (Z̃j2n−i)
c ⊆ Ỹ j

i for each i and j, which implies

P (Ω)/I � σ1i0([X̃0
0 ]I , . . . , [X̃

m1−1
2n ]I) ∧ ¬σ2i0−k([(Z̃

0
2n)c]I , . . . , [(Z̃

m1−1
0 )c]I),

so

P (Ω)/I � τk([X̃
0
0 ]I , . . . , [X̃

m1−1
2n ]I , [Z̃

0
0 ]I , . . . , [Z̃

m2−1
2n ]I).

Therefore ϕ is determined up to 2−n by (τ0, . . . , τ2n ;ψ1
0 , . . . , ψ

1
m1−1, 1−ψ

2
0 , . . . , 1−ψ

2
m2−1).

Assume ϕ(x̄) = supz ψ(x̄, z) where ψ is determined by (σ0, . . . , σ2n ;ψ0, . . . , ψm−1) up
to 2−n. Let d = 2n+m − 1 and s0, . . . , sd−1 be an enumeration of non-empty elements of
∏2n

i=0 P ({0, . . . ,m− 1}), i.e, each sk = (sk(0), . . . , sk(2n)) where sk(i) ⊆ {0, . . . ,m− 1} for
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each i. Also assume that for each 0 ≤ k ≤ m − 1 we have sk = {{k}, ∅, . . . , ∅}. For any
k ∈ {0, . . . , d− 1} define an L-formula θk by

θk(x̄) = sup
z

min
{

ψj(x̄, z) : j ∈
2n
⋃

i=0

sk(i)
}

.

Note that if 0 ≤ k ≤ m− 1 then θk(x̄) = supz ψk(x̄, z). For each i ∈ {0, . . . , 2n} define a
Boolean algebra formula τi by

τi(y
0
0 , . . . , y

0
2n , . . . , y

d−1
0 , . . . , yd−1

2n ) = ∃z00 , . . . , z
0
2n , . . . , z

d−1
0 , . . . , zd−1

2n

[

d−1
∧

j=0

2n
∧

i=0

(zji ≤ yji ) ∧
2n
∧

i=0

∧

sk(t)∪sk′ (t)=sk′′ (t)
∀t

(zki .z
k′
i = zk

′′

i )

∧ σi(z
0
0 , . . . , z

0
2n , . . . , z

m−1
0 , . . . , zm−1

2n )].

We claim that ϕ is determined up to 2−n by (τ0, . . . , τ2n ; θ0, . . . , θd−1). Again condition
(1) is clearly satisfied. Condition (2) is also satisfied, since min{x, y} = x .− (x .− y). For
(3) assume a reduced product AI and a1, . . . , al ∈ AΩ are given.

First assume ϕ(π
I
(ā))AI > ℓ/2n for some ℓ. Let

δ =
min{ϕ(π

I
(ā))AI − ℓ/2n, 1/2n}

2

and find c = (c(γ))γ∈Ω such that

ψ(π
I
(ā, c))AI > ϕ(π

I
(ā))AI − δ > ℓ/2n.

For each i ≤ 2n and k ≤ d− 1 let

Y k
i = {γ ∈ Ω : θk(ā(γ))Aγ > i/2n},

and let

Zki = {γ ∈ Ω : min{ψj(x̄(γ), c(γ)) : j ∈
2n
⋃

t=0

sk(t)}
Aγ > i/2n}.

From definition of θk it is clear that Z̃ki ⊆ Ỹ k
i , and

2n
∧

i=0

∧

sk(t)∪sk′ (t)=sk′′ (t)
∀t

(Z̃ki ∩ Z̃k
′

i = Z̃k
′′

i ),

and by the inductive assumption

P (Ω)/I � σℓ([Z̃
0
0 ]I , . . . , [Z̃

0
2n ]I , . . . , [Z̃

m−1
0 ]I , . . . , [Z̃

m−1
2n ]I).

Hence P (Ω)/I � τℓ([Ỹ
0
0 ]I , . . . , [Ỹ

0
2n ]I , . . . , [Ỹ

d−1
0 ]I , . . . , [Ỹ

d−1
2n ]I).

