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DISTAL AND NON-DISTAL PAIRS

PHILIPP HIERONYMI AND TRAVIS NELL

Abstract. The aim of this note is to determine whether certain non-o-minimal
expansions of o-minimal theories which are known to be NIP, are also distal.
We observe that while tame pairs of o-minimal structures and the real field
with a discrete multiplicative subgroup have distal theories, dense pairs of
o-minimal structures and related examples do not.

1. Introduction

Over the last two decades, NIP (or dependent) theories, first introduced by She-
lah in [17], have attracted substantial interest. Properties of these theories have
been studied in detail, and many examples of such theories have been constructed
(see [19] for a modern overview of the subject). Recently, Simon [18] identified an
important subclass of NIP theories called distal theories. The motivation behind
this new notion is to single out NIP theories that can be considered purely unsta-
ble. O-minimal theories, the classical examples of unstable NIP theories, are distal.
The aim of this note is to determine whether certain non-o-minimal expansions of
o-minimal theories which are known to be NIP, are also distal.

Let A = (A,<, . . . ) be an o-minimal structure expanding an ordered group and
let B ⊆ A. We consider theories of structures of the form (A, B) that satisfy one
of the following conditions:

1. A is the real field and B is a cyclic multiplicative subgroup of R>0 (discrete
subgroup),

2. A expands a real closed field, B is a proper elementary substructure such
that there is a unique way to define a standard part map from A into B
(tame pairs),

3. B is a proper elementary substructure of A dense in A (dense pairs),
4. A is the real field and B is a dense subgroup of the multiplicative group of

R>0 with the Mann property (dense subgroup),
5. B is a dense, definably independent set (independent set).

Here and throughout this paper, dense means dense in the usual order topology
on A. All the above examples are NIP. For dense pairs this is due independently
to Berenstein, Dolich, Onshuus [2], Boxall [3], and Günaydın and Hieronymi [12];
for dense groups this was shown in [3] and [12]; for tame pairs and for the discrete
subgroups NIP was first proven in [12]. For a later, but more general result implying
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2 P. HIERONYMI AND T. NELL

NIP for all these theories, see Chernikov and Simon [4]. Our main results here are
as follows.

Main result. The theories of structures satisfying 1. or 2. are distal. The theories
of structures satisfying 3., 4., or 5. are not distal.

We observe the following interesting phenomenon: All examples of the above NIP
theories that do not define a dense and codense set, are distal. However, all the
examples that define a dense and codense set, are not distal. This not true in
general. The expansion (R, <,Q) of the real line by a predicate for the set of
rationals is dp-minimal and hence distal by [18, Lemma 2.10].

Definitions and notations. Here are precise definitions of the properties under
investigation. Let T be a complete theory in a language L and let M be a monster
model of T . When a sequence (ai)i∈I from Mp is indiscernible over a parameter
set A, we say the sequence is A-indiscernible. We assume that such a parameter
set A ⊆ M always has cardinality smaller than the cardinality of saturation of M.
If we say a sequence is indiscernible, we mean the sequence is ∅-indiscernible.

Definition 1.1. We call an L-formula ϕ(x, y) dependent (in T ) if for every indis-
cernible sequence (ai)i∈ω from Mp and every b ∈ Mq, there is i0 ∈ ω such that
either M |= ϕ(ai, b) for every i > i0 or M |= ¬ϕ(ai, b) for every i > i0. The theory
T is NIP (or is dependent) if every L-formula is dependent in T .

Here and in what follows, I, I1, I2 will always be linearly ordered sets. When we
write I1 + I2, we mean the concatenation of I1 followed by I2. By (c) we denote
the linearly ordered set consisting of a single element c.

Definition 1.2. We say T is distal if whenever A ⊆ M, and (ai)i∈I an indiscernible
sequence from Mp such that

a. I = I1 + (c) + I2, and both I1 and I2 are infinite without endpoints,
b. (ai)i∈I1+I2 is A-indiscernible,

then (ai)i∈I is A-indiscernible.

It is an easy exercise to check that every distal theory as defined above is also NIP.
When T is NIP, the definition of distality given above is one of several equivalent
definitions. Here we will only use this characterization of distality, and we refer the
interested reader to [18, 19] for more information.

For the purposes of this paper it is convenient to introduce the following notion of
distality for a single L-formula.

