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ON THE STRENGTH OF TWO RECURRENCE

THEOREMS

ADAM R. DAY

Abstract. This paper uses the framework of reverse mathematics to
investigate the strength of two recurrence theorems of topological dy-
namics. It establishes that one of these theorems, the existence of an
almost periodic point, lies strictly between WKL and ACA (working over
RCA0). This is the first example of a theorem with this property. It also
shows the existence of an almost periodic point is conservative over
RCA0 for Π1

1 sentences. These results establish the existence of a new
upwards-closed subclass of the PA degrees.

1. Introduction

Dynamical systems are studied by different branches of mathematics in many
different forms. In the simplest setting, a dynamical system (X,T ) is com-
prised of a set X and a transformation T : X → X. By placing different
requirements on X and T , structure can be added to the system that will
influence its behavior.

Central to the analysis of a dynamical system is the analysis of the orbits
of points in the system. Given a point x ∈ X, the orbit of x is the sequence
x, T (x), T 2(x), . . . . If our dynamical system has certain global properties,
then this guarantees the existence of points with certain orbits.

Theorem 1 (Birkhoff’s recurrence theorem). Let X be a compact topological
space and T : X → X a continuous transformation. Then there exists x ∈ X

and a sequence n1, n2, . . ., such that

lim
i

T ni(x) → x.

Such an x is called a recurrent point of the system (X,T ). Comparable
results hold if we place a probability measure on the space X and require T
be a measure-preserving transformation.

The standard proof of Birkhoff’s recurrence theorem, shows the existence
of a point x with the following stronger property (see for example [5, The-
orem 2.3.4]). For every neighborhood N of x, there is a bound b, such that
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for all n, there is a k < b with T n+k(X) ∈ N . Such a point x is called an
almost periodic point of the system (X,T ).

The objective of this paper is to analyze the reverse mathematical strength
of the existence of recurrent points and almost periodic points. The motiva-
tion for this work lies not just in the intrinsic interest of Birkhoff’s recurrence
theorem but in the fact that this is the simplest of a family of recurrence
theorems, that have widespread applications. In this respect, Birkhoff’s re-
currence theorem is similar to Ramsey’s theorem and the reverse mathemat-
ical study of Ramsey’s theorem has been remarkable fruitful. Two examples
will illustrate the importance of recurrence theorems. Firstly, Furstenberg’s
multiple recurrence theorem, a theorem of measure-preserving systems can
be used to prove Szemeredi’s theorem. A second example, which has been
studied from a reverse mathematical perspective, is the Auslander-Ellis the-
orem. This theorem states that if X is compact metric space, with metric d,
and T : X → X is a continuous transformation, then for any point x, there
exists a point y such that:

(i) y is an almost periodic point of the system.
(ii) (∀ǫ)(∃n)(d(T n(x), T n(y)) < ǫ).

Blass, Hirst and Simpson have shown that ACA+
0 proves the Auslander-Ellis

theorem [2]. It is an open question as to whether or not it follows from ACA0

[3]. The Auslander-Ellis theorem can be used to prove Hindman’s theorem.
Hindman’s theorem states that if the integers are colored with finitely many
colors, then there exists an infinite set S such that {n : n is a finite sum
of elements of S} is homogenous. Blass, Hirst and Simpson also showed
that the strength of Hindman’s Theorem lies between ACA

+
0 and ACA0 [2].

Recent work, particular of Towsner, has shed further light on the difficult
question of calibrating the strength of Hindman’s theorem [1, 6, 7, 8].

In this paper we will investigate topological dynamical systems whereX is
a closed subset of Cantor space and T is a continuous transformation. This
is a very important class of topological dynamical systems because subsets
of natural numbers can be coded as elements of Cantor space. The proof of
Hindman’s theorem via the Auslander-Ellis theorem uses such systems. In
the next section we will develop and formalize two principles.

(i) RP: Every topological dynamical system on Cantor space contains
a recurrent point.

(ii) AP: Every topological dynamical system on Cantor space contains
an almost periodic point.

In Section 3, we will show that over RCA0, RP is equivalent to WKL. This
is perhaps a little surprising because the set of recurrent points of a system
is not closed. The principal AP is more unusual. In Section 4, we analyze
the standard proof of the existence of an almost periodic point and show
this requires ACA0 to carry out. However, from the perspective of reverse
mathematics, this proof is not optimal. In fact, over RCA0, the principle AP
lies strictly between WKL and ACA. This is the first natural example of a
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principle with this property. The separation between AP and WKL is estab-
lished in Section 5, and the separation between ACA and AP is established
in Section 6.

Harrington proved that WKL0 is conservative for Π
1
1 sentences over RCA0.

In Section 7, we show that RCA0 + AP also has this property.
The PA degrees are those Turing degrees that contain a complete exten-

sion of Peano Arithmetic. This is a very well-studied class of upwards-closed
Turing degrees. From a computability-theoretic perspective, the proof that
the principle AP lies strictly between WKL and ACA establishes the exis-
tence of an interesting upwards-closed strict subclass of the PA degrees. In
Section 8, we conclude with a number of questions about these PA degrees.

2. Topological Dynamics in RCA0

A standard definition of a topological dynamical system on Cantor space is
the following.

Definition 2. A pair (C,F ) is a topological dynamical system on 2ω if C is
a non-empty closed subset of 2ω, and F is a continuous transformation of
2ω such that for all X ∈ C, F (X) ∈ C.

Note that this definition requires F to be defined on all elements of 2ω

rather than just those elements of C. This is not a limitation because of
the Tietze extension theorem which can be proved in RCA0 [4, Theorem
II.7.5]. Sometimes F ↾C is required to be a homeomorphism of C but we
will not consider that possibility here. From now on, we will often refer to
a topological dynamical system as simply a system.

We need to consider how we encode a system inside a model of 2nd order
arithmetic. We need to be careful with our choice of encoding to ensure
that it behaves sensibly for models of RCA0. We will follow the standard
approach of encoding a closed set as the set of paths through a tree. The
approach we take for encoding a continuous transformation is also standard.

Definition 3. A function f : 2<ω → 2<ω encodes a continuous transforma-
tion of 2ω if

(i) f is total.
(ii) f is order preserving.
(iii) (∀l)(∃m)(∀σ ∈ {0, 1}m)|f(σ)| ≥ l.

Given such an f , we will denote by F the transformation of Cantor space
encoded. In particular, if X ∈ 2ω, we will denote by F (X),

lim
l∈ω

f(X ↾l).