For the other direction let

Y k
i = {γ ∈ Ω : θk(ā(γ))Aγ > i/2n},
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and suppose P (Ω)/I � τℓ([Y
0
0 ]I , . . . , [Y

0
2n ]I , . . . , [Y

d−1
0 ]I , . . . , [Y

d−1
2n ]I). There are sets

Z0
0 , . . . , Z

0
2n , . . . , Z

d−1
0 , . . . , Zd−1

2n such that the following hold.

[Zki ]I ⊆ [Y k
i ]I 0 ≤ i ≤ 2n, 0 ≤ k ≤ d− 1,

[Zki ]I ∩ [Zk
′

i ]I = [Zk
′′

i ]I ∀t sk(t) ∪ sk′(t) = sk′′(t),

P (Ω)/I � σℓ([Z
0
0 ]I , . . . , [Z

0
2n ]I , . . . , [Z

m−1
0 ]I , . . . , [Z

m−1
2n ]I).

Since there are only finitely many conditions above, we can find a set S ∈ I such that if
D = Ω \ S then

Zki ∩D ⊆ Y k
i 0 ≤ i ≤ 2n, 0 ≤ k ≤ d− 1,(1)

Zki ∩ Zk
′

i ∩D = Zk
′′

i ∩D ∀t sk(t) ∪ sk′(t) = sk′′(t),

Fix γ ∈ D, and for each i ∈ {0, . . . , 2n} let u(i) = {j ∈ {0, . . . ,m − 1} : γ ∈ Zji }. If

k ∈ {0, . . . , d − 1} be such that sk = (u(0), . . . , u(2n)), then since γ ∈ Zji for all j ∈ u(i),

using (1) we have γ ∈ Y k
i (for all i) and hence

θk(ā(γ))AI = sup
z

min
j∈∪2n

t=0u(t)
ψj(ā(γ), z) > i/2n.

Let

δ =
mini,k{θk(ā(γ))AI − i/2n, 1/2n}

2
.

We can pick c(γ) ∈ Aγ such that for every i

(2) min
j∈u(i)

ψj(ā(γ), c(γ)) > θk(a(γ)) − δ ≥ i/2n.

For γ /∈ D define c(γ) arbitrarily and let c = (c(γ))γ∈Ω. For each j ∈ {0, . . . ,m − 1} and
i ∈ {0, . . . , 2n} let

Xj
i = {γ ∈ Ω : ψj(ā(γ), c(γ))Aγ > i/2n}.

Now (1) and (2) imply that Zji ∩D ⊆ Xj
i for all i and j. Therefore

P (Ω)/I �

m−1
∧

j=0

2n
∧

i=0

[Zji ]I ≤ [Xj
i ]I .

Since P (Ω)/I � σℓ([Z
0
0 ]I , . . . , [Z

0
2n ]I , . . . , [Z

m−1
0 ]I , . . . , [Z

m−1
2n ]I), by monotonicity of σℓ we

have

P (Ω)/I � σℓ([X
0
0 ]I , . . . , [X

0
2n ]I , . . . , [X

m−1
0 ]I , . . . , [X

m−1
2n ]I).

Therefore by the induction assumption we have

ψ(π
I
(ā, c))AI > ℓ/2n,

which implies that ϕ(π
I
(ā))AI > ℓ/2n. �
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Remark 3.4. From the proof of Theorem 3.3 at each step of the induction, it is straight-
forward (however lengthy) to check that for each ℓ ∈ {1, . . . , 2n}, the Boolean algebra
formulas σℓ have the property that

TBA � σℓ−1(z
0
0 , . . . , z

m−1
2n ) ↔ σℓ(Ω, z

0
0 , z

0
1 , . . . , z

0
2n−1,Ω, z

1
0 , z

1
1 , . . . , z

1
2n−1,

. . . ,Ω, zm−1
0 , zm−1

1 , . . . , zm−1
2n−1).

Lemma 3.5. Assume ϕ(x̄) is an F0-restricted L-formula which is determined up to 2n

by (σ0, . . . , σ2n ;ψ0, . . . , ψm−1). Assume AI is a reduced product over an ideal I and
a1, . . . , al ∈ AΩ. Then for each ℓ ∈ {1, . . . , 2n}

P (Ω)/I �σℓ([X̃
0
0 ]I , . . . , [X̃

0
2n ]I , . . . , [X̃

m−1
0 ]I , . . . , [X̃

m−1
2n ]I)

=⇒ ϕ(π
I
(ā))AI > (ℓ− 1)/2n,

where Xj
i = {γ ∈ Ω : ψj(ā(γ))Aγ > i/2n}, j ∈ {0, . . . ,m− 1} and i ∈ {0, . . . , 2n}.

