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ON THE UNIFORM COMPUTATIONAL CONTENT

OF RAMSEY’S THEOREM

VASCO BRATTKA AND TAHINA RAKOTONIAINA

Abstract. We study the uniform computational content of Ramsey’s theorem in
the Weihrauch lattice. Our central results provide information on how Ramsey’s
theorem behaves under product, parallelization and jumps. From these results we
can derive a number of important properties of Ramsey’s theorem. For one, the
parallelization of Ramsey’s theorem for cardinality n ≥ 1 and an arbitrary finite
number of colors k ≥ 2 is equivalent to the n–th jump of weak Kőnig’s lemma.

In particular, Ramsey’s theorem for cardinality n ≥ 1 is Σ0
n+2–measurable in

the effective Borel hierarchy, but not Σ0
n+1

–measurable. Secondly, we obtain
interesting lower bounds, for instance the n–th jump of weak Kőnig’s lemma is
Weihrauch reducible to (the stable version of) Ramsey’s theorem of cardinality
n+2 for n ≥ 2. We prove that with strictly increasing numbers of colors Ramsey’s
theorem forms a strictly increasing chain in the Weihrauch lattice. Our study
of jumps also shows that certain uniform variants of Ramsey’s theorem that are
indistinguishable from a non-uniform perspective play an important role. For
instance, the colored version of Ramsey’s theorem explicitly includes the color of
the homogeneous set as output information, and the jump of this problem (but
not the uncolored variant) is equivalent to the stable version of Ramsey’s theorem

of the next greater cardinality. Finally, we briefly discuss the particular case of
Ramsey’s theorem for pairs, and we provide some new separation techniques
for problems that involve jumps in this context. In particular, we study uniform
results regarding the relation of boundedness and induction problems to Ramsey’s
theorem, and we show that there are some significant differences with the non-
uniform situation in reverse mathematics.
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1. Introduction

In this paper we study uniform computational properties of Ramsey’s theorem for
cardinality n and k colors. We briefly recall some basic definitions.

By [M ]n := {A ⊆ M : |A| = n} we denote the set of subsets of M with exactly n
elements. We identify k with the set {0, ..., k− 1} for every k ∈ N. We also allow the
case k = N. Any map c : [N]n → k with finite range is called a coloring (of [N]n). A
subset M ⊆ N is called homogeneous (for c) if there is some i ∈ k such that c(A) = i

for every A ∈ [M ]n. In this situation we write c(M) = i, which is understood to
imply that M is homogeneous. Frank P. Ramsey proved the following theorem [35].

Theorem 1.1 (Ramsey’s theorem 1930 [35]). For every coloring c : [N]n → k with
n, k ≥ 1 there exists an infinite homogeneous set M ⊆ N.

We will abbreviate Ramsey’s theorem for cardinality n and k colors by RTn,k.
1

The computability theoretic study of Ramsey’s theorem started when Specker proved
that there exists a computable counterexample for Ramsey’s theorem for pairs [38],
which shows that Ramsey’s theorem cannot be proved constructively.

Theorem 1.2 (Specker 1969 [38]). There exists a computable coloring c : [N]2 → k

without a computable infinite homogeneous set M ⊆ N.

Jockusch provided a very simple proof of Specker’s theorem, and he improved
Specker’s result by showing the following [26].

Theorem 1.3 (Jockusch 1972 [26]). For every computable coloring c : [N]n → 2
with n ≥ 1 there exists an infinite homogeneous set M ⊆ N such that M ′≤T ∅

(n).
However, there exists a computable coloring c : [N]n → 2 for each n ≥ 2 without an
infinite homogeneous set M ⊆ N that is computable in ∅(n−1).

Another cornerstone in the study of Ramsey’s theorem was the cone avoidance
theorem (Theorem [36, Theorem 2.1]) that was originally proved by Seetapun.

Theorem 1.4 (Seetapun 1995 [36]). Let c : [N]2 → 2 be a coloring that is computable
in B ⊆ N, and let (Ci)i be a sequence of sets Ci ⊆ N such that Ci 6≤TB for all
i ∈ N. Then there exists an infinite homogeneous set M for c such that Ci 6≤TM for
all i ∈ N.

This theorem was generalized by Cholak, Jockusch and Slaman who proved in
particular the following version [12, Theorem 12.2].

Theorem 1.5 (Cholak, Jockusch and Slaman 2001 [12]). For every computable color-
ing c : [N]n → k there exists an infinite homogeneous set M ⊆ N such that ∅(n) 6≤TM

′.

Cholak, Jockusch and Slaman also improved Jockusch’s theorem (Theorem 1.3) for
the case of Ramsey’s theorem for pairs [12, 13].

Theorem 1.6 (Cholak, Jockusch and Slaman 2001 [12]). For every computable col-
oring c : [N]2 → 2 there exists an infinite homogeneous set M ⊆ N, which is low2,
i.e., such that M ′′≤T ∅′′.

We will make use of these and other earlier results in our uniform study of Ram-
sey’s theorem. A substantial number of results in this article are based on the second
author’s PhD thesis [34]. The first uniform results on Ramsey’s theorem were pub-
lished by Dorais, Dzhafarov, Hirst, Mileti and Shafer [16] and by Dzhafarov [17, 18].
Among other things they proved the following squashing theorem [16, Theorem 2.5]

1We do not use the more common abbreviation RT
n
k since we will use upper indices to indicate

the number of jumps or products.
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Figure 1. Ramsey’s theorem for different cardinalities and colors in
the Weihrauch lattice: all solid arrows indicate strong Weihrauch re-
ductions against the direction of the arrow, all dashed arrows indicate
ordinary Weihrauch reductions.

that establishes a relation between products and parallelization for problems such as
Ramsey’s theorem.

Here a problem f :⊆ NN ⇒ NN, i.e., a partial multi-valued function, is called
finitely tolerant if there is a computable partial function T :⊆ NN → NN such that
for all p, q ∈ dom(f) and k ∈ N with (∀n ≥ k)(p(n) = q(n)) it follows that r ∈ f(q)
implies T 〈r, k〉 ∈ f(p). By 〈, 〉 we denote a standard pairing function on Baire space
NN. Intuitively, finite tolerance means that for two almost identical inputs and a
solution for one of these inputs we can compute a solution for the other input. The
squashing theorem relates products g × f to parallelizations ĝ of problems (these
notions will be defined in the next section).

Theorem 1.7 (Squashing theorem [16]). For f, g :⊆ NN ⇒ NN we obtain:

(1) If dom(f) = NN and f is finitely tolerant, then g × f ≤W f =⇒ ĝ≤W f .
(2) If dom(f) = 2N and f is finitely tolerant, then g × f ≤sW f =⇒ ĝ≤sW f .
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This theorem allowed the authors of [16] to prove that Ramsey’s theorem for strictly
increasing numbers of colors forms a strictly increasing chain with respect to strong
Weihrauch reducibility [16, Theorem 3.1]:

RTn,2<sW RTn,3<sW RTn,3<sW ....

However, they left it an open question [16, Question 7.1] whether an analogous state-
ment also holds for ordinary Weihrauch reducibility. We will be able to use our The-
orem 3.24 on products to answer this question in the affirmative (see Theorem 4.22).
Independently, similar results were obtained by Hirschfeldt and Jockusch [23] and
Patey [32]. Altogether, the diagram in Figure 1 displays how Ramsey’s theorem for
different cardinalities and colors is situated in the Weihrauch lattice.

We briefly describe the further organization of this article. In the following Sec-
tion 2 we briefly present the basic concepts and definitions related to the Weihrauch
lattice, and we collect a number of facts that are useful for our study. In Section 3
we introduce the uniform versions of Ramsey’s theorem that we are going to consider
in this study, and we establish a core lower bound in Theorem 3.5 that will be used
to derive almost all other lower bound results. We also prove key results on products
in Theorem 3.24 and on parallelization in Theorem 3.28 that also lead to our main
lower bound results, which are formulated in Corollary 3.27 and Corollary 3.30. In
Section 4 we discuss jumps of Ramsey’s theorem together with upper bound results.
In particular, we prove Theorem 4.3, which is our main result on jumps and shows
that the stable version of Ramsey’s theorem can be seen as the jump of the colored
version of the next smaller cardinality. These results lead to Corollary 4.14, which
shows that composition with one jump of weak Kőnig’s lemma is sufficient to bring
Ramsey’s theorem from one cardinality to the next greater cardinality. From this
result we can conclude our main upper bound result in Corollary 4.15, which shows
that Ramsey’s theorem of cardinality n is reducible to the n–th jump of weak Kőnig’s
lemma. Together with our lower bound results this finally leads to the classification
of the parallelization of Ramsey’s theorem of cardinality n as the n–th jump of weak
Kőnig’s lemma in Corollary 4.18 and to the classification of the exact Borel degree of
Ramsey’s theorem in Corollary 4.19. We also use these results to obtain the above
mentioned result on increasing numbers of colors. In Section 5 we briefly discuss the
special case of Ramsey’s theorem for pairs, we summarize some known results, pro-
vide some new insights and formulate some open questions. In Section 6 we develop
separation techniques for jumps, and we apply them to separate some uniform ver-
sions of Ramsey’s theorem. Finally, in Section 7 we discuss the relation of closed and
compact choice problems to Ramsey’s theorem, which corresponds to the discussion
of boundedness and induction principles in reverse mathematics.

2. Preliminaries

We use the theory of the Weihrauch lattice (as it has been developed in [3, 4, 5,
6, 7, 8]) as a framework for the uniform classification of the computational content of
mathematical problems. We present a very brief introduction of the main concepts
and refer the reader to [6] and [8] for a more detailed introduction.

Formally, the Weihrauch lattice is formed by equivalence classes of partial multi-
valued functions f :⊆ X ⇒ Y on represented spaces X,Y , as defined below. We
will simply call such functions problems here, and they are, in fact, computational
challenges in the sense that for every x ∈ dom(f) the goal is to find some y ∈ f(x).
In this case dom(f) contains the admissible instances x of the problem, and for each
instance x the set f(x) contains the corresponding solutions.

For problems f :⊆ X ⇒ Y , g :⊆ Y ⇒ Z we define the composition g ◦ f :⊆ X ⇒ Z

by g ◦ f(x) := {z ∈ Z : (∃y ∈ f(x)) z ∈ g(y)}, where it is crucial to use the domain
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dom(g ◦ f) := {x ∈ X : f(x) ⊆ dom(g)}. We also denote the composition briefly by
gf .

A represented space (X, δ) is a setX together with a representation, i.e., a surjective
partial map δ :⊆ NN → X that assigns names p ∈ NN to points δ(p) = x ∈ X . Given
a problem f :⊆ X ⇒ Y on represented spaces (X, δX) and (Y, δY ) we say that a
partial function F :⊆ NN → NN realizes f , in symbols F ⊢ f , if δY F (p) ∈ fδX(p)
for all p ∈ dom(fδX). Notions such as computability and continuity can now be
transferred from Baire space to represented spaces via realizers. For instance, f is
called computable, if it admits a computable realizer F . We refer the reader to [9, 39]
for further details.

The intuition behind Weihrauch reducibility is that f ≤W g holds if there is a com-
putational procedure for solving f during which a single application of the computa-
tional resource g is allowed. There are actually two slightly different formal versions
of this reduction, which are both needed.

Definition 2.1 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆ W ⇒ Z be
problems.

(1) f is called Weihrauch reducible to g, in symbols f ≤W g, if there are com-
putable K :⊆ X ⇒W , H :⊆ X × Z ⇒ Y such that ∅ 6= H(x, gK(x)) ⊆ f(x)
for all x ∈ dom(f).

(2) f is called strongly Weihrauch reducible to g, in symbols f ≤sW g, if there are
computable K :⊆ X ⇒ W , H :⊆ Z ⇒ Y such that ∅ 6= HgK(x) ⊆ f(x) for
all x ∈ dom(f).

In terms of realizers and functions on Baire space (strong) Weihrauch reducibility
can also be rephrased as follows [20, Lemma 4.5]:

• f ≤W g ⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G ⊢ g) H〈id, GK〉 ⊢ f .
• f ≤sW g ⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G ⊢ g) HGK ⊢ f .

Here id : NN → NN denotes the identity of Baire space. A relation between
Weihrauch reducibility and strong Weihrauch reducibility can be established with
the notion of a cylinder. A problem f is called a cylinder if id × f ≤sW f , which is
equivalent to the property that g≤W f ⇐⇒ g≤sW f holds for all problems g [5,
Corollary 3.6].

Weihrauch reducibility induces a lattice with a rich and very natural algebraic
structure. We briefly summarize some of these algebraic operations for problems
f :⊆ X ⇒ Y and g :⊆W ⇒ Z:

• f ×g :⊆ X×W ⇒ Y ×Z is the product of f and g and represents the parallel
evaluation of problem f on some input x and g on some input w.
• f ⊔ g :⊆ X ⊔ W ⇒ Y ⊔ Z is the coproduct of f and g and represents the
alternative evaluation of f on some input x or g on some input w (where
X ⊔W and Y ⊔ Z denote the disjoint unions).
• f ∗ g := sup{f0 ◦ g0 : f0≤W f and g0≤W g} is the compositional product and
represents the consecutive usage of the problem f after the problem g.
• f∗ :=

⊔∞
n=0 f

n is the finite parallelization and allows an evaluation of the
n–fold product fn for some arbitrary given n ∈ N.

• f̂ :⊆ XN ⇒ Y N is the parallelization of f and allows a parallel evaluation of
countably many instances of f .
• f ′ :⊆ X ⇒ Y denotes the jump of f , which is formally the same problem as f ,
but the input representation δX of X is replaced by its jump δ′X := δX ◦ lim.

Here lim :⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ limi→∞ pi is the limit map on Baire space
for pi ∈ NN, where 〈 〉 denotes a standard infinite tupling function on Baire space. We
recall that 〈n, k〉 := 1

2 (n+ k+ 1)(n+ k) + k, and inductively this can be extended to
finite tuples by 〈in+1, in, ..., i0〉 := 〈in+1, 〈in, ..., i0〉〉 for all n ≥ 1 and i0, ..., in+1 ∈ N.
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Likewise, we define 〈p0, p1, p2, ...〉 ∈ NN for pi ∈ NN by 〈p0, p1, p2, ...〉〈n, k〉 := pn(k).
Similarly as lim, we define the limit lim2N :⊆ 2N → 2N on Cantor space 2N. For finite
sets X ⊆ N we denote by limX :⊆ XN → X the ordinary limit operation with respect
to the discrete topology.

