
COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS

VERA FISCHER, SY D. FRIEDMAN, DIEGO A. MEJÍA, AND DIANA C. MONTOYA

Abstract. We introduce a forcing technique to construct three-dimensional arrays of
generic extensions through FS (finite support) iterations of ccc posets, which we refer
to as 3D-coherent systems. We use them to produce models of new constellations in
Cichoń’s diagram, in particular, a model where the diagram can be separated into 7
different values. Furthermore, we show that this constellation of 7 values is consistent
with the existence of a ∆1

3 well-order of the reals.

1. Introduction

In this paper, we provide a generalization of the method of matrix iteration, to which we
refer as 3D-coherent systems of iterations and which can be considered a natural extension
of the matrix method to include a third dimension. That is, if a matrix iteration can be
considered as a system of partial orders 〈Pα,β : α ≤ γ, β ≤ δ〉 such that whenever α ≤ α′

and β ≤ β′ then Pα,β is a complete suborder of Pα′,β′ , then our 3D-coherent systems are
systems of posets 〈Pα,β,ξ : α ≤ γ, β ≤ δ, ξ ≤ π〉 such that whenever α ≤ α′, β ≤ β′,
ξ ≤ ξ′ then Pα,β,ξ is a complete suborder of Pα′,β′,ξ′ . As an application of this method, we
construct models where Cichoń’s diagram is separated into different values, one of them
with 7 different values. Moreover, these models determine the value of a, which is actually
the same as the value of b, and we further show that such models can be produced so
that they satisfy, additionally, the existence of a ∆1

3 well-order of the reals.
The method of matrix iterations, or 2D-coherent systems of iterations in our terminol-

ogy, has already a long history. It was introduced by Blass and Shelah in [BS89], to show
that consistently u < d, where u is the ultrafilter number and d is the dominating number.
The method was further developed in [BF11], where the terminology matrix iteration ap-
peared for the first time, to show that if κ < λ are arbitrary regular uncountable cardinals
then there is a generic extension in which a = b = κ < s = λ. Here a, b and s denote the
almost disjointness, bounding and splitting numbers respectively. In [BF11], the authors
also introduce a new method for the preservation of a mad (maximal almost disjoint)
family along a matrix iteration, specifically a mad family added by Hκ (Hechler’s poset
for adding a mad family, see Definition 4.1), a method which is of particular importance
for our current work. Later, classical preservation properties for matrix iterations were
improved by Mej́ıa [Mej13a] to provide several examples of models where the cardinals
in Cichoń’s diagram assume many different values, in particular, a model with 6 different
values. Since then, the question of how many distinct values there can be simultaneously
in Cichoń’s diagram has been of interest for many authors, see for example [FGKS] (a
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model of 5 values concentrated on the right) and [GMS16] (another model of 6 different
values), and lies behind the development of many interesting forcing techniques. Very
recently, the method of matrix iterations was used by Dow and Shelah [DS] to solve
a long-standing open question in the area of cardinal characteristics of the continuum,
namely, that it is consistent that the splitting number is singular.

Further motivation for this project was to determine the value of a in classical FS
(finite support) iterations of ccc posets models where no dominating reals are added. To
recall some examples, a classical result of Kunen [Kun80] states that, under CH, any
Cohen poset preserves a mad family of the ground model. This result was improved
by Steprans [Ste93], who showed that, after adding ω1-many Cohen reals, there is a
mad family in the corresponding extension which is preserved by any further Cohen
poset (without assuming CH). Additionally, Zhang [Zha99] proved that, under CH, any
finite support iteration of E (the standard poset adding an eventually different real, see
Definition 1.1) preserves a mad family from the ground model. As the family preserved in
Steprans’ result is added by Cω1 = Hω1 , we considered the preservation theory of Brendle
and the first author [BF11] to see in which cases a mad family added by Hκ (for an
uncountable regular κ) can be preserved through FS iterations of ccc posets. If such an
FS iteration can be redefined as a matrix iteration where Hκ is used to add a mad family
as in [BF11] and the preservation theory applies, then the mad family added by Hκ is
preserved through the iteration. Thanks to this and to the fact that random forcing and E
fit into the preservation framework (Lemmas 4.10 and 4.8), we generalize both Steprans’
and Zhang’s results by providing a general result about FS iterations preserving the mad
family added by Hκ (Theorem 4.17).

In view of the previous result, it is worth asking whether such a result can be extended
to matrix iterations like those in [Mej13a]. By analogy, if it is possible to add an addi-
tional coordinate for Hκ to a matrix iteration and produce a 3D iteration (3D-coherent
system in our notation) where the preservation theory from [BF11] applies, then the mad
family added by Hκ is preserved. Even more, the third dimension allows us to separate b
from other cardinals in Cichoń’s diagram (which was not possible in [Mej13a]) and get a
further division in Cichoń’s diagram. In particular, the 3D-version of the matrix iteration
from [Mej13a] for the consistency of 6 different values yields a model of 7 different values
in Cichoń’s diagram.

In addition, we show that these new constellations of Cichoń’s diagram are consistent
with the existence of a ∆1

3 well-order of the reals. Combinatorial properties of the real
line (which can be expressed in terms of its cardinal characteristics) as well as the ex-
istence of nicely definable combinatorial objects (like maximal almost disjoint families)
in the presence of a projective well-order on the reals have been investigated intensively
in recent years. In [FF10] it is shown for example that various constellations involving
a, b and s are consistent with the existence of a ∆1

3 well-order, while in [FFK14] it is
shown that every admissible assignment of ℵ1 and ℵ2 to the characteristics in Cichoń’s
diagram is consistent with the existence of such a projective well-order. There is one main
distinction between the various known methods for generically adjoining projective well-
orders: methods relying on countable support S-proper iterations like in [FF10, FFK14],
and methods using finite support iterations of ccc posets, e.g. [FFZ11, FFT12, FFZ13].
In order to show that our new consistent constellations of Cichoń’s diagram admit the
existence of a ∆1

3 well-order of the reals, we further develop the second approach. Namely,
we build up the method of almost disjoint coding which was introduced in [FFZ11] and
in particular answer one of the open questions stated in [FFK14].
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The paper is organized as follows. In Section 2 we present some well known preservation
theorems. In Section 3 we introduce the notion of 3D-iteration and review the preservation
properties for matrix iterations from [BF11, Mej13a] which can be applied quite directly
to 3D-coherent systems (even to arbitrary coherent systems). In Section 4 we review the
method of preservation of a mad family along a matrix iteration as introduced in [BF11]
and obtain similar results regarding E and the random algebra. As a consequence, we
prove in Theorem 4.17 our generalization of Steprans’ result discussed above, which is
one of the main results of this paper.

Section 5 contains our main results about Cichoń’s diagram. We evaluate the almost
disjointness number in various constellations in which the value of a was previously not
known, and obtain a model in which there are 7 distinct values in Cichoń’s diagram. Let
θ0 ≤ θ1 ≤ κ ≤ µ ≤ ν be regular uncountable cardinals, and let λ ≥ ν.

Theorem. Assume λ<θ1 = λ. Then, there is a ccc poset forcing add(N ) = θ0, cov(N ) =
θ1, b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

Elaborating on the method of almost disjoint coding as developed in [FFZ11], we show
in Section 6 that the constellations of Section 5 are consistent with the existence of a
projective well-order of the reals whenever the associated cardinal values do not exceed
ℵω (even though we conjecture that the result remains true with arbitrarily large cardinal
values). In particular, we outline the proof of the following:

Theorem. In L, let θ0 < θ1 < κ < µ < ν < λ be uncountable regular cardinals and,
in addition, λ < ℵω. Then, there is a cardinal preserving forcing extension of L in
which there is a ∆1

3 well-order of the reals and, in addition, add(N ) = θ0, cov(N ) = θ1,
b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

Section 7 contains some further discussions and open questions.

We recall some standard ccc posets we are going to use throughout this paper.

Definition 1.1 (Standard forcing that adds an eventually different real). Define the
forcing notion E with conditions of the form (s, ϕ) where s ∈ ω<ω and ϕ : ω → [ω]<ℵ0 such
that ∃n < ω∀i < ω(|ϕ(i)| ≤ n). Denote the minimal such n by width(ϕ). The order in E
is defined as (t, ψ) ≤ (s, φ) iff s ⊆ t, ∀i < ω(ϕ(i) ⊆ ψ(i)) and ∀i ∈ |t|r |s|(t(i) /∈ ϕ(i)).

Clearly E is σ-centered and adds a real which is eventually different from the reals in the
ground model. We will use also the following notation. If Ω is a non-empty set, BΩ is the
cBa (complete Boolean algebra) 2Ω×ω/N (2Ω×ω). Here,N (2Ω×ω) denotes the σ-ideal of null
subsets of 2Ω×ω with respect to the standard product measure. Note that BΩ ' B := Bω
when Ω is countable. Also, for any non-empty set Γ, BΓ := limdir{BΩ : Ω ⊆ Γ countable}.
Denote by R the class of all random algebras, that is, R := {BΓ : Γ 6= ∅}. Recall Cohen
forcing CΓ := Fn(Γ × ω, 2) which is the poset of finite partial functions from Γ × ω to 2
ordered by reverse inclusion. Put C = Cω. Another well-known poset which we will make
use of is the localization poset (see for example [BJ95]). For convenience, we repeat its
definition:

Definition 1.2. LOC is the poset of all ϕ ∈ ([ω]<ℵ0)ω such that

(i) for all n ∈ ω, |ϕ(n)| ≤ n, and
(ii) there is a k ∈ ω such that for all but finitely many n, |ϕ(n)| ≤ k.

The extension relation is defined as follows: ϕ′ ≤ ϕ if and only if ϕ(n) ⊆ ϕ′(n) for all
n < ω.
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2. Preservation properties for FS iterations

We review the theory of preservation properties for FS iterations developed by Judah
and Shelah [JS90] and Brendle [Bre91]. A similar presentation also appears in [GMS16,
Sect. 3].

Definition 2.1. R := 〈X, Y,@〉 is a Polish relational system if the following is satisfied:

(i) X is a perfect Polish space,
(ii) Y is a non-empty analytic subspace of some Polish space and
(iii) @=

⋃
n<ω @n for some increasing sequence 〈@n〉n<ω of closed subsets of X × Y such

that (@n)y = {x ∈ X : x @n y} is nwd (nowhere dense) for all y ∈ Y .

For x ∈ X and y ∈ Y , x @ y is often read y @-dominates x. A family F ⊆ X is
R-unbounded if there is no real in Y that @-dominates every member of F . Dually,
D ⊆ Y is a R-dominating family if every member of X is @-dominated by some member
of D. b(R) denotes the least size of a R-unbounded family and d(R) is the least size of
a R-dominating family.

Say that x ∈ X is R-unbounded over a model M if x 6@ y for all y ∈ Y ∩M . Given a
cardinal λ say that F ⊆ X is λ-R-unbounded if, for any Z ⊆ Y of size < λ, there is an
x ∈ F which is R-unbounded over Z.

By (iii), 〈X,M(X),∈〉 is Tukey-Galois below R where M(X) denotes the σ-ideal of
meager subsets of X. Therefore, b(R) ≤ non(M) and cov(M) ≤ d(R). Fix, for this
section, a Polish relational system R = 〈X, Y,@〉 and an uncountable regular cardinal θ.

Remark 2.2. Without loss of generality, Y = ωω can be assumed. The reason is that,
by the existence of a continuous surjection f : ωω → Y , the Polish relational system
R′ := 〈X,ωω,@′〉, where x @′n z iff x @n f(z), behaves much like R in practice. Namely,
R is Tukey-Galois equivalent to R′ and moreover, the notions λ-R-unbounded and λ-R′-
unbounded are equivalent. Also, for posets, the notions of θ-R-good and θ-R′-good (see
the definition below) are equivalent.

Definition 2.3 (Judah and Shelah [JS90]). A poset P is θ-R-good if, for any P-name ḣ

for a real in Y , there is a non-empty H ⊆ Y of size < θ such that  x 6@ ḣ for any x ∈ X
that is R-unbounded over H.

Say that P is R-good when it is ℵ1-R-good.

Definition 2.3 describes a property, respected by FS iterations, to preserve specific types
of R-unbounded families. Concretely,

(a) any θ-R-good poset preserves every θ-R-unbounded family from the ground model
and

(b) FS iterations of θ-cc θ-R-good posets produce θ-R-good posets.