Proof. Assume

P (Ω)/I � σℓ([X̃
0
0 ]I , . . . , [X̃

0
2n ]I , . . . , [X̃

m−1
0 ]I , . . . , [X̃

m−1
2n ]I)

and note that X̃j
0 = Ω and X̃j

i ⊆ Xj
i−1 for each j ∈ {0, . . . ,m − 1} and i ∈ {1, . . . , 2n}.

Thus by the monotonicity of σℓ we have

P (Ω)/I � σℓ([Ω]I , [X
0
0 ]I , . . . , [X

0
2n−1]I , . . . , [Ω]I , [X

m−1
0 ]I , . . . , [X

m−1
2n ]I),

which implies that (Remark 3.4)

P (Ω)/I � σℓ−1([X
0
0 ]I , . . . , [X

m−1
2n ]I).

Therefore ϕ(π
I
(ā))AI > (ℓ− 1)/2n.

�

Let us give some easy applications of Theorem 3.3. Assume {Aγ : γ ∈ Ω} and
{Bγ : γ ∈ Ω} are families of metric L-structures indexed by Ω and for an ideal I on Ω let
AI and BI denote the corresponding reduced products over I. Next proposition shows
that if each Aγ ≡ Bγ for γ ∈ Ω then AI and BI are also elementarily equivalent.

Proposition 3.6. Reduced products, direct products and ultraproducts preserve elementary
equivalence.

Proof. We only need to show this for reduced products, since the others are special cases
of reduced products. Let AI and BI be two reduced products over ideal I such that
Aγ ≡ Bγ for every γ ∈ Ω. Let ϕ be an L-sentence. By Proposition 2.4 we can assume ϕ
is an F0-restricted L-sentence. For a given n ∈ N suppose ϕ is determined up to 2−n by
(σ0, . . . , σ2n ;ψ0, . . . , ψm−1). For each i ∈ {0, . . . , 2n} and j ∈ {0, . . . ,m− 1} let

Xj
i = {γ ∈ Ω : ψ

Aγ

j > i/2n},

Y j
i = {γ ∈ Ω : ψ

Bγ

j > i/2n}.

By our assumption Xj
i = Y j

i for all i and j. Therefore

P (Ω)/I � σi([X
0
0 ]I , . . . , [X

m−1
2n ]I) ↔ σi([Y

0
0 ]I , . . . , [Y

m−1
2n ]I),



14 SAEED GHASEMI

and

P (Ω)/I � σi([X̃
0
0 ]I , . . . , [X̃

m−1
2n ]I) ↔ σi([Ỹ

0
0 ]I , . . . , [Ỹ

m−1
2n ]I).

If ϕAI > ℓ/2n by Theorem 3.3 and Definition 3.1 (3) we have

P (Ω)/I � σℓ([X̃
0
0 ]I , . . . , [X̃

m−1
2n ]I)

which is of course

P (Ω)/I � σℓ([Ỹ
0
0 ]I , . . . , [Ỹ

m−1
2n ]I).

Thus Lemma 3.5 implies that ϕBI > (ℓ − 1)/2n. Similarly ϕBI > ℓ/2n implies that
ϕAI > (ℓ − 1)/2n. This means that |ϕAI − ϕBI | ≤ 1/2n. Since n was arbitrary by
approaching n to infinity, we have ϕAI = ϕBI . Therefore AI ≡ BI . �

Theorem 3.7. Assume A is an L-structure and I and J are atomless ideals on Ω, then
the reduced powers of A over I and J are elementarily equivalent.

Proof. Let AI and AJ denote the reduced powers of A (Aγ = A for all γ ∈ Ω) over I and
J , respectively. Let ϕ be an L-sentence and for n ≥ 1 find an F0-restricted L-sentence ϕ̃
which is uniformly within 2−n of ϕ and is determined up to 2−n by (σ0, . . . , σ2n ;ψ0, . . . , ψm−1).
Then

Xj
i = {γ ∈ Ω : ψ

Aγ

j > i/2n}

is clearly either Ω or ∅, therefore [Xj
i ]I = [Xj

i ]J = 0 or 1. Since any two atomless Boolean
algebras are elementarily equivalent, for every i = 0, . . . , 2n

P (Ω)/I � σi([X
0
0 ]I , . . . , [X

m−1
2n ]I) ⇐⇒ P (Ω)/J � σi([X

0
0 ]J , . . . , [X

m−1
2n ]J ).