Definition 1.3. Let ϕ(x1, . . . , xn; y) be a (partitioned) L-forumula, where xi =
(xi,1, . . . , xi,p) for each i = 1, . . . , n. We say ϕ(x1, . . . , xn; y) is distal (in T ) if for
b ∈ Mq and every indiscernible sequence (ai)i∈I from Mp that satisfies

a. I = I1 + (c) + I2, and both I1 and I2 are infinite without endpoints,
b. (ai)i∈I1+I2 is b-indiscernible,

then

M |= ϕ(ai1 , . . . , ain ; b) ↔ ϕ(aj1 , . . . , ajn ; b)

for every i1 < · · · < in and j1 < · · · < jn in I.
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This definition of distality of a single formula depends on the indicated partition of
the free variables. It is immediate that T is distal if and only if every L-formula is
distal in T . Using saturation of M, one can also see easily that in order to check the
distality of a formula, one may assume that I1 and I2 are countable dense linear
orders without endpoints.

We now fix some notation. We will use m,n for natural numbers. For X ⊆ M, we
shall write dclL(X) for the L-definable closure of X in M. When T is an o-minimal
theory, the closure operator dclL is a pregeometry. We will use this fact freely
throughout this paper. For a tuple b = (b1, . . . , bn) ∈ Mn and X ⊆ M, by Xb we
mean X ∪ {b1, . . . bn}, and we say that b is dclL-independent if the set {b1, . . . , bn}
is. For a function f , ar(f) will denote the arity of f .

Acknowledgements. We thank Pierre Simon and the anonymous referee for very
helpful comments. We also thank Danul Gunatilleka, Tim Mercure, Richard Rast,
Douglas Ulrich, and in particular Allen Gehret for reading an earlier version of this
paper and providing us with excellent feedback.

2. The discrete case

In this section we give sufficient conditions for expansions of o-minimal theories
by a function symbol to be distal. We prove in sections following this one that
both tame pairs and the expansions by discrete groups mentioned above satisfy
these conditions. This criterion for distality (and its proof) is closely related to
the criterion for NIP given in [12, Theorem 4.1]. Here we use the same set up.
As in [12], let T be a complete o-minimal theory extending the theory of ordered
abelian groups and let L be its language with distinguished positive element 1.
Such a theory has definable Skolem functions. After extending it by constants and
by definitions, we can assume the theory T admits quantifier elimination and has a
universal axiomatization. In this situation, any substructure of a model of T is an
elementary submodel, and therefore dclL(X) = 〈X〉 for any subset X of any model
A of T ; here 〈X〉 denotes the L-substructure of A generated by X . For B � A
we write B〈X〉 for 〈B ∪X〉. Following the notation from [12] we extend L to L(f)
by adding a new unary function symbol f. We let T (f) be a complete L(f)-theory
extending T . As usual, we take M to be a monster model of T (f).

Theorem 2.1. Suppose that the following conditions hold:

(i) The theory T (f) has quantifier elimination.
(ii) For every (C, f) |= T (f), B � C with f(B) ⊆ B and every c ∈ Ck, there are

l ∈ N and d ∈ f
(

B〈c〉
)l

such that

f
(

B〈c〉
)

⊆ 〈f(B), d〉.

(iii) Let m ≥ n and let g, h be L-terms of arities m+k and n+l respectively, b1 ∈
Mk, b2 ∈ f(M)l, (ai)i∈I be an indiscernible sequence from f(M)n ×Mm−n

such that
a. I = I1 + (c) + I2, where both I1 and I2 are infinite and without end-

points, and (ai)i∈I1+I2 is b1b2-indiscernible,
b. ai = (ai,1, . . . , ai,m) for each i ∈ I, and
c. f(g(ai, b1)) = h(ai,1, . . . , ai,n, b2) for every i ∈ I1 + I2.

Then f(g(ac, b1)) = h(ac,1, . . . , ac,n, b2).



4 P. HIERONYMI AND T. NELL

Then T (f) is distal.