Posets that are θ-R-good work to preserve b(R) small and d(R) large since, whenever F
is a θ-R-unbounded family, b(R) ≤ |F | and θ ≤ d(R).

Clearly, θ-R-good implies θ′-R-good whenever θ ≤ θ′ and any poset completely embed-
ded into a θ-R-good poset is also θ-R-good.

Consider the following particular cases of interest for our main results.

Lemma 2.4 ([Mej13a, Lemma 4]). Any poset of size < θ is θ-R-good. In particular,
Cohen forcing is R-good.

Example 2.5. (1) Preserving non-meager sets: Consider the Polish relational system
Ed := 〈ωω, ωω, 6=∗〉 where x 6=∗ y iff x and y are eventually different, that is, x(i) 6= y(i)
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for all but finitely many i < ω. By [BJ95, Thm. 2.4.1 and 2.4.7], b(Ed) = non(M)
and d(Ed) = cov(M).

(2) Preserving unbounded families: Let D := 〈ωω, ωω,≤∗〉 be the Polish relational system
where x ≤∗ y iff x(i) ≤ y(i) for all but finitely many i < ω. Clearly, b(D) = b and
d(D) = d.

Miller [Mil81] proved that E is D-good. Further, ωω-bounding posets, like the
random algebra, are D-good.

(3) Preserving null-covering families: Let b : ω → ωr{0} such that
∑

i<ω
1
b(i)

< +∞ and

let Edb := 〈Rb,Rb, 6=∗〉 be the Polish relational system where Rb :=
∏

i<ω b(i). Since
Edb is Tukey-Galois below 〈N (Rb),Rb, 63〉 (for x ∈ Rb the set {y ∈ Rb : ¬(x 6=∗ y)} has
measure zero with respect to the standard Lebesgue measure on Rb), cov(N ) ≤ b(Edb)
and d(Edb) ≤ non(N ).

By a similar argument as in [Bre91, Lemma 1∗], any ν-centered poset is θ-Edb-good
for any ν < θ infinite. In particular, σ-centered posets are Edb-good.

(4) Preserving “union of null sets is not null”: For each k < ω let idk : ω → ω such that
idk(i) = ik for all i < ω and put H := {idk+1 : k < ω}. Let Lc := 〈ωω,S(ω,H),∈∗〉
be the Polish relational system where

S(ω,H) := {ϕ : ω → [ω]<ℵ0 : ∃h ∈ H∀i < ω(|ϕ(i)| ≤ h(i))},
and x ∈∗ ϕ iff ∃n < ω∀i ≥ n(x(i) ∈ ϕ(i)), which is read x is localized by ϕ. As a
consequence of Bartoszyński’s characterization (see [BJ95, Thm. 2.3.9]), b(Lc) =
add(N ) and d(Lc) = cof(N ).

Any ν-centered poset is θ-Lc-good for any ν < θ infinite (see [JS90]) so, in particu-
lar, σ-centered posets are Lc-good. Moreover, subalgebras (not necessarily complete)
of random forcing are Lc-good as a consequence of a result of Kamburelis [Kam89].

The following are the main general results concerning the preservation theory presented
so far.

Lemma 2.6. Let 〈Pα〉α<θ be a l-increasing sequence of ccc posets and Pθ = limdirα<θPα.
If Pα+1 adds a Cohen real ċα over V Pα for any α < θ, then Pθ forces that {ċα : α < θ} is
a θ-R-unbounded family of size θ.

Theorem 2.7. Let δ ≥ θ be an ordinal and 〈Pα, Q̇α〉α<δ an FS iteration of non-trivial
θ-R-good ccc posets. Then, Pδ forces b(R) ≤ θ and d(R) ≥ |δ|.
Proof. See [GMS16, Cor. 3.6]. �

3. Coherent systems of FS iterations

Definition 3.1 (Relative embeddability). Let M be a transitive model of ZFC (or a finite
large fragment of it), P ∈M and Q posets (the latter not necessarily in M). Say that P
is a complete subposet of Q with respect to M , denoted by PlM Q, if P is a suborder of
Q and every maximal antichain in P that belongs to M is also a maximal antichain in Q.

Recall that in this case, if N ⊇M is another transitive model of ZFC with Q ∈ N and
G is Q-generic over N then G∩P is P-generic over M and M [G∩P] ⊆ N [G]. Moreover,
if Ṗ′ ∈ M is a P-name of a poset, Q̇′ ∈ N is a Q-name of a poset and Q,N Ṗ′ lMP Q̇′,

then P ∗ Ṗ′ lM Q ∗ Q̇′. In particular, if M = N = V (the universe), then P ∗ Ṗ′ lQ ∗ Q̇′
whenever PlQ and Q Ṗ′ lV P Q̇

′.
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Definition 3.2 (Coherent system of FS iterations). A coherent system (of FS iterations)
s is composed by the following objects:

(I) a partially ordered set Is and an ordinal πs,
(II) a system of posets 〈Ps

i,ξ : i ∈ Is, ξ ≤ πs〉 such that
(i) Ps

i,0 l Ps
j,0 whenever i ≤ j in Is, and

(ii) Ps
i,η is the direct limit of 〈Ps

i,ξ : ξ < η〉 for each limit η ≤ πs,

(III) a sequence 〈Q̇s
i,ξ : i ∈ Is, ξ < πs〉 where each Q̇s

i,ξ is a Ps
i,ξ-name for a poset,

Ps
i,ξ+1 = Ps

i,ξ∗Q̇s
i,ξ and Ps

j,ξ forces Q̇s
i,ξlV

Ps
i,ξ
Q̇s
j,ξ whenever i ≤ j in Is and Ps

i,ξlPs
j,ξ.

Note that, for a fixed i ∈ Is, the posets 〈Ps
i,ξ : ξ ≤ πs〉 are generated by an FS iteration

〈P′i,ξ, Q̇′i,ξ : ξ < 1 + πs〉 where Q̇′i,0 = Ps
i,0 and Q̇′i,1+ξ = Q̇s

i,ξ for all ξ < 1 + πs. Therefore
(by induction) P′i,1+ξ = Pi,ξ for all ξ ≤ πs and, thus, Ps

i,ξ l Ps
i,η whenever ξ ≤ η ≤ πs.

On the other hand, by Lemma 3.6, Ps
i,ξ l Ps

j,ξ whenever i ≤ j in Is and ξ ≤ πs.
For j ∈ Is and η ≤ πs we write V s

j,η for the Ps
j,η-generic extensions. Concretely, if G

is Ps
j,η-generic over V , V s

j,η := V [G] and V s
i,ξ := V [Ps

i,ξ ∩ G] for all i ≤ j in Is and ξ ≤ η.
Note that V s

i,ξ ⊆ V s
j,η.

We say that the coherent system s has the ccc if, additionally, Ps
i,0 has the ccc and Ps

i,ξ

forces that Q̇s
i,ξ has the ccc for each i ∈ Is and ξ < πs. This implies that Ps

i,ξ has the ccc
for all i ∈ Is and ξ ≤ πs.

We consider the following particular cases.

(1) When Is is a well-ordered set, we say that s is a 2D-coherent system (of FS iterations).
(2) If Is is of the form {i0, i1} ordered as i0 < i1, we say that s is a coherent pair (of FS

iterations).
(3) If Is = γs × δs where γs and δs are ordinals and the order of Is is defined as (α, β) ≤

(α′, β′) iff α ≤ α′ and β ≤ β′, we say that s is a 3D-coherent system (of FS iterations).

For a coherent system s and a set J ⊆ Is, s|J denotes the coherent system with Is|J = J ,
πs|J = πs and the posets and names corresponding to (II) and (III) defined as for s. And
if η ≤ πs, s�η denotes the coherent system with Is�η = Is, πs�η = η and the posets for
(II) and (III) defined as for s. Note that, if i0 < i1 in Is, then s|{i0, i1} is a coherent pair
and s|{i0} corresponds just to the FS iteration 〈P′i0,ξ, Q̇′i0,ξ : ξ < 1 +πs〉 (see the comment
after (III)).

If t is a 3D-coherent system, for α < γt, tα := t|{(α, β) : β < δt} is a 2D-coherent
system where Itα has order type δt. For β < δt, tβ := t|{(α, β) : α < δt} is a 2D-coherent

system where It
β

has order type γt.
In particular, the upper indices s are omitted when there is no risk of ambiguity.

Concerning consistency results about cardinal characteristics of the real line, Blass and
Shelah [BS89] produced the first 2D-coherent system to obtain that u < d is consistent
with large continuum. This was followed by new consistency results by Brendle and
Fischer [BF11] and Mej́ıa [Mej13a] where Blass’ and Shelah’s construction (which consists,
basically, of 2D-coherent systems as formalized in Definition 3.2(1)) is formulated and
improved. For their results, the main features of the produced matrix of generic extensions
〈Vα,ξ : α ≤ γ, ξ ≤ π〉 from a 2D-coherent system m, as illustrated in Figure 1, are:

(F1) For α < γ, there is a real cα ∈ Vα+1,0 which “diagonalizes” Vα,0 (e.g., R-unbounded
over Vα,0 for a fixed Polish relational system R, or diagonalizes it in the sense of
Definition 4.2) and, through the coherent pair m|{α, α+ 1}, cα also diagonalizes all
the models in the α-th row, that is, Vα,ξ for all ξ ≤ π (Lemmas 3.6 and 4.13).
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

V0,0

V1,0

Vα,0

Vα+1,0

Vγ,0

V0,ξ

V1,ξ

Vα,ξ

Vα+1,ξ

Vγ,ξ

V0,ξ+1

V1,ξ+1

Vα,ξ+1

Vα+1,ξ+1

Vγ,ξ+1

Q̇0,ξ

Q̇1,ξ

Q̇α,ξ

Q̇α+1,ξ

Q̇γ,ξ

V0,π

V1,π

Vα,π

Vα+1,π

Vγ,π

Figure 1. Matrix of generic extensions (2D-coherent system).

(F2) Assume that γ (the top level of the matrix) has uncountable cofinality. Given any
column of the matrix, any real in the model of the top is actually in some of the
models below, that is, R ∩ Vγ,ξ =

⋃
α<γ R ∩ Vα,ξ for every ξ ≤ π (Lemma 3.7 and

Corollary 3.9).

To prove the main results of this paper, we extend this approach to 3D rectangles of
generic extensions which help us separate more cardinal invariants at the same time. In a
similar fashion as a matrix above, such a construction starts with a matrix of posets and
“coherent” FS iterations emanate from each poset, which is formalized in Definition 3.2(3)
as 3D-coherent systems. Figure 2 illustrates this idea. More generally, Definition 3.2 can
be used to define multidimensional rectangles of generic extensions, though applications
are unknown for dimensions ≥ 4.

The feature (F1) can also be applied in general to coherent systems of FS iterations since
any such system is composed of several coherent pairs of FS iterations. For coherent pairs,
(F1) for “R-unbounded over a model” has been well understood in [BS89, BF11, Mej13a]
whose results we review below. For the remainder of this section, fix M ⊆ N transitive
models of ZFC and a Polish relational system R = 〈X, Y,@〉 coded in M (in the sense
that all its components are coded in M).

Recall that S is a Suslin ccc poset if it is a Σ1
1 subset of ωω (or another uncountable

Polish space) and both its order and incompatibility relations are Σ1
1. Note that if S is

coded in M then SM lM S
N .

Lemma 3.3 ([Mej13a, Thm. 7]). Let S be a Suslin ccc poset coded in M . If M |= “S is
R-good” then, in N , SN forces that every real in X ∩N which is R-unbounded over M is
R-unbounded over MSM .

Corollary 3.4. Let Γ ∈ M be a non-empty set. If M |= “BΓ is R-good” then BNΓ , in
N , forces that every real in X ∩ N which is R-unbounded over M is R-unbounded over
MBMΓ .
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b

b

b

b

b

b b b

b b b

b b b

b b b

b b b

V0,0,0

V0,δ,0

Vα,β,0

Vγ,0,0

Vγ,δ,0

V0,0,ξ V0,0,ξ+1
V0,0,π

V0,δ,ξ V0,δ,ξ+1 V0,δ,π

Vα,β,ξ Vα,β,ξ+1 Vα,β,π

Vγ,0,ξ Vγ,0,ξ+1 Vγ,0,π

Vγ,δ,ξ Vγ,δ,ξ+1

Vγ,δ,π

Q̇0,0,ξ

Q̇0,δ,ξ

Q̇α,β,ξ

Q̇γ,0,ξ

Q̇γ,δ,ξ

Figure 2. 3D rectangle of generic extensions (3D-coherent system).