Thus by Theorem 3.3 and the same argument as the proof of Proposition 3.6 we have
ϕAI = ϕBI . �

4. Isomorphisms of reduced products under the Continuum Hypothesis

In C*-algebra context an important class of corona algebras is the reduced power of
a C*-algebra A over the Fréchet ideal Fin. It is called the asymptotic sequence algebra
of A and denoted by ℓ∞(A)/c0(A). The C*-algebra A can be identified with its diagonal
image in ℓ∞(A)/c0(A). We will also use the same notation ℓ∞(A)/c0(A) for the reduced
power of an arbitrary metric structure A over Fin.

As mentioned in the introduction a result of Farah-Shelah (Theorem 4.3) shows that
asymptotic sequence algebras are countably saturated and therefore if A is separable, as-
suming the Continuum Hypothesis, they have 2ℵ1 automorphisms, hence non-trivial ones.
The last statement follows from a folklore theorem (refer to [15, Corollary 4.1] for a proof
due to Bradd Hart) which states that any κ-saturated metric structure of density char-
acter κ has 2κ automorphisms. Furthermore, κ-saturated structures of the same density
character κ which are elementarily equivalent are isomorphic. Assuming the Continuum
Hypothesis, for a separable A and a nonprincipal ultrafilter U on N, the asymptotic se-
quence algebra ℓ∞(A)/c0(A) and its ultrapower

(

ℓ∞(A)/c0(A)
)

U
have the same density

character ℵ1 (see [1, Theorem 2.7]), and therefore they are isomorphic. We will show that
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this is also the case for the reduced powers of separable metric structures over a large fam-
ily of ideals (Corollary 4.6), e.g., ℓ∞(A)/c0(A) is isomorphic to the asymptotic sequence
algebra of ℓ∞(A)/c0(A), under the Continuum Hypothesis.

We briefly recall a few definitions and facts about ideals on N. The properties of
various definable (Fσ, Fδσ , Borel, analytic, . . . ) ideals and their Boolean algebra quotients
have been vastly studied, see e.g., [7], [24].

For any A ⊆ N×N the vertical section of A at m is the set Am = {n ∈ N : (m,n) ∈ A}.
For two ideals I and J on N, the Fubini product, I ×J , of I and J is the ideal on N×N
defined by

A ∈ I × J ↔ {i : Ai /∈ J } ∈ I.

Definition 4.1. A map µ : P(N) → [0,∞] is a submeasure supported by N if for A,B ⊆ N

µ(∅) = 0

µ(A) ≤ µ(A ∪B) ≤ µ(A) + µ(B).

It is lower semicontinuous if for all A ⊆ N we have

µ(A) = lim
n→∞

µ(A ∩ [1, n]).

Layered ideals. An ideal I is layered if there is f : P (N) → [0,∞] such that

(1) f(A) ≤ f(B) if A ⊆ B,
(2) I = {A : f(A) <∞},
(3) f(A) = ∞ implies f(A) = supB⊆A f(B).

Layered ideals were introduced in [9], where in particular the following is proved.

Lemma 4.2. [9, Proposition 6.6]

(1) Every Fσ ideal is layered.
(2) If J is a layered ideal and I is an arbitrary ideal on N, then J × I is layered.

Proof. By a theorem of K. Mazur ([21]) for every Fσ ideal I there is a lower semicontinuous
submeasure µ such that

I = {A ⊆ N : µ(A) <∞}

and f = µ satisfies all the conditions above. For (2) let fJ be a map witnessing that J is
layered, and define f by

f(A) = fJ ({n : An /∈ I})

for A ⊆ N2. It is not hard to see that f satisfies the conditions (1) - (3) stated above. �

Theorem 4.3 (Farah-Shelah). Every reduced product
∏

nAn/
⊕

I An is countably satu-
rated if I is a layered ideal.