It could be objected that the third condition should really be stated as for all
X and l, there exists an m such that |f(X ↾m)| > l, and the equivalence of
this statement with the third condition is a consequence of the compactness
of Cantor space. However, because we are working over RCA0 we will use the
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stronger definition above. Let λ denote the empty string. For convenience,
we will assume that any such f has the additional property that for any
string σ 6= λ, |f(σ)| < |σ|. This does not result in any loss of generality
because given any f encoding a continuous transformation of 2ω, we can

uniformly find a f̂ with this property that encodes the same continuous
transformation of 2ω as f .

Definition 4 (RCA0). A pair (C, f) encodes a system if

(i) The set C is a tree.
(ii) The set f encodes a continuous transformation of 2ω.
(iii) [C] 6= ∅.
(iv) For all σ ∈ C we have that f(σ) ∈ C.

The final condition ensures that if (C, f) encodes a system inside a model
M then if we extend M by adding additional reals, then (C, f) still encodes
a system inside the extended model. This rules out pathological cases. For
example, f could map paths in [C] that are not in the model outside of [C].
Then if we extend our model by adding such a path (C, f) would no longer
be a system.

It is impossible to discuss recurrence points and almost periodic points
without discussing orbits. Given a system (C, f) and X ∈ C we need to
show that even with the limited induction available in RCA0, the orbit of X
is well-defined.

Given a function f encoding a continuous transformation of 2ω, define
f : 2<ω × ω → 2<ω by

f(σ, k) =

{
σ k = 0

f(f(σ, k − 1)) k > 0.

When convenient, we will write fk(σ) for f(σ, k). Observe that f1 = f .
We define F k(X) = liml∈ω f

k(X ↾l). The following lemma shows that given
Definitions 3 and 4, we can talk sensibly about orbits of a point in RCA0.

Lemma 5 (RCA0). If (C, f) is a system then for all k

(i) fk encodes a continuous transformation of Cantor space.
(ii) (C, fk) is a system.
(iii) For all X ∈ 2ω, F (F k(X)) = F k+1(X).

Proof. (i). The function fk is total because it has been defined by primitive
recursion from f . It is order preserving by Π1 induction on k for the formula

(∀k)(∀σ, τ, ρ, π)((σ � τ ∧ ρ = fk(σ) ∧ π = fk(τ)) → ρ � π).

The third condition is established by fixing l, then inducting on k for the
formula

(∀k)(∃m)(∀σ ∈ {0, 1}m)(∀τ ∈ {0, 1}<l)(fk(σ) 6= τ).

This formula holds trivially for the case k = 0 (take m > l). For the case
k = n + 1, let mn witness the above formula for k = n. Now let m be
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such that for all σ ∈ {0, 1}m, |f(σ)| ≥ mn. The existence of m comes from
our assumption on f . Note that if σ ∈ {0, 1}m, then making use of the
associative law (provable in RCA0) we have

fk+1(σ) = fk(f(σ)) = fk(ρ)

where |ρ| ≥ mn and so |fk(ρ)| ≥ l and in particular fk(ρ) cannot equal any
string of length strictly less that l.

(ii). The first three conditions for (C, fk) to be are system are met
trivially. Fix σ ∈ C. We will show that for all k, fk(σ) ∈ C. The set
{n : fn(σ) 6∈ C} is computable. Hence, if it is non-empty, it has a least
element k. As σ ∈ C, k cannot be 0. Let τ = fk−1(σ) so τ ∈ C. But
fk(σ) = f(fk−1(σ)) = f(τ) ∈ C, a contradiction.

(iii). Fix a k and X ∈ C. For any l, there exists some ml such that
F k(X) ↾l� fk(X ↾ml

). Hence

F (F k(X)) = lim
l
f(F k(X) ↾l) � lim

l
f(fk(X ↾ml

))

= lim
l
fk+1(X ↾ml

) = F k+1(X). �

The orbit of X under F is the sequence
〈
F k(X) : k ∈ ω

〉
. Note that this

is uniform and hence ⊕k∈ωF
k(X) exists by recursive comprehension in any

model of RCA0 that includes X and f .

3. Recurrent Points

We call X a recurrent point of a topological dynamical system (C, f), if
X ∈ [C] and

(∀n, c)(∃k)(Fn+k(X) � X ↾c).

We call X an almost periodic point of a topological dynamical system
(C, f), if X ∈ [C] and

(∀c)(∃b)(∀n)(∃k < b)(Fn+k(X) � X ↾c).

This leads to two principles. First RP is the principle that every topo-
logical dynamical system on 2ω contains a recurrent point. The second AP

is the principle that every topological dynamical system on 2ω contains an
almost periodic point. Over RCA0 we have the obvious implication that AP
implies RP because an almost periodic point is a recurrent point.

The following theorem would be trivial if condition (iii) in Definition 4,
was replaced by requiring the tree C to be infinite. Given such a C, we
could simply take (C, f) be our system where f is the identity map. Any
recurrent point of this system would have to be an element of [C] hence
proving WKL.

Theorem 6. Over RCA0, RP implies WKL.
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Proof. Let T be an infinite computable tree on 2<ω. We will regard T as
computable tree in 3<ω (i.e. a computable subtree of 3<ω such that no node
of T contains a 2). We will define a system on 3ω such that any recurrent
point of the system is a path on T . As 3ω is computably homeomorphic to
2ω, this is sufficient to prove the theorem. The idea behind the following
definition of f is that if X ∈ 3ω is a path on T , then F (X) = X. If X is
not a path on T , then the orbit of X moves in increasing lexicographical
order searching for a path on T , looping around if it extends 2. The extra
branching of 3ω allows us to move the orbit of F (X) if X is not a path on T .

Define the following function f : 3<ω → 3<ω. First f(λ) = λ. Second if
|σ| > 0, let n = |σ| − 1. If σ ∈ T , let f(σ) = σ ↾n. If σ 6∈ T , then let π be
the shortest initial segment of σ such that π 6∈ T . Because T is a subtree of
2<ω, if π contains a 2, then π must end with 2. Define

f(σ) =





ρ10ω ↾n π = ρ0 ∨ π = ρ02

ρ20ω ↾n π = ρ1 ∨ π = ρ12

0n π = 2.

It is not difficult to verify that (3ω, f) is a system. Let ≤lex be the
lexicographical ordering on finite strings. (Recall that under this ordering
σ ≤lex τ if σ � τ or σ(i) < τ(i) for the least i where these strings differ.)