Lemma 3.5 ([BF11, Lemma 11], see also [Mej15, Lemma 5.13]). Assume P ∈ M is a
poset. Then, in N , P forces that every real in X ∩ N which is R-unbounded over M is
R-unbounded over MP.

Lemma 3.6 (Blass and Shelah [BS89], [BF11, Lemmas 10, 12 and 13]). Let s be a coherent
pair of FS iterations as in Definition 3.2(2). Then, Pi0,ξ l Pi1,ξ for all ξ ≤ π.

Moreover, if ċ is a Pi1,0-name of a real in X, π is limit and Pi1,ξ forces that ċ is
R-unbounded over Vi0,ξ for all ξ < π, then Pi1,π forces that ċ is R-unbounded over Vi0,π.

Note that if c is a Cohen real over M then c is R-unbounded over M by Definition
2.1(iii). In fact, all the unbounded reals used in our applications are actually Cohen.

Now we turn to discuss feature (F2). We aim to have such a property for 3D-coherent
systems but, as they are composed of several 2D-coherent systems, it is enough to under-
stand (F2) for 2D-coherent systems. This was already noted in [BS89] and formalized in
[BF11, Lemma 15] (see Corollary 3.9), which we generalize as follows.

Lemma 3.7. Let m be a ccc 2D-coherent system with Im = γ+1 an ordinal and πm = π.
Assume that

(i) γ has uncountable cofinality,
(ii) Pγ,0 is the direct limit of 〈Pα,0 : α < γ〉, and

(iii) for any ξ < π, Pγ,ξ forces “Q̇γ,ξ =
⋃
α<γ Q̇α,ξ” whenever Pγ,ξ is the direct limit of

〈Pα,ξ : α < γ〉.
Then, for any ξ ≤ π, Pγ,ξ is the direct limit of 〈Pα,ξ : α < γ〉. In particular, Pγ,ξ forces
that R ∩ Vγ,ξ =

⋃
α<γ R ∩ Vα,ξ.
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Proof. We proceed by induction on ξ. The case when ξ is not successor is clear, so we
just need to deal with the successor step. Assume that the conclusion holds for ξ. If
p ∈ Pγ,ξ+1 then p = (r, q̇) where r ∈ Pγ,ξ and q̇ is a Pγ,ξ-name of a member of Q̇γ,ξ. By

(iii), there is a maximal antichain {pn : n < ω} in Pγ,ξ such that pn decides q̇ = q̇n ∈ Q̇αn,ξ

for some αn < γ and some Pαn,ξ-name q̇n.1 By (i), (ii) and the induction hypothesis, there
is an α < γ above all αn such that {pn : n < ω} ⊆ Pα,ξ and r ∈ Pα,ξ. Therefore, q̇ is a

Pα,ξ-name of a member of Q̇α,ξ and p ∈ Pα,ξ+1. �

The 2D and 3D-coherent systems constructed to prove our main results can be classified
in terms of the following notion.

Definition 3.8 (Standard coherent system of FS iterations). A ccc coherent system of
FS iterations s is standard if

(I) it consists, additionally, of:
(i) a partition 〈Ss, Cs〉 of πs,
(ii) a function ∆s : Cs → Is so that ∆s(i) is not maximal in Is for all i ∈ Cs,

(iii) a sequence 〈Ssξ : ξ ∈ Ss〉 where each Ssξ is either a Suslin ccc poset or a random
algebra, and

(iv) a sequence 〈Q̇s
ξ : ξ ∈ Cs〉 such that each Q̇s

ξ is a Ps
∆s(ξ),ξ-name of a poset which

is forced to be ccc by Ps
i,ξ for all i ≥ ∆s(ξ) in Is, and

(II) it satisfies, for any i ∈ Is and ξ < πs, that

Q̇s
i,ξ =


(Ssξ)

V s
i,ξ if ξ ∈ Ss

Q̇s
ξ if ξ ∈ Cs and i ≥ ∆s(ξ),

1 otherwise.

As in Definition 3.2, the upper index s may be omitted when it is clear from the context.

All the standard coherent systems in this paper are constructed by recursion on ξ < π.
To be more precise, we start with some partial order of ccc posets 〈Pi,0 : i ∈ I〉 as
in Definition 3.2(II)(i), fix the partition in (I)(i) and, by recursion, the posets Pi,ξ and

names Q̇i,ξ for all i ∈ I, along with the function ∆ and the sequence of Suslin ccc posets
in (I)(iii) (though in some cases ∆ and the sequence of Suslin ccc posets are fixed before
the recursion), are defined as follows: when Pi,ξ has been constructed for all i ∈ I, we
distinguish the cases ξ ∈ S and ξ ∈ C. In the first case, Sξ is chosen; in the second, we

choose ∆(ξ) and then we define the (P∆(ξ),ξ-name of a) poset Q̇ξ as in (I)(iv). After this,

the iterations continue with Pi,ξ+1 = Pi,ξ ∗ Q̇i,ξ as indicated in (II). It is clear that the
requirements in Definition 3.2 for a ccc coherent system are satisfied.

In practice, a standard coherent system as above is constructed by using posets adding
generic reals and the cases whether ξ ∈ S or ξ ∈ C indicate how generic the real is.
Namely, when ξ ∈ S, Sξ adds a real that is generic over Vi,ξ for all i ∈ I, which means
that we add a full generic real at stage ξ; on the other hand, when ξ ∈ C we just add
a restricted generic in the sense that Q̇ξ adds a real which is generic over V∆(ξ),ξ but

not necessarily over Vi,ξ when i 6≤ ∆(ξ), for instance, if Q̇ξ is a name for DV∆(ξ),ξ , at the
ξ-step the Hechler real added is generic only over V∆(ξ),ξ. This approach of adding full
and restricted generic reals is useful for controlling many cardinal invariants at the same
time like in [BS89, BF11, Mej13a] and this work.

1It is implicit in this proof that the names considered for the members of Q̇α,γ are canonical in the
sense described by the mentioned maximal antichains.
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It is clear that any standard 2D-coherent system satisfies the hypothesis (iii) of Lemma
3.7 whenever (i) and (ii) are satisfied. Therefore,

Corollary 3.9 ([BF11, Lemma 15]). If m is a standard 2D-coherent system with Im =
γ + 1 and an ordinal and πm = π satisfying (i) and (ii) of Lemma 3.7 then, for any
ξ ≤ π, Pγ,ξ is the direct limit of 〈Pα,ξ : α < γ〉. In particular, Pγ,ξ forces that R ∩ Vγ,ξ =⋃
α<γ R ∩ Vα,ξ.
The results presented in this section can be summarized in the following result.

Theorem 3.10 ([Mej13a, Thm. 10 & Cor. 1]). Let m be a standard 2D-coherent system
with Im = γ+1 (an ordinal), πm = π and R = 〈X, Y,@〉 a Polish relational system coded
in V . Assume that

(i) for any ξ ∈ S and α ≤ γ, Pα,ξ forces that Q̇α,ξ = S
Vα,ξ
ξ is R-good and

(ii) for any α < γ there is a Pα+1,0-name ċα of a R-unbounded member of X over Vα,0.

Then, for any ξ ≤ π and α < γ, Pα+1,ξ forces that ċα is R-unbounded over Vα,ξ. In
addition, if m satisfies (i) and (ii) of Lemma 3.7 then Pγ,π forces b(R) ≤ cf(γ) ≤ d(R).

Proof. The first statement is a direct consequence of Lemmas 3.3, 3.5 and 3.6. For the
second statement, note that Corollary 3.9 implies that, in Vγ,π, {cαη : η < cf(γ)} is a
cf(γ)-R-unbounded family where 〈αη : η < cf(γ)〉 ∈ V is an increasing cofinal sequence of
γ, so b(R) ≤ cf(γ) ≤ d(R) follows. �

4. Preservation of Hechler mad families

We review from [BF11] the theory of preserving, through coherent pairs of FS iterations,
a mad family added by Hechler’s poset for adding an a.d. family (see Definition 4.1). This
theory is quite similar to the approach in Section 3. Additionally, we show in Lemmas 4.8
and 4.10 that random forcing B and the eventually different forcing E fit well into this
framework.

Definition 4.1 (Hechler [Hec72]). For a set Ω define the poset HΩ := {p : Fp × np → 2 :
Fp ∈ [Ω]<ℵ0 and np < ω}. The order is given by q ≤ p iff p ⊆ q and, for any i ∈ nq r np,
there is at most one z ∈ Fp such that q(z, i) = 1.

If G is HΩ-generic over V then A = AG := {az : z ∈ Ω} is an a.d. family where az ⊆ ω
is defined as i ∈ az iff p(z, i) = 1 for some p ∈ G. Moreover, V [G] = V [A] and, when Ω is
uncountable, A is mad in V [G] (see [Hec72]).

If Ω ⊆ Ω′ it is clear that HΩ l HΩ′ and even the (HΩ-name of the) quotient HΩ′/HΩ

is nicely expressed (see, e.g., [BF11, §2]). On the other hand, if C is an ⊆-chain of sets
then H⋃

C = limdirΩ∈CHΩ. Therefore, if γ is an ordinal, Hγ can be obtained by an FS
iteration of length γ where Hα is the poset obtained in the α-th stage of the iteration
and Hα+1/Hα, which is σ-centered, is the α-th iterand. Since HΩ only depends on the
size of Ω, this implies that HΩ has precaliber ω1 (though this can be proved directly by
a ∆-system argument). Moreover, if Ω is non-empty and countable then HΩ ' C and, if
|Ω| = ℵ1, then HΩ ' Cω1 .

From now on, fix transitive models M ⊆ N of ZFC. We define below a diagonalization
property to preserve mad families like the one added by Hechler’s poset.

Definition 4.2 ([BF11, Def. 2]). Let A = 〈az〉z∈Ω ∈M be a family of infinite subsets of
ω and a∗ ∈ [ω]ℵ0 (not necessarily in M). Say that a∗ diagonalizes M outside A if, for all
h ∈M , h : ω× [Ω]<ℵ0 → ω and for any m < ω, there are i ≥ m and F ∈ [Ω]<ℵ0 such that
[i, h(i, F )) r

⋃
z∈F az ⊆ a∗.
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Given a collection A of subsets of ω, the ideal generated by A is defined as

I(A) := {x ⊆ ω : x ⊆∗
⋃
a∈F

a for some finite F ⊆ A}.

Lemma 4.3 ([BF11, Lemma 3]). If a∗ diagonalizes M outside A then |a∗ ∩ x| = ℵ0 for
any x ∈M r I(A).

Corollary 4.4. Let γ be an ordinal of uncountable cofinality and let 〈Mα〉α≤γ be an
increasing sequence of transitive ZFC models such that [ω]ℵ0 ∩Mγ =

⋃
α<γ[ω]ℵ0 ∩Mα.

Assume that A = {aα : α < γ} ∈ Mγ is a family of infinite subsets of ω such that, for
any α < γ, A�α ∈ Mα and aα ∈ Mα+1 diagonalizes Mα outside A�α. Then, for any
x ∈ [ω]ℵ0 ∩Mγ, there exists an α < γ such that |x∩aα| = ℵ0. If, additionally, A is almost
disjoint, then A is mad in Mγ.

Lemma 4.5 ([BF11, Lemma 4]). Let Ω be a set, z∗ ∈ Ω and A := {az : z ∈ Ω} the a.d.
family added by HΩ. Then, HΩ forces that az∗ diagonalizes V HΩr{z∗} outside A�(Ωr{z∗})

Though it is well-known that, for Ω uncountable, the a.d. family added by HΩ is mad
(as mentioned earlier), this follows from Corollary 4.4 and Lemma 4.5 since HΩ

∼= Hγ for
some ordinal γ of uncountable cofinality.

The main idea for mad preservation in [BF11] is that, when ccc 2D-coherent systems
are constructed, the first column, along with a mad family A = {aα : α < γ}, satisfies
the hypothesis of Corollary 4.4 (e.g. Pα,0 = Hα for all α ≤ γ) and each aα is preserved to
diagonalize the models in the α-th row outside A�α (that is, the second case of (F1) at
the beginning of Section 3). For this purpose, we present the following results related to
the preservation of the property in Definition 4.2 through coherent pairs of iterations.