Proof. See [15, Theorem 2.7]. �

Therefore an immediate consequence of Theorem 1.1 and Theorem 4.3 implies the
following corollary.
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Corollary 4.4. Assume the Continuum Hypothesis. If A is a separable metric structure,
I and J are atomless layered ideals, then the reduced powers AI and AJ are isomorphic.

In corollary 4.6 we give an application of this result, but before we need the following
lemma.

Lemma 4.5. Suppose I and J are ideals on N and AI is the reduced power of A over
the ideal I. Then

∏

AI
⊕

J AI

∼=

∏

N2 A
⊕

J×I A
.

Proof. Assume 〈an,m〉 is an element of
∏

N2 A. Define the map ρ :
∏

N2 A/
⊕

J×I A →
∏

(AI)/
⊕

J (AI) by

ρ(π
J×I

(〈am,n〉)) = π
J

(〈bm〉),

where bm = π
I
(〈am,n〉n) for each m ∈ N. In order to see this map is well-defined assume

π
J×I

(〈am,n〉) = 0. If π
J

(〈bm〉) 6= 0, then there is ǫ > 0 such that for every S ∈ J we have

sup
m/∈S

‖bm‖AI
≥ ǫ.

Since π
J×I

(〈an,m〉) = 0, there is X ∈ J × I such that

sup
(m,n)/∈X

‖〈am,n〉)‖A < ǫ/4.

The set S = {m : Xm /∈ I} belongs to J and hence supm/∈S ‖bm‖AI
≥ ǫ. Pick m0 /∈ S

such that ‖bm0‖AI
≥ ǫ/2 and then pick n0 /∈ Xm0 such that ‖am0,n0‖A ≥ ǫ/4, which is a

contradiction. Therefore π
J

(〈bm〉) = 0.

To show the injectivity of ρ assume π
J

(〈bm〉) = 0. Therefore for every ǫ > 0 there is
S ∈ J such that ‖bm‖AI

≤ ǫ for every m ∈ N \ S. So for each m ∈ N \ S there is Xm ∈ I
such that

sup
n/∈Xm

‖a(m,n)‖A ≤ 2ǫ.

The set X = (S × N) ∪ {(m,n) : n ∈ Xm} belongs to the ideal J × I and

sup
(m,n)/∈X

‖am,n‖A ≤ 2ǫ.

Therefore π
J×I

(〈an,m〉) = 0. It is easy to check that ρ is a surjective *-homomorphism. �

The following corollary follows form Lemma 4.2 and Corollary 4.4.

Corollary 4.6. Assume the Continuum Hypothesis. Suppose A = ℓ∞(A)/c0(A) is the
asymptotic sequence algebra of A and I is an atomless layered ideal on N, then

∏

A
⊕

I A

∼= A.



REDUCED PRODUCTS OF METRIC STRUCTURES: A METRIC FEFERMAN-VAUGHT THEOREM 17

5. Non-trivially isomorphic reduced products of matrix algebras.

In this section we use Theorem 3.3 in order to prove the existence of two reduced
products of matrix algebras which are isomorphic under the Continuum Hypothesis, but
not isomorphic in ZFC. Note that in model theory for operator algebras, the ranges of
formulas are bounded subsets of reals possibly different from [0, 1] (see for example [13]).
Nevertheless Definition 3.1 can be easily adjusted for any formula in the language of C*-
algebras L and Theorem 3.3 can be proved similarly.

As mentioned in the introduction, commutative examples of such reduced products
are well-known, for example by a classical result of Parovičenko, under the Continuum
Hypothesis (ℓ∞(N)/c0(N) ∼=)C(βω \ ω) ∼= C(βω2 \ ω2), however under the proper forcing
axiom they are not isomorphic, since there are no trivial isomorphisms between them (see
[7, Chapter 4]). Other examples of non-trivial isomorphisms between (non-commutative)
reduced products can be obtained by tensoring a matrix algebra with these commutative
algebras. Recall that ([3]) for a locally compact Hausdorff topological space X and for any
C*- algebra A, C0(X,A) can be identified with C0(X) ⊗A, under the map (f ⊗ a)(x) =
f(x)a. Let Mn denote the space of all n× n matrices over the field of complex numbers.
Assume A = ℓ∞(M2)/c0(M2) is the asymptotic sequence algebra of M2, we have

A ∼= C(βω \ ω) ⊗M2
∼= M2(C(βω \ ω)),

and Corollary 4.6 implies that

ℓ∞(A)

c0(A)
∼=

∏

N2 M2
⊕

F in×F inM2
≡ A.