By f (n) we denote the n–fold jump of f , and we denote the n–fold compositional
product of f with itself by f [n], i.e., f [0] = id, f [n+1] := f [n] ∗ f . By fn :⊆ Xn ⇒ Y n

we denote the n–fold product f × ...× f of f .
One can also define a sum operation ⊓ that play the role of the infimum for ordinary

Weihrauch reducibility ≤W. But we are not going to use this operation here. Alto-
gether, ≤W induces a lattice structure, and the resulting lattice is called Weihrauch
lattice. This lattice is not complete as infinite suprema do not need to exist, but the
special supremum f ∗g is even a maximum that always exists [11, Proposition 31], and
the compositional product ∗ is associative [11, Corollary 17]. Finite parallelization
and parallelization are closure operators in the Weihrauch lattice. Further information
on the algebraic structure can be found in [11].

For metric spaces X we denote by Σ0
n the corresponding class of Borel subsets of X

of level n ≥ 1 [27]. We recall that a partial function f :⊆ X → Y on metric spaces X
and Y is called Σ0

n–measurable, if for every open set U ⊆ Y there exists a set V ∈ Σ0
n

such that f−1(U) = V ∩ dom(f), i.e., such that f−1(U) is a Σ0
n–set relative to the

domain of f . In the case of n = 1 we obtain exactly continuity. Likewise we define
f to be effectively Σ0

n–measurable if a corresponding V can be uniformly computed
from a given U [2, Definition 3.5]. In this case we obtain exactly computability for
n = 1. The notion of (effective) Σ0

n–measurability can be transferred to problems
f :⊆ X ⇒ Y via realizers, i.e., f is called (effectively) Σ0

n–measurable, if it has a
realizer F :⊆ NN → NN that is (effectively) Σ0

n–measurable.2 It is easy to see that
Weihrauch reducibility preserves (effective) Σ0

n–measurability downwards.

Fact 2.2. Let f, g be problems and n, k ≥ 1. Then

(1) f (effectively) Σ0
n–measurable and g (effectively) Σ0

k–measurable =⇒ f ∗ g
(effectively) Σ0

n+k−1–measurable.

(2) f, g (effectively) Σ0
n–measurable =⇒ f × g (effectively) Σ0

n–measurable.
(3) f ≤W g and g (effectively) Σ0

n–measurable =⇒ f (effectively) Σ0
n–measurable.

(4) f ≤W lim[n] ⇐⇒ f is effectively Σ0
n+1–measurable.

Proof. (1) and (2) follow form [2, Proposition 3.8]. (3) follows from (1) and (2) since
H〈id, GK〉 is (effectively) Σ0

n–measurable, if G :⊆ NN → NN is so and the functions
H,K :⊆ NN → NN are computable (see also [2, Proposition 5.2]). (4) Here “=⇒”
follows from (3) since lim is effectively Σ0

2–measurable [2, Proposition 9.1], and hence

lim[n] is effectively Σ0
n+1–measurable by (1). The inverse implication “⇐=” follows

with the help of the effective Banach-Hausdorff-Lebesgue theorem [2, Corollary 9.6]
applied to the corresponding realizers on Baire space. �

The last mentioned item can also be expressed such that lim[n] is effectively Σ0
n+1–

complete in the Weihrauch lattice.
An important problem in the Weihrauch lattice is closed choice CX :⊆ A−(X) ⇒ X,

A 7→ A, which maps every closed set A ⊆ X to its points. By A−(X) we denote the
set of closed subsets of a (computable) metric space X with respect to negative in-
formation. This means that a closed set is essentially described by enumerating basic
open balls that exhaust its complement. Intuitively, closed choice CX is the follow-
ing problem: given a closed set A by a description that lists everything that does not
belong to A, find a point x ∈ A (see [3] for further information and precise definitions).

2This definition yields a conservative extension of the notion of (effective) measurability to multi-
valued functions on represented space. It coincides for single-valued functions on computable Polish
spaces with the usual notion of (effective) measurability as it is known from descriptive set theory [2].
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By BWTX :⊆ XN ⇒ X we denote the Bolzano-Weierstraß theorem for the space
X , which is the problem: given a sequence (xn)n with a compact closure, find a
cluster point of this sequence. This problem has been introduced and studied in
detail in [7]. If X itself is compact, then this problem is total. We are particularly
interested in finite versions of the Bolzano-Weierstraß theorem here. We recall that
we identify k ∈ N with the set X = {0, ..., k − 1} in the following. By WKL we
denote weak Kőnig’s lemma, which is the problem WKL :⊆ Tr → 2N, T 7→ [T ] that
maps every infinite binary tree T to the set of its infinite paths. We summarize a
number of facts that are of particular importance for us. Here and in the following
we will occasionally use that jumps are monotone with respect to strong Weihrauch
reducibility, i.e., f ≤sW g =⇒ f ′≤sW g′ [7, Proposition 5.6(2)].

Fact 2.3. We obtain

(1) BWT
(n−1)
k ≡sW C

(n)
k for all k ∈ N, n ≥ 1,

(2) WKL
(n)≡sW Ĉ

(n)
k for all k ≥ 2 and n ∈ N,

(3) lim(n)≡sW
̂
lim

(n)
k for all k ≥ 2, k = N and n ∈ N,

(4) lim
(n)
k <sW BWT

(n)
k and lim

(n)
k <W BWT

(n)
k for all k ≥ 2, k = N and n ∈ N,

(5) WKL
(n)<sW lim(n)<sW WKL

(n+1) and WKL
(n)<W lim(n)<W WKL

(n+1) for
all n ∈ N,

(6) (WKL
′)[n]≡W WKL

(n) and lim[n]≡W lim(n−1) for all n ≥ 1.

Proof. (1) follows from [7, Theorem 9.4] (noting that the cluster point problem used
there is identical to the Bolzano-Weierstraß theorem in the finite case). (2) follows

since WKL≡sW Ĉk, which has essentially been proved in [5, Theorem 8.2], where
LLPO is just a reformulation of C2 and from the fact that jumps and parallelizations
commute by [7, Proposition 5.7(3)]. For (3) see [7, Fact 3.5]. (4) The reductions follow
since the limit can be seen as a special case of the Bolzano-Weiertraß theorem [7,

Proposition 11.21] and they are strict since lim
(n)
k is Σ0

n+2–measurable, but BWT
(n)
k

for k ≥ 2 is not, see the proof of [6, Proposition 9.1]. The positive parts of the
reductions in (5) are easy to see, and the strictness follows from (relativized versions)
of the low basis theorem and (relativized versions) of the Kleene tree construction,
respectively (see also [3, 7]). (6) The statement for WKL follows by induction from

WKL
(n+1)≡W WKL

(n)∗WKL
′, where “≤W” holds since lim≤W WKL

′ and the converse
reduction follows from [7, Theorem 8.13]. The statement for lim follows for instance

from [7, Corollary 5.16] since lim(n) is a cylinder. �

3. The Uniform Scenario, Lower Bounds and Products

In this section we plan to introduce the uniform versions of Ramsey’s theorem
that we are going to study, and we will prove some basic facts about them. While in
non-uniform settings such as reverse mathematics [37] certain information on infinite
homogeneous sets can just be assumed to be available, we need to make this more
explicit. For instance, it turned out to be useful to consider an enriched version
CRTn,k of Ramsey’s theorem that provides additional information on the color of the
produced infinite homogeneous set. In [12] the stable version of Ramsey’s theorem
SRTn,k was introduced, which is a restriction of Ramsey’s theorem that we consider
too.

We need to introduce some notation first. For every n ≥ 1 we assume that we
use some total standard numbering ϑn : N → [N]n that can be defined, for instance,

by ϑn〈i0, i1, ..., in−1〉 :=
{
k +

∑k
j=0 ij : k = 0, ..., n− 1

}
for all i0, ..., in−1 ∈ N, i.e.,

the set ϑn〈i0, i1, ..., in−1〉 contains the numbers i0 < i0 + i1 + 1 < i0 + i1 + i2 + 2 <
... < i0 + i1 + in−1 + n − 1. However, we will not make any technical use of this
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specific definition of ϑn. Occasionally, we use the notation {i0 < i1 < ... < in−1} for
a set {i0, i1, ..., in−1} ∈ [N]n with the additional property that i0 < i1 < ... < in−1.
By Cn,k we denote the set of colorings c : [N]n → k which is represented such that
p ∈ NN is a name for c, if p(i) = c(ϑn(i)) (this is equivalent to using the natural
function space representation [ϑn → idk] as known in computable analysis [9, 39]).
By Cn,N we denote the set of all colorings c : [N]n → N with a finite range, represented
analogously. By Hc we denote the set of infinite homogeneous sets M ⊆ N for the
coloring c. A coloring c : [N]n → k is called stable, if limi→∞ c(A ∪ {i}) exists for all
A ∈ [N]n−1. The expression k ≥ a,N with a ∈ N is means k ∈ {x ∈ N : x ≥ a} ∪ {N}.

Definition 3.1 (Uniform variants of Ramsey’s theorem). For all n ≥ 1 and k ≥ 1,N
we define

(1) RTn,k : Cn,k ⇒ 2N,RTn,k(c) := Hc,
(2) CRTn,k : Cn,k ⇒ k × 2N,CRTn,k(c) := {(c(M),M) :M ∈ Hc},
(3) SRTn,k :⊆ Cn,k ⇒ 2N, SRTn,k(c) := RTn,k(c),

where dom(SRTn,k) := {c ∈ Cn,k : c stable},
(4) CSRTn,k :⊆ Cn,k ⇒ k × 2N,CSRTn,k(c) := {(c(M),M) : M ∈ Hc},

where dom(CSRTn,k) := {c ∈ Cn,k : c stable},
(5) RTn,+ :=

⊔
k≥1 RTn,k, RT :=

⊔
n≥1 RTn,+.

All formalized versions of Ramsey’s theorem mentioned here are well-defined by
Ramsey’s theorem 1.1. We call n the cardinality of the respective version of Ramsey’s
theorem. Here CRTn,k enriches RTn,k by the information on the color of the resulting
infinite homogeneous set, and SRTn,k is a restriction of RTn,k defined only for stable
colorings. The coproduct RTn,+ as well as RTn,N can both be seen as different uniform
versions of the principle (∀k) RTn,k that is usually denoted by RT

n
<∞ in reverse

mathematics (see, e.g., [22]). In the case of RTn,N the finite number of colors is left
unspecified, whereas in the case of RTn,+, the number of colors is an input parameter.

We emphasize that we use Cantor space 2N, i.e., the infinite homogeneous sets
M ∈ Hc are represented via their characteristic functions χM : N→ {0, 1}. However,
by definition any infinite subset A ⊆M of an infinite homogeneous set M ∈ Hc is in
Hc too, and given an enumeration of an infinite set M , we can find a characteristic
function χA of an infinite subset A ⊆M . This means that we can equivalently think
about sets in 2N as being represented via enumerations.3

We obtain the following obvious strong reductions between the different versions
of Ramsey’s theorem.

Lemma 3.2 (Basic reductions). SRTn,k≤sW RTn,k ≤sW CRTn,k and
SRTn,k ≤sW CSRTn,k≤sW CRTn,k for all n ≥ 1 and k ≥ 1,N.

We note that the colored versions of Ramsey’s theorem are Weihrauch equivalent
to the corresponding uncolored versions. This is because given a coloring c and an
infinite homogeneous set M ∈ Hc, we can easily compute c(M) by choosing some
points i0 < i1 < ... < in−1 in M and by computing c{i0, i1, ..., in−1}. Hence, we
obtain the following corollary.

Corollary 3.3. RTn,k ≡W CRTn,k and SRTn,k≡W CSRTn,k for all n ≥ 1, k ≥ 1,N.

The diagram in Figure 2 illustrates the situation, and it displays further information
on lower and upper bounds that is justified by proofs that we will only provide step
by step. The diagram illustrates the non-trivial case n ≥ 2, k ≥ 2,N whereas the
bottom cases where n = 1 or k = 1 are described in the following result.

3More formally, we could equivalently consider the output space of RTn,k and its variants as
A+(N) or A(N), i.e., as space of subsets of N equipped with positive or full information, respectively,
which corresponds topologically to the lower Fell topology and the Fell topology, respectively.
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lim(n)≡sW
̂
lim

(n)
2

WKL
(n)≡sW Ĉ

(n)
2

CRTn,k

RTn,k

CSRTn,k

SRTn,k

BWT
(n−1)
2 ≡sW C

(n)
2

lim
(n−1)
2

Figure 2. The degree of Ramsey’s theorem for fixed n ≥ 2 and
k ≥ 2,N in the Weihrauch lattice: all solid arrows indicate strong
Weihrauch reductions against the direction of the arrow, all dashed
arrows indicate ordinary Weihrauch reductions; the circle indicates
what falls into a single Weihrauch degree, and the square box indi-
cates what falls into a single parallelized Weihrauch degree.

Proposition 3.4 (The bottom cases). Let n ≥ 1 and k ≥ 2,N. Then we obtain

(1) CSRTn,1≡sW SRTn,1≡sW RTn,1≡sW CRTn,1 are computable and not cylin-
ders,

(2) limk ≡W SRT1,k <W BWTk ≡W RT1,k,
(3) limk ≤sW CSRT1,k and BWTk ≤sW CRT1,k.

Proof. We note that CSRTn,1, SRTn,1,RTn,1 and CRTn,1 can yield any infinite subset
of N (together with the color 1 in the case of CSRTn,1,CRTn,1), and hence they are
all constant as multi-valued functions, hence computable and strongly equivalent to
each other. Since the identity cannot be strongly reduced to constant multi-valued
problems, it follows that all the aforementioned problems are not cylinders. It is easy
to see that limk ≡W SRT1,k and BWTk ≡W RT1,k, whereas limk <W BWTk is given by
Fact 2.3(4). The strong reductions limk ≤sW CSRT1,k and BWTk ≤sW CRT1,k are also
clear. �

This result demonstrates that the Ramsey theorem for cardinality 1 and k colors
RT1,k is equivalent to the Bolzano-Weierstraß BWTk for the space k, and hence the
general Ramsey theorem can be seen as a generalization of the Bolzano-Weierstraß
theorem for finite spaces. Next we want to prove the following interesting lower bound
on the complexity of Ramsey’s theorem.

Theorem 3.5 (Lower bound). BWT
(n−1)
2 ≡sW C

(n)
2 ≤sW CSRTn,2 for all n ≥ 2.
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Proof. We note that by Fact 2.3 C
(n)
2 ≡sW BWT

(n−1)
2 ≡sW BWT2 ◦ lim

[n−1]

2N
. Let p ∈

dom(BWT2 ◦ lim
[n−1]

2N
) and q := lim

[n−1]

2N
(p). Then

q(i0) = lim
i1→∞

lim
i2→∞

... lim
in−1→∞

p〈in−1, ..., i0〉

for all i0 ∈ N. We compute the coloring c : [N]n → 2 with

c{i0 < i1 < .... < in−1} := p〈in−1, in−2, ..., i1, i0〉.