Lemma 4.6 ([BF11, Lemma 11]). Let P ∈ M be a poset. If N |= “a∗ diagonalizes M
outside A” then

NP |= “a∗ diagonalizes MP outside A”.

Corollary 4.7. If N |= “a∗ diagonalizes M outside A” then

NCN |= “a∗ diagonalizes MCM outside A”.

Lemma 4.8. If N |= “a∗ diagonalizes M outside A” then

NEN |= “a∗ diagonalizes MEM outside A”.

Proof. Let ḣ ∈ M be an E-name for a function from ω × [Ω]<ℵ0 into ω. Work within
M and fix a non-principal ultrafilter D on ω (in M). For s ∈ ω<ω and n < ω define
hs,n : ω × [Ω]<ℵ0 → ω + 1 as

hs,n(i, F ) = min{j < ω : (∀ϕ, width(ϕ) ≤ n)((s, ϕ) 1 ḣ(i, F ) > j)}.
Claim 4.9. hs,n(i, F ) ∈ ω for all i < ω and F ∈ [Ω]<ℵ0.

Proof. Assume not, so there is a sequence of slaloms 〈ϕj〉j<ω of width ≤ n such that

(s, ϕj)  ḣ(i, F ) > j. Define the slalom ϕ∗ as

ϕ∗(i) = {m < ω : {j < ω : m ∈ ϕj(i)} ∈ D}.
Since D is a filter, width(ϕ∗) ≤ n, so (s, ϕ∗) ∈ E. Now, there are (t, ψ) ≤ (s, ϕ∗) and

j0 < ω such that (t, ψ)  ḣ(i, F ) = j0. By the definition of ϕ∗ and since D is an ultrafilter,

{j < ω : ∀i ∈ |t|r |s|(t(i) /∈ ϕj(i))} ∈ D
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so that set is infinite. For any j > j0 in that set, (t, ψ) is compatible with (s, ϕj) and,

therefore, any common stronger condition forces j0 = ḣ(i, F ) > j, a contradiction. �

Now, in N , fix m < ω and p = (s, ϕ) ∈ EN with n := width(ϕ). As a∗ diagonalizes M
outside A, there are i ≥ m and F ∈ [Ω]<ℵ0 such that [i, hs,n(i, F )) r

⋃
z∈F az ⊆ a∗. By

definition of hs,n, (∀ϕ, width(ϕ) ≤ n)((s, ϕ) 1 ḣ(i, F ) > hs,n(i, F )) is a true Π1
1-statement

in M so, by absoluteness, it is also true in N . Therefore, there is a q ∈ EN stronger than p
that forces ḣ(i, F ) ≤ hs,n(i, F ) and then we conclude that q forces [i, ḣ(i, F ))r

⋃
z∈F az ⊆

a∗. �

Lemma 4.10. If N |= “a∗ diagonalizes M outside A” then

NBN |= “a∗ diagonalizes MBM outside A”.

Proof. In the standard proof that B is ωω-bounding (see for example [BJ95]) it is shown
that, for any p ∈ B, ε ∈ (0, 1) and ẋ a B-name for a real in ωω, there are q ≤ p and
g ∈ ωω such that q  ẋ ≤ g and λ(pr q) ≤ ελ(p) where λ is the Lebesgue measure. We
are going to use this fact to prove the lemma.

Fix ḣ ∈ M a B-name for a function from ω × [Ω]<ℵ0 to ω, p ∈ BN and m < ω. By
the Lebesgue density Theorem there is a clopen non-empty set C such that λ(C r p) <
1
4
λ(C). Now, in M , find g : ω × [Ω]<ℵ0 → ω such that, for any F ∈ [Ω]<ℵ0 , there is a

qF ≤ C in B with λ(C r qF ) ≤ 1
4
λ(C) that forces ∀i < ω(ḣ(i, F ) ≤ g(i, F )). Then, in

N , there are i ≥ m and F ∈ [Ω]<ℵ0 such that [i, g(i, F )) r
⋃
z∈F az ⊆ a∗, so qF forces

[i, ḣ(i, F )) r
⋃
z∈F az ⊆ a∗. As λ(p ∩ qF ) > 1

2
µ(C), p ∩ qF ∈ BN is stronger than p and

forces [i, ḣ(i, F )) r
⋃
z∈F az ⊆ a∗. �

Corollary 4.11. Let Γ ∈M be a non-empty set. If N |= “a∗ diagonalizes M outside A”
then

NBNΓ |= “a∗ diagonalizes MBMΓ outside A”.

Proofs of both Lemmas 4.8 and 4.10 use an argument similar to that of the proof that
the respective posets are D-good (the compactness argument for E and ωω-bounding for
B).

Question 4.12. Assume S is a Suslin ccc poset coded in M such that M |=“S is D-good”
and N |= “a∗ diagonalizes M outside A”. Does one have:

NSN |= “a∗ diagonalizes MSM outside A”?

Lemma 4.13 ([BF11, Lemma 12]). Let s be a coherent pair of FS iterations, A ∈ V a
family of infinite subsets of ω and ȧ∗ a Pi1,0-name for an infinite subset of ω such that

Pi1,ξ “ȧ∗ diagonalizes Vi0,ξ outside A”

for all ξ < π. Then, Pi0,π l Pi1,π and Pi1,π “ȧ∗ diagonalizes Vi0,π outside A”.

The results above are summarized as follows when considering standard 2D-coherent
systems.

Theorem 4.14. Let m be a standard 2D-coherent system with Im = γ + 1 an ordinal
and πm = π satisfying (i) and (ii) of Lemma 3.7 and, for each α < γ, let ȧα be a Pα+1,0-
name of an infinite subset of ω such that Pα+1,0 forces that ȧα diagonalizes Vα,0 outside

{ȧε : ε < α} and Pγ,0 forces Ȧ = {ȧα : α < γ} to be an a.d. family. If Sξ ∈ {C,E} ∪R

for all ξ ∈ S then Pγ,π forces that Ȧ is mad and a ≤ |γ|.
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Proof. Lemmas 3.9, 4.6, 4.8, 4.10 and 4.13 imply that 〈Vα,π : α ≤ γ〉 and A satisfy the
hypothesis of Corollary 4.4, so A is mad in Vγ,π. �

Remark 4.15. (1) Other mad families can be considered in this theory of preservation,
for instance, the mad family added by an FS iteration of Mathias-Prikry posets. Given
an a.d. family A ⊆ [ω]ℵ0 , let F (A) ⊆ [ω]ℵ0 be the closure of {ωra : a ∈ A}∪{ωrn :
n < ω} under finite intersections. Note that the generic real a∗ added by the Mathias-
Prikry poset M(F (A)) is almost disjoint from all the members of A and |a∗ ∩ x| = ℵ0

for every x ∈ V r I(A). Moreover, M(F (A)) forces that a∗ diagonalizes V outside
A. Thus, for an ordinal γ with uncountable cofinality, the FS iteration 〈Pα, Q̇α〉α<γ
with Q̇α = M(F (A�α)) adds an a.d. family A = {aα : α < γ} where each aα is the
Mathias real added by Q̇α. By Corollary 4.4, Pγ forces that A is mad.

(2) Any FS iteration of length ω1 of non-trivial ccc posets adds a mad family of size ℵ1

(so it forces a = ℵ1), actually, the mad family is defined from the Cohen reals added
at limit stages. To understand this, it is enough to note that, if A ∈ V is a countable
a.d. family, then C 'M(F (A)), so any Cohen generic defines an M(F (A))-generic.

Remark 4.16. A version of the previous theorem was originally proved by Brendle and
the first author [BF11] for a special case where Mathias-Prikry posets with ultrafilters are
considered. In the same way, Mathias-Prikry posets can be incorporated into standard
2D-iterations as in Definition 3.8. This was done by the third author in [Mej13b] to obtain
consistency results about the cardinal invariants p, s, r and u in relation with those in
Cichoń’s diagram. But thanks to Lemmas 4.8 and 4.10, and Remark 5.9, the constructions
there can be modified to force, additionally, b = a (like in Theorem 5.8).

The following is a generalization of a result of Steprans [Ste93] which shows that the
maximal almost disjoint family added by the forcing Hκ is indestructible after forcing
with some particular posets. Steprans’ result can then be deduced when κ = ω1 (so
Hω1 = Cω1) and Q̇ξ = C for all ξ < π.

Theorem 4.17. Let κ be an uncountable regular cardinal. After forcing with Hκ, any FS
iteration 〈Pξ, Q̇ξ〉ξ<π where each iterand is either

(i) in {C,E} ∪R or
(ii) a ccc poset of size < κ

preserves the mad family added by Hκ.

Proof. We reconstruct the iteration Hκ followed by 〈Pξ, Q̇ξ〉ξ<π as a standard 2D-coherent
system m so that Pm

κ,ξ = Hκ ∗ Pξ for all ξ ≤ π. The construction goes as follows (see
Definition 3.8):

(1) Im = κ+ 1 and πm = π.
(2) For each α ≤ κ, Pm

α,0 = Hα.
(3) The partition 〈Sm, Cm〉 of πm corresponds to the set of ordinals in the iteration

where a poset coming from (i) or (ii) is used. In other words, ξ ∈ Sm if (i) holds
for Q̇ξ, and ξ ∈ Cm otherwise.

(4) The functions ∆m : Cm → κ and the sequences 〈Smξ : ξ ∈ Sm〉 and 〈Q̇m
ξ : ξ ∈ Cm〉

are constructed by recursion on ξ < π along with the FS iterations of the 2D-
coherent system. We split into the following cases:
• If ξ ∈ Sm define Smξ to be one of the posets in the set {C,E} ∪R depending

on what Pξ forces Q̇ξ to be.
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• If ξ ∈ Cm we define both ∆m(ξ) and Q̇m
ξ , the latter as a Pm

∆m(ξ),0-name. Since

ξ ∈ Cm we have that Q̇ξ is a Pm
κ,ξ-name for a ccc poset of size < κ, hence

without loss of generality we can assume that the domain of Q̇ξ is an ordinal

γξ < κ (not just a name). By Lemma 3.7, Q̇ξ is (forced by Pm
κ,ξ to be equal

to) a Pm
α,ξ-name Q̇m

ξ for some α < κ. So put ∆m(ξ) = α + 1.2

Notice that m satisfies the assumptions of Theorem 4.14 for the mad family A added by
Hκ, so A is still mad in V m

κ,π.
�

Remark 4.18. When κ = ω1 in Theorem 4.17, by Remark 4.15(2) the result still holds
whenHω1 is replaced by any FS iteration of length with cofinality ω1. This is an alternative
(and also a generalization) of Zhang’s result [Zha99] which states that, under CH, there
is a mad family in the ground model which stays mad after an FS iteration of E.

5. Consistency results on Cichoń’s diagram

In this section, we prove the consistency of certain constellations in Cichoń’s diagram
where, additionally, the almost disjointness number can be decided (equal to b). For all
the results, we fix uncountable regular cardinals θ0 ≤ θ1 ≤ κ ≤ µ ≤ ν and a cardinal
λ ≥ ν. We denote the ordinal product between cardinals by, e.g., λ · µ.

The following summarizes the results in [Mej13a, Sect. 3] but in addition we get that
b = a can be forced.

Theorem 5.1. Assume λ = λ<κ and λ′ ≥ λ with (λ′)ℵ0 = λ′. For each of the items
below, there is a ccc poset forcing the corresponding statement.

(a) add(N ) = θ0, cov(N ) = θ1, b = a = non(M) = κ and cov(M) = c = λ.
(b) add(N ) = θ0, cov(N ) = θ1, b = a = κ, non(M) = cov(M) = µ and d = non(N ) =

c = λ.
(c) add(N ) = θ0, b = a = κ, cov(I) = non(I) = µ for I ∈ {M,N} and d = c = λ.
(d) non(N ) = ℵ1, b = a = κ, d = λ and cov(N ) = c = λ′.

Proof. The proofs are basically the same as in [Mej13a] combined with the methods of
preservation of mad families developed in Section 4. We sketch these proofs for complete-
ness. For all the items, start adding a mad family with Hκ.