Claim. Let n > 0. Let σ0, σ1, . . . , σn be a finite sequence of strings such
that σ0 ≻ σn, for all i < n, f(σi) = σi+1 and σn 6∈ T . Then for some k < n,
2 � σk.

Proof. Consider S = {i ≤ n : σi ≤lex σn ∧ σi 6∈ T}. The set S is not empty
as it contains n. As S is computable, it has a least element l. Now l 6= 0
as σ0 is a strict extension of σn. Let k = l + 1. First σk 6∈ T as otherwise
f(σk) = σl ∈ T . By minimality of l we have that σk 6≤lex σn and in particular
σk 6≤lex σl. Now because σk 6∈ T , the definition of f implies that σk � 2. �

Claim. If |τ | > |σ|, σ <lex τ , and τ ∈ T then f(σ) <lex τ .

Proof. If σ ≺ τ , then σ ∈ T and so f(σ) is an initial segment of σ and the
result holds. Otherwise let ξ be the least common initial segment of σ and τ .
So ξ0 � σ. Because ξ is on the tree, either f(σ) extends ξ0 or f(σ) = ξ10j

for some j. However as |τ | > |σ| ≥ |f(σ)| this implies that in either case
f(σ) <lex τ . �

Let R be a recurrent point for this system. Assume R 6∈ [T ]. Take σ ≺ R

such that σ 6∈ T . As R is a recurrent point, there exists a sequence σ0, . . . , σn
such that σn = σ ≺ σ0 ≺ R and f(σi) = σi+1. By the 1st claim for some
k < n, 2 � σk.

Let τ ∈ T such that for all i ≤ n, |τ | > |σi|. Now σk+1 is a string of
all 0’s, and |σk+1| < |τ |. Hence σk+1 <lex τ . It follows that σn <lex τ by
inducting over the 2nd claim. Now as σ0 � σn and σn 6� τ because σn 6∈ T ,
this implies that σ0 <lex τ .
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But this is impossible. If σ0 <lex τ then again by inducting over the 2nd

claim, for all i, σi <lex τ and so σi 6� 2. This contracts the fact that σk � 2.
Hence R ∈ [T ]. �

Theorem 7. Over RCA0, WKL implies RP.

Proof. Let (C, f) be a system. We can define the set of recurrent points of
this system, R, as follows.

R = {X ∈ [C] : (∀c)(∃n, l > c)(fn(X ↾l) � X ↾c)}.

This shows that R is Π0
2 in C⊕f . In order to prove that WKL implies RP, it

is sufficient to show there is a non-empty Π0
1(C⊕f) class contained in R. We

will construct a computable sequence of finite sets of strings 〈Ui : i ∈ ω〉 and
let

⋂
i[Ui]∩ [C] be our Π0

1(C ⊕ f) class. We will ensure that if X ∈ [Ui]∩C,
then for some n, l > i, fn(X ↾l) � X ↾i, hence if X ∈

⋂
i[Ui] ∩ [C], then

X ∈ R and so X is a recurrent point of (C, f).
The difficulty with defining Ui, is that it is possible that [Ui] ∩ [C] might

be empty. To avoid this occuring, we will ensure that for all i, there is an si
such that,

⋃
n<si

F−n([Ui]) ⊇ [C]. This means that no [Ui] can be removed
entirely from [C] because otherwise [C] would either be empty or, for some
X ∈ [C], there would be some n such that Fn(X) 6∈ [C]. In either case
(C, f) would not be a system.

Let U0 = V0 = {λ} and si = 0. We will assume that we are given Ui and
Vi, both finite sets of strings and si a number such that:

(i) (∀τ ∈ Ui)(∃n)(i ≤ n ≤ si ∧ fn(τ) � τ ↾i).
(ii) (∀σ ∈ Vi)(∃n ≤ si)(∃τ ∈ Ui)(f

n(σ) � τ).
(iii) Vi is an open cover of C.

These conditions hold trivially for the case i = 0. We inductively define
Ui+1[s] and Vi+1[s] as follows.

Ui+1[s] = {σ ∈ 2<ω : ((∃τ ∈ Ui)(σ ≻ τ))∧

(∃n)((i ≤ n ≤ s) ∧ (fn(σ) � σ ↾i))}.

Vi+1[s] = {σ ∈ 2<ω : (∃n ≤ s)(∃τ ∈ Ui+1[s])(f
n(σ) � τ)}.

These definitions imply that:

(i) [Ui+1[s]] ⊆ [Ui].
(ii) [Ui+1[s]] ⊆ [Ui+1[s+ 1]].
(iii) [Vi+1[s]] ⊆ [Vi+1[s+ 1]].

Claim.
⋃

s[Vi+1[s]] ⊇ C.

Proof. By applying bounding, there is some h > max{|τ | : τ ∈ Vi} such that

(∀σ ∈ {0, 1}h)(∀m ≤ si)(|f
m(σ)| ≥ i+ 1).

Take X ∈ C. By the pigeon-hole principle there is some σ ∈ {0, 1}h and
j, k ∈ ω such that F j(X) ∈ [σ] and F j+k(X) ∈ [σ]. We can also ensure
that k ≥ i+ 1. Now applying WKL, we know that σ extends some element



8 ADAM R. DAY

of Vi. From the definition of Vi, this means that for some m ≤ si, f
m(σ)

extends some τ ∈ Ui. Let Y = F j+m(X) so Y ≻ fm(σ) � τ . Further
F k(Y ) = F j+k+m(X) ≻ fm(σ) � τ as well. Finally, Y ↾i+1= F k(Y ) ↾i+1

because |fm(σ)| ≥ i + 1. Take l such that fk(Y ↾l) � fm(σ). Thus Y ↾l∈
Ui+1[max{k, l}] and X ∈ [Vi+1[s]] where s > max{j+m,k, l} is large enough
such that f j+m(X ↾s) � Y ↾l. �

Hence by compactness, there is some least si+1 such any string of length
si+1 in C extends some element of Vi+1[si+1]. We define Ui+1 = Ui+1[si+1]
and Vi+1 = Vi+1[si+1]. Note that [Ui+1] is a closed set in Cantor Space.
Fix i. Take any X ∈ [C]. We know that X ∈ [Vi] and hence there exists
some n ≤ si such that Fn(X) ∈ [Ui]. By Lemma 5, Fn(X) ∈ [C]. Hence
[Ui] ∩ [C] 6= ∅. Thus 〈[Ui] ∩ [C] : i ∈ ω〉 is a nested sequence of non-empty
closed sets and so by WKL contains an element R, which is a recurrent point
of (C, f). �

Note that the proof given uses the fact that the sets [Ui] are clopen. The
proof can be extended to certain spaces which do not have a basis of clopen
sets, such as the unit interval, by adding the condition that for any open set
E ∈ Ui+1, we have that the closure of E is contained in [Ui]. To find our
recurrent point, we take a point R ∈

⋂
i(cl[Ui] ∩ [C]). The same argument

shows that this set is not empty (instead of adding Y ↾l to Ui+1 find an ǫ

such that cl[B(Y ; ǫ)] ⊂ [Ui] and add this ball to Ui+1). However, R must
be an interior point of each set cl[Ui] and so as R ∈

⋂
i[Ui], R is a recurrent

point.