Since
∏

N2 M2/
⊕

F in×F inM2
∼= M2(C(βω2 \ω2)), for the same reason as the commutative

case, under the Continuum Hypothesis A and ℓ∞(A)/c0(A) are non-trivially isomorphic.

Recall that an ideal I on N is a P-ideal if for every sequence {An}
∞
n=1 of sets in I

there is a set A∞ ∈ I such that An \A∞ is finite, for all n.

Theorem 5.1. [18, Corollary 1.1] Assume there is a measurable cardinal. It is rela-
tively consistent with ZFC that for every analytic P-ideal I on N, the reduced products
∏

Mk(n)/
⊕

I Mk(n) and
∏

Ml(n)/
⊕

I Ml(n) are isomorphic if and only if there are sets
A,B ∈ I and a bijection ν : N \A→ N \B such that k(ν(n)) = l(n) for all n ∈ N \A.

Moreover if Φ is such an isomorphism, there exists a bounded linear operator u :
∏

n∈NMk(n) →
∏

n∈NMl(n) such that π
I
(u) is a unitary and Φ(π

I
(a)) = π

I
(uau∗).

Such isomorphisms are trivial in the sense of [14] and in the sense of Definition 2.1 if
I = J = Fin.

Lemma 5.2. There is an increasing sequence of natural numbers {k∞(i) : i ∈ N} such
that for every F0-restricted L-sentence ψ

lim
i
ψMk∞(i) = rψ

for some real number rψ.
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Proof. Let ψ1, ψ2, . . . be an enumeration of all F0-restricted L-sentences. Starting with

ψ1, since the range of it is a bounded set, find a sequence {k1(i)} such that ψ
Mk1(i)

1 → rψ1

for some rψ1 . Similarly find a subsequence {k2(i)} of {k1(i)} such that ψ
Mk2(i)

2 → rψ2 for
some rψ2 , and so on. If we let

k∞(i) = ki(i) i ∈ N,

then {k∞(i)} has the required property. �

Proposition 5.3. For any ideal I on N containing all finite sets, if {g(i)} and {h(i)} are
two almost disjoint subsequences of {k∞(i)}, then

∏

iMg(i)
⊕

I Mg(i)
≡

∏

iMh(i)
⊕

I Mh(i)
,

hence if I is a layered P-ideal, they are isomorphic under the Continuum Hypothesis, with
no trivial isomorphisms between them.

This together with Theorem 5.1 implies that these reduced products are not isomor-
phic in ZFC, and therefore Theorem 1.2 follows.

Proof. Let ϕ be an L-sentence and for n ≥ 1 find an F0-restricted L-sentence ϕ̃ which is
uniformly within 2−n of ϕ and it is determined up to 2−n by (σ0, . . . , σ2n ;ψ0, . . . , ψm−1).
Let

Xj
i = {l ∈ N : ψ

Mg(l)

j > i/2n}

and

Y j
i = {l ∈ N : ψ

Mh(l)

j > i/2n}.

Since each ψj is an F0-restricted formula and liml ψ
Mk∞(l)

j = rψj
and I contains all finite

sets, we have [Xj
i ]I = [Y j

i ]I . Hence Theorem 3.3 implies that ϕ̃AI = ϕ̃BI . By uniform
density of F0-restricted L-sentences, the result follows. �

The following theorem shows the abundance of different theories of reduced products
of matrix algebras.

Theorem 5.4. For any ideal I, there are 2ℵ0-many reduced products of matrix algebras
over I which are pairwise non-elementarily equivalent.

Proof. Let E = {p1, p2, . . . } ⊂ N be an increasing enumeration of prime numbers. Assume

{Aξ : ξ < 2ℵ0} is an almost disjoint family of subsets of E. Let Aξ = {nξ1, n
ξ
2, . . . } be

an increasing enumeration of Aξ. For each ξ < 2ℵ0 define a sequence 〈kξ(n)〉 of natural
numbers by

〈kξ(n)〉 = 〈nξ1, n
ξ
1n

ξ
2, n

ξ
1n

ξ
2n

ξ
3, . . . 〉.