(a) Construct an iteration as in the last part of [Mej13a, Thm. 2]. To be more precise,
perform an FS iteration 〈Pα, Q̇α〉α<λ where each Q̇α is either

(i) a σ-linked subposet of LOC of size < θ0,
(ii) a subalgebra of B of size < θ1 or
(iii) a σ-centered subposet of D of size < κ.
The iteration is constructed by a book-keeping device so that any σ-linked subposet
of LOC of size < θ0 that lives in a intermediate step is used in a further step of the
iteration. Likewise in relation to (ii) and (iii).

By Theorem 4.17, Pλ forces a ≤ κ. On the other hand, by similar arguments as in
[Mej13a, Thm. 2], the other equalities are forced. We just show some of them.

add(N ) = θ0. The inequality add(N ) ≤ θ0 follows from both the fact that

add(N ) = b(Lc) (see Example 2.5(4)) and that all the posets we are using in the

2Though it would be fine to put ∆m(ξ) = α, we prefer α + 1 because we additionally have that, for
any γ < κ of uncountable cofinality and for any ξ ≤ π, R ∩ Vγ,ξ = R ∩⋃

α<γ Vα,ξ.
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iteration are θ0-Lc-good, so Theorem 2.7 applies and we get b(Lc) ≤ θ0. On the
other hand, add(N ) ≥ θ0 follows from the book-keeping corresponding to (i).

cov(M) = c = λ. The inequality cov(M) ≥ λ is a simple consequence of the equal-

ity cov(M) = d(Ed) together with Theorem 2.7; on the other hand, c ≤ λ because,
in the ground model, |Hκ ∗ Pλ| ≤ λ.

(b) As in (a), perform an FS iteration 〈Pα, Q̇α〉α<λ·µ as in [Mej13a, Thm. 3] where each

Q̇α is either
(i) a σ-linked subposet of LOC of size < θ0,

(ii) a subalgebra of B of size < θ1,
(iii) a σ-centered subposet of D of size < κ or
(iv) E.

By counting arguments, the FS iteration is constructed so that, for any α < µ, each
σ-linked subposet of LOC of size < θ0 living in Vλ·α is used in the iteration at stage
λ · α + ξ for some ξ < λ. Likewise for (ii) and (iii).

(c) Perform an FS iteration 〈Pα, Q̇α〉α<λ·µ as in [Mej13a, Thm. 4]. In this case, each Q̇α

is either:
(i) a σ-linked subposet of LOC of size < θ0,

(ii) a σ-centered subposet of D of size < κ or
(iii) B.

Counting arguments are used as in (b).
(d) After the iteration in (a) force with Bλ′ .

�

Now we turn to prove some consistency results with standard 3D-coherent systems (see
Definitions 3.2(3) and 3.8). Recall that, if t is such a system with It = (γ + 1)× (δ + 1),
standard 2D-coherent systems tα can be extracted for each α ≤ γ and tβ for each β ≤
δ. When referring to Figure 2, we call the vertical axis the α-axis, the axis pointing
“perpendicular to the sheet of paper” is the β-axis and the horizontal axis is the ξ-
axis. To get a picture of these 2D-systems, in Figure 2, tα is the 2D-system obtained by
restricting the 3D rectangle to the horizontal plane on α (i.e., fixing α on the α-axis),
while tβ is the restriction to the vertical plane on β (i.e., fixing β on the β-axis). These
2D-coherent systems allow us to directly apply the results in the previous sections to
3D- coherent systems. In consequence, we have the following general result for standard
3D-coherent systems.

Theorem 5.2. Let t be a standard 3D-coherent system with It = (γ+1)×(δ+1) and m a
standard 2D-coherent system with Im = γ+1 and πm = δ such that Pα,β,0 = Pt

α,β,0 = Pm
α,β

for all α ≤ γ and β ≤ δ. Let R = 〈X, Y,@〉 be a Polish relational system coded in V .
Assume

(I) m satisfies the hypotheses of either
(i) Lemma 3.7(i) and (ii) and Theorem 3.10 with 〈ċα : α < γ〉 and R, or

(ii) Theorem 4.14 with Ȧ = {ȧα : α < γ}
(note that, in either case, γ has uncountable cofinality),

(II) all the posets that form m are non-trivial (see Definition 3.8(iii) and (iv)),
(III) all the posets that form t are non-trivial (see Definition 3.8(iii) and (iv)),
(IV) δ and π have uncountable cofinality,
(V) for ξ ∈ S = St, Q̇α,β,ξ is forced to be R-good by Pα,β,ξ for all α ≤ γ and β ≤ δ, and

(VI) if (I)(ii) is assumed then Sξ ∈ {C,E} ∪ R for all ξ ∈ S.
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Then, Pγ,δ,π forces

(a) non(M) ≤ cf(π) ≤ cov(M),
(b) b(R) ≤ min{cf(δ), cf(π)} ≤ max{cf(δ), cf(π)} ≤ d(R),
(c) b(R) ≤ min{cf(γ), cf(δ), cf(π)} ≤ max{cf(γ), cf(δ), cf(π)} ≤ d(R) when (I)(i) is as-

sumed and
(d) a ≤ |γ| when (I)(ii) is assumed.

Proof. (a) Any FS iteration of length π of uncountable cofinality adds cofinally cf(π)-
many Cohen reals which witness non(M) ≤ cf(π) ≤ cov(M). Also note that the
FS iteration 〈Pγ,δ,ξ, Q̇γ,δ,ξ : ξ < π〉 generates the final extension Vγ,δ,π of the coherent
system t.

(b) We look at the 2D-coherent system tγ. As the chain of posets 〈Pγ,β,0 : β ≤ δ〉 is
generated by an FS iteration of ccc posets, for a fixed cofinal sequence 〈βζ : ζ < cf(δ)〉
in δ of limit ordinals, for each ζ < cf(δ) there is a Pγ,βζ+1,0-name ċ′ζ for a Cohen real
over Vγ,βζ ,0. Thus, tγ and 〈ċ′ζ : ζ < cf(δ)〉 satisfy the hypotheses of Theorem 3.10
by (V), so Pγ,δ,π forces b(R) ≤ cf(δ) ≤ d(R). Besides, since b(R) ≤ non(M) and
cov(M) ≤ d(R), (a) immediately implies b(R) ≤ cf(π) ≤ d(R).

(c) We first look at the 2D-coherent system m. By Theorem 3.10, Pα+1,δ,0 forces that ċα
is R-unbounded over Vα,δ,0 for every α < γ. Now, we apply Theorem 3.10 to tδ to
conclude that b(R) ≤ cf(γ) ≤ d(R).

(d) By Theorem 4.14 applied to the 2D-coherent system m, each ȧα is forced by Pα+1,δ,0 to

diagonalize Vα,δ,0 outside Ȧ�α for each α < γ and furthermore, using the same theorem
one more time for the coherent system tδ, Pα+1,δ,π forces that ȧα diagonalizes Vα,δ,π
outside Ȧ�α. Thus, the maximality of A is preserved in Vγ,δ,π and so a ≤ |γ|.

�

In our applications and in accordance with the previous result, we consider standard
3D-coherent systems where 〈Pα,β,0 : α ≤ γ, β ≤ δ〉 is generated by a standard 2D-coherent
system.

Definition 5.3. Given ordinals γ and δ, define the following standard 2D-coherent sys-
tems.

(1) The system mC(γ, δ) where

(i) Im
C(γ,δ) = γ + 1,

(ii) P
mC(γ,δ)
α,0 = Cα for each α ≤ γ, and

(iii) πmC(γ,δ) = δ, S = δ, C = ∅ and Sβ = C for all β < δ.
(2) The system m∗(γ, δ) where

(i) Im
∗(γ,δ) = γ + 1,

(ii) P
m∗(γ,δ)
α,0 = Hα for each α ≤ γ, and

(iii) πm∗(γ,δ) = δ, S = δ, C = ∅ and Sβ = C for all β < δ.

If both γ and δ have uncountable cofinality, it is clear that both mC(γ, δ) and m∗(γ, δ)
satisfy (I) and (II) of Theorem 5.2, moreover, the former satisfies (I)(i) and the latter
satisfies (I)(ii). These standard 2D-coherent systems are the starting point for the 3D-
coherent systems constructed to prove the main results below.

Note that in Theorems 5.6(b), 5.7(c) and (d) we cannot say anything about a because
full Hechler generics are added (see the discussion about full and restricted generics after
Definition 3.8) so mad families are not preserved anymore in the way proposed in Section
4. For these results we start with mC(·, ·). For the results where we can force b = a we
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b b b b b

b b

b b b b b

θ0

θ1

κ

µ ν

λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Figure 3. Cichoń’s diagram as in Theorem 5.4.

start with m∗(·, ·) (we can start with mC(·, ·) as well, but a should be ignored in that
case). Observe that the results below are three-dimensional versions of the 2D-coherent
systems constructed in [Mej13a, Sect. 6].

We first prove that there is a constellation of Cichoń’s diagram with 7 different values
as illustrated in Figure 3.

Theorem 5.4. Assume λ<θ1 = λ. Then, there is a ccc poset forcing add(N ) = θ0,
cov(N ) = θ1, b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

Proof. Let V be the ground model where we perform an FS iteration which comes from
the standard 3D-coherent system t constructed as follows. Fix a bijection g = 〈g0, g1, g2〉 :
λ→ κ× ν × λ.

(1) γ = κ+ 1, δ = ν + 1 and π = λ · ν · µ.
(2) 〈Pα,β,0 : α ≤ κ, β ≤ ν〉 is obtained from m∗(κ, ν).
(3) Consider λ · ν · µ as the disjoint union of the ν · µ-many intervals Iζ = [lζ , lζ+1) (for

ζ < ν · µ) of order type λ. Let S := {lζ : ζ < ν · µ} and C = π r S (note that
lζ = λ · ζ).

(4) A function ∆ = 〈∆0,∆1〉 : C → κ× ν such that the following properties are satisfied:
(i) For all ξ < π, both ∆0(ξ) and ∆1(ξ) are successor ordinals,3

(ii) ∆−1(α+ 1, β + 1)∩ {lζ + 1 : ζ < ν · µ} is cofinal in π for any (α, β) ∈ κ× ν, and
(iii) for fixed ζ < ν · µ and e < 2, ∆(lζ + 2 + 2 · ε+ e) = (g0(ε) + 1, g1(ε) + 1) for all

ε < λ.
(5) Sξ = E for all ξ ∈ S.

(6) Fix, for each α < κ, β < ν and ζ < ν ·µ, two sequences 〈 ˙LOC
ζ

α,β,η〉η<λ and 〈Ḃζα,β,η〉η<λ
of Pα,β,lζ -names for all σ-linked subposets of the localization forcing LOCVα,β,lζ of size

< θ0 and all subalgebras of random forcing BVα,β,lζ of size < θ1, respectively.
Given ξ ∈ C, define Q̇ξ according to the following cases.

(i) If ξ = lζ + 1 then Q̇ξ is a P∆(ξ),ξ-name for the poset DV∆(ξ),ξ , the Hechler poset

adding a dominating real ḋζ over the model V∆(ξ),ξ.

(ii) If ξ = lζ + 2 + 2ε with ε < λ then Q̇ξ = ˙LOC
ζ

g(ε).

(iii) If ξ = lζ + 2 + 2ε+ 1 with ε < λ then Q̇ξ = Ḃ
ζ
g(ε).

We prove that Vκ,ν,π satisfies the statements of this theorem.