Proof. By (i), it is enough to show that every (partitioned) quantifier-free L(f)-
formula ψ(x1, . . . , xp; y) is distal. We will prove this by induction on the number
e(ψ) of times f occurs in ψ. If e(ψ) = 0, this follows just from the fact that
o-minimal theories are distal. Let e ∈ N>0 be such that every quantifier-free L(f)-
formula ψ′ with e(ψ′) < e (with any partition) is distal. Let ψ(x1, . . . , xp; y) be a
quantifier-free L(f)-formula with e(ψ) = e. We will establish that ψ is distal. Take
an indiscernible sequence (ai)i∈I from Ms and b ∈ Mk such that I = I1 + (c) + I2,
where both I1 and I2 are countable dense linear orders without endpoints, and
(ai)i∈I1+I2 is b-indiscernible. By b-indiscernibility we may assume that

(A) M |= ψ(ai1 , . . . , aip ; b) for all i1 < · · · < ip ∈ I1 + I2.

Let j ∈ {1, . . . , p}, u1 < · · · < uj−1 ∈ I1 and v1 < · · · < vp−j ∈ I2. It suffices to
show that

(2.1) M |= ψ(au1
, . . . , auj−1

, ac, av1 , . . . , avp−j
; b).

Since e > 0, there is an L-term g such that the term f(g(x1, . . . , xp, y)) occurs in ψ.
Now let A be the L(f)-substructure of M generated by {ai : i ∈ I1 + I2}. By (ii),

there is d ∈ f
(

A〈b〉
)l

such that

f(A〈b〉) ⊆ 〈f(A), d〉

(use M ↾ L as C and A ↾ L as B in the statement of (ii)). Take q, r ∈ N, uj < · · · <
uq ∈ I1 and v−r < · · · < v0 in I2 such that

(B) u1 < · · · < uq and v−r < · · · < vp−j ,
(C) d is in the L(f)-substructure generated by au, av, b,

where au = (au1
, . . . , auq

) and av = (av−r
, . . . , avp−j

). By the definition of d, we
have for every i ∈ I1 + I2

f(g(au1
, . . . , auj−1

, ai, av1 , . . . , avp−j
, b)) ∈ 〈f(A), d〉,

in particular when uq < i < v−r. Because (ai)i∈I1+I2 is b-indiscernible, we can
(after possibly increasing q, r and extending au and av) find an L-term h, n ∈ N

and L(f)-terms t1, . . . , tn (all of the form f(si) for an L-term si) such that

(D) for every i ∈ I1 + I2 with uq < i < v−r

f(g(au1
, . . . , auj−1

, ai, av1 , . . . , avp−j
, b)) = h(t1(au, ai, av), . . . , tn(au, ai, av), d).

Let I ′ = (I1)>uq
+ (c) + (I2)<v−r

. For each i ∈ I ′ set

a′i := (t1(au, ai, av), . . . , tn(au, ai, av), ai).

Since (ai)i∈I is indiscernible, so is (a′i)i∈I′ . By (C) and the b-indiscernibility of
(ai)i∈I1+I2 , we get that (a′i)i∈I′ is bd-indiscernible. Applying (iii) now using the
indiscernible sequence (a′i)i∈I′ and (D), we deduce that

f(g(au1
, . . . , auj−1

, ac, av1 , . . . , avp−j
, b)) = h(t1(au, ac, av), . . . , tn(au, ac, av), d).

From this and (D), we get a quantifier-free L(f)-formula ψ′ with e(ψ′) < e such
that for all i ∈ I ′

M |= ψ(au1
, . . . , auj−1

, ai, av1 , . . . , avp−j
; b)

↔ ψ′
(

t1(au, ai, av), . . . , tn(au, ai, av), ai; b, d
)

.

By (A) and the induction hypothesis, (2.1) follows. �
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3. Discrete groups

Let R̃ be an o-minimal expansion of (R, <,+, ·, 0, 1) which is polynomially-
bounded with field of exponents Q. We will establish distality for the theory of
the expansion of R̃ by a predicate for the cyclic multiplicative subgroup 2Z of R>0.
Towards this goal, let T be the theory of R̃ and L be its language. Let λ : R → R

be the function that maps x to max(−∞, x] ∩ 2Z when x > 0, and to 0 otherwise.

It is immediate that the structures (R̃, 2Z) and (R̃, λ) define the same sets. Van

den Dries [7] showed quantifier elimination for the latter structure when R̃ is the
real field. This result was generalized by Miller [16] to expansions of the real field
with field of exponents Q. It is worth pointing out that by [14, Theorem 1.5] the
assumption on the field of exponents can not be dropped.