4. Minimal Systems

We now investigate the principle AP. The standard proof that every topo-
logical dynamical system has an almost periodic point uses the existence of
minimal subsystems. We call a system (C, f) minimal, if for any system
(D, f) such that [D] ⊆ [C], we have that [D] = [C].

Let (C, f) be a system. By Zorn’s lemma, (C, f) contains a minimal
subsystem (D, f). Now by the following standard lemma, which we can
formalize in WKL0, every point of D is an almost periodic point of (D, f)
and hence an almost periodic point of (C, f).

Lemma 8. WKL0 proves that any path in a minimal system is almost peri-
odic.

Proof. Let (D, f) be a minimal system and take any X ∈ [D]. Assume X is
not an almost periodic point. If so there exists some τ ≺ X such that

(∀b)(∃n)(∀k ≤ b)Fn+k(X) 6≻ τ. (4.1)

Define E = {σ ∈ D : (∀n ≤ |σ|)(fn(σ) 6� τ)}. As X 6∈ [E], we have that
[E] ( [D]. Our assumption that |f(σ)| < |σ|, implies that for all σ ∈ E,
f(σ) ∈ E. Now (E, f) cannot be a system because this would contradict
the minimality of (D, f). This means that [E] = ∅. Applying WKL, there
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exists a b, such that E contains no string of length b. Hence for all Z ∈ [D]
there is some k < b with F k(Z) ≻ τ . This contradicts (4.1) and hence our
assumption that X is not an almost periodic point is incorrect. �

While we appealed to Zorn’s lemma to construct a minimal subsystem,
this is not necessary for systems in Cantor space. The reason is Cantor space
contains a computable basis of open sets. This allows us to show that ACA0

implies that any system contains a minimal subsystem. To find a minimal
subsystem simply enumerate the basis and ask in order can any element be
removed. In particular, let {σi}i∈ω enumerate the finite strings. Given a
system (C, f) let C0 = C. If (Ci, f) has been defined, let Ci+1 be equal to
{τ ∈ Ci : (∀n ≤ |τ |)(fn(τ) 6� σi)} if the later set is not finite. Otherwise let
Ci+1 = Ci. It is not difficult to verify that (

⋂
iCi, f) is a minimal subsystem

of (C, f). This gives us the following result.

Proposition 9. ACA0 proves that any system contains an almost periodic
point.

Theorem 10. Over WKL0, ACA is equivalent to statement that every system
contains a minimal subsystem.

Proof. The argument proceeding Proposition 9 shows that ACA0 proves that
every system contains a minimal subsystem. To show the other direction we
will work over WKL0 as our base system. In order to simplify the exposition
of this proof, we will work with Π0

1 classes of reals in Cantor space as opposed
to trees in 2<ω.

First we will show how to encode a single bit of ∅′ into a system. Let
f be the left-shift. Fix n, we will define a Π0

1 class C such that given any
minimal subsystem (D, f) of (C, f) the set [01] ∩D is empty if and only if
n 6∈ ∅′. In particular, if n 6∈ ∅′, then

C = {0i1ω : i ∈ ω} ∪ {1i0ω : i ∈ ω}.

Observe that in this case, the only minimal subsystems of (C, f) will be
({0ω}, f) and ({1ω}, f).

Let Si = {Fn((0i1i)ω) : n ∈ ω}. Each Si is a minimal system with 2 · i
elements. For example,

S2 = {(0011)ω , 011(0011)ω , 11(0011)ω , 1(0011)ω}.

If n ∈ ∅′, then we will define C to be equal to Si for some i compatible
with our definition of C at the stage n enters ∅′. Formally, let t be ∞ if
n 6∈ ∅′ and let t be the least s such that that n ∈ ∅′[s] otherwise. Let
Es = {X ∈ 2ω : (∃l ≤ s)(0l1s−l ≺ X ∨ 1l0s−l ≺ X}. Define

C =

{⋂
sEs t = ∞

Si t = i < ∞.

Observe that Si ⊆
⋂

s<iEs. Hence C is a Π0
1 class. Let (D, f) be a minimal

subsystem of (C, f). To determine if n is in ∅′ wait until a stage s such that
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either n ∈ ∅′ or [01] ∩ D[s] = ∅ (the existence of such an s when n 6∈ ∅′

requires WKL).
In order to code all elements of ∅′, we use the uniformity in the definition

above to build a product system as follows. For all n, let Cn be the set
defined by the above construction. Let C = ΠnCn (i.e. X ∈ C if and only if
for all n, X [n] ∈ Cn where X [n] denotes the nth column of X). Let f be the
mapping produced by applying the left-shift to each column. Now if (D, f)
is a minimal subsystem of (C, f) then we have that n 6∈ ∅′ if and only if the

set {X ∈ D|X [n] ≻ [01]} is empty. Using WKL0, this set is empty if and
only if the associated tree is finite and we have provided a Σ0

1 definition of
the complement of ∅′. �

5. Separating AP from WKL

We have seen that ACA0 proves AP. Further RCA0+AP proves WKL because
any almost periodic point is a recurrent point. In this section we will separate
AP from WKL. We will show that there is a model of WKL that is not a
model RCA0+AP. The natural numbers in this model will be the true natural
numbers and so we will work with full induction. We will also regard our
closed sets as Π0

1 classes, as this simplifies the exposition.
The key to the separation is the following technical lemma. Let (C, f) be

a system. A point X ∈ C is called a periodic point of (C, f) if for some n,
Fn(X) = X. Let Orb(X) be the orbit of X. Note that if X is a periodic
point then Orb(X) is a finite set. For a finite string σ we denote by σn, the
string obtained by repeating σ n times and we denote by σω, the infinite
sequence

⋃
n σ

n.