It is clear that c is a stable coloring, and with the help of CSRTn,2 we can com-
pute (c(M),M) ∈ CSRTn,2(c). We claim that c(M) ∈ BWT2(q). This proves

BWT
(n−1)
2 ≤sW CSRTn,2. We still need to prove the claim.

1. Case: q is a convergent binary sequence, i.e., x := lim2(q) ∈ {0, 1} exists.
In this case q(i0) = x for all sufficiently large i0 and BWT2(q) = {x}. Since M

is infinite, there will be such a sufficiently large i0 ∈ M . Since q = lim
[n−1]

2N
(p) it

follows that there will be sufficiently large in−1 > ... > i1 > i0 in M such that
p〈in−1, in−2, ..., i1, i0〉 = x, and hence c(M) = x ∈ {x} = BWT2(q).
2. Case: q is not a convergent binary sequence.
In this case BWT2(q) = {0, 1} and c(M) ∈ BWT2(q) hold automatically. �

It is clear that Ramsey’s theorem for any number of colors k can be reduced to
Ramsey’s theorem for any greater number of colors. This is because any coloring
c : [N]n → k can be seen as a coloring for any number m ≥ k of colors, and this idea
applies to all versions of Ramsey’s theorem that we have considered.

Lemma 3.6 (Increasing colors). For all n, k ≥ 1 we obtain:

(1) SRTn,k≤sW SRTn,k+1≤sW SRTn,N,
(2) CSRTn,k≤sW CSRTn,k+1≤sW CSRTn,N,
(3) RTn,k≤sW RTn,k+1≤sW RTn,+≤sW RTn,N,
(4) CRTn,k≤sW CRTn,k+1≤sW CRTn,N.

We will later come back to the question whether these reductions are strict. In
particular, with Theorem 3.5 and Lemma 3.6 we have now established the lower bound
that is indicated in the diagram in Figure 2.

Corollary 3.7 (Lower bound). BWT
(n−1)
2 ≤sW CSRTn,k for all n ≥ 2, k ≥ 2,N and

lim
(n−1)
2 ≤sW CSRTn,k for all n ≥ 1 and k ≥ 2,N.

The second statement follows from the first one by Fact 2.3 in the case of n ≥ 2 and
follows from Proposition 3.4 in the case of n = 1. We note that by Corollary 3.15 below
CSRTn,k cannot be replaced by SRTn,k in this result. It follows from Theorem 1.5 that
the binary limit lim2 cannot be replaced by the limit on Baire space in the previous

result. We recall that lim(n−1)≡sW lim[n].

Corollary 3.8 (Limit avoidance). lim(n−1) 6≤W lim ∗RTn,N for all n ≥ 2.

Proof. Let us assume that lim(n−1)≤W lim ∗RTn,N holds for some n ≥ 2. Then

lim(n−1) maps some computable p ∈ NN to ∅(n), and the reduction maps p to a
computable coloring c : [N]n → N with finite range(c). By Theorem 1.5 there exists
an infinite homogeneous set M ⊆ N for c such that ∅(n) 6≤TM

′. Now the assumption
is that there is a limit computation performed on p and M that produces ∅(n). But
any result produced by such a limit computation can also be computed fromM ′ since
p is computable (and for all computable functions F,G :⊆ N → N there is a com-
putable function H :⊆ N → N such that F ◦ lim ◦ G = H ◦ J). Hence, ∅(n)≤TM

′,
which is a contradiction. �

We obtain the following corollary since lim ∗ lim(n−2)≡W lim(n−1), which in turn
follows from [7, Corollary 5.17] since ∗ is associative.
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Corollary 3.9 (Limit avoidance). lim(n−2) 6≤W RTn,N for all n ≥ 2.

We recall that a problem f is called parallelizable, if f ≡W f̂ . We can conclude that
Ramsey’s theorem is not parallelizable.

Corollary 3.10 (Parallelizability). RTn,k and SRTn,k are not parallelizable for all
n ≥ 1 and k ≥ 2,N.

Proof. By Corollaries 3.7 and 3.3 we have lim
(n−1)
2 ≤W SRTn,k for n ≥ 1, k ≥ 2,N.

Let us assume that SRTn,k is parallelizable. Since parallelization is a closure operator,
this implies by Lemma 3.6

lim(n−2)≤W lim(n−1)≡W
̂

lim
(n−1)
2 ≤W ŜRTn,k≡W SRTn,k≤W RTn,N,

where the first equivalence holds by Fact 2.3 (3). This is a contradiction to Corol-
lary 3.9. The proof for RTn,k follows analogously. �

We recall that a problem f is called idempotent, if f ≡W f×f . The squashing theo-
rem (Theorem 1.7) implies that every total, finitely tolerant and idempotent problem
is parallelizable. Hence we can draw the following conclusion from Corollary 3.10
(this has also been stated in [16, Lemma 3.3]).

Corollary 3.11 (Idempotency). RTn,k is not idempotent for all n ≥ 1 and k ≥ 2.

Another noticeable consequence of Corollary 3.7 is the following.

Corollary 3.12 (Cylinders).
̂

CSRT
(m)
n,k and

̂
CRT

(m)
n,k are cylinders for all n ≥ 1,

k ≥ 2,N and m ≥ 0.

The claim follows since id≤sW lim≡sW l̂im2≤sW
̂CSRTn,k holds by Corollary 3.7

and Fact 2.3. The next lemma now formulates a simple finiteness condition that
Ramsey’s theorem satisfies and implies that Ramsey’s theorem has very little uniform
computational power.

Lemma 3.13 (Finite Intersection Lemma). Let ci : [N]n → k be colorings for i =
1, ...,m with m,n ≥ 1, k ≥ 1,N. Then we obtain

⋂m

i=1 RTn,k(ci) 6= ∅.

Proof. We first consider k ≥ 1. We use a bijection α : {0, 1, ..., k−1}m→ {0, 1, ..., km−
1} in order to construct a map f : (Cn,k)m → Cn,km by

f(c1, ..., cm)(A) := α(c1(A), ..., cm(A))

for all colorings c1, ..., cm ∈ Cn,k and A ∈ [N]n. Given c1, ..., cm ∈ Cn,k we consider
c := f(c1, ..., cm), and we claim that RTn,km(c) ⊆

⋂m
i=1 RTn,k(ci). To this end, let

M ∈ RTn,km(c) and x := c(M). If (x1, ..., xm) := α−1(x), then we obtain ci(A) = xi
for all i = 1, ...,m and A ∈ [M ]n, and hence M is homogeneous for all c1, ..., cm. This
proves the claim. It follows by Ramsey’s theorem 1.1 that RTn,km(c) 6= ∅.

We now consider the case k = N. In this case we use Cantor’s tupling function
α : Nm → N in order to construct a map f : (Cn,N)

m → Cn,N analogously as above.
We obtain RTn,N(c) ⊆

⋂m
i=1 RTn,N(ci). It follows by Ramsey’s theorem 1.1 that

RTn,N(c) 6= ∅.
In any case this proves the claim of the lemma. �

This result could be generalized and proved in different possibly simpler ways. The
specific construction used in our proof will be reused for the proof of Corollary 3.18.

We recall that for a multi-valued function f :⊆ X ⇒ Y we have defined #f , the
cardinality of f , in [6] as the supremum of all cardinalities of sets M ⊆ dom(f) such
that {f(x) : x ∈ M} is pairwise disjoint. The cardinality yields an invariant for
strong Weihrauch reducibility, i.e., f ≤sW g implies #f ≤ #g [6, Proposition 3.6].
Lemma 3.13 now implies the following perhaps surprising fact.
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Corollary 3.14 (Cardinality). #RT
(m)
n,k = #

̂
RT

(m)
n,k = 1 for all n ≥ 1, k ≥ 1,N and

m ≥ 0.

In the case of the parallelization we only need to apply Lemma 3.13 pairwise to
any component of the sequence. We recall that a multi-valued function f was called
discriminative in [8] if C2≤W f and indiscriminative otherwise. Likewise, we could
call f strongly discriminative if C2≤sW f . We obtain #C2 = 2 since {0} and {1} are
in the domain of C2. Hence it follows that Corollary 3.14 implies in particular that
Ramsey’s theorem is not strongly discriminative, not even in its parallelized form.

Corollary 3.15 (Strong discrimination). C2 6≤sW
̂
RT

(m)
n,k for all n ≥ 1, k ≥ 1,N and

m ≥ 0.

Since C
′
2≡sW BWT2 by Fact 2.3, we can conclude that CSRT cannot be replaced

by SRT in Theorem 3.5 and Corollary 3.7 (without simultaneously replacing the
strong reduction by an ordinary one).4 We can also conclude from Corollary 3.14
that the parallelized uncolored versions of Ramsey’s theorem are not cylinders since
#id = |NN|.

Corollary 3.16 (Cylinders).
̂
RT

(m)
n,k and

̂
SRT

(m)
n,k are not cylinders for all n ≥ 1,

k ≥ 1,N and m ≥ 0.

Since #CSRTn,k ≥ k holds (because there are monochromatic colorings for each
color), we can also conclude from Corollary 3.14 that the colored versions of Ramsey’s
theorem are not strongly equivalent to the uncolored ones (in the case of at least two
colors).

Corollary 3.17. CSRTn,k 6≤sW
̂
RT

(m)
n,k for all n ≥ 1, k ≥ 2,N and m ≥ 0.

The following result is a consequence of Lemma 3.13 and its proof. For a finite
sequence (fi)i≤m of multi-valued functions fi :⊆ X ⇒ Y we denote the intersection
by

⋂m

i=1 fi :⊆ X ⇒ Y, x 7→
⋂m

i=1 fi(x), where dom(
⋂m

i=1 fi) contains all points x ∈ X
such that

⋂m

i=1 fi(x) 6= ∅. We recall that fm denotes the m–fold product of f with
respect to ×.

Corollary 3.18 (Products). For all n,m, k ≥ 1 we obtain

(1) RT
m
n,k≤sW

⋂m
i=1 RTn,k≤sW RTn,km ,

(2) SRT
m
n,k≤sW

⋂m
i=1 SRTn,k≤sW SRTn,km ,

(3) RT
m
n,N≤sW

⋂m
i=1 RTn,N≤sW RTn,N,

(4) SRT
m
n,N≤sW

⋂m

i=1 SRTn,N≤sW SRTn,N.

Proof. The functions f : (Cn,k)
m → Cn,km and f : (Cn,N)

m → Cn,N constructed
in the proof of Lemma 3.13 are computable, and hence they yield the reductions⋂m

i=1 RTn,k≤sW RTn,km and
⋂m

i=1 RTn,N≤sW RTn,N, respectively. Additionally, both
maps f have the property that they map stable colorings c1, ..., cm to stable colorings
c := f(c1, ..., cm), hence they also yield the corresponding reductions in the stable
case. The other reductions follow from Lemma 3.13. �

We note that by [16, Proposition 2.1] we also have RTn,k × RTn,l≤sW RTn,kl for
all n, k, l ≥ 1. We also note that the following result is implicitly included in [16,
Section 1] (the proof given there is for the case l = 1 and k = 2 and can be generalized
straightforwardly).

4It follows from Corollary 5.23 below that in Corollary 3.15 C2 cannot be replaced by ACCN, as
defined in [8].
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Proposition 3.19 (Compositional products). RTn,k+l≤W RTn,k ∗ RTn,l+1 for all
n, k, l ≥ 1.

From Corollary 3.18 we can directly conclude that Ramsey’s theorem for an un-
specified finite number of colors is idempotent.

Corollary 3.20 (Idempotency). RTn,N and SRTn,N are idempotent for all n ≥ 1.

Since the sequence (fm)m of maps fm : (Cn,N)m → Cn,N from the proof of Corol-
lary 3.18 is uniformly computable, we obtain the following corollary.

Corollary 3.21 (Finite parallelization). RT
∗
n,k ≤W RTn,+ and SRT

∗
n,k≤W SRTn,+

for all n ≥ 1 and k ≥ 1,N.

We note that RT
∗
n,k =

⊔
m≥0 RT

m
n,k, where RT

0
n,k = id, and hence we obtain only

an ordinary Weihrauch reduction in the previous result. Corollary 3.21 leads to the
obvious question, whether additional factors can make up for color increases.

Question 3.22 (Colors and factors). Does RT∗
n,k ≡W RTn,+ hold for n, k ≥ 2?

We note that the equivalence is known to hold in the case of n = 1.

Proposition 3.23 (Colors and factors). RT1,n+1≤W RT
n
1,2 for all n ≥ 1 and, in

particular, RT∗
1,2≡W RT1,+.

Proof. In [33, Theorem 32] it was proved that Cn+1≤sW C
n
2 holds for all n ≥ 1

(only “≤W” was claimed but the proof shows “≤sW”). By Fact 2.3(1) this implies
BWTn+1≤sW BWT

n
2 , since jumps are monotone with respect to ≤sW. Hence, with

Proposition 3.4 we obtain RT1,n+1≡W BWTn+1≤W BWT
n
2 ≡W RT

n
1,2. Since this re-

duction is uniform in n, we can conclude that

RT1,+ =
⊔

k≥1

RT1,k ≤W

⊔

k≥1

RT
k−1
1,2 ≡W RT

∗
1,2.

The other direction follows since the reductions in Corollary 3.18 are uniform and
hence

RT
∗
1,2 =

⊔

m∈N

RT
m
1,2≤W

⊔

m∈N

RT1,2m ≤W

⊔

k≥1

RT1,k = RT1,+. �

As a consequence of the next result we obtain that any unspecified finite number
of colors can be reduced to two colors for the price of an increase of the cardinal-
ity. Simultaneously, the following theorem also gives us a handle to show that the
complexity of Ramsey’s theorem increases with increasing numbers of colors.

Theorem 3.24 (Products). RTn,N × RTn+1,k ≤sW RTn+1,k+1 and
SRTn,N × SRTn+1,k≤sW SRTn+1,k+1 for all n ≥ 1 and k ≥ 1,N.