We will show that for any distinct ξ, η < 2ℵ0 the reduced products
∏

Mkξ(n)/
⊕

I Mkξ(n)

and
∏

Mkη(n)/
⊕

I Mkη(n) are not elementarily equivalent.
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Fix such ξ and η. Since Aξ andAη are almost disjoint, pick m such that {nξm, n
ξ
m+1, . . . }∩

{nη1, n
η
2, . . . } = ∅. Define a formula ϕ(x̄, ȳ) by

ϕ(x1, . . . , xnξ
m
, y2, . . . , ynξ

m
) =

nξ
m

∑

i=1

(‖x2i − xi‖ + ‖x∗i − xi‖) + ‖
nξ
m

∑

i=1

xi − 1‖

+

nξ
m

∑

i 6=j

‖xixj‖ +

nξ
m

∑

i=2

(‖yiy
∗
i − x1‖ + ‖y∗i yi − xi‖).

For a unital C*-algebra A and tuples ā and v̄ if ϕ(ā, v̄)A = 0 then a1, a2, . . . , anξ
m

are

orthogonal pairwise Murray-von Neumann equivalent projections of A, and therefore M
nξ
m

can be embedded into A. Since for every k ≥ m

nξm | nξ1n
ξ
2 . . . n

ξ
k,

one can easily find a tuple of projections ā and a tuple of partial isometries v̄ in
∏

Mkξ(n)

such that

ϕ(π
I
(ā), π

I
(v̄))

∏
M

kξ(n)
/
⊕

I Mkξ(n) = 0,

but it is not possible to find such projections and partial isometries in
∏

Mkη(n) since

nξm ∤ nη1n
η
2 . . . n

η
k

for every k ∈ N. Hence
∏

Mkξ(n)/
⊕

I Mkξ(n) 6≡
∏

Mkη(n)/
⊕

I Mkη(n). �

6. further remarks and questions

For a locally compact Hausdorff topological space X and a metric structure A the con-
tinuous reduced products Cb(X,A)/C0(X,A) are studied as models for metric structures
in [15], where in particular it has been shown that certain continuous reduced products,
e.g., C([0, 1)∗), are countably saturated. In general Cb(X,A) is a submodel of

∏

t∈X A and
one may hope to use a similar approach as in section 4 in order to prove the following
preservation (of ≡) question.

Question (1). Assume A and B are elementarily equivalent metric structures and X
is a locally compact, non-compact Polish space. Are Cb(X,A)/C0(X,A) and Cb(X,B)/C0(X,B)
elementarily equivalent?

Note that if X is a discrete space (e.g., N) this follows from Proposition 3.6 since
Cb(X,A)/C0(X,A) ∼=

∏

t∈X A/
⊕

A.

In [12] the authors showed the existence of two C*-algebras A and B such that A ≡ B,
where C([0, 1])⊗A 6≡ C([0, 1])⊗B, i.e., tensor products in the category of C*-algebras, do
not preserve elementary equivalence. In general it is not clear “how the theory of C0(X,A)
is related to the theory of A”.

Question (2). Assume A and B are elementarily equivalent C*-algebras. For which
locally compact, Hausdorff spaces, like X, C0(X) ⊗A ≡ C0(X) ⊗ B is true?

We conclude with an interesting observation which might give some insight to the
previous question.



20 SAEED GHASEMI

The Cone and Suspension Algebras. Let A be a C*-algebra. The cone CA =
C0((0, 1],A) and suspension SA = C0((0, 1),A) over A are the most important examples of
contractible and subcontractible C*-algebras ([3]). Since SA ⊂ CA and CA is homotopic
to {0} (contractible) by a well-known result of D. Voiculescu ([25]) both CA and SA are
quasidiagonal C*-algebras. Every quasidiagonal C*-algebra embeds into a reduced product
of full matrix algebras over the Fréchet ideal,

∏

Mk(n)/
⊕

I Mk(n) for some sequence {k(n)}
(such C*-algebras are called MF, see e.g., [4] and [3]). In general it is easy to check that
if a metric structure A embeds into B then the universal theory of A, Th∀(A), contains
the universal theory of B, Th∀(B). Hence for any C*-algebra A

CA →֒
∏

Mk(n)/
⊕

Mk(n)

for some {k(n)}, which implies that

Th∀(CA) ⊇ Th∀(
∏

Mk(n)/
⊕

Mk(n)).
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