Lemma 11. Let f be the left-shift on Cantor space. Let P ⊆ 2ω be a Π0
1

class. There is a Π0
1 class C, computable uniformly in an index for P such

that (C, f) is a system and either:

(i) C ∩ P = ∅; or

(ii) There is a non-empty Π0
1 class P̂ ⊆ P with the property that no

element of P̂ is an almost periodic point of (C, f).

Proof. The definition of C is simple. Let {Xi}i∈ω be an enumeration of the
periodic points in (2ω, f). Such an enumeration exists because any periodic
point is of the form σω for some finite string σ. We let C = 2ω unless at
some least stage s we have Orb(Xi) ∩ P = ∅ for some i < s. If so we let
C = Orb(Xi) for the least i for which this holds at stage s. The definition
of C is uniform because we can refine C to Orb(Xi) at any point.

If C = Orb(Xi) for some periodic point Xi, then C∩P = ∅ and condition
(i) is meet. Hence we will consider the case that C = 2ω. If there is some
computable point X ∈ P such that X is not almost periodic, then condition

(ii) holds by defining P̂ = {X}. Hence we will assume that any computable
point in P is almost periodic.
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We inductively define a sequence of finite strings σ1, σ2, . . . . The strings
will have the following properties. If i < j then σi � σj . For all i, 1i is a
substring of σi+1 but 1i+1 is not. The string σ1 = 0n for some n > 0.

(i) The sequence 10ω is computable and not almost periodic. Hence
10ω 6∈ P and so there exists some n1 > 0 such that [10n1 ] ∩ P = ∅.
Let σ1 = 0n1 .

(ii) The sequence 11(σ11)
ω is computable and not almost periodic (the

subsequence 11 only occurs once). Hence 11(σ11)
ω 6∈ P , and so

there exists some n2 > 0 such that [11(σ11)
n2 ] ∩ P = ∅. Let σ2 =

(σ11)
n2 .

(iii) Similarly 111(σ2σ111)
ω 6∈ P , and so there exists some n3 such that

[111(σ2σ111)
n3 ] ∩ P = ∅. Let σ3 = (σ2σ111)

n3 .
(iv) In general we define σi+1 = (σiσi−1 . . . σ11

i)ni such that

[1i+1(σiσi−1 . . . σ11
i)ni ] ∩ P = ∅.

Consider the periodic systems generated by (σi)
ω. Because C = 2ω, for all

i, there is some Xi ∈ Orb((σi)
ω) ∩ P .

Claim. For all i, Xi(0) = 0.

Proof. Take any Xi. Let k ∈ ω be the largest number such that 1k is an
initial segment of Xi. First k < i because any substring of 1’s in (σi)

ω has
length less than i. Further, by construction if 1k0 forms an initial sequence
of Xi then 1kσk forms an initial sequence of Xi, but σk was choosen so that
[1kσk] ∩ P = ∅. Note here we are using the fact that if i < j then σi � σj.
Hence Xi(0) = 0. �

Claim. Fix k. Let ck = 2k +
∑k

s=1 |σs|. Then for all i > k, Xi ↾ck contains

1k as a substring.

Proof. Let τ = σk . . . σ1. We will show by induction that for i > k, σi is a
string of the form τ1n1τ1n2τ1n3 . . . τ1nl where each nj ≥ k for j ∈ {1, . . . , l}.
First σk+1 = (σkσk−1 . . . σ11

k)nk = (τ1k)nk and is clearly of this form. Fix
i ≥ k + 1 and assume this holds for all j ∈ {k + 1, k + 2, . . . , i}. Then

σi+1 = (σiσi−1 . . . σ11
i)ni = (σiσi−1 . . . σk+1τ1

i)ni

and so has the desired property by induction. As Xi is a left-shift of (σi)
ω

and ck = |τ |+ 2k, the claim holds. �

Let X be an accumulation point of {Xi : i ∈ ω}. Hence X is an element
of P as P is closed. The sequence X has the property that X(0) = 0 and for
all k, the initial segment X ↾ck contains a subsequence of 1k. Observe that

the sequence {ci} is computable. Now define P̂ ⊆ P to be the following Π0
1

class
{X ∈ P : X(0) = 0 ∧ (∀k)(1k is a substring of X ↾ck)}.

If all the assumptions are meet until this point, P̂ is non-empty and no

element of P̂ is an almost periodic point. Hence condition (ii) is met. �
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In the proof of the following theorem we will make use of the fact that if
P ⊆ 2ω is a Π0

1 class and f : 2ω → 2ω is a total computable function, then
both f(P ) and f−1(P ) are Π0

1 classes.

Theorem 12. WKL0 does not prove AP.

Proof. Let f be the left-shift. Let {Qi}i∈ω be a enumeration of all Π0
1 classes.

It follows from the uniformity of Lemma 11, that we can build a system

(C, g) =
∏

e∈ω

(Ce, f)

such that if Q is the eth Π0
1 class then either

(i) πe(Q) ∩Ce = ∅ or

(ii) There is a non-empty Π0
1 class Q̂ ⊆ Q such that no element of πe(Q̂)

is almost periodic,

where πe is the projection on the eth coordinate (see Theorem 10 for an
example of how to encode such a product system). While Lemma 11 guar-
antees the existence of a non-empty Π0

1 subset of πe(Q), no element of which

is almost periodic, this can be pulled-back along πe to obtain Q̂. We will
show that there is a set of PA degree that does not compute an almost
periodic point of (C, f).

Construction. At stage 0, let P0 be a non-empty Π0
1 class of sets of PA

degree. At stage s + 1, let Φs be the sth Turing functional. If for some n

the set {X ∈ Ps : Φ
X
s (n) ↑} is not empty, then let Ps+1 be this set for the

least such n.
Otherwise, we have that Φs is total on all elements of Ps. Let Q = Φs(Ps).

Now Q is a Π0
1 class because there is a total functional that agrees with Φs

on the elements of Ps. Let e be an index for Q as a Π0
1 class. There are two

possible outcomes. First πe(Q) ∩ Ce = ∅ in which case let Ps+1 = Ps and
note that no element of Ps+1 computes an element of C via Φs let alone an
almost periodic element. The other possible outcome is that there is some

non-empty Q̂ ⊆ Q such that no element of πe(Q̂) is almost periodic in Ce

(and hence no element of Q̂ is almost periodic in C). For this outcome let

Ps+1 = {X ∈ Ps : Φ
X
s ∈ Q̂}. In this case, Ps+1 is a non-empty Π0

1 class, no
element of which computes an almost periodic point in C via Φs.