Proof. We start with the first reduction. Given a coloring c1 : [N]n → N with finite
range and a coloring c2 : [N]n+1 → k we construct a coloring c+ : [N]n+1 → k + 1 as
follows:

c+(A) :=

{
c2(A) if A is homogeneous for c1
k otherwise

for all A ∈ [N]n+1. Let M ∈ RTn+1,k+1(c
+) and let p : N → N be the principal

function of M . Then we define a coloring cp : [N]n → N by cp(A) := c1(p(A)) for all
A ∈ [N]n. By construction, cp has finite range too. Let B ∈ RTn,N(cp). Then p(B)
is homogeneous for c1 and p(B) ⊆M . Hence any A ∈ [p(B)]n+1 is also homogeneous
for c1, which implies c+(A) = c2(A) and hence c+(M) = c2(A) < k. This implies
M ∈ RTn+1,k(c2) and all A ∈ [M ]n+1 are homogeneous for c1. We claim that this
implies M ∈ RTn,N(c1). The claim yields RTn+1,k+1(c

+) ⊆ RTn,N(c1) ∩ RTn+1,k(c2),
and hence the desired reduction follows.
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We still need to prove the claim. To this end we show that all A ∈ [M ]n+1 are
homogeneous for c1 with respect to one fixed color. Firstly, we note that for every
two A,B ∈ [M ]n+1 there is a finite sequence A1, ..., Al ∈ [M ]n+1 such that A1 = A,
Al = B and |Ai ∩ Ai+1| ≥ n for all i = 1, ..., l− 1. This is because each element of A
can be replaced step by step by one element of B. Now we fix some i ∈ {1, ..., l− 1}.
Since Ai and Ai+1 are homogeneous for c1 by assumption and they share an n–element
subset, it is clear that c1(Ai) = c1(Ai+1). Since this holds for all i ∈ {1, ..., l− 1}, we
obtain c1(A) = c1(B). This means that all A ∈ [M ]n+1 are homogeneous for c1 with
respect to the same fixed color, and hence, in particular, all A ∈ [M ]n share the same
color with respect to c1, i.e., M ∈ RTn,N(c1).

Now we still show that the same construction also proves the second reduction
regarding stable colorings. For this it suffices to show that c+ : [N]n+1 → k + 1 is
stable for all stable colorings c1 : [N]n → N and c2 : [N]n+1 → k. For this purpose
let c1, c2 be stable, and let A ∈ [N]n. Then [A]n−1 = {B0, B1, ..., Bn−1} and for each
i = 0, ..., n−1 there is some li ≥ max(Bi) and some xi ∈ N such that c1(Bi∪{j}) = xi
for j > li, since c1 is stable. There is also some ln ≥ max(A) and some xn ∈ k such
that c2(A ∪ {j}) = xn for j > ln, since c2 is stable. Let l := max{l0, ..., ln−1, ln}.
Then

c+(A ∪ {j}) =

{
c2(A ∪ {j}) if c1(A) = x0 = x1 = ... = xn−1

k otherwise

for all j > l. Hence c+ is stable. �

We note that in the case of k = 1 we get the following corollary.

Corollary 3.25 (Color reduction). RTn,N≤sW RTn+1,2 and SRTn,N≤sW SRTn+1,2

for all n ≥ 1.

We note that the increase of the cardinality from n to n + 1 in this corollary is
necessary in the case of RT by Corollaries 3.11 and 3.21.

We mention that the proof of Theorem 3.24 also shows that the coloring c+ con-
structed therein has only infinite homogeneous sets of colors other than k. In the case
of k = 1 this means that only infinite homogeneous sets of color 0 occur. We denote
by 0-SRTn+1,2 the stable version SRTn+1,2 of Ramsey’s theorem restricted to color-
ings that only admit infinite homogeneous sets of color 0. We obtain the following
corollary, which we consider only as a technical step towards the proof of Corollary 4.5
in the next section (and hence we do not phrase it for RT in place of SRT).

Corollary 3.26 (Color reduction). SRTn,N≤sW 0-SRTn+1,2 for all n ≥ 1.

With the help of Proposition 3.4(2) in the case k = N we obtain the following
corollary of Corollary 3.25.

Corollary 3.27 (Discrete lower bounds). limN≤W SRT2,2 and BWTN≤W RT2,2.

Since Ramsey’s theorem is not parallelizable by Corollary 3.10, it is clear that some
increase in the cardinality is necessary in order to accommodate the parallelization.
We will show that it is sufficient and necessary to increase the cardinality by 2. The
next result shows that this is sufficient, and it uses the ideas that have already been
applied in the proofs of Corollary 3.18 and Theorem 3.24.

Theorem 3.28 (Delayed Parallelization). R̂Tn,k≤sW RTn+2,2 and

ŜRTn,k ≤sW SRTn+2,2 for all n ≥ 1 and k ≥ 1,N.

Proof. We start with the reduction R̂Tn,k≤sW RTn+2,2 for k ≥ 1. Given a sequence
(ci)i of colorings ci : [N]n → k, we want to determine infinite homogeneous sets
Mi for all of them in parallel, using RTn+2,2. The sequence (fm)m of functions
fm : (Cn,k)m → Cn,km , defined as in the proof of Lemma 3.13, is computable, and we
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use it to compute a sequence (dm)m of colorings dm ∈ Cn,km by dm := fm(c0, ..., cm−1).
Given the sequence (dm)m, we can compute a sequence (d+m)m of colorings d+m :
[N]n+1 → 2 by

d+m(A) :=

{
0 if A is homogeneous for dm
1 otherwise

for all A ∈ [N]n+1. Now, in a final step we compute a coloring c : [N]n+2 → 2 with

c({m} ∪ A) := d+m(A)

for all A ∈ [N]n+1 and m < min(A). Given an infinite homogeneous set M ∈
RTn+2,2(c) we determine a sequence (Mi)i as follows: for each fixed i ∈ N we first
search for a number m > i in M , and then we let Mi := {x ∈ M : x > m}. It
follows from the definition of c that Mi is homogeneous for d+m, and following the
reasoning in the proof of Theorem 3.24, we obtain that Mi is also homogeneous for
dm. Following the reasoning in the proof of Lemma 3.13, we finally conclude that

Mi ∈
⋂m−1

j=0 RTn,k(cj), hence, in particular, Mi ∈ RTn,k(ci), which was to be proved.
We note that the entire construction preserves stability. As shown in the proof of

Corollary 3.18, the function f preserves stability. Hence, given a sequence (ci)i of
stable colorings, also the sequence (dm)m consists of stable colorings. Likewise, it was
shown in the proof of Theorem 3.24 that in this case also the sequence (d+m)m consists
of stable colorings. It follows immediately from the construction of c that also c is
stable, since

lim
j→∞

c({m} ∪ A ∪ {j}) = lim
j→∞

dm(A ∪ {j})

for all A ∈ [N]n and m < min(A). Altogether, this proves ŜRTn,k≤sW SRTn+2,2. The
case k = N can be handled analogously. �

Again the observation made after Corollary 3.25 applies: the colorings d+m can
only have infinite homogeneous sets of color 0, and hence also c can only have infinite
homogeneous sets of color 0. This yields the following corollary, which we consider as
a technical step towards the proof of Corollary 4.6 in the next section (hence we do
not phrase it for RT in place of SRT).

Corollary 3.29 (Delayed Parallelization). ŜRTn,k ≤sW 0-SRTn+2,2 for all n ≥ 1 and
k ≥ 1,N.

Theorem 3.28 in combination with some other results also yields the following lower
bounds of versions of Ramsey’s theorem.

Corollary 3.30 (Lower bounds). lim≤W SRT3,2, WKL
′≤W RT3,2 and

WKL
(n)≤W SRTn+2,2 for all n ≥ 2.

Proof. With the help of Fact 2.3, Corollary 3.3 and Theorem 3.28 we obtain:

• lim≡W l̂im2≡W ŜRT1,2≤W SRT3,2,

• WKL
′≡W Ĉ

′
2≤W R̂T1,2≤W RT3,2,

• WKL
(n)≡W Ĉ

(n)
2 ≤W ŜRTn,2≤W SRTn+2,2 for n ≥ 2.

For the first statement we have additionally used Proposition 3.4 and in the latter
two cases Theorem 3.5. �

Corollary 3.30 generalizes [23, Corollary 2.3] (see Corollary 5.14). Corollary 3.9
together with Corollary 3.30 show that both corollaries are optimal in the sense that

lim(n−2) cannot be replaced by lim(n−3) in the statement of the Corollary 3.9, and

WKL
(n) cannot be replaced by lim(n) in the statement of Corollary 3.30. In particular,

n+2 in Theorem 3.28 is also optimal and cannot be replaced by n+1. However, the
following question remains open.
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Question 3.31. Does WKL
′≤W SRT3,2 hold?

As a combination of Corollaries 3.27 and 3.30 we obtain the following result on
versions of Ramsey’s theorem above the limit and the Bolzano-Weierstraß theorem
for {0, 1},N and NN, respectively.

Corollary 3.32 (Cones). lim2≤sW BWT2≤W RT1,2, limN≤sW BWTN≤W RT2,2 and
lim≤sW BWTNN ≤W RT3,2.

Proof. We note that limX ≤W BWTX holds for arbitrary computable metric spaces X
by [7, Proposition 11.21]. Hence the first reduction chain follows with Proposition 3.4,
the second one follows from Corollary 3.27 and the third one from Corollary 3.30 with
the extra observation that WKL

′≡W BWTNN by [7, Corollaries 11.6 and 11.7]. �

4. Jumps, Increasing Cardinality and Color and Upper Bounds

The purpose of this section is to provide a useful upper bound on Ramsey’s theo-
rem. Simultaneously, we will demonstrate how the complexity of Ramsey’s theorem
increases with increasing cardinality. The proof is subdivided into several steps. The
first and crucial step made by Theorem 4.3 is interesting by itself and connects the
jump of the colored version of Ramsey’s theorem with the stable version of the next
greater cardinality. This is one result where the usage of the colored version of Ram-
sey’s theorem is essential. We start with a result that prepares the first direction of
this theorem.

Proposition 4.1 (Jumps). CRT
′
n,k≤sW CSRTn+1,k for all n ≥ 1 and k ≥ 1,N.

Proof. Let (ci)i be a sequence that converges to a coloring c∞ : [N]n → k. Without
loss of generality we can assume that the ci are colorings ci : [N]

n → k themselves
(this can easily be achieved by replacing every value ≥ k in the range of ci by 0). We
compute the coloring c : [N]n+1 → k with

c(A ∪ {i}) := ci(A)

for all A ∈ [N]n and i > max(A). Then c is stable, and we claim that RTn+1,k(c) ⊆
RTn,k(c∞). To this end, let M ∈ RTn+1,k(c), and let A ∈ [M ]n. Since M is infinite
and limi→∞ c(A∪{i}) = c∞(A), we obtain c(M) = c∞(A). Since this holds for all A ∈
[M ]n, we obtain that M is homogeneous for c∞, i.e., M ∈ RTn,k(c∞). We note that
we also obtain c∞(M) = c(M), and hence this proves CRT′

n,k≤sW CSRTn+1,k. �

We obtain the following corollary, since the jump operator is monotone with respect
to strong reductions by [7, Proposition 5.6].

Corollary 4.2 (Jumps). RT
(m)
n,k ≤W SRTn+m,k for all m,n ≥ 1, k ≥ 1,N.

It is not immediately clear whether this result also holds with a strong reduction.
Now we are prepared to formulate our main result on jumps of Ramsey’s theorem.

Theorem 4.3 (Jumps). CRT
′
n,k≡W SRTn+1,k for all n ≥ 1, k ≥ 1,N.

Proof. By Proposition 4.1 and Corollary 3.3 we obtain CRT
′
n,k≤W SRTn+1,k, and it

remains to prove SRTn+1,k≤W CRT
′
n,k. Let c : [N]

n+1 → k be a stable coloring. Then
we can define a sequence (ci)i of colorings ci : [N]

n → k by

ci(A) :=

{
c(A ∪ {i}) if i > max(A)
0 otherwise

for all A ∈ [N]n. Then (ci)i is a converging sequence of colorings, and let the
limit be denoted by c∞ : [N]n → k. With the help of CRTn,k we can compute
(c∞(M∞),M∞) ∈ CRTn,k(c∞). We will now describe how we can use this set M∞

together with c∞ and c in order to computably enumerate an infinite homogeneous
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set M ∈ SRTn+1,k(c). The set M =
⋃∞

i=0Mi will be defined inductively using sets
Mi ∈ [M∞]n+i. We start with choosing some M0 ∈ [M∞]n. Then we continue in
steps i = 0, 1, 2... as follows:

Let us assume that we have Mi ∈ [M∞]n+i. For all A ∈ [Mi]
n we obtain

lim
j→∞

c(A ∪ {j}) = c∞(A) = c∞(M∞).

Hence, we can effectively find an m > max(Mi) such that Mi+1 :=Mi∪{m} satisfies
c(Mi+1) = c∞(M∞).

Since all the sets Mi with i ≥ 1 are homogeneous sets for c with the same color
c∞(M∞), the set M :=

⋃∞
i=0Mi is an infinite homogeneous set for c with c(M) =

c∞(M∞). This proves the desired reduction SRTn+1,k ≤W CRT
′
n,k. �

It follows from Corollaries 3.12 and 3.16 that the equivalence in Theorem 4.3 cannot
be replaced by a strong equivalence. We note that the color provided by CRT

′
n,k is

not needed if the color of the infinite homogeneous set that is to be constructed is
known in advance. Hence, the proof of Theorem 4.3 yields also the following result.

Corollary 4.4 (Jumps in the case of known color). 0-SRTn+1,2≤W RT
′
n,2 for all

n ≥ 1.

We note that Corollaries 4.4 and 3.26 allow us to improve the bound given in
Corollary 3.25 somewhat.

Corollary 4.5 (Color reduction with jumps). SRTn,N≤sW RT
′
n,2 for all n ≥ 1.

We collect all a number of lower bound results in the following corollary that
strengthen some earlier results mentioned in Corollaries 3.27 and 3.30.

Corollary 4.6 (Lower bounds with jumps). limN≤W RT
′
1,2, lim≤W RT

′
2,2 and

WKL
(n)≤W RT

′
n+1,2 for all n ≥ 2.

Proof. We obtain limN≡W SRT1,N≤W RT
′
1,2 by Proposition 3.4 and Corollary 4.5.

With the help of Fact 2.3, Proposition 3.4, Theorem 3.5 and Corollaries 3.29 and 4.4
we obtain

• lim≡W l̂im2≡W ŜRT1,2≤sW 0-SRT3,2≤W RT
′
2,2,

• WKL
(n)≡W Ĉ

(n)
2 ≤W ŜRTn,2≤W 0-SRTn+2,2≤W RT

′
n+1,2 for n ≥ 2. �

Analogously to Question 3.31 the following question remains open.

Question 4.7. Does WKL
′≤W RT

′
2,2 hold?

Roughly speaking, Theorem 4.3 indicates that any increase in the cardinality of
Ramsey’s theorem corresponds to a jump. We can also conclude from Corollary 4.2
that Ramsey’s theorem is increasing with respect to increasing cardinality.

Lemma 4.8 (Increasing cardinality). SRTn,k ≤W RTn,k ≤W SRTn+1,k ≤W RTn+1,k

for all n ≥ 1, k ≥ 1,N.