3Both ordinals ∆0(ξ) and ∆1(ξ) are successor because, if they are limits of uncountable cofinality
and we force with DV∆(ξ),ξ above (∆(ξ), ξ) and trivial otherwise, then R ∩ V∆(ξ),ξ+1 may not be R ∩⋃
α<∆0(ξ),β<∆1(ξ) Vα,β,ξ+1.
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Claim 5.5. If X ∈ Vκ,ν,π is a set of reals of size < µ, then there are (β, ζ) ∈ ν × (ν · µ)
so that X ∈ Vκ,β,lζ . Furthermore, if |X| < κ, then there is also an α less than κ such that
X ∈ Vα,β,lζ .
Proof. As cf(π) = µ and Vκ,ν,π is obtained by an FS iteration of length π, there is a
ζ < ν · µ such that X ∈ Vκ,ν,lζ (because {lζ : ζ < ν · µ} is cofinal in π). Now, look at the
2D-coherent system tκ and apply Corollary 3.9 to find a β < ν so that X ∈ Vκ,β,lζ . In

the case that |X| < κ, apply Corollary 3.9 to tβ to find an α < κ so that X belongs to
Vα,β,lζ . �

add(N ) = θ0. For the inequality add(N ) ≥ θ0 take an arbitrary set X of reals in Vκ,ν,π
of size < θ0 so, by Claim 5.5, there is a triple of ordinals (α, β, ζ) ∈ κ × ν × (ν · µ)
such that X ∈ Vα,β,lζ . In Vα,β,lζ , there is a transitive model N of (a large enough finite
fragment of) ZFC such that X ⊆ N and |N | < θ0. Then, there exists an η < λ such that

LOC
ζ
α,β,η = LOCN . Put ε = g−1(α, β, η) and ξ′ = lζ + 2 + 2ε, so Qξ′ = LOC

ζ
α,β,η = LOCN

adds a generic slalom over N and, therefore, it localizes all the reals in X.
To obtain the converse inequality, apply Theorem 2.7 to 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π and θ0.
cov(N ) = θ1. This case is similar to the one above. To get cov(N ) ≥ θ1 take an

arbitrary family Z of Borel null sets coded in Vκ,ν,π of size < θ1 so, by Claim 5.5, there
exists (α, β, ζ) ∈ κ × ν × (ν · µ) such that the sets in Z are already coded in Vα,β,lζ .
Hence, as in the previous argument, there exists an ordinal η < λ such that the generic
random real added by Bζα,β,η avoids all the Borel sets in Z. Put ε = g−1(α, β, η) and

ξ′ = lζ + 2 + 2ε+ 1, so Qξ′ = B
ζ
α,β,η and the random real it adds is already in Vα+1,β+1,ξ′+1.

Conversely, since the posets we use in the FS iteration 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π are θ1-Edb-good
posets and cov(N ) ≤ b(Edb), Theorem 2.7 implies that, in Vκ,ν,π, b(Edb) ≤ θ1.

non(M) = cov(M) = µ. The inequalities non(M) ≤ µ ≤ cov(M) follow from Theorem

5.2(a). Conversely, from the cofinally µ-many eventually different reals added by the
iteration 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π, we force the inequalities cov(M) ≤ µ and non(M) ≥ µ.

add(M) = b = a = κ. Given a family F of reals in Vκ,ν,π of size < κ, we can find a

(α, β, ζ) ∈ κ × ν × (ν · µ) such that F ∈ Vα,β,lζ . We use now the restricted dominating

reals {ḋζ : ζ < ν · µ}. Since (∆)−1(α+ 1, β + 1) ∩ {lζ + 1 : ζ < ν · µ} is cofinal in π, there

exists a ζ ′ ∈ [ζ, ν · µ) such that ∆(lζ′ + 1) = (α+ 1, β + 1) and then the real ḋζ′ added by
Qα+1,β+1,ξ′ , where ξ′ = lζ′ + 1, dominates all the reals in F .

On the other hand, a ≤ κ follows from Theorem 5.2 which guarantees that the mad
family added along the α-axis, which lives in the model Vκ,0,0, still remains mad in the
final extension Vκ,ν,π.

d = cof(M) = ν. For Vκ,ν,π |= d ≥ ν we just use Theorem 5.2. Conversely, to see V P |=
d ≤ ν note that the argument above shows that the family of (restricted) dominating

reals {ḋζ : ζ < ν · µ} is dominating in Vκ,ν,π.
non(N ) = cof(N ) = c = λ. As d(Edb) ≤ non(N ), from Theorem 2.7 we have that, in

Vκ,ν,π, d(Edb) ≥ |π|= λ. Certainly, c ≤ λ holds because |Pκ,ν,π| = λ.
�

Theorem 5.6. Assume λ<θ0 = λ. Then, for any of the statements below, there is a ccc
poset forcing it.

(a) add(N ) = θ0, b = a = κ, cov(I) = non(I) = µ for I ∈ {M,N}, d = ν and
cof(N ) = c = λ.

(b) add(N ) = θ0, cov(N ) = κ, add(M) = cof(M) = µ, non(N ) = ν and cof(N ) = c = λ.
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(c) add(N ) = θ0, cov(N ) = b = a = κ, non(M) = cov(M) = µ, d = non(N ) = ν and
cof(N ) = c = λ.

Proof. Fix a bijection g : λ→ κ×ν×λ. All the 3D-coherent systems we use in this proof
are of the form t where

(1) γ = κ + 1, δ = ν + 1 and π = λ · ν · µ, the latter of which is the disjoint union of
ν · µ-many intervals {Iζ := [lζ , lζ+1) : ζ < ν · µ} of length λ where each lζ := λ · ζ.

(2) S = {lζ : ζ < ν · µ} and C = π r S.
(3) For (a) and (c) 〈Pα,β,0 : α ≤ κ, β ≤ ν〉 comes from m∗(κ, ν) and, for (b), it comes

from from mC(κ, ν).
(4) A function ∆ = 〈∆0,∆1〉 : C → κ× ν such that the following properties are satisfied:

(i) For all ξ < π, both ∆0(ξ) and ∆1(ξ) are successor ordinals,
(ii) ∆−1(α + 1, β + 1) ∩ {lη + 1 : η < ν · µ} is cofinal in π for each (α, β) ∈ κ × ν;

additionally, for (c), ∆−1(α + 1, β + 1) ∩ {lη + 2 : η < ν · µ} is cofinal in π and
(iii) for fixed ζ < ν · µ, ∆(lζ + n0 + ε) = (g0(ε) + 1, g1(ε) + 1) for all ε < λ, where

n0 = 2 for (a) and (b), and n0 = 3 for (c).

For each of the items below, t is defined appropriately.

(a) For all ξ ∈ S, Sξ = B. Fix, for each α < κ, β < ν and ζ < ν · µ, a sequence

〈 ˙LOC
ζ

α,β,η〉η<λ of Pα,β,lζ -names for all σ-linked subposets of LOCVα,β,lζ of size < θ0.

For ξ ∈ C, Q̇ξ is defined according to the following cases.

(i) If ξ = lζ + 1 then Q̇ξ is a P∆(ξ),ξ-name for the poset DV∆(ξ),ξ which adds a

dominating real ḋζ over V∆(ξ),ξ.

(ii) If ξ = lζ + 2 + ε for some ε < λ, then Q̇ξ = ˙LOC
ζ

g(ε).
Most of the arguments for each of the cardinal characteristics are identical as the

ones presented in Theorem 5.4, so we just present the missing ones.
non(N ) ≤ µ ≤ cov(N ). It holds because we add cofinally µ-many random reals

(corresponding to the coordinates ξ ∈ S).
cof(N ) ≥ λ. It is a consequence of both the fact that cof(N ) = d(Lc) and Theorem

2.7 which gives us d(Lc) ≥ |π|= λ.
(b) For all ξ ∈ S, Sξ = D and, for ξ ∈ C, Q̇ξ is defined as in (a) but, in (i), we consider

BV∆(ξ),ξ instead.
Recall that, in this construction, our base 2D-coherent system comes from mC(κ, ν).

The argument to prove that Vκ,ν,π satisfies (b) is similar to (a) and to the proof of
Theorem 5.4. For instance,

cov(N ) = κ and non(N ) = ν. Given a family X of Borel-null sets coded in V P of

size < κ, we can find (α, β, ζ) ∈ κ× ν × (ν · µ) such that all the sets in X are already
coded in Vα,β,lζ . Since ∆−1(α+1, β+1)∩{lζ +1 : ζ < ν ·µ} is cofinal in π, there exists
ζ ′ ∈ [ζ, λ) such that ∆(lζ′ + 1) = (α+ 1, β+ 1) and then the random real ṙζ′ added by

Q̇α,β,ξ′ with ξ′ = lζ′ + 1 avoids all the sets in X. Note that this same argument also
proves that the set {ṙζ : ζ < ν · µ} is not null, so non(N ) ≤ ν.

Conversely, cov(N ) ≤ b(Edb) ≤ κ and ν ≤ d(Edb) ≤ non(N ) are direct conse-
quences of Theorem 5.2.

b = d = µ. Since the cofinally µ-many dominating reals added by 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π
forms a scale of length µ.

(c) For all ξ ∈ S, Sξ = E. For ξ ∈ C, Q̇ξ is defined according to the following cases

(i) If ξ = lζ + 1, then Q̇ξ is a P∆(ξ),ξ-name for the poset DV∆(ξ),ξ .
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(ii) If ξ = lζ + 2, then Q̇ξ is a P∆(ξ),ξ-name for the poset BV∆(ξ),ξ .
(iii) Otherwise, like (ii) of the proof of (a).

�

Theorem 5.7. Assume λℵ0 = λ. Then, for any of the statements below there is a ccc
poset forcing it.

(a) add(N ) = cov(N ) = b = a = κ, non(M) = cov(M) = µ, d = non(N ) = cof(N ) = ν
and c = λ.

(b) add(N ) = b = a = κ, cov(I) = non(I) = µ for I ∈ {M,N}, d = cof(N ) = ν and
c = λ.

(c) add(N ) = cov(N ) = κ, add(M) = cof(M) = µ, non(N ) = cof(N ) = ν and c = λ.
(d) add(N ) = κ, cov(N ) = add(M) = cof(M) = non(N ) = µ, cof(N ) = ν and c = λ.

Proof. The 3D-coherent systems we use in this proof are of the form t where:

(1) γ = κ+1, δ = ν+1 and π = λ ·ν ·µ is a disjoint union of {Iζ = [lζ , lζ+1) : ζ < ν ·µ}
as in Theorem 5.4.

(2) C = {lζ : ζ < ν · µ} and S = π r C.
(3) For items (a) and (b) 〈Pα,β,0 : α ≤ κ, β ≤ ν〉 comes from m∗(κ, ν); for (c) and (d),

it comes from mC(κ, ν).
(4) A function ∆ = 〈∆0,∆1〉 : C → κ × ν such that the following properties are

satisfied:
(i) For all ξ < π, both ∆0(ξ) and ∆1(ξ) are successor ordinals and

(ii) ∆−1(α + 1, β + 1) ∩ {lζ : ζ < ν · µ} is cofinal in π.

(a) Put Sξ = E for all ξ ∈ S. For ξ ∈ C, Q̇ξ = LOCV∆(ξ),ξ .
We just prove add(N ) = cov(N ) = b = κ and d = non(N ) = cof(N ) = ν. If X

is a set of reals in Vκ,ν,π of size < κ, there is a (α, β, ζ) ∈ κ × ν × (ν · µ) such that
X ∈ Vα,β,lζ . Since ∆−1(α + 1, β + 1) ∩ {lζ : ζ < µ} is cofinal in π, there exists a

ζ ′ ∈ [ζ, λ) such that ∆(lζ′) = (α+ 1, β + 1) and then the slalom ϕ̇ζ′ added by Q̇α,β,lζ′

localizes all the reals in X. Note that {ϕ̇ζ : ζ < ν · µ} witnesses cof(N ) ≤ ν.
The inequalities b, cov(N ) ≤ κ and ν ≤ d, non(N ) follow directly from Theorem

5.2.
(b) Put Sξ = B for all ξ ∈ S and, for ξ ∈ C, Q̇ξ is as in (a).

(c) Put Sξ = D for all ξ ∈ S and, for ξ ∈ C, Q̇ξ is as in (a)

(d) For ξ ∈ S, if it is odd then Sξ = D, but when it is even then Sξ+1 = B. For ξ ∈ C, Q̇ξ

is defined as in (a).

�

We present some other models of constellations of the Cichoń diagram known from
[Mej13a], where additionally b = a holds.

Theorem 5.8. (a) If λ<θ1 = λ then there is a ccc poset forcing add(N ) = θ0, cov(N ) =
θ1, b = a = non(M) = κ, cov(M) = d = ν and non(N ) = c = λ.

(b) If λ<θ0 = λ then there is a ccc poset forcing add(N ) = θ0, cov(N ) = b = a =
non(M) = κ, cov(M) = d = non(N ) = ν and cof(N ) = c = λ.

(c) If λℵ0 = λ then there is a ccc poset forcing add(N ) = non(M) = a = κ, cov(M) =
cof(N ) = ν and c = λ.