By compactness there is some X ∈
⋂

i Pi. This set X is of PA degree and
X does not compute an almost periodic point of (C, g). Now it is standard
result that there is a model of WKL0, such that all sets in this model are
Turing below X. This model does not contain an almost periodic point for
the system (C, g) and shows that WKL0 does not imply AP. �

6. Separating ACA from AP

In this section, we will show that there exists a model of RCA0 +AP that is
not a model of ACA. To achieve this, we will prove that every topological
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system on Cantor space has an almost periodic point that is low relative to
the system. Because the main theorem of this section is a separation result,
we could make use of full induction. However, we will restrict ourselves to
IΣ1 induction so that we can make use of these results in Section 7.

The objective is to construct an almost periodic point of a system while
forcing the jump. Let (C, f) be a system and let U be a c.e. set of strings.
If there is a subsystem (D, f) of (C, f) such that [D]∩ [U ] = ∅, then we can
replace our original system with (D, f). Any almost periodic point in (D, f)
is an almost periodic point of (C, f) and we know that such a point cannot
meet U .

If we cannot find such a subsystem, then we will show that for some b

for all X ∈ [C] there exists some k < b with F k(X) ∈ [U ]. We will use
this fact to build a new system (D, g) such that [D] ⊆ [C] ∩ [U ] and for all
X ∈ [C], G(X) = F k(X) for some k < b. We will show that this gives us a
certain recurrence property that allows us to build an almost period point
that meets U .

Definition 13.

(i) Let f, g : 2<ω → 2<ω encode continuous transformations of 2ω. Call
g a piece-wise combination of iterates of f if for some l, b there is
a function j : {0, 1}l → {1, . . . , b} such that for all σ with |σ| ≥ l,
g(σ) = f(σ, j(σ ↾l)).

(ii) Let (C, f), (D, g) be systems. We say that (D, g) refines (C, f),
written (D, g) ≤ (C, f) if:
(a) D ⊆ C.
(b) g is a piece-wise combination of iterates of f .

Clearly if (D, f) is a subsystem of (C, f) then (D, f) ≤ (C, f).

Lemma 14. (WKL0) Let (C, f), (D, g) be systems such that (D, g) ≤ (C, f).
If X ∈ [D], then (∃b)(∀n)(∃k ≤ b)Fn+k(X) ∈ [D].

Proof. Assume this fails for someX ∈ [D]. Let b witness that (D, g) ≤ (C, f)
i.e. {1, . . . , b} is range of the function j. Consider the set of n such that

{Fn+1(X), Fn+2(X), . . . , Fn+b(X)} ∩ [D] = ∅.

This set is computable in X and non-empty by assumption. Hence it con-
tains a least element l. By minimality and the fact that F 0(X) = X ∈ [D]
we must have that F l(X) ∈ [D] hence for some k ∈ {1, . . . , b}, G(F l(X)) =
F k(F l(X)) and so F l+k(X) = G(F l(X)) ∈ [D] contradicting our assump-
tion. �

Lemma 15. (WKL0) The refinement relation is transitive.

Proof. Let (E, h) ≤ (D, g) ≤ (C, f). Clearly [E] ⊆ [C]. Let j1 : {0, 1}l1 →
{1, . . . , b1} and j1 : {0, 1}l2 → {1, . . . , b2} be such that for all σ, if |σ| ≥
max{l1, l2} then

(i) g(σ) = f j1(σ↾l1 )(σ).
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(ii) h(σ) = gj2(σ↾l2 )(σ).

Let b3 = b1 · b2. Let l3 > l2 be sufficiently large such that for all σ ∈ {0, 1}l3 ,
for all n < b2, |g

n(σ)| > l1.
Take any string σ such that |σ| ≥ l3. Let m = j2(σ ↾l2). Then h(σ) =

gm(σ). Further

gm(σ) =g ◦ gm−1(σ)

=f j1(gm−1(σ)↾l1 ) ◦ gm−1(σ)

=f j1(gm−1(σ)↾l1 ) ◦ f j1(gm−2(σ)↾l1 ) ◦ . . . ◦ f j1(g0(σ)↾l1 )(σ)

Hence h(σ) = fn(σ), where n =
∑m−1

i=0 j1(g
i(σ) ↾l1). Because m ≤ b2, we

have that n only depends on σ ↾l3 . Further n ≤ b3. Hence h is a piece-wise
combination of iterates of f and so (E, h) ≤ (C, f). �

Lemma 16. (WKL0) Let (C, f) be a system and U a c.e. set. There is a
system (D, g) refining (C, f) such that either:

(i) [D] ∩ [U ] = ∅; or
(ii) [D] ⊆ [U ].

Proof. Define

D0 = {σ ∈ C : (∀n ≤ |σ|)(∀τ ∈ U [|σ|])(f(σ, n) 6� τ)}.

To establish that D0 is a tree, let σ and σ′ be any two strings such that
σ � σ′. Assume σ 6∈ D0. If σ 6∈ C then because C is a tree σ′ 6∈ D0. If
σ ∈ C then for some n ≤ |σ| and τ ∈ U [|σ|], f(σ, n) � τ . Hence f(σ′, n) � τ

and τ ∈ U [|σ′|]. Thus σ′ 6∈ D0.

Claim. For all σ ∈ D0, f(σ) ∈ D0.

Proof of claim. If f(σ) 6∈ D0, then let σ′ = f(σ). There is some n ≤ |σ′|
and τ ∈ U [|σ′|] such that f(σ′, n) � τ . Hence f(σ, n + 1) � τ ∈ U [|σ|]. We
have that σ 6∈ D0 because n + 1 ≤ |σ| (here we use our assumption that
|f(σ)| < |σ|). �

This claim establishes that if D0 is infinite, then (D0, f) refines (C, f),
and by the definition of D0 with n = 0, we have that [D0] ∩ [U ] = ∅.

Now consider the case that D0 is finite. Let s be least such that D0

contains no string of length s. Define

D1 = {σ ∈ C : (|σ| < s) ∨ (∃τ ∈ U [s](σ � τ))}.

We will show that D1 is infinite. Take any X ∈ [C] and let σ = X ↾s. As
σ 6∈ D0, there is a k ≤ s such that fk(σ) ≻ τ ∈ U [s]. Hence for all n,
fk(X ↾n) ∈ D1.