Proof. It follows from Lemma 3.2 and Corollaries 4.2 and 3.3 that
SRTn,k ≤W RTn,k ≤W RT

′
n,k≤sW CRT

′
n,k ≤W SRTn+1,k ≤W RTn+1,k. �

We will soon see in Corollary 4.21 and 5.3 that the reductions in this lemma are
all strict in certain cases. We note that CRT′

n,k ≤W CRTn,k ∗ lim≡W RTn,k ∗ lim. The
latter problem is very stable and has several useful descriptions.

Lemma 4.9 (Jump of the cylindrification). For all n ≥ 1, k ≥ 1,N we obtain
RTn,k ∗ lim≡W(RTn,k × id)′≡W RT

′
n,k × lim.
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Proof. The second equivalence holds since jumps and products commute by [7, Propo-
sition 5.7 (2)]. Since RTn,k × id is a cylinder we have by [7, Corollary 5.17]

(RTn,k × id)′≡W(RTn,k × id) ∗ lim≡W(RTn,k ∗ lim)× lim≡W RTn,k ∗ lim .

The latter two equivalences hold since lim is idempotent. �

Since RTn,k× id is the cylindrification of Ramsey’s theorem, this lemma character-
izes the jump of the cylindrification of Ramsey’s theorem up to Weihrauch equivalence.
In particular, we obtain the following consequence of Theorem 4.3.

Corollary 4.10. SRTn+1,k≤W RTn,k ∗ lim for all n ≥ 1, k ≥ 1,N.

This result is the crucial step towards our upper bound result. The next step
involves a usage of the cohesiveness problem. We recall that a set A ⊆ N is called
cohesive for a sequence (Ri)i of sets Ri ⊆ N if A ∩ Ri or A ∩ (N \ Ri) is finite for
each i ∈ N. In other words, up to finitely many exceptions, A is fully included in any
Ri or its complement. By COH : (2N)N ⇒ 2N we denote the cohesiveness problem,
where COH(Ri) contains all sets A ⊆ N that are cohesive for (Ri)i. The uniform
computational content of COH has already been studied in [16, 8, 17]. The relevance
of the cohesiveness problem for Ramsey’s theorem has originally been noticed by
Cholak et al. who proved over RCA0 that RT2,2 ⇐⇒ SRT2,2∧COH [12, Lemma 7.11]
(see [13] for a correction). We use the same idea to prove the following, which was in
the case of n = k = 2 also observed by Dorais et al. [16].

Proposition 4.11. RTn,k≤W SRTn,k ∗ COH for all n ≥ 1, k ≥ 1,N.

Proof. We fix some n, k ≥ 1. Given a coloring c : [N]n → k we compute a sequence
(Ri)i of sets Ri ⊆ N as follows:

R〈i,j〉 := {r ≥ maxϑn−1(i) : c(ϑn−1(i) ∪ {r}) = j}

for all i, j ∈ N. Here ϑn−1 denotes the numbering of [N]n−1 introduced in Section 3.
With the help of COH we can compute an infinite cohesive set Y ∈ COH(Ri)i for the
sequence (Ri)i. Let σ : N→ N be the principal function of Y . Since Y is cohesive for
(Ri)i and range(c) is finite, it follows that for all B ∈ [N]n−1 there is some j ∈ N such
that c(B ∪ {r}) = j holds for almost all r ∈ Y . Hence, the coloring cσ : [N]n → k,
defined by

cσ(A) := c(σ(A))

for all A ∈ [N]n is stable. With the help of SRTn,k we can compute an infinite
homogeneous set Mσ ∈ SRTn,k(cσ). It is clear that M := σ(Mσ) is an infinite
homogeneous set for c. �

Now we can combine Corollary 4.10 with Proposition 4.11 in both possible orders
in order to obtain the following result. We recall that the compositional product ∗ is
associative [11, Proposition 31].

Corollary 4.12. For all n ≥ 1, k ≥ 1,N we obtain

(1) RTn+1,k≤W RTn,k ∗ lim ∗COH,
(2) SRTn+1,k≤W SRTn,k ∗ COH ∗ lim.

The diagram in Figure 3 illustrates the situation. The first bound given by Corol-
lary 4.12 is particularly useful, since the following result was proved in [8, Corol-
lary 14.14].

Fact 4.13. WKL
′≡W lim ∗COH.

Fact 4.13 together with Corollary 4.12 yields the following.

Corollary 4.14 (Induction). RTn+1,k ≤W RTn,k ∗WKL
′ for all n ≥ 1, k ≥ 1,N.
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SRTn,k RTn,k SRTn+1,k RTn+1,k

COH lim COH

Figure 3. Upper bounds for Ramsey’s theorem for n ≥ 2, k ≥ 2,N:
all solid arrows indicated strong Weihrauch reductions against the
direction of the arrow, all circled dashed arrows are labeled with an
upper bound of the inverse implication.

This corollary can be interpreted such that WKL
′ is sufficient to transfer RTn,k

into RTn+1,k. An obvious question is whether WKL
′ is minimal with this property.

It follows from Proposition 5.1 below and Lemma 4.9 that WKL
′ cannot be replaced

by lim in Corollary 4.14.
Corollary 4.14 could also be proved directly using so-called Erdős-Rado trees.5

It reflects the fact that Ramsey’s theorem can be proved inductively, where the in-
duction base follows from the Bolzano-Weierstraß theorem for the k–point space by
RT1,k ≡W BWTk ≤W WKL

′, which holds by Proposition 3.4 and Fact 2.3. Altogether,
this means that we can derive the following result from Corollary 4.14 and Fact 2.3(6).

Corollary 4.15 (Upper bound). RTn,k ≤sW WKL
(n) for all n ≥ 1, k ≥ 1,N.

We note that we get a strong reduction here, since WKL
(n) is a cylinder. The

upper bound is tight in terms of the number of jumps and also up to parallelization.
Using the upper bound from Corollary 4.15 together with the lower bound from
Corollary 3.30 yields the following characterization of Ramsey’s theorem RT.

Corollary 4.16. RT≡W

⊔∞
n=0 lim

(n)≡W

⊔∞
n=0 WKL

(n).

This degree corresponds to the class ACA′
0 in reverse mathematics (see [22, Theo-

rem 6.27]). We call a problem f countably irreducible if f ≤W

⊔∞
n=0 gn implies f ≤W gn

for some n ∈ N.6 Since it is clear that CNN is countably irreducible [3, Corollary 5.6],

and it is easy to see that
⊔∞

n=0 lim
(n)≤W CNN , we obtain the following corollary.

Corollary 4.17. RT<W CNN .

Here CNN can be seen as a possible counterpart of ATR0 in reverse mathematics,
in the sense that some statements that are equivalent to ATR0 over RCA0 in reverse
mathematics turn out to be equivalent to CNN in the Weihrauch lattice if interpreted as
problems.7 We obtain the following characterization of the parallelization of Ramsey’s
theorem.

Corollary 4.18 (Parallelization). R̂Tn,k≡W WKL
(n)≡sW ĈRTn,k for all n ≥ 1, k ≥

2,N and ŜRTn,k ≡W WKL
(n)≡sW

̂CSRTn,k for all n ≥ 2, k ≥ 2,N.

Proof. Using Fact 2.3, Corollary 3.3, the lower bound from Corollary 3.7, the upper
bound from Corollary 4.15 and the fact that parallelization is a closure operator we
obtain the following reduction chain for n ≥ 2, k ≥ 2,N:

WKL
(n)≡sW Ĉ

(n)
2 ≡sW

̂
BWT

(n−1)
2 ≤sW

̂CSRTn,k ≤W ŜRTn,k ≤sW R̂Tn,k ≤sW WKL
(n),

5This approach has been used in [34, Proposition 6.6.1]; for a proof theoretic analysis of Ramsey’s
theorem this method has been applied in [28, 29, 1], and in reverse mathematics it has been used to
prove that Ramsey’s theorem is provable over ACA0; see [19] for the Erdős-Rado method in general.

6This property has been called “join-irreducible” in previous publications, but formally it is a
strengthening of join-irreducibility in the lattice theoretic sense. It is also not identical to “countable
join-irreducibility” since the countable coproduct is not a supremum in general.

7Results in this direction are not yet published, but this emerged during a discussion at a recent
Dagstuhl seminar on the subject.
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which implies ŜRTn,k≡W R̂Tn,k≡W WKL
(n), and the corresponding strong equiva-

lences ̂CSRTn,k ≡sW ĈRTn,k ≡sW WKL
(n) follow, since the colored versions of Ram-

sey’s theorem are cylinders by Corollary 3.12, and WKL
(n) is a cylinder too. The

proof for n = 1 follows similarly using Proposition 3.4. �

We mention that ŜRT1,k≡W lim≡sW
̂CSRT1,k holds for k ≥ 2,N by Corollary 3.7.

By Corollary 3.16 the parallelized uncolored versions of Ramsey’s theorem are not
cylinders, and hence the Weihrauch equivalences ≡W in the previous corollary cannot
be replaced by strong ones ≡sW.

Since WKL
(n)≤W lim(n) and WKL

(n) 6≤W lim(n−1) for all n ≥ 1 by Fact 2.3 and

lim(n) is effectively Σ0
n+2–complete by Facts 2.3 and 2.2, we obtain the following

corollary that characterizes the Borel complexity of Ramsey’s theorem.

Corollary 4.19 (Borel complexity). SRTn,k and RTn,k are both effectively Σ0
n+2–

measurable, but not effectively Σ0
n+1–measurable for all n ≥ 2, k ≥ 2,N.

Both positive statements and the negative statement on RTn,k also hold for n = 1.
By an application of Facts 2.2 and 2.3 we can also rephrase the negative statements
as follows.

Corollary 4.20. SRTn,k 6≤W lim(n−1) for n ≥ 2 and RTn,k 6≤W lim(n−1) for n ≥ 1
and both for k ≥ 2,N.

Since effectiveΣ0
n–measurability is preserved downwards by Weihrauch reducibility

by Fact 2.2, this in turn implies that Ramsey’s theorem actually forms a strictly
increasing chain with increasing cardinality.

Corollary 4.21 (Increasing cardinality). RTn,k<W RTn+1,2, RTn,k <sW RTn+1,2,
SRTn,k <W SRTn+1,2 and SRTn,k <sW SRTn+1,2 for all n ≥ 1 and k ≥ 2,N.

Here the positive parts of the reduction hold by Corollary 3.25. The separations (at
least in the case of RT) do also follow from classical non-uniform separation results
of Jockusch [26] who showed that every computable instance of RTn,k has a ∅(n)–
computable solution, whereas there are computable instance of RTn+1,k that have no

∅(n)–computable solution. We can also draw some conclusions on increasing numbers
of colors. In [16, Theorem 3.1] Dorais et al. have proved that RTn,k <sW RTn,k+1 holds
for all n, k ≥ 1. Their main tool was a version of the squashing theorem (Theorem 1.7)
for strong Weihrauch reducibility. With the help of Theorem 3.24 we can strengthen
this result to ordinary Weihrauch reducibility, which answers [16, Question 7.1]. This
result was independently obtained by Hirschfeldt and Jockusch [23, Theorem 3.3] and
Patey [32, Corollary 3.15].

Theorem 4.22 (Increasing numbers of colors). RTn,k<W RTn,k+1 for all n, k ≥ 1.

Proof. Let us assume that RTn,2×RTn+1,k ≤W RTn+1,k holds for some n, k ≥ 1. Then

by the squashing theorem (Theorem 1.7) we obtain R̂Tn,2≤W RTn+1,k, and hence by
Corollary 4.18

lim(n−1)≤W WKL
(n)≡W R̂Tn,2≤W RTn+1,k

in contradiction to Corollary 3.9. Hence RTn,2×RTn+1,k 6≤W RTn+1,k for all n, k ≥ 1.
On the other hand, we have RTn,2 × RTn+1,k≤W RTn+1,k+1 by Theorem 3.24. This
implies RTn+1,k<W RTn+1,k+1 for all n, k ≥ 1. The claim RT1,k<W RT1,k+1 for all
k ≥ 1 was already known [7, Theorem 13.4] via Proposition 3.4. �

From this result we can also conclude that the two uniform versions of RTn
<∞ are

not equivalent. We recall that a problem f :⊆ X ⇒ Y is called a fractal, if there
is an F :⊆ NN ⇒ NN with F ≡W f and F |A≡W f for all clopen A ⊆ NN such that
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A ∩ dom(F ) 6= ∅. Analogously, strong fractals are defined with ≡sW in place of ≡W.
It is easy to see that RTn,N and SRTn,N are fractals and hence countably irreducible
by [7, Proposition 2.6], and thus the strictness of the reductions given in the following
corollary follows from Theorem 4.22.

Corollary 4.23 (Arbitrary numbers of colors). RTn,+<W RTn,N and
SRTn,+<W SRTn,N for all n ≥ 1.

Another consequence of the squashing theorem (Theorem 1.7) is the following result
that shows that the complexity of Ramsey’s theorem also grows with an increasing
number of factors. This generalizes Corollary 3.11.

Proposition 4.24 (Increasing number of factors). RT
m
n,k <W RT

m+1
n,k for all n,m ≥ 1

and k ≥ 2.

Proof. Let us assume that RTm+1
n,k ≡W RTn,k×RT

m
n,k ≤W RT

m
n,k holds for some n,m ≥

1 and k ≥ 2. Then by the squashing theorem (Theorem 1.7) we obtain R̂Tn,k ≤W RT
m
n,k,

and hence by Corollaries 3.21, 3.25 and 4.18 we can conclude

lim(n−1)≤W WKL
(n)≡W R̂Tn,k≤W RT

m
n,k≤W RT

∗
n,k≤W RTn+1,2,

in contradiction to Corollary 3.9. Hence, RTm+1
n,k 6≤W RT

m
n,k. �

We note that Question 3.22 remains, whether additional factors can make up for
color increases. The characterization given in Corollary 4.18 also implies the following
result on the arithmetic complexity of homogeneous sets with the help of the uniform
low basis theorem [3, Theorem 8.3].

Corollary 4.25 (Arithmetic complexity). Every computable sequence (ci)i of col-
orings ci : [N]n → k for n ≥ 1 and k ≥ 2 admits a sequence (Mi)i such that
〈M0,M1, ...〉′≤T ∅(n+1) and such that Mi is an infinite homogeneous set for ci for
each i ∈ N.