Let Tdisc be the theory of (R̃, λ) in the language L(λ), the extension of L by a unary

function symbol for λ. In order to show distality of Tdisc, we can assume that R̃

has quantifier elimination and has a universal axiomatization.

Theorem 3.1. Tdisc is distal.

Proof. We need to verify that Tdisc satisfies the assumptions of Theorem 2.1. As-
sumptions (i) and (ii) were already established in [12, Theorem 6.5]. It is left to
prove (iii). Let M be a monster model of Tdisc. We denote λ(M) \ {0} by G.
Note that G is a multiplicative subgroup of M>0. For p ∈ N, the set of p-powers
G[p] := {gp g ∈ G} has finitely many cosets in G, since |2Z : (2Z)[p]| = p. Indeed,
1, 2, . . . , 2p−1 are representatives of the cosets of G[p].
Take an indiscernible sequence (ai)i∈I from Mm, where I = I1 + (c) + I2 and I1
and I2 are infinite without endpoints, such that ai,1, . . . , ai,n ∈ λ(M) for every
i ∈ I and ai = (ai,1, . . . , ai,m). Let (b1, b2) ∈ Mk × λ(M)l such that (ai)i∈I1+I2 is
b1b2-indiscernible. Suppose that there are L-terms g, h such that for i ∈ I1 + I2

λ(g(ai, b1)) = h(ai,1, . . . , ai,n, b2).

It is left to conclude that λ(g(ac, b1)) = h(ac,1, . . . , ac,n, b2). By definition of λ, we
have for every i ∈ I1 + I2

M |= 1 ≤
g(ai, b1)

h(ai,1, . . . , ai,n, b2)
< 2.

Since T is distal, the previous statement holds for all i ∈ I. It is left to show that
h(ac,1, . . . , ac,n, b2) ∈ G. By [12, Corollary 6.4] and b-indiscernibility of (ai)i∈I1+I2 ,
there are t, q1, . . . , qn ∈ Q, r = (r1, . . . , rl) ∈ Ql such that for every i ∈ I1 + I2

h(ai,1, . . . , ai,n, b2) = 2t · aq1i,1 · · · a
qn
i,n · br2,

where br2 stands for b
r1
2,1 · · · b

rl
2,l. By distality of T , this equation holds for all i ∈ I. It

is left to show that 2t·aq1c,1 · · ·a
qn
c,n·b

r
2 ∈ G. Let p ∈ N be such that p·t, p·q1, . . . , p·qn ∈

Z and p · r ∈ Zl. It is enough to prove 2p·t · ap·q1c,1 · · · ap·qnc,n ∈ bp·r2 · G[p]. Let

s ∈ {0, . . . , p− 1} be such that bp·r2 is in 2s ·G[p]. Then for every i ∈ I,

(3.1) 2p·t · ap·q1i,1 · · · ap·qni,n ∈ bp·r2 ·G[p] iff 2p·t · ap·q1i,1 · · · ap·qni,n ∈ 2s ·G[p].

Since the second statement in (3.1) holds for i ∈ I1+ I2 and (ai)i∈I is indiscernible,
it holds for all i ∈ I and in particular for i = c. �
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4. Tame pairs

For this section, let T be a complete o-minimal theory expanding the theory of
real closed fields in a language L. In [10] van den Dries and Lewenberg introduced
the following notion of tame pairs of o-minimal structures.

Definition 4.1. A pair (A,B) of models of T is called a tame pair if B � A, A 6= B
and for every a ∈ A which is in the convex hull of B, there is a unique st(a) ∈ B
such that |a− st(a)| < b for all b ∈ B>0.

The standard part map st can be extended to all of A by setting st(a) = 0 for all a
not in the convex hull of B. Instead of considering (A,B) we will consider (A, st).
It is easy to check that these two structures are interdefinable. Let Tt be the L(st)-
theory of all structures of the form (A, st). After extending T by definitions, we can
assume that T has quantifier elimination and is universally axiomatizable. By [10,
Theorem 5.9] and [10, Corollary 5.10], Tt is complete and has quantifier elimination.