Let l be such that if |σ| = l, then |f(σ)| ≥ s. Define j : {0, 1}l →
{1, . . . , s+ 1} by

j(σ) =

{
1 σ 6∈ C

k where k ≥ 1 is least such that (∃τ ∈ U [s])f(σ, k) � τ if σ ∈ C.
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Note that j(σ) is well-defined because for σ ∈ {0, 1}l we have that |f(σ)| ≥ s

and so f(σ) 6∈ D0. Hence for some k ∈ {0, . . . , s} we have that f(f(σ, k))
extends some element of U [s]. Define a function g : 2<ω → 2<ω by

g(σ) =

{
λ if |σ| < l

f(σ, j(σ ↾l)) otherwise.

It follows from the definition of j andD1, that if σ ∈ [C], then g(σ) ∈ [D1].
Hence (D1, g) is a system. Clearly, g is a piece-wise combination of iterates
of f and hence (D1, g) ≤ (C, f). Finally [D1] ⊆ U [s]. �

The proof given of the proceeding lemma provides some more information
that we will make use of in Section 7. We state this as the following lemma.

Lemma 17. (WKL0) Consider the set

{σ ∈ C : (∀n ≤ |σ|)(∀τ ∈ U [|σ|])(f(σ, n) 6� τ)}.

Case (i) of Lemma 16 holds if this set is infinite. Case (ii) of Lemma 16
holds if this set is finite, and further there is a (D, g) refining (C, f) such
that for all X ∈ [C] there is a k with F k(X) ∈ [D].

We make use of full induction for the following lemma.

Lemma 18. Any system (C, f) contains an almost periodic point X such
that X ′ ≤T (C ⊕ f)′.

Proof. We define a sequence of systems {(Ce, fe)}e∈ω such that for all e,
(Ce+1, fe+1) ≤ (Ce, fe). Let (C0, f0) = (C, f). At stage e+ 1, let Ue = {σ ∈
2<ω : Φσ

e (e) ↓}. Let (Ce+1, fe+1) refine (Ce, fe) such that either [Ce+1] ∩
[Ue] = ∅ or [Ce+1] ⊆ [Ue].

An examination of the proof of Lemma 16 shows that this sequence can
be constructed below (C ⊕ f)′. In Lemma 16, D0, D1 and g are defined
uniformly from C and f (the definition of D1 and g depend on D0 being
finite). Further (C ⊕ f)′, can determine whether or not D0 is finite and
hence decide how to refine (C, f).

By compactness,
⋂

e[Ce] is not empty. In fact
⋂

e[Ce] contains a unique
point X, because every finite set occurs as infinitely many c.e. sets Ue. Now
X ′ ≤T (C ⊕ f)′ because whether ΦX

e (e) halts can be determined at stage e

of the construction. We show that X is an almost periodic point of C. Fix
σ ≺ X. Now for some e, [σ] ⊇ [Ce]. Thus by Lemma 14 there is some bound
b, such that for all n, there is some k ≤ b such that Fn+k(X) ∈ [Ce] ⊆ [σ].
Hence X is an almost periodic point of (C, f). �

Using the standard approach, the previous proposition can be used to
build an ω-model of RCA0 and AP such that every real in the model is low.
Hence we obtain the following theorem.

Theorem 19. There is an ω-model of RCA0 and AP that is not a model of
ACA.
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7. A Conservation Result

Lemma 20 (WKL0). Let (C, f) be a system, P be a real, and ϕ be a ∆1

formula. There is a system (D, g) refining (C, f) such that either

(i) The set {m : (∃s)ϕ(m,X ↾s, P )} is empty for all X ∈ [D]; or
(ii) There is a b such that for all X ∈ [D], b is the least element of

{m : (∃s)ϕ(m,X ↾s, P )}.

Proof. For all n, define the following sets

O(≤ n) = {τ : (∃m ≤ n)ϕ(m, τ, P )},

O(< n) = {τ : (∃m < n)ϕ(m, τ, P )},

C(≤ n) = {σ ∈ C : (∀i ≤ |σ|)(∀τ ∈ O(≤ n))(f(σ, i) 6� τ)},

C(< n) = {σ ∈ C : (∀i ≤ |σ|)(∀τ ∈ O(< n))(f(σ, i) 6� τ)}.

Because of the uniformity in the above definitions, we have that the following
set is c.e.

S = {n : C(≤ n) is finite}.

Hence by IΣ1 induction S is either empty or contains a least element. First
we consider the case that S is empty. Let U = {τ : (∃n)ϕ(n, τ, P )}. Let
(D, g) be a refinement of (C, f) guaranteed by Lemma 16. If [D] ∩ [U ] = ∅,
then the system (D, g) has the required properties. If [D] ⊆ [U ], then by
applying compactness there is some bound b, such that

[D] ⊆ [{τ : (∃n ≤ b)ϕ(n, τ)}].

We now replace (C, f) by (D, g) and adjust the definitions accordingly. This
replacement does not affect the following argument because of the transitiv-
ity of the refinement relation. Note that now S cannot be empty because it
must contain b.

Now consider the case when S has a least element b. By Lemma 17,
there is a system (E, h) such that (E, h) refines (C, f) and [E] ⊆ [O(≤ b)].
Further we have that for all X ∈ [C] there is a k such that F k(X) ∈ [E].
Now consider the set

{σ ∈ E : (∀i ≤ |σ|)(∀τ ∈ O(< b))(g(σ, i) 6� τ)}.

If this set is empty, then if X ∈ [C], we have that F k(X) ∈ [E] for some
k and so for some j, Gj(F k(X)) must extend some element of O(< b).
This implies that [C] ⊆ [O(< b)] as g is a piecewise combination of iterates
of f . Using compactness, this implies that C(≤ m) is empty for some m

strictly less than b, contradicting the minimality of b. Hence the set is not
empty and so by Lemma 17 there is a a system (F, i) refining (E, h) (and
consequently refining (C, f)) such that [F ] ∩ [O(< b)] = ∅. If X ∈ [F ], then
{m : (∃s)ϕ(m,X ↾s, P )} has least element b. �

Lemma 21 (WKL0). Let (C, f) be a system and i ∈ ω. There is a subsystem
(D, f) of (C, f) and b ∈ ω such that for all X ∈ D

(∀n)(∃k < b)(Fn+k(X) ∈ [X ↾i]).
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Proof. Take a computable coding of finite sets of finite strings {Ek}k∈ω such
that if Ek ⊆ Ej , then k ≤ j. Now enumerate a c.e. set W by adding k to W

if

(i) The number k is a code for a finite set Ek ⊆ {0, 1}i.
(ii) The following tree is finite

{σ ∈ C : (∀n ≤ |σ|)(∀τ ∈ Ek)(f(σ, n) 6� τ)}.