Proof. We use the map L := J
−1 ◦ lim, where J : NN → NN, p 7→ p′ is the Turing jump

operation. The uniform low basis theorem [3, Theorem 8.3] states that WKL≤sW L

holds, which implies WKL
(n)≤sW L

(n), since jumps are monotone with respect to

strong Weihrauch reducibility. By Corollary 4.18 we have R̂Tn,k≡W WKL
(n), and

hence any instance (ci)i of R̂Tn,k has a solution M = 〈M0,M1, ...〉 whose jump M ′ is

computable in ∅(n+1). �

Here n+1 cannot be replaced by n in ∅(n+1) by Corollary 4.18, and in this sense this
result is optimal. Hence, we have a striking difference in the arithmetic complexity
between the non-uniform Ramsey theorem as witnessed by Theorems 1.3 and 1.6 and
the uniform sequential version of Ramsey’s theorem for sequences as witnessed by
Corollary 4.25. This yields another proof of Corollary 3.10.

Since jumps commute with parallelization by [7, Proposition 5.7(3)], Corollary 4.18
yields also the following corollary, which states that under parallelization a jump of the
colored versions of Ramsey’s theorem corresponds exactly to an increase in cardinality
by one.

Corollary 4.26 (Parallelized jumps). For all n ≥ 2, k ≥ 2,N we obtain
̂

CSRT
′
n,k ≡sW

̂CSRTn+1,k≡sW ĈRT
′
n,k≡sW

̂CRTn+1,k.

A similar property also holds for the uncolored version of Ramsey’s theorem RTn,k,
but in this case it cannot be so easily concluded since the parallelized uncolored the-
orem is not a cylinder by Corollary 3.16. Hence, we need the following reformulation
of Corollary 4.10 that is justified by Lemma 4.9.
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Corollary 4.27. SRTn+1,k≤W RT
′
n,k × lim for all n ≥ 1, k ≥ 1,N.

Now we are prepared to prove the following result on parallelized jumps of Ramsey’s
theorem.

Corollary 4.28 (Parallelized jumps). R̂T
′
n,k≡W

̂RTn+1,k for all n ≥ 1 and k ≥ 2,N.

Proof. It follows from Corollary 4.2 that RT′
n,k ≤W RTn+1,k, and hence one direction

of the claims follows since parallelization is a closure operator. By Corollaries 4.18,
4.27, 4.6, Fact 2.3 (3) and since parallelization commutes with products it follows
that

̂RTn+1,k ≡W
̂SRTn+1,k ≤W R̂T

′
n,k × lim≡W R̂T

′
n,k ×

̂limN≤W R̂T
′
n,k,

which completes the proof. �

We leave it open whether a corresponding fact can be established for the stable ver-
sion of Ramsey’s theorem (which is not the case for n = 1). We have now completely
provided all the positive information that is displayed in the diagram in Figure 2.
What still remains to be done are some of the separations.

5. Ramsey’s Theorem for Pairs

In this section we want to discuss RT2,2, which is of particular interest. For one, we
derive some conclusions from the general results that we proved before, we mention
some results that have been proved by other authors, and we raise some open ques-
tions. The neighborhood of Ramsey’s theorem in the Weihrauch lattice is illustrated
in the diagram in Figure 4.

lim′′

WKL
′′

lim′

WKL
′≡sW KL≡sW BWTR

COH

C
′
2≡sW BWT2

BWT
′
2

lim

WKL≡sW C2N

WWKL

PA

MLR

DNCN ACCN C2≡sW LLPO

LPO

lim2 SRT1,2

CN

CRT
′
1,2

RT2,2

SRT2,2SRT2,2 ⊔ COH

SRT2,2 × COH

SRT2,2 ∗ COH

RT1,2 = D1,2

RT
′
1,2 = D2,2

RT
′
1,2 × lim

Σ0
4

Σ0
3

Σ0
2

Figure 4. Ramsey’s theorem for pairs and two colors in the
Weihrauch lattice: all solid arrows indicate strong Weihrauch reduc-
tions against the direction of the arrow, all dashed arrows indicate
ordinary Weihrauch reductions, and the boxes indicate the given lev-
els of the effective Borel hierarchy.
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We start with two straightforward separation results that show that the jump of
the cylindrification of RT1,k (see Lemma 4.9) is incomparable with RT2,2.

Proposition 5.1. RT2,2 6≤W RT
′
1,N × lim and RT

′
1,2 × lim 6≤W RT2,N.

Proof. For every computable input RT′
1,N× lim clearly has a limit computable output,

since for a limit computable coloring c : [N]1 → N there is always some k ∈ N such
that A := {i ∈ N : c(i) = k} is infinite. Such an A is clearly limit computable and
A ∈ RT1,N(c). However, RT2,2 has computable inputs c : [N]2 → 2, which have no
limit computable outputs A ∈ RT2,2(c) by Theorem 1.3. Hence, RT2,2 6≤W RT

′
1,N×lim.

While lim≤W RT
′
1,2×lim holds obviously, we obtain lim 6≤W RT2,N by Corollary 3.8.

Hence, RT′
1,2 × lim 6≤W RT2,N. �

This result yields the following corollary.

Corollary 5.2. RT
′
1,2 × lim |W RT2,2.

Since we have SRT2,N≤W RT1,N∗lim≡W RT
′
1,N×lim by Corollary 4.10 and Lemma 4.9,

we also obtain the following corollary of Proposition 5.1

Corollary 5.3. RT2,2 6≤W SRT2,N and hence, in particular, RT2,2 6≤W SRT2,2.

The corresponding non-uniform result in reverse mathematics was much harder to
obtain and solved a longstanding open question [15]. The proof uses a non-standard
model, whereas our result would follow from a separation with a standard model.

Among other things, we are going to discuss the relation of RT2,2 to the cohesiveness
problem. The following proof is essentially the proof of Cholak, Jockusch and Slaman
[12, Theorem 12.5].

Proposition 5.4 (Cohesiveness). COH≤sW RT2,2.

Proof. Let (Ri)i be a sequence of sets Ri ⊆ N. We compute a sequence (Si)i by
S2i := Ri and S2i+1 := {i} for all i ∈ N. We let d(i, j) := min{k : χSk

(i) 6= χSk
(j)}.

The definition of (Si)i ensures that d is well-defined for all i < j, and it can be
computed from (Si)i. We compute a coloring c : [N]2 → 2 with

c{i < j} :=

{
0 if i ∈ Sd(i,j)

1 otherwise
,

and we consider an infinite homogeneous set M ∈ RT2,2(c) and i ∈ N. We claim that
M is cohesive for (Si)i and hence for (Ri)i. Let us assume for a contradiction that
k is the smallest number such that M ∩ Sk and M ∩ (N \ Sk) are infinite. Since k is
minimal, there is a number m ∈ N such that d(i, j) ≥ k for all i, j ≥ m in M . There
are also sufficiently large i0, i1, i2 ≥ m in M such that i0 < i1 < i2, χSk

(i0) 6= χSk
(i1)

and χSk
(i1) 6= χSk

(i2). This implies d(i0, i1) = k = d(i1, i2), which in turn yields
c{i0, i1} 6= c{i1, i2}, in contradiction to the homogeneity of M . Hence, M is cohesive
for (Ri)i, and we obtain COH≤sW RT2,2. �

We obtain RT2,2 6≤W COH since COH≤sW lim by [8, Proposition 12.10], but on the
other hand RT2,2 6≤W lim′ by Corollary 4.20. We obtain the following corollary.

Corollary 5.5. SRT2,2 ⊔ COH≤W RT2,2≤W SRT2,2 ∗ COH≤sW WKL
′′.

Proof. By Proposition 5.4, Lemma 3.2 and since ⊔ is the supremum with respect to
≤W we have SRT2,2 ⊔COH≤W RT2,2. The reduction RT2,2≤W SRT2,2, ∗COH follows
from Proposition 4.11. The last mentioned reduction in the corollary follows from
Corollary 4.15 and Facts 4.13 and 2.3 since

SRT2,2 ∗COH≤W WKL
′′ ∗COH≤W WKL

′ ∗ lim ∗COH≡W WKL
′ ∗WKL

′≡W WKL
′′. �
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Given the fact that SRT2,2 ⊔ COH≤sW SRT2,2 × COH≤W SRT2,2 ∗ COH, it would
be desirable to clarify the relation of RT2,2 to all the three mentioned problems.

Question 5.6. How does RT2,2 exactly relate to SRT2,2 ⊔ COH, SRT2,2 × COH and
SRT2,2 ∗ COH?

We can at least say something. We have COH≤W lim by [8, Proposition 12.10] and
by Corollary 4.10 and Lemma 4.9 we know that SRT2,2≤W RT

′
1,2 × lim. Since lim is

idempotent we obtain the following corollary.

Corollary 5.7. SRT2,2 × COH≤W RT
′
1,2 × lim.

With Proposition 5.1 we arrive at the following conclusion.

Corollary 5.8. RT2,2 6≤W SRT2,2 × COH.

We also mention that Corollary 3.18 and Proposition 5.4 imply the following.

Corollary 5.9. SRT2,2 × COH≤W RT2,4.

We recall that the problem RT
′
1,2 is also studied under the name D2

2 (see for instance
[12, 14]). We introduce the following notation, where we use lower indices again.

Definition 5.10. We define Dn,k := RT
(n−1)
1,k for all n, k ≥ 1.

Dzhafarov proved that COH 6≤sW D2,k holds for all k ∈ N [17, Corollary 1.10]. In
fact, his key theorem [17, Theorem 1.5] yields even the following stronger result.

Corollary 5.11. COH 6≤sW CRT
(m)
1,k for all k,m ∈ N.

In a subsequent paper [18] Dzhafarov proved the following result.

Theorem 5.12. COH 6≤W SRT2,+ and hence, in particular, COH 6≤W SRT2,2.

Since Kőnig’s lemma KL is often discussed in the context of RT2,2, we mention it
briefly in passing. By KL :⊆ TrN ⇒ NN we denote the multi-valued function that is
defined on all infinite finitely branching trees T ⊆ N∗ and such that KL(T ) = [T ] is the
set of infinite paths of T . The set TrN of trees T ⊆ N∗ is represented via characteristic
functions of such trees as usually. We can also consider a variant KL+ of KL, where
the set of trees is represented by positive information only, i.e., by an enumeration of
the corresponding tree T . The following theorem is essentially based on results from
[7]. If n ∈ N, then we write n̂ ∈ NN for the constant sequence with value n.

Theorem 5.13. KL≡sW KL+≡sW WKL
′.

Proof. It is clear that KL≤sW KL+. By [7, Corollaries 11.6 and 11.7] we have that
WKL

′≡sW BWTNN .
It is easy to see that KL+≤sW BWTNN : Given a finitely branching tree T ⊆ N∗

by an enumeration T = {wn : n ∈ N} we just compute a sequence (xn)n in NN with

xn := wn0̂. Since T is finitely branching, the set {xn : n ∈ N} is compact, and hence
(xn)n has cluster points. It is clear that all cluster points of (xn)n are infinite paths
of T . This proves KL+≤sW BWTNN .

We now prove BWTNN ≤sW KL+. Given a sequence (xn)n that lies in a compact
subset of NN, we enumerate a tree T as follows. We start with the empty tree T and in
step n = 0, 1, 2, ... we inspect xn. If w ⊑ xn is the longest prefix of xn that was already
enumerated into T , then we enumerate xn|k into T in step n, where k = |w| + 1. In
this way a tree T is enumerated such that [T ] is the set of cluster points of (xn)n.
The tree T is a finitely branching tree since (xn)n lies within a compact set.
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Finally, we prove KL+≤sW KL. Given a finitely branching tree T ⊆ N∗ by an
enumeration T = {wn : n ∈ N}, we compute a finitely branching tree S ⊆ N∗ (by
determining its characteristic function) such that pr1([S]) = [T ], where

pr1(〈n0, k0〉, 〈n1, k1〉, 〈n2, k2〉...) = (n0, n1, n2, ...) ∈ N
N

for all ni, ki ∈ N. Since pr1 is computable, we obtain KL+≤sW KL in this way. We
create the tree S in stages n = 0, 1, 2, ... and in stage n we inspect the n–th word
wn that is enumerated into T . In this stage we decide that a word of the form
uw,v := 〈wn(0), v(0)〉〈wn(1), v(1)〉...〈wn(k − 1), v(k − 1)〉 with k = |wn| and all its
prefixes belong to S, where v is the lexicographically smallest word v ∈ Nk such that
uw,v and all its prefixes have not yet been decided to belong to N∗ \ S. Additionally,
we decide w ∈ N∗ \ S for all non-empty words w that have not yet been decided to
belong to S and such that |w| ≤ n and w(i) ≤ n for all i ≤ n − 1. On the one
hand, this algorithm ensures that the tree S is decided for larger and larger blocks
of size n, and on the other hand, the construction guarantees that the resulting tree
S is finitely branching: on each level i of T only finitely many different values can
occur and at some stage n of the construction all words w of length i in T have been
considered and corresponding words uw,v have been added to S. The fact that we
always choose the lexicographically smallest v ensures that no new strings of length i
are added to S after stage n. Finally, the construction also guarantees pr1([S]) = [T ]
as promised. �

Now Theorem 5.13 and Corollary 3.30 yield the following result, which was inde-
pendently proved in [23, Corollary 2.3] by a very different method.

Corollary 5.14. KL≤W RT3,2.

We note that by Corollary 3.15 the reduction cannot be replaced by a strong one
since C2≤sW WKL≤sW KL. Likewise, one obtains WWKL 6≤sW RTn,k for all n, k ≥ 1
since C2≤sW WWKL. We note that by Corollary 3.9 we obtain that Corollary 5.14 is
optimal in the following sense.

Corollary 5.15. KL 6≤W RT2,N.

However, we note the related Questions 3.31 and 4.7. Liu proved the following
theorem and lemma [30, Theorem 1.5 and proof of Corollary 1.6].

Theorem 5.16 (Liu 2012 [30]). For any set C not of PA–degree and any A ⊆ N there
exists an infinite subset G of A or N \A such that G⊕ C is also not of PA–degree.

Lemma 5.17 (Liu 2012 [30]). For any set C not of PA–degree and any uniformly
C–computable sequence (Ci)i there exists a set G which is cohesive for (Ci)i and such
that G⊕ C is also not of PA–degree.

We consider Peano arithmetic as the problem PA : D ⇒ D,b 7→ {a : a ≫ b}
in the Weihrauch lattice, where D denotes the set of Turing degrees represented by
their members and a ≫ b expresses the property that a is a PA–degree relative to
b. From Liu’s Theorem 5.16 we can directly derive PA 6≤W Dn,2 for all n ≥ 1, and we
also obtain the following corollary.

Corollary 5.18. PA 6≤W CRT
(n−1)
1,2 for all n ≥ 1.

In particular, this implies PA 6≤W SRT2,2, since SRT2,2≡W CRT
′
1,2 by Theorem 4.3.

Using Liu’s Lemma 5.17 this can be strengthened as follows.