Proof. For (a) use the construction in [Mej13a, Thm. 20], for (b) see [Mej13a, Thm.
16] and for (c) see [Mej13a, Thm. 11] but, for the 2D-coherent systems, obtain the first
column by forcing with Hκ instead. �
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Remark 5.9. By slightly modifying the forcing constructions in Theorems 5.6(b) and
5.7(c),(d), it is possible to force, additionally, b = a = µ. This is thanks to the following
idea observed by the anonymous referee, for which we are very grateful. Modify the
construction only at steps of the form λ · ν · η with η < µ. Assume that we have already
constructed a P0,0,λ·ν·η′+1-name ȧη′ of an infinite subset of ω (this is a Mathias-Prikry
generic real added by P0,0,λ·ν·η′+1) for each η′ < η, so that P0,0,λ·ν·η forces that A�η =

{ȧη′ : η′ < η} is an a.d. family. Put Q̇α,β,λ·ν·η = Q̇0,0,λ·ν·η = M(F (A�η)) for each α ≤ κ,
β ≤ ν (see Remark 4.15). Let ȧη be a P0,0,λ·ν·η+1-name of the M(F (A�η))- generic real.
Note that this real is also M(F (A�η))-generic over Vκ,ν,λ·ν·η+1 because F (A�η) does not
depend on α and β, and the generic real with respect to any Vα,β,λ·ν·η is essentially the
same. Thus, as in Remark 4.15, Pκ,λ,λ·ν·µ forces that A = {aη : η < µ} is a mad family.
On the other hand, as M(F (A�η)) is σ-centered, the arguments to deduce the values of
the other cardinal invariants remain intact.

Remark 5.10. In Theorems 5.1, 5.4, 5.6 and 5.8(a) and (b) we can slightly modify the
constructions to force, additionally, MA<θ0 . For instance, in (6) of the proof of Theorem

5.4 we use, instead of 〈LOCζα,β,η〉η<λ, an enumeration 〈Q̇ζ
α,β,η〉η<λ of all the (nice) Pα,β,lζ -

names for all the ccc posets with domain an ordinal < θ0. In (6)(ii), Q̇ξ = Q̇
ζ
g(ε) whenever

Pκ,ν,ξ forces Q̇ζ
g(ε) to be ccc, otherwise, Q̇ξ is just a name for the trivial poset. In a similar

way, we can additionally force MA<κ in Theorems 5.7 and 5.8(c).

6. ∆1
3 well-orders of the reals

There has been significant interest in the study of possible constellations among the
classical cardinal characteristics of the continuum in the presence of a projective, in fact
∆1

3-definable, well-order of the reals (see [FF10, FFZ11, FFK14]). Answering a question
of [FFK14], we show that each of the constellations described in the previous section is
consistent with the existence of such a projective well-order. Since the proofs for the
different constellations are very similar, we will only outline the proof of the following
theorem.

Theorem 6.1. In L, let θ0 < θ1 < κ < µ < ν < λ be uncountable regular cardinals and, in
addition, λ < ℵω. Then there is a cardinal preserving forcing extension of the constructible
universe, L, in which there is a ∆1

3 well-order of the reals and in addition add(N ) = θ0,
cov(N ) = θ1, b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

For convenience we fix natural numbers n1 < · · · < n6 such that θ0 = ωn1 , θ1 = ωn2 ,
κ = ωn3 , µ = ωn4 , ν = ωn5 , λ = ωn6 . We will work over the constructible universe
L and we will use the method of almost disjoint coding as it is developed in [FFZ11].
We will use the following two notions. We will say that a transitive ZF− model M
is suitable if ωMn6

exists and ωMn6
= ωL

M
n6

(here ZF− denotes ZF− minus the power set
axiom). For subsets x, y of ω, let x ∗ y = {2n : n ∈ x} ∪ {2n + 1 : n ∈ y} and let
�(x) = {2n+ 2 : n ∈ x} ∪ {2n+ 1 : n /∈ x}. Note that if x, y and a, b are pairs of subsets
of ω such that �(x ∗ y) ⊆ �(a ∗ b), then x = a and y = b.

We will start with a general outline of the proof of Theorem 6.1. Our forcing construc-
tion can be viewed as a two stage process: a preliminary stage in which we prepare the
universe, followed by a coding stage in which we will not only adjoin a well-order of the
reals with a ∆1

3-definition, but also provide the desired constellations of the cardinal char-
acteristics. The second stage of our forcing construction recursively adjoins a well-order
of the reals, which we denote “ < ” and for which we will give an explicit definition later.



22 VERA FISCHER, SY D. FRIEDMAN, DIEGO A. MEJÍA, AND DIANA C. MONTOYA

To give a ∆1
3-definition of this well-order, we will make use of a nicely definable sequence

S̄ = 〈Sα : α < π〉 (where π = λ · ν · µ) of stationary, co-stationary subsets of ωn6−1. Once
we fix such a sequence, for each α < π we will adjoin a closed unbounded subset Cα of
ωn6−1 which is disjoint from Sα. Then with the help of n6 − 2 many almost disjoint cod-
ings, we will encode each club Cα into a subset Xα of ω1.4 Finally we will guarantee that
the above kill of stationarity is accessible to all countable suitable models: using localizing
posets, we will adjoin the characteristic functions of subsets Yα of ω1, such that Yα codes
Xα and such that every countable suitable model containing an initial segment of Yα will
encode an appropriate “local version” of a kill of stationarity. With this, the first stage
of our construction will be complete and we will denote by V the corresponding generic
extension of L. The coding stage will be a modification of the construction providing
Theorem 5.4, a modification which will allow us to adjoin the desired ∆1

3-definition. For
every pair of reals x, y such that x < y, we will generically adjoin a real r, which almost
disjointly codes the sets Yα+m for m ∈ �(x ∗ y) (here α will be given by a bookkeeping
function). Thus in particular, r will code the inequality x < y by encoding a pattern of
stationarity, non-stationarity for the sequence 〈Sα+m : m ∈ ω〉. A key feature of the entire
construction is the fact that the coherent system of iterations which we use to provide the
final generic extension does not add reals which accidentally encode a kill of stationarity.
This leads to the following ∆1

3-definition of the well-order: x < y if and only if there is
a real r such that for every countable suitable model M containing r there is an ordinal
α < πM such that (L[r])M � ∀m ∈ ω(SMα+m is non-stationary iff m ∈ �(x ∗ y)).

Now we turn to a more detailed account of the construction. Let π = λ · ν · µ and let
f : π → λ be a canonical bijection. For each α < π, let Wα be the L-least subset of ωn6−1

coding f(α). In the following, we will refer to Wα as the L-least code of α modulo f , or
simply the L-least code of α. We start with a nicely definable sequence S̄ = 〈Sα : α < π〉 of
stationary, co-stationary subsets of ωn6−1. Using bounded approximations, for each α < π,
we add a closed unbounded subset Cα of ωn6−1 which is disjoint from Sα.5 Following the
notation of [FFZ11], for a set of ordinals X, Even(X) denotes the set of all even ordinals
in X. Now, reproducing the ideas of [FFZ11], we can find subsets Zα ⊆ ωn6−1 such that

(∗)α: If β < ωn6−1 and M is a suitable model such that ωn6−2 ⊆ M, ωMn6−1 = β,
Zα ∩ β ∈ M, then M � ψ(ωMn6−1, Zα ∩ β), where ψ(ωMn6−1, X) is the formula “Even(X)

codes a triple (C̄, W̄ , ¯̄W ) where W̄ , ¯̄W are the L-least codes modulo fM of ordinals ᾱ,
¯̄α < πM = ωMn6

·ωMn5
·ωMn4

respectively such that ¯̄α is the largest limit ordinal not exceeding
ᾱ, and C̄ is a club in ωMn6−1 disjoint from SMᾱ ”.

For eachm = 1, · · · , n6−2, let S̄m = 〈Smα : α < ωn6−m〉 be a nicely definable in Lωn6−m−1

sequence of almost disjoint subsets of ωn6−m−1. Successively using almost disjoint coding
with respect to the sequences S̄m (see [FFZ11]), we can code the sets Zα into subsets Xα

of ω1 with the following property.6

(∗∗)α: If ω1 < β ≤ ω2 andM is a suitable model with ωM2 = β, {Xα}∪ω1 ⊆M, thenM �
ϕ(ωMn6−1, Xα), where ϕ(ωMn6−1, X) is the formula: “Using the sequences ({S̄m}m=n6−2

m=1 )M,

4The sets Xα will encode also additional information, which is necessary for our construction.
5For each α < π take P0

α to be the poset of all bounded subsets of ωn6−1 with extension relation
end-extension and then take P0 =

∏
α<π P

0
α with supports of size < ωn6−1.

6Take X1
α := Zα and for each m = 1, · · · , n6 − 2, let Pmα be the almost disjoint coding of Xm

α via S̄m

(into Xm+1
α ). Define P1,m =

∏
α<π P

m
α with supports of size < ωn6−m−1 and take P1 = P1,1∗· · ·∗P1,n6−2.

Note that Xα = Xn6−1
α , the generic of Pn6−2

α for each α.
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the set X almost disjointly codes a subset Z of ωMn6−1 whose even part codes the triple

(C̄, W̄ , ¯̄W ) where W̄ , ¯̄W are the L-least codes modulo fM of ordinals ᾱ, ¯̄α < πM, respec-
tively, such that ¯̄α is the largest limit ordinal not exceeding ᾱ, and C̄ is a club in ωMn6−1

disjoint from SMᾱ ”.

Finally, using the posets L(Xα+m, Xα) for α ∈ Lim(π) (for a set of ordinals C, Lim(C)
denotes the set of limit ordinals in C), m ∈ ω from [FFZ11, Definition 1], we can add the
characteristic functions of subsets Yα+m of ω1 such that:7

(∗ ∗ ∗)α+m: If β < ω1, M is suitable with ωM1 = β, Yα+m ∩ β ∈ M, then M �
ϕ(ωMn6−1, Xα+m ∩ β) ∧ ϕ(ωMn6−1, Xα ∩ β).

With this, the preliminary stage of the construction is complete. We denote by P0 the
finite iteration of forcing notions described above, that is P0 = P0 ∗P1 ∗P2. Note that P0

is ω-distributive (the proof is almost identical to [FFZ11, Lemma 1]) and so in particular
P0 does not add new reals. Let V = LP0 and let B̄ = 〈Bζ,m : ζ < ω1,m ∈ ω〉 ∈ L be a
nicely definable sequence of almost disjoint subsets of ω. As in the proof of Theorem 5.4
partition π into intervals Iζ = [lζ , lζ+1) for ζ < ν · µ, where lζ = λ · ζ, and let

C0 = {2 · ζ ′ + 1 : ζ ′ < ν · µ}.
Furthermore let C∗0 =

⋃{[lζ , lζ+1) : ζ ∈ C0}, let S∗ = {lζ : ζ ∈ ν · µ r C0} and let
C∗1 = π r (S∗ ∪ Lim(C∗0)).

Modifying the 3D-coherent system from the proof of Theorem 5.4, we will define in
V = LP0 a standard 3D-coherent system t∗ where γt

∗
= κ + 1, δt

∗
= ν + 1, πt∗ = π,

St∗ := S∗, Ct∗ = C∗ = π r S∗. The sole difference between t of Theorem 5.4 and t∗ is
the ξ-th step of the FS iterations of which t∗ consists, when ξ ∈ Lim(C∗0). For notational
simplicity, P∗α,β,ξ = Pt∗

α,β,ξ, Q̇
∗
α,β,ξ = Q̇t∗

α,β,ξ, V
∗
α,β,ξ = V t∗

α,β,ξ, ∆∗ = ∆t∗ : π → κ × ν and so

on, while without the asterisk we refer to the components of t, that is, Pα,β,ξ = Pt
α,β,ξ and

so on. Note that Lim(C∗0) ⊆ C∗ and so in particular for ξ ∈ Lim(C∗0) we will be adjoining
restricted generic reals.

The starting point at ξ = 0 for t∗ is the same as for t, that is, P∗α,β,0 = Pα,β,0 for all

α ≤ κ and β ≤ ν. The tasks achieved by the posets Q̇α,β,ξ for ξ ∈ S (in the notation of the

proof of Theorem 5.4) can be achieved by the corresponding posets Q̇∗α,β,ξ in our modified

construction for ξ ∈ S∗, and similarly the tasks achieved by the posets Q̇α,β,ξ for ξ ∈ C
can be accomplished by the posets Q̇∗α,β,ξ for ξ ∈ C∗1 . Thus, in order to complete the proof
of Theorem 6.1, we are left with describing the ξ-th step for ξ ∈ Lim(C∗0) of this modified
construction. It is useful to think of σ∗ξ = 〈Pi,ξ : i ∈ It∗〉, for ξ ∈ Lim(C∗0) as a coding
section of the 3D-coherent system. The reason is that the iterands 〈Q∗∆∗(ξ),ξ : ξ ∈ Lim(C∗0)〉
(and correspondingly Q∗i,ξ for i ≥ ∆∗(ξ)) will be used to introduce a ∆1

3-definition of a well-
order of the reals, which is to be recursively defined along the iteration. First, we describe
this natural well-order of the reals, which arises not only in the modified construction
which we are to define, but also in every coherent system we have considered so far in this
paper, provided that the corresponding forcing construction is done over the constructible
universe L.