As C 6= ∅, the code for ∅ is not an element of W . The code for {0, 1}i is an
element of W . Hence by IΣ1 induction, there is a maximum element k such
that Ek ⊆ {0, 1}i, and for all x ≤ k that code subsets of {0, 1}i, x 6∈ W . Let

D = {σ ∈ C : (∀n ≤ |σ|)(∀τ ∈ Ek)(f(σ, n) 6� τ)}.

Hence D is infinite and [D] ⊆ [{0, 1}i \Ek]. Now if σ ∈ {0, 1}i \Ek, then let
sσ be the least number such that

{σ ∈ C : (∀n ≤ |σ|)(∀τ ∈ Ek ∪ {σ})(f(σ, n) 6� τ)}

contains no strings of length sσ. Hence for any X ∈ [D] there is some n ≤ sσ
such that Fn(X) ∈ [σ]. In particular, this includes any element of [D]∩ [σ].
The set {(σ, sσ) : σ ∈ {0, 1}i \ Ek} is also c.e. and hence by BΣ1 induction,
there is some b that bounds all elements of this set. �

Definition 22. Let M and M̂ be models of 2nd order arithmetic. Call M
an ω-submodel of M̂ if M is a submodel of M̂ and they share the same first
order part.

Theorem 23 (Harrington – unpublished see [4]). Let M be a countable

model of RCA0. Then there exists a countable model M̂ of WKL0 such that

M is an ω-submodel of M̂.

Lemma 24. Let M be a countable model of WKL0 and let (C, f) be a system

in M. Then there exists a model M̂ of WKL0 such that M is an ω-submodel

of M̂ and M̂ contains an almost periodic point for the system (C, f).

Proof. By Harrington’s theorem it is only necessary to find a model M̂

of RCA0 such that M is an ω-submodel of M̂ and M̂ contains an almost
periodic point for the system (C, f). Let N be the natural numbers insideM
and let R be the reals inside M. From outside of the model, let g : ω → N

and h : ω → R be bijections. Define (C0, f0) = (C, f). Now inductively
define (Ce+1, fe+1) as follows.

(i) If e = 2 · 〈n,m〉 + 1, then let (Ce+1, fe+1) refine (Ce, fe) as per
Lemma 20 with ϕ the nth ∆1 formula and P = h(m).

(ii) If e = 2 ·n+2 then let (Ce+1, fi+1) refine (Ce, fe) as per Lemma 21
with i = g(n).

Take R ∈
⋂

e[Ce]. Let M̂ be the model obtained by adding all reals

computable in R ⊕ Y to M for any Y ∈ M. We will show that M̂ is
a model of IΣ1 induction. Let W be the nth c.e. set relative to R with
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parameter h(m). Let e = 2 · 〈n,m〉 + 1. If the outcome of Lemma 20 was
that the set

{m : (∃s)ϕ(m,X ↾s, P )}

is empty for all X ∈ [Ce+1], then the set {m : (∃s)ϕ(m,R ↾s, P )} is also
empty because otherwise a path with this property could be found inside
M using WKL. Similarly if for some b, the set

{m : (∃s)ϕ(m,X ↾s, P )}

has a least element b, for allX ∈ [Ce+1], then the set {m : (∃s)ϕ(m,R ↾s, P )}
also has least element b.

We know that R is an almost periodic point of (C, f) because R ∈ [Ce+1]
for e = 2 · n+2 establishes that there exists a b such that for all m, there is
a k ≤ b such that Fm+k(R) ∈ R ↾g(n). �

Theorem 25. Let M be a countable model of RCA0. Then there exists a

countable model M̂ of RCA0 + AP such that M is an ω-submodel of M̂.

Proof. Let M be a countable model of RCA0. Let g : ω → ω × ω be a
bijection such that for all n, if (i, j) = g(n) then max{i, j} ≤ n. (Note that
ω is the real ω and g exists outside the model.)

Using Harrington’s theorem, let M0 be a model of WKL0 such that M
is an ω-submodel of M0. Applying Lemma 24, let Mn+1 be a model of
WKL0, such that Mn is an ω-submodel of Mn+1, and Mn+1 contains an
almost periodic point for the ith system in Mj where (i, j) = g(n). Let
Mω =

⋃
iMi.

Clearly Mω |= PA− + AP. It also models IΣ1 induction because if not
there is some function f : N → N in Mω whose range has no least element.
But if so, for some n, f ∈ Mn contradicting the fact that Mn |= WKL0. �

We obtain the following corollary by applying the standard argument (see
for example [4, Corollary IX.2.6]).

Corollary 26. RCA0 + AP is conservative over RCA0 for Π1
1 sentences.

8. A Subclass of PA Degrees

Consider the set of reals that given any computable system (C, f) can com-
pute an almost periodic point for this system. This is an upwards-closed
subclass of the PA degrees. By Theorem 12, we know that this is a strict
subclass of the PA degrees. The following corollary shows that this subclass
does not coincide with those PA degree above ∅′

Corollary 27 (Corollary to Theorem 19). There is a set X of PA degree
such that X 6≥T ∅′ and X computes an almost periodic point for every com-
putable system.

Proof. Let {Zi}i∈ω be a listing of the ideal used to separate ACA from AP

over RCA0. Observe that no finite join of this sequence computes ∅′.
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Construct X by at stage e defining sufficient columns of X to force that
ΦX
e 6= ∅′, and then append Ze to an empty column of X. The set X bounds

all elements of the ideal so X is of PA degree. �

The PA degrees have been extensively studied. However, this subclass
does not appear to have been encountered before and it merits further in-
vestigation.

Question 1. Are there any other characterizations of this subclass?

A useful answer to Question 1 would give some indication as to how
this subclass is dispersed in the Turing degrees. As there are computably
dominated sets of PA degree, it is natural to ask the following question.

Question 2. Does this subclass have a computably dominated element?

For this subclass to have a computably dominated element, it is necessary
that the following question has a positive answer.

Question 3. Does every computable system have an almost periodic point
that is computably dominated?
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