Corollary 5.19. PA 6≤W SRT2,2 ∗ COH.

Since RT2,2≤W SRT2,2 ∗COH by Proposition 4.11, this implies PA 6≤W RT2,2. Since
PA<W WKL [8, Theorem 5.5, Corollary 6.4], we also get the following conclusion.
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Corollary 5.20. WKL 6≤W RT2,2.

Likewise, one should be able to use the methods provided by Liu [31] to show that
MLR 6≤W RT2,2 (where MLR denotes the problem to find a point that is Martin-Löf
random relative to the input) and henceWWKL 6≤W RT2,2. It would also be interesting
to find out whether a variant of the above ideas can be used to answer Question 4.7.

By CCX we denote the restriction of CX to connected subsets. We now want to dis-
cuss the intermediate value theorem IVT, which we do not define here, but we identify
it with CC[0,1] (see [10, Corollary 4.10] and [4, Theorem 6.2], where CC[0,1] appears
under the names CC1 and CI , respectively). CC[0,1] can be seen as a one-dimensional
version of the Brouwer fixed point theorem and thus of the equivalence class of WKL

(see [10]). Hence, from the uniform perspective it is an obvious question to ask how
IVT is related to Ramsey’s theorem. In order to approach this question we provide a
new upper bound on IVT which is of independent interest. By CLX :⊆ XN ⇒ X we
denote the cluster point problem of X , which is the problem to find a cluster point of
the given input sequence (this is an extension of BWTX since we do not demand that
the input sequence lies within a compact set, but only that it admits a cluster point).
By [7, Theorem 9.4] we have CLX ≡sW C

′
X for every computable metric space X .

Proposition 5.21. IVT≤W C
′
N
.

Proof. We have IVT≡W CC[0,1]≡W BI [4, Proposition 3.6 and Theorem 6.2], where
BI :⊆ R< × R> ⇒ R, (x, y) 7→ {z : x ≤ z ≤ y} with dom(BI) := {(x, y) : x ≤ y}
denotes the boundedness problem introduced in [4] and C

′
N
≡W CLN [7, Theorem 9.4].

Here R< and R> denote the real numbers represented as supremum and infimum of
sequences of rational numbers, respectively. The aim is to prove BI ≤W CLN. Hence,
we can assume that we have two monotone sequences (an)n and (bn)n of rational
numbers in [0, 1] with an ≤ an+1 < bn+1 ≤ bn for all n ∈ N, and the goal is to find
some x ∈ [0, 1] with a := supn∈N an ≤ x ≤ infn∈N bn =: b. Now we produce a sequence
(cn)n of natural numbers in stages n = 0, 1, 2, ... as follows, where we use a variable
k ∈ N that is initially k = 0. If at stage n we find that |bn− an| < 2−k−1, then we let
k := k+1, and we choose cn := 0. Otherwise, we choose some value cn 6= 0 such that
an < cn < bn, where cn is the rational number with code cn. If possible, we choose cn
such that it is identical to the previous such number chosen, and if that is impossible,
then we chose cn with cn := an + bn−an

2 . Now there are two possible cases. If a = b,
then the sequence (cn)n contains infinitely many zeros and at most one other number
c occurs infinitely often in (cn)n and it must be such that a = b = c. Otherwise, if
a 6= b, then the sequence (cn)n contains only finitely many zeros, and only exactly one
number c different from zero occurs infinitely often. This number satisfies a ≤ c ≤ b.
The result of CLN(cn)n is one number c that occurs infinitely often in (cn)n. If c = 0,
then we can compute x := a = b with the help of the input (an)n, (bn)n. If c 6= 0,
then x := c is a suitable result. �

Propositions 5.21, 7.2 and Theorem 7.9, which we are going to prove in Section 7,
yield the reduction IVT≤W SRT2,N. Ludovic Patey (personal communication) im-
proved this result by showing that IVT≤W RT2,2. This answered an open question in
an earlier version of this article.

RT2,2 and SRT2,2 cannot be Weihrauch reducible to any of PA,MLR or COH since
the latter are reducible to lim and the former are not. However, we can even say
more. We recall that a problem f :⊆ X ⇒ Y is called densely realized, if the set
{F (p) : F ⊢ f} is dense in the domain of the representation of Y for all p that are
names for an input in the domain of f , which intuitively means that a name of a result
can start with any arbitrary prefix (that is a prefix of a valid name). Since it is easy
to see that PA,MLR and COH are all densely realized, it follows by [8, Proposition 4.3]
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that PA(m),MLR
(m) and COH

(m) are all indiscriminative. In particular we obtain the
following corollary.

Corollary 5.22. SRT1,2 6≤W PA
(m), SRT1,2 6≤W MLR

(m) and SRT1,2 6≤W COH
(m) for

all m ∈ N.

We mention that it was noted by Hirschfeldt and Jockusch [23, Figure 6] that the
following corollary follows from [24, Theorem 2.3].

Corollary 5.23 (Diagonally non-computable functions). DNCN≤sW RT
′
1,2 = D2,2.

More information on the uniform content and relations between the problems
DNC,PA,WKL,WWKL,MLR,COH and other problems can be found in [8].

6. Separation Techniques for Jumps

In this section we plan to prove some further separation results related to RT2,2

(that justify some of the missing arrows in the diagram in Figure 4). For this purpose
we collect some classical results that yield separation techniques for jumps. Often
continuity arguments can be used for separation results. In the case of reductions to
jumps of the form f ≤W g′, such continuity arguments are not always applicable, since
jumps g′ implicitly involve limits. However, continuity arguments can occasionally
be replaced by arguments based on the existence of continuity points, which are still
available for limit computable functions. The classical techniques that we recall here
concern Σ0

2–measurable functions, which form the topological counterpart of limit
computable functions. Baire proved that the set of points of continuity of every Σ0

2–
measurable function is a comeager Gδ–set under certain conditions. We recall that a
set is called comeager if it contains a countable intersection of dense open sets. The
following is result is [27, Theorem 24.14].

Proposition 6.1 (Baire [27]). Let X,Y be metric spaces, and let Y additionally be
separable. If f : X → Y is Σ0

2–measurable, then the set of points of continuity of f is
a comeager Gδ–set in X.

We recall that a topological space X is called a Baire space8, if every comeager set
C ⊆ X is dense in the space X . Hence we get the following corollary.

Corollary 6.2. Let X and Y be metric spaces, where X is additionally a Baire space
and Y is separable. If f : X → Y is Σ0

2–measurable, then f |U has a point of continuity
for every non-empty open set U ⊆ X.

By the Baire category theorem [27, Theorem 8.4], every complete separable metric
space is a Baire space. Moreover, closed subspaces of complete separable metric spaces
are complete again. Hence Corollary 6.2 easily implies the direction “(1) =⇒ (2)” of
the following characterization of Σ0

2–measurable functions [27, Theorem 24.15].

Theorem 6.3 (Baire characterization theorem [27]). Let X,Y be separable metric
spaces, and let X additionally be complete. For every function f : X → Y the
following conditions are equivalent to each other:

(1) f is Σ0
2–measurable,

(2) f |A has a point of continuity for every non-empty closed set A ⊆ X.

We note that while Theorem 6.3 yields a stronger conclusion than Corollary 6.2, it
also requires stronger conditions on the domain X . In certain situations, we will be
dealing with Baire spaces XN which are not Polish spaces, and hence we will have to
take recourse to Corollary 6.2.

8We distinguish between a Baire space X in general and the Baire space NN, in particular, which
is also an instance of a Baire space.
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We recall [2, Proposition 9.1] that the limit map lim is a prototype of a Σ0
2–

measurable function (relatively to its domain of convergent sequences), and hence
Theorem 6.3 can be used as a separation tool for certain reductions to jumps, since
limit computable functions are closed under composition with continuous functions.

Fact 6.4. lim :⊆ NN → NN is Σ0
2–measurable relatively to its domain.

For the following result we use the Baire characterization theorem 6.3 as a sepa-
ration technique. For partial functions f :⊆ X → Y we use the notation f(A) :=
{y ∈ Y : (∃x ∈ A) f(x) = y} for the image of A under f .

Theorem 6.5. BWTk+1 6≤W RT
′
1,k × lim for all k ≥ 1.

Proof. Since RT
′
1,k × lim is a cylinder, it suffices to prove BWTk+1 6≤sW RT

′
1,k × lim.

Let us assume for a contradiction that BWTk+1≤sW RT
′
1,k × lim, i.e., there are

computable functions H,K such that HGK is a realizer of BWTk+1 whenever G
is a realizer of RT

′
1,k × lim = (RT1,k × id) ◦ (lim× lim). Since BWTk+1 is total,

it follows that 〈K1,K2〉 := 〈lim× lim〉 ◦ K is total too, and this function is Σ0
2–

measurable by Fact 2.2. We construct a number of points p0, ..., pk ∈ NN induc-
tively. By the Theorem 6.3 there is a point p0 ∈ NN of continuity of 〈K1,K2〉. Let
〈s0, r0〉 := 〈K1(p0),K2(p0)〉, let q0 ∈ RT1,k(s0) be a maximal homogeneous set, and
let c0 ≤ k − 1 be the corresponding color. Let k0 ≤ k be such that H〈q0, r0〉 = k0.
By continuity of H there exists a prefix w0 ⊑ 〈q0, r0〉 such that H(w0N

N) = {k0}.
We can assume that w0 = 〈x0, y0〉 is of even length 2n0. Since 〈K1,K2〉 is continuous
at p0, there is a v0 ⊑ p0 such that K1(v0N

N) ⊆ s0|n0
NN and K2(v0N

N) ⊆ y0N
N.

Now we consider N0 := {0, ..., k} \ {k0} and the closed set A0 := v0N
N
0 . Again

by Theorem 6.3 there exists a point p1 ∈ A0 of continuity of 〈K1,K2〉|A0
. Let

〈s1, r1〉 := 〈K1(p1),K2(p1)〉, let q1 ∈ RT1,k(s1) be a maximal homogeneous set, and
let c1 ≤ k − 1 be the corresponding color. Let k1 ≤ k be such that H〈q1, r1〉 = k1.
Since p1 ∈ A0 contains k0 at most finitely many times, it follows that k1 6= k0. By
continuity of H there exists a prefix w1 ⊑ 〈q1, r1〉 such that H(w1N

N) = {k1}. Again
we can assume that w1 = 〈x1, y1〉 is of even length 2n1, and additionally we can
assume n1 > n0. Since v0 ⊑ p1 we have y0 ⊑ K2(p1) = r1, and we obtain

s1|n0
= K1(p1)|n0

= K1(p0)|n0
= s0|n0

.

If c1 = c0, i.e., if the maximal homogeneous sets q0 and q1 of s0 and s1, respectively,
have the same color, then x0 = q0|n0

= q1|n0
follows due to the maximality of q0

and q1 and hence w0 ⊑ 〈q1, r1〉, which implies H〈q1, r1〉 = k0 and hence k0 = k1.
Since k0 6= k1, we can conclude that c0 6= c1. Now we continue as before: since
〈K1,K2〉|A0

is continuous at p1, there is a v1 ⊑ p1 such that K1(v1N
N) ⊆ s1|n1

NN

and K2(v1N
N) ⊆ y1N

N. Now we consider N1 := {0, ..., k} \ {k0, k1} and the closed
set A1 := v1N

N
1 . Again by Theorem 6.3 there exists a point p2 ∈ A1 of continuity

of 〈K1,K2〉A1
. In this case we eventually obtain colors k2 ≤ k, c2 ≤ k − 1 such that

k2 6∈ {k0, k1} and c2 6∈ {c0, c1}. This construction can be repeated k times since there
are k + 1 colors in {0, ..., k} until p0, ..., pk and c0, ..., ck are determined. However,
the construction yields that the c0, ..., ck have to be pairwise different, which is a
contradiction since there are only k colors c ∈ {0, ..., k − 1} available. �

We get the following immediate corollary with the help of Lemma 4.9 and Corol-
lary 4.10.

Corollary 6.6. BWTk+1 6≤W SRT2,k for all k ≥ 1.

Since BWTk+1≤W RT1,k+1≤W SRT2,k+1 by Proposition 3.4 and Lemma 4.8, we
obtain also the following separation result as a consequence of Corollary 6.6.

Corollary 6.7. SRT2,k+1 6≤W SRT2,k for all k ≥ 1.
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As next separation result we want to prove BWT
′
2 6≤W RT

′
1,2. To this end we are

going to use Corollary 6.2 as a separation tool. It is not too difficult to see that for
every topological space X that is endowed with the discrete topology, the product
space XN is a Baire space. We will apply this observation to the particular case of
the set

X2 := {p ∈ 2N : (∃k)(∀n ≥ k) p(n) = p(k)}

of convergent sequences of zeros and ones. On the other hand, X2 is also endowed
with the subspace topology that it inherits from the ordinary product topology on NN.
In both cases, we assume that XN

2 is equipped with the respective product topology.
In order to distinguish both topologies, we speak about “discrete continuity” of a map
f : XN

2 → Y , if X2 is endowed with the discrete topology and about continuity if the
usual subspace topology of NN is used for X2. In the latter case, the map

h2 : XN

2 → N
N, ((xi,j)i)j 7→ 〈(x0,j)j , (x1,j)j , (x2,j)j , ...〉,

is a computable embedding, i.e., h2 as well as the partial inverses h−1
2 are both

computable and continuous. Intuitively, h2 swaps rows and columns and applies the
Cantor encoding 〈...〉, both being purely technical changes. Hence we will identify XN

2

with (a subspace of) NN via h2 in the following proof. We note that BWT
′
2 formally

has the same domain as BWT2, namely 2N. But a realizer of BWT
′
2 has to use lim2N

as input representation and hence it will have domain h2(X
N
2 ), which we identify with

XN
2 . For w ∈ Nn and p ∈ NN we use the notation w→p := wp(n)p(n + 1)p(n + 2)...

for the sequence that is obtained from p by replacing the first n positions of p by w.

Theorem 6.8. BWT
′
2 6≤W RT

′
1,2.