7Take P2 =
∏
α∈Lim(π)

∏
m∈ω L(Xα+m, Xα) with countable supports.
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Our modified 3D-iteration will have the property that for α∗ ≤ κ, β∗ ≤ ν and ξ∗ ≤ π,
if Gα∗,β∗,ξ∗ is a P0 ∗ P∗α∗,β∗,ξ∗-generic filter over L then

L[Gα∗,β∗,ξ∗ ] ∩ R = L[{ȧα[Gα+1,0,0] : α < α∗} ∪ {ċβ[G0,β+1,0] : β < β∗}
∪ {u̇α∗,β∗,ξ[Gα∗,β∗,ξ+1] : ξ < ξ∗}] ∩ R,

where {ȧα : α < κ} is (the set of names of) the mad family added by Hκ, ċβ is the Cohen
real added by Pα,β+1,0 (which does not depend on α) and u̇α,β,ξ is a P0 ∗P∗α,β,ξ+1-name for

the generic real added by Q̇α,β,ξ. Note that, for ξ ∈ S∗, P0 ∗ P∗α,β,ξ+1 forces u̇α,β,ξ = u̇0,0,ξ

and, for ξ ∈ C∗, if α ≥ ∆∗0(ξ) and β ≥ ∆∗1(ξ) then P0 ∗ P∗α,β,ξ+1 forces u̇α,β,ξ = u̇∆∗(ξ),ξ,
otherwise, u̇α,β,ξ is just forced to be ∅. Thus, we only need to look at u̇ξ := u̇0,0,ξ when
ξ ∈ S∗ and to u̇ξ := u̇∆∗(ξ),ξ when ξ ∈ C∗.

By recursion on α∗ ≤ κ, P0 ∗P∗α∗,0,0 forces that there is a well-order of the reals <̇α∗,0,0

which depends only on {ȧα : α < α∗} such that it has <̇α,0,0 as an initial segment for
every α < α∗; by recursion on β∗ ≤ ν, for every α∗ ≤ κ, P0 ∗ P∗α∗,β∗,0 forces that there is
a well-order of the reals <̇α∗,β∗,0 which depends only on {ȧα : α < α∗} ∪ {ċβ : β < β∗}
such that it has <̇α∗,β,0 as an initial segment for every β < β∗ and it contains <̇α,β∗,0

(not necessarily as an initial segment) for every α < α∗; and by recursion on ξ∗ ≤ π,
for all α∗ ≤ κ and β∗ ≤ ν, P0 ∗ P∗α∗,β∗,ξ∗ forces that there is a well-order of the reals
<̇α∗,β∗,ξ∗ depending only on {ȧα : α < α∗} ∪ {ċβ : β < β∗} ∪ {u̇α∗,β∗,ξ : ξ < ξ∗} so that
it has <̇α∗,β∗,ξ as an initial segment for all ξ < ξ∗ and contains <̇α,β,ξ∗ (not necessarily as
an initial segment) for every α ≤ α∗ and β ≤ β∗. We denote <̇ξ∗ = <̇κ,ν,ξ∗ . Therefore,
P0 ∗P∗κ,ν,ξ∗ forces that <̇ξ is an initial segment of <̇ξ∗ for all ξ < ξ∗ and P0 ∗P∗κ,ν,π forces

<̇π =
⋃
{<̇ξ : ξ < π}

which will be the name of the desired well-order. Our modified construction will be
done in such a way, that in LP0∗P∗κ,ν,π the reals 〈u̇ξ[G] : ξ ∈ Lim(C∗0)〉 will give rise to a
∆1

3-definition for the well-order <̇π[G].
Now, we turn to the precise definition of the iterands Q∗ξ for ξ ∈ Lim(C∗0). We will

work in V . For each ξ ∈ Lim(π), we will define a Pκ,ν,ξ name Ȧξ for a subset of [ξ, ξ+ω).
Similarly to the construction in [FFZ11], for each ε ∈ [ωn6 , ωn6+1), fix (in L) a bijection iε :
{〈ξ0, ξ1〉 : ξ0 < ξ1 < ε} → Lim(ωn6). Fix ξ ∈ Lim(C∗0). Then ξ = lζ+η for some ζ ∈ C0 and
η < ωn6(= λ). Suppose P∗α,β,ξ has been defined for all α ≤ κ, β ≤ ν. Consider the P∗κ,ν,lζ -

names ξ̇0, ξ̇1 of ordinals for which it is forced that 〈ξ̇0, ξ̇1〉 = i−1

o.t.(<̇lζ )
(η). Furthermore, let

Ȧξ be the P∗κ,ν,lζ -name of ξ+(ωr�(xζ
ξ̇0
∗xζ

ξ̇1
)), where xζρ is the ρ-th real in L[Gκ,ν,lζ ]∩ [ω]ℵ0

according to the well-order <̇lζ . By Corollary 3.9, there are α < κ and β < ν such that

ξ̇0, ξ̇1 and Ȧξ are P∗α,β,lζ -names. Put ∆∗(ξ) = (α + 1, β + 1) and

Q̇∗ξ :=

{
〈s0, s1〉 ∈ [ω]<ℵ0 ×

[ ⋃
m∈�(xζ

ξ̇0
∗xζ
ξ̇1

)

Yξ+m × {m}
]<ℵ0

}

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s1 ⊆ t1, s0 is an initial segment of t0 and (t0 r s0)∩
Bχ,m = ∅ for all 〈χ,m〉 ∈ s1.

Note that the real uξ = u∆∗(ξ),ξ adjoined by Q∗ξ almost disjointly via the sequence B̄
codes the sets Yξ+m for m ∈ �(xζξ0 ∗ x

ζ
ξ1

). That is, for every m ∈ �(xζξ0 ∗ x
ζ
ξ1

), we have
χ ∈ Yξ+m iff |uξ ∩ Bχ,m| < ω. Consider a countable suitable model M containing uξ and
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let N := (L[uξ])
M. Then N is a suitable countable model, ωM1 = ωN1 and furthermore

Yξ+m ∩ ωN1 ∈ N for each m ∈ �(xζξ0 ∗ x
ζ
ξ1

) and so by (∗ ∗ ∗)ξ+m we have

N � ϕ(ωNn6−1, Xξ+m ∩ ωN1 ) ∧ ϕ(ωNn6−1, Xξ ∩ ωN1 ).

Then by (∗∗)ξ+m and (∗∗)ξ, we can conclude that there is a ¯̄ξ < πN such that for each

m ∈ �(xζξ0 ∗ x
ζ
ξ1

), SN¯̄ξ+m is non-stationary. To describe the above property of the real uξ,

we will say that uξ codes a stationarity pattern for �(xζξ0 ∗ x
ζ
ξ1

).8

This completes the construction of the modified standard 3D-coherent system. In ad-
dition, for every ξ ∈ Lim(π)\Lim(C∗0) define Ȧξ to be the canonical P∗0,0,ξ-name for the
interval [ξ, ξ + ω). Since all posets used to control the cardinal characteristics in Theo-
rem 5.4 are σ-linked, as well as the one we used in our coding sections, one can reproduce
the proof of [FFZ11, Lemma 3] to show that if G is P0∗P∗κ,ν,π-generic over L, then for each

η ∈ ⋃
ξ∈Lim(π)

Ȧξ[G] there is no real in L[G] encoding a closed unbounded set disjoint

from Sη. For brevity, we will say that in our final generic extension there is no accidental
coding of a kill of stationarity by a real . This leads to the following Σ1

3-definition of <π.
Let G be a P0 ∗ P∗κ,ν,π-generic over L and let x, y be reals in L[G]. Then:

x<̇π[G]y iff there is a real r such that for every countable suitable model M such that
r ∈M, there is ¯̄α < πM such that for allm ∈ �(x∗y), (L[r])M � (S ¯̄α+m is not stationary).

Indeed, if x, y are reals in LP0∗P∗κ,ν,λ such that x<̇π[G]y, our bookkeeping guarantees

that for some ξ ∈ Lim(C∗0), x = xζξ0 , y = xζξ1 , where ξ = lζ + η for some η < λ, and so the
real uξ codes a stationarity pattern for �(x ∗ y) at ξ.

Now, suppose x, y are reals in LP0∗P∗κ,ν,π , with the property that for some real r, for
every countable suitable model M such that r ∈ M, there is ¯̄α < πM such that for all
m ∈ �(x ∗ y), (L[r])M � (S ¯̄α+m is not stationary). By Löwenheim-Skolem Theorem, this
property holds for arbitrarily large modelsM containing the real r and so in particular it

holds in H
P0∗P∗κ,ν,λ
Θ , where Θ is sufficiently large. Thus, there is some ξ < π, such that for

every m ∈ �(x ∗ y), LΘ[r] � (Sξ+m is non-stationary). Since there is no accidental coding
of a kill of stationarity by a real, the ordinal ξ must be in Lim(C∗0) and so the uξ adjoined
by Q∗∆∗(ξ),ξ codes a stationarity pattern for �(a ∗ b), where a <π b are the reals given by

the bookkeeping function at stage ξ of the iteration. But then �(x ∗ y) ⊆ �(a ∗ b), which
implies that x = a, y = b and so indeed x <π y.

7. Discussion and questions

Though the 3D-coherent systems we constructed yield models of several values in Ci-
choń’s diagram, it is still restricted (as in [Mej13a]) to constellations where the right side
of the diagram assumes at most 3 different values. So far, the only known model of more
than 3 values on the right (actually 5) is constructed in [FGKS] with a proper ωω-bounding
forcing by a large product of creatures (though it is restricted to cov(N ) = d = ℵ1).

As discussed before Corollary 3.9, in all our constructions we only add two types of
generic reals: full generic reals and restricted generic reals. Different types of generic
reals could be considered (like a real which is restricted generic in some plane but full

8The properties of P0 ∗ P∗κ,ν,π will guarantee that for m ∈ ω \�(xζξ0 ∗ x
ζ
ξ1

), SN¯̄ξ+m is stationary in N .

Thus the stationarity, non-stationarity pattern of 〈S ¯̄ξ+m : m ∈ ω〉 in N exactly codes the ordered pair

〈xζξ0 , x
ζ
ξ1
〉.
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generic in the perpendicular plane), but the known attempts so far destroy the complete
embedability of the posets in the system and, therefore, the construction collapses. Success
in this problem of using a different type of generic real in 3D-coherent systems would lead
to models where more than 3 different values can be obtained in the right side of Cichoń’s
diagram. For instance,

Question 7.1 ([Mej13a, Sect. 7]). Is it consistent with ZFC that cov(M) < d <
non(N ) < cof(N )?

It seems natural to expect that similar 3D-systems of iterations can be helpful in pro-
viding models in which, for example, b, s and a are pairwise distinct. There are three
ZFC admissible constellations: s < b < a, b < s < a and b < a < s. The consistency of
s = ℵ1 < b < a holds in Shelah’s original template model [She04], while the consistency of
ℵ1 < s < b < a has been obtained by the first and third author of the current paper using
the iteration of non-definable (i.e. not Suslin) posets along a Shelah template (see [FM]).
The consistency of b < s < a (assuming the existence of a supercompact cardinal) is due
to D. Raghavan and S. Shelah [RS], and has been recently announced at the Oberwolfach
Set Theory Meeting, February 2017. Thus, one of the most prominent remaining open
questions is the following:

Question 7.2 ([BF11, §6]). Is it consistent with ZFC (even assuming large cardinals)
that b < a < s?

We should point out though, that if we are to construct a 3D-system for the above
constellation, in order to increase s, we have to include in the construction, non-definable,
ccc posets which adjoin non-restricted, unsplitting reals (e.g. we could adjoin full Mathias-
Prikry generics). This leads however to many serious technical problems.
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