We will also need to consider the theory of convex pairs. A T -convex subring of a
model A of T is a convex subring that is closed under all continuous unary L-∅-
definable functions. A convex pair is a pair (A, V ), where A |= T , V is a T -convex
subring of A, and V 6= A. We denote the theory of all such pairs by Tc. By [10,
Corollary 3.14], this theory is weakly o-minimal. By [5, Theorem 4.1], every weakly
o-minimal theory is dp-minimal and hence distal by [18, Lemma 2.10]. Therefore
Tc is distal.

For every model (A, st) of Tt, the pair (A, V ) is a model of Tc, where V is the
convex closure of st(A). It follows immediately that for every b ∈ st(A) and a ∈ A

st(a) = b ⇐⇒ a = b or ((a− b)−1 /∈ V ) or (b = 0 and a /∈ V ).

We will not use the explicit description on the right, but we will use the fact that
this gives us an L(U)-formula ψ such that for all a ∈ A and b ∈ st(A)

(4.1) (A, st) |= st(a) = b iff (A, V ) |= ψ(a, b).

Theorem 4.2. Tt is distal.

Proof. We will show that Tt satisfies the assumptions of Theorem 2.1. Assumptions
(i) and (ii) were already established for [12, Theorem 5.2]. We only need to prove
(iii). Let M be a monster model of Tt, and V the convex closure of st(M). Let
(ai)i∈I be an indiscernible sequence from Mm, where I = I1 + (c) + I2 and I1
and I2 are infinite with no endpoints, such that ai,1, . . . , ai,n ∈ st(M) for i ∈ I
and ai = (ai,1, . . . , ai,m). Let (b1, b2) ∈ Mk × st(M)l such that (ai)i∈I1+I2 is b1b2-
indiscernible. Suppose that there are L-terms g, h such that for i ∈ I1 + I2

st(g(ai, b1)) = h(ai,1, . . . , ai,n, b2).

We need to show that st(g(ac, b1)) = h(ac,1, . . . , ac,n, b2). Since st(M) is a model
of T , we have h(ai,1, . . . , ai,n, b2) ∈ st(M) for every i ∈ I. By (4.1), there is an
L(U)-formula ψ such that for i ∈ I

(M, st) |= st(g(ai, b1)) = h(ai,1, . . . , ai,n, b2) ⇐⇒ (M, V ) |= ψ(ai, b).

Since Tc is distal, M |= ψ(ac, b). �
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5. Dense Pairs

In this section we present sufficient conditions for non-distality of expansions of
o-minimal theories by a single unary predicate, and give several examples of NIP
theories satisfying these conditions. Let T be an o-minimal theory in a language L
expanding that of ordered abelian groups, U a unary relation symbol not appearing
in L, and TU an L(U) = L ∪ {U}-theory expanding T . Let M be a monster model
of TU . We denote the interpretation of U in M by U(M). We say that an L(U)-
definable subsetX ofM is small if there is no L-definable (possibly with parameters)
function f : Mm → M such that f(Xm) contains an open interval in M. When we
say a set is dense in M, we mean dense with respect to the usual order topology on
M.

Theorem 5.1. Suppose the following conditions hold:

(1) U(M) is small and dense in M.
(2) For n ∈ N, C ⊆ M, and a, b ∈ Mn both dclL-independent over C ∪ U(M),

tpL(a|C) = tpL(b|C) ⇒ tpL(U)(a|C) = tpL(U)(b|C).

Then TU is not distal.

Proof. Let b ∈ M be dclL-independent over U(M). The existence of such a b
follows immediately from smallness of U(M) and saturation of M. Let I1, I2 be
two countable linear orders without endpoints. Consider a set Φ containing L(U)-
b-formulas in the variables (xi)i∈I1+(c)+I2 expressing the following statements:

(i) {xi : i ∈ I1 + I2} is dclL-independent over U(M)b,
(ii) f(xi1 , . . . , xin , b) < xin+1

, for each i1 < · · · < in+1 ∈ I1 + (c) + I2 and
L-∅-definable function f ,

(iii) there is u ∈ U(M) such that xc = u+ b.

We will show that Φ is realized in M. By saturation of M it is enough to show
that every finite subset Φ0 of Φ is realized. Let F = {f1, . . . , fm} be the L-
definable functions appearing in formulas of the form (ii) in Φ0. Let i1 < · · · < in ∈
I1+(c)+ I2 be the indices of variables occurring in Φ0. We may assume c is among
these, and by adding dummy variables that each fj is of the form f(xi1 , . . . xik , b)
for some k < n. We now recursively choose (ai1 , . . . , ain) realizing the type Φ0.
Suppose we have defined ai1 , . . . , aik−1

. If k = 1, we will have defined no previous
ai, and the functions below will be of arity 1 only mentioning b. If ik = c, then by
denseness of U(M) we may choose ac in

(

b+ U
)

∩
(

max
f∈F ,ar(f)=k

f(ai1 , . . . , aik−1
, b),∞

)

.

If ik 6= c, then by smallness of U(M) we may choose aik in
(

max
f∈F ,ar(f)=k

f(ai1 , . . . , aik−1
, b),∞

)

\ dclL(U(M)bai1 · · · aik−1
).

As (ai1 , . . . , ain) realizes Φ0, Φ is finitely satisfiable.
By saturation, we can pick a realization (ai)i∈I1+(c)+I2 of Φ in M. This sequence
can be thought of as a very rapidly growing sequence; each element will realize
the type at +∞ over the L-definable closure of everything before it. Therefore the
sequence is a Morley sequence for the L-type of +∞ over dclL(b), and hence is
L-b-indiscernible. As dclL is a pregeometry and b is dclL-independent over U(M),
(i) and (iii) together imply that the full sequence is dclL-independent over U(M).
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Thus by (2), the L-indiscernibility of these sequences lifts to L(U)-indiscernibility;
that is, (ai)i∈I1+I2 is L(U)-indiscernible over b, and the full sequence is L(U)-
indiscernible. However, since ac = b + u for some u ∈ U(M), the full sequence is
not L(U)-indiscernible over b. Hence TU is not distal. �

Optimality. Note that the assumption that T expands the theory of ordered
abelian groups can not be dropped. As pointed out in the introduction the theory
of the structure (R, <,Q) is distal. However, it is not hard to check that the theory
of (R, <,Q) satisfies the other assumptions of Theorem 5.1.

Dense pairs. Let A,B be two models of an o-minimal theory T expanding the
theory of ordered abelian groups such that B � A, B 6= A, and B is dense in A.
We call (A,B) a dense pair of models of T . Let T d be the theory of dense pairs
in the language L(U). By van den Dries [8] T d is complete. Moreover, for every
dense pair (A,B), the underlying set of B is small by [8, Lemma 4.1]. While not
stated explicitly, it follows almost immediately from [8, Claim on p.67] that T d also
satisfies (2) of Theorem 5.1 (see [11, Proposition 2.3] for detailed proof). Therefore
T d is not distal.

Dense groups. Let R be the real field (R, <,+, ·, 0, 1). Let Γ be a dense subgroup
of R>0 that has the Mann property, that is for every a1, . . . , an ∈ Q×, there are
finitely many (γ1, . . . , γn) ∈ Γn such that a1γ1 + · · ·+ anγn = 1 and

∑

i∈I aiγi 6= 0
for every proper nonempty subset I of {1, . . . , n}. Every multiplicative subgroup of
finite rank in R>0 has the Mann property. Let L be the language of R expanded by
a constant symbol for each γ ∈ Γ. Let TΓ be the L(U)-theory of (R, (γ)γ∈Γ,Γ) in
this language. This structure was studied in detail by van den Dries and Günaydın
[9]. A proof that every model satisfies (1) of Theorem 5.1 is in [13, Proposition
3.5]. Similarly to dense pairs, it is not mentioned in [9] that these theories satisfy
condition (2) of Theorem 5.1. However, it can easily be deduced from the proof of
[8, Theorem 7.1] (see also [11, p. 6]).
The argument can easily be extended to related structures (see [1, 13, 15]).

Independent sets. We finish with another class of structures that were studied
recently by Dolich, Miller and Steinhorn [6]. Let T be an o-minimal theory in a
language L expanding that of ordered abelian groups. Let T indep be an L(U)-theory
extending T by axioms stating that U is dense and dclL-independent. By [6], T indep

is complete. Every model of T indep satisfies (1) of Theorem 5.1 by [6, 2.1]. By [6,
2.12], condition (2) of that theorem also holds for T indep.
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