Proof. Let us assume for a contradiction that BWT
′
2≤W RT

′
1,2. Then there are com-

putable functions H,K such that H〈id, GK〉 is a realizer of BWT
′
2 whenever G is

a realizer of RT
′
1,2. We tacitly identify XN

2 with a subspace of NN via h2. Since

BWT
′
2 : 2N ⇒ {0, 1} is total, it follows that limK : XN

2 → NN is also total and Σ0
2–

measurable. If we endow X2 with the discrete topology, then XN
2 is a Baire space,

and by Corollary 6.2 there exists a point of discrete continuity x ∈ XN
2 of limK. Let

c := limK(x) be the corresponding coloring. Then there is some maximal infinite
homogeneous set q ∈ RT

′
1,2(c), and there is a realizer G of RT′

1,2 that maps K(x) to

q. By continuity of H there is some m ∈ N such that H〈x|mXN
2 , q|mNN〉 = {e} for

some e ∈ {0, 1}. Without loss of generality, we assume e = 0. Hence, by discrete
continuity of limK at x, there is some k > m such that limK(x|kXN

2 ) ⊆ c|m2N.
We construct some y = (x|k, z0, z1, z2...) ∈ XN

2 such that all zi ∈ X2 converge to 1,
and the coloring cy := limK(y) has maximal homogeneous sets q0, q1 ∈ RT1,2(cy) of
different colors. This yields a contradiction: since x|k ⊑ y, we obtain c|m ⊑ cy, and
hence q|m must be prefix of either q0 or q1, say q0, and this implies H〈y, q0〉 = e = 0,
whereas the correct result would have to be 1, since all the zi converge to 1. We
describe the inductive construction of y in even and odd stages i ∈ N.

Stage 0: Let y0 := x|k 0̂ 0̂..., c0 := limK(y0), and let r0 ∈ RT1,2(c0). Then by
continuity of H there is some m0 > k such that H〈x|kwm0

XN
2 , r0|m0

NN〉 = {0} with

wm := (0m1̂)m = (0m1̂, 0m1̂, ..., 0m1̂) ∈ Xm
2 for all m ∈ N.

Stage 1: Let y1 := x|kwm0
1̂ 1̂..., c1 := limK(y1), and let r1 ∈ RT1,2(c1). Then also

0m0→r1 ∈ RT1,2(c1), and by continuity of H there is some m1 > k +m0 such that
H〈y1|m1

XN
2 , 0

m0→r1|m1
NN〉 = {1}.

We now assume that i ≥ 1 and that y0, ..., y2i−1 ∈ XN
2 and m0, ...,m2i+1 ∈ N have

already been constructed.
Stage 2i: Let y2i := y2i−1|m2i−1

0̂ 0̂..., c2i := limK(y2i), and let r2i ∈ RT1,2(c2i).
Then by continuity of H there is some m2i > m2i−1 such that

H〈y2i−1|m2i−1
wm2i

XN

2 , 0
m2i−1→r2i|m2i

N
N〉 = {0}.
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Stage 2i + 1: Let y2i+1 := y2i−1|m2i−1
wm2i

1̂ 1̂..., c2i+1 := limK(y2i+1), and let
r2i+1 ∈ RT1,2(c2i+1). Then also 0m2i→r2i+1 ∈ RT1,2(c2i+1), and by continuity of H
there is some m2i+1 > m2i−1 +m2i such that

H〈y2i+1|m2i+1
XN

2 , 0
m2i→r2i+1|m2i+1

N
N〉 = {1}.

This construction yields a sequence (yi)i in X
N
2 and a strictly increasing sequence

(mi)i in N such that y2i−1|m2i−1
⊑ y2i+1 for all i. Since all the blocks wm that

are added to the initial x|k in the odd stages are of the form wm = (z1, ..., zm),
with zi ∈ X2 that all converge to 1, it follows that (y2i+1)i converges to a y =
(x|k, z0, z1, z2...) ∈ XN

2 , with zi that all converge to 1. Let cy := limK(y) be the
corresponding coloring. We now prove that there are homogeneous sets in RT1,2(cy)
of different color. We fix some maximal homogeneous set r ∈ RT1,2(cy). It suffices
to prove that there are infinitely many i with r(i) = 0. The inductive proof follows
the stages of the construction above and uses the corresponding objects constructed
therein.

Stage 0, 1: We obtain r0|m0
6⊆ r, since otherwise there is some s ∈ RT1,2(cy) such

that r0|m0
⊑ s and H〈y, s〉 = 1. Since x|kwm0

⊑ y this contradicts the choice ofm0 in
Stage 0. In particular, we obtain that there is some i with 0 ≤ i < m0 and r(i) = 0.

Stages 2i, 2i+ 1: Likewise, 0m2i−1→r2i|m2i
6⊆ r, since otherwise there is some s ∈

RT1,2(cy) such that 0m2i−1→r2i|m2i
⊑ s and H〈y, s〉 = 1. Since y2i−1|m2i−1

wm2i
⊑ y

this contradicts the choice of m2i in Stage 2i. In particular, there is some i with
m2i−1 ≤ i < m2i and r(i) = 0.

Altogether, this proves that there are infinitely many i with r(i) = 0, since (mi)i
is strictly increasing. �

By Corollary 4.6 we have limN≤W RT
′
1,2. On the other hand, we obtain the fol-

lowing corollary.

Fact 6.9. limN 6≤W BWT
(m)
k for all k,m ≥ 1.

Proof. Let us denote by UCN the restriction of CN to singletons. By [7, Fact 3.2(1)]
UCN is a strong fractal, and CN is obviously slim, which means that range(UCN) =

range(CN). Under these conditions [7, Theorem 13.3] yields CN 6≤W BWT
(m)
k since

|range(CN)| = |N| > k = |range(BWT
(m)
k )|. By [7, Proposition 3.8] we have limN≡W CN,

which implies the claim. �

We could also replace the application of [7, Theorem 13.3] in this proof by an
application of Proposition 7.3 that we prove below. Now it follows with Fact 6.9 that
RT

′
1,2 6≤W BWT

′
2. Hence, together with Theorem 6.8 we obtain the following corollary.

Corollary 6.10. BWT
′
2 |W RT

′
1,2.

By Proposition 3.4 we have BWT2≡W RT1,2, but Corollary 6.10 shows that the
situation is very different for strong Weihrauch reducibility. With the help of [7,
Proposition 5.6(2)] we obtain the following.

Corollary 6.11. BWT2 |sW RT1,2.

It is clear that D2,2 = RT
′
1,2≤sW CRT

′
1,2≡W SRT2,2 by Theorem 4.3, and by The-

orem 3.5 we also obtain BWT
′
2≤sW CRT

′
1,2. Now Corollary 6.10 also leads to the

following separation result which was independently proved by Dzhafarov [18, Corol-
lary 3.3].

Corollary 6.12. SRT2,2 6≤W D2,2.

Altogether, we have now separated several of the degrees illustrated in the diagram
of Figure 4.
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7. Boundedness and Induction

The purpose of this section is to collect some results on how Ramsey’s theorem is
related to boundedness and induction. In reverse mathematics there is a well-known
strict hierarchy of induction principles IΣ0

n and boundedness principles BΣ0
n (see [22,

Theorem 4.32]):

BΣ0
1 ← IΣ0

1 ← BΣ0
2 ← IΣ0

2 ← ...

While these principles have no immediate interpretation as problems in the Weihrauch
lattice, there are equivalent formulations of these principles that do have such inter-
pretations. For instance, it is well-known that IΣ0

n is equivalent to the least number
principle LΠ0

n over a very weak system [21, Theorem 2.4]. The least number principle
LΠ0

1 can be interpreted as the the following problem:

min :⊆ N
N → N, p 7→ min{n ∈ N : (∀k ∈ N) p(k) 6= n}.

Equivalently, one could also consider the map min :⊆ A−(N)→ N, A 7→ min(A) that
maps every non-empty closed set A ⊆ N (given by an enumeration of its complement)

to its minimum. The n–th jump min(n) now clearly corresponds to LΠ0
n+1 for all

n ∈ N. The following result is easy to obtain.

Proposition 7.1 (Least number principle). CN≡sW min.

Proof. CN≤sW min is obvious, since given an enumeration p of a the complement of
a non-empty set A ⊆ N, we have min(p) ∈ A. We also have min≤sW CN: Given
a sequence p ∈ NN we start enumerating the complement of a set A ⊆ N while we
inspect the sequence p. The algorithm proceeds in stages i = 0, 1, 2, .... In stage i
we let ki := min{n ∈ N : (∀j ≤ i) p(j) 6= n} and we remove all 〈n,m〉 from A for
n,m ≤ i and m 6= ki. Hence, the final set A satisfies

A ⊆ {〈n, k〉 ∈ N : n ∈ N, k = min(N \ range(p))}

and given a number 〈n, k〉 ∈ A we can easily extract k = min(N \ range(p)). Hence,
min≤sW CN. �

Since jumps preserve strong Weihrauch equivalences we obtain C
(n)
N
≡sW min(n) for

all n ∈ N, and hence C
(n)
N

can be seen as a counterpart of IΣ0
n+1 for all n ∈ N.

Likewise, the boundedness principle BΣ0
n has been characterized with the help of

the pigeonhole principle and the regularity principle RΣ0
n. More precisely, it is known

that BΣ0
n+2 is equivalent to RΣ0

n+1 for all n ∈ N over a very weak system [21, Theo-
rem 2.23]. Now BWTN can be seen as a counterpart of RΣ0

1 since the computational
goal of BWTN is to find a number that appears infinitely often in a bounded se-

quence. More generally, RΣ0
n+1 corresponds to BWT

(n)
N

for all n ∈ N. We recall that
KN denotes compact choice on N, which can be defined as closed choice CN, except
that additionally an upper bound for the input set is provided (see [7] for a precise
definition). Another characterization of KN is KN≡sW C

∗
2 (which holds by [7, Proposi-

tion 10.9] where LLPO≡sW C2) and we obtain K
′
N≡sW BWTN by [7, Corollary 11.10].

Hence, it is justified to say that K
(n+1)
N

corresponds to BΣ0
n+2 for all n ∈ N.

Analogously to the above implication chain for IΣ0
n and BΣ0

n we obtain

KN<W CN<W K
′
N<W C

′
N<W K

′′
N<W C

′′
N<W ....

This reduction chain is based on the following observation.

Proposition 7.2. K
(n)
N

<sW C
(n)
N

<sW K
(n+1)
N

and K
(n)
N

<W C
(n)
N

<W K
(n+1)
N

for n ∈ N.

Proof. We obtain KN≤sW CN≡sW limN≤sW BWTN≡sW K
′
N
. Here CN≡sW limN holds

by [7, Proposition 3.8]. The claimed reductions follow since jumps are monotone
with respect to ≤sW. The separation results follow from Fact 2.3 (5) since we
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have ĈN≡sW
̂limN≡sW lim (see also [3, Example 3.10]), K̂N≡sW WKL and since par-

allelization commutes with jumps. Here K̂N≡sW WKL holds since we obtain that

C2≤sW C
∗
2≡sW KN≤sW Ĉ2≡sW WKL and parallelization is a closure operator. �

In reverse mathematics a considerable amount of work has been spent in order
to calibrate Ramsey’s theorem for pairs according to the above boundedness and
induction principles. Hence, it is natural to ask how it compares uniformly to choice
principles. We start with some easy observations, and as a preparation we prove the
following result. The proof is a simple variation of the proof of [7, Theorem 13.3].

Proposition 7.3 (Choice and cardinality). Let f :⊆ X ⇒ N and X ⊆ N be such that
CX ≤W f . Then |X | ≤ |range(f)|.

Proof. Let us assume that CX ≤W f . We use the representation ψ− of closed subsets
of X . Then there are computable H,K such that H〈id, GK〉 ⊢ CX for all G ⊢ f . We
fix some realizer G ⊢ f . For simplicity and without loss of generality we assume that
G and H have target space N. We consider the following claim: for each i ∈ N with
|X | > i there exist

(1) ki ∈ X \ {k0, ..., ki−1},
(2) ni ∈ range(f) \ {n0, ..., ni−1},
(3) pi, a name of a closed subset Ai ⊆ X ,
(4) wi ⊑ pi,

such that wi−1 ⊑ wi, GK(pi) = ni and H〈wiN
N, ni〉 = ki. Let w−1 be the empty

word. We prove this claim by induction on i. Let us assume that |X | > 0, and let
p0 be a name of A0 := X . Then k0 := H〈p0, GK(p0)〉 ∈ A0 and n0 := GK(p0). By
continuity of H there is some w0 ⊑ p0 such that such that H〈w0N

N, n0〉 = k0. Let us
now assume that |X | > 1, and let p1 be a name of A1 := X \{k0} with w0 ⊑ p1. Then
k1 := H〈p1, GK(p1)〉 ∈ A1 and n1 := GK(p1). Since k1 6= k0, we obtain n0 6= n1

since H〈w0N
N, n0〉 = k0. By continuity of H there is some w1 ⊑ p1 with w0 ⊑ w1

such that H〈w1N
N, n1〉 = k1. The proof can now continue inductively as above which

proves the claim. The claim implies |X | ≤ |range(f)|. �

From this result we can conclude the following observation.

Proposition 7.4 (Finite Choice). Ck ≤W SRT1,k and Ck+1 6≤W RT1,k for all k ≥ 1.

Proof. By Lemma 3.4 we have limk ≡W SRT1,k, hence the first reduction follows from
[7, Corollary 13.8] and can easily been proved directly. By Lemma 3.4 we have
BWTk ≡W RT1,k, and hence the second claim follows from Proposition 7.3. �

Since KN≡W C
∗
2 by [7, Proposition 10.9] we get the following conclusion.

Proposition 7.5 (Compact choice). KN≤W SRT1,+ and KN 6≤W RT1,k for all k ≥ 1.

Proof. Since C2≤W SRT1,2, we obtain KN≡W C
∗
2≤W SRT

∗
1,2≤W SRT1,+ by Corol-

lary 3.21. On the other hand, Ck+1 6≤W RT1,k and Ck+1≤W KN implies KN 6≤W RT1,k

for all k ≥ 1. �

We obtain the following corollary.

Corollary 7.6 (Jump of compact choice). K
′
N
≡W RT1,N and K

′
N
6≤W SRT2,+.

Proof. K
′
N
≡W RT1,N follows from Proposition 3.4 since K

′
N
≡sW BWTN. Corollary 6.6

implies K
′
N 6≤W SRT2,k for all k ≥ 1, and since K

′
N is countably irreducible (as any

jump is by [7, Proposition 5.8]) we obtain K
′
N
6≤W SRT2,+. �

The equivalence K
′
N
≡W RT1,N corresponds to a well-known theorem of Hirst [25],

which says that RT1
<∞ is equivalent to BΣ0

2 over RCA0 (see also [22, Theorem 6.81]),
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whereas the second equivalence K
′
N 6≤W SRT2,+ shows that the reverse mathematics

result [12] (see also [22, Theorem 6.82]) that SRT2,2 proves RT1
<∞ over RCA0 cannot

be proved uniformly (for instance the proof presented in [22, Theorem 6.82] contains
a non-constructive case distinction).

Corollary 7.6 yields also one direction of the following corollary, and the other di-
rection follows since RT1,N≤W lim′, but SRT2,2 6≤W lim′ and SRT2,N 6≤W lim′ by Corol-
lary 4.20.

Corollary 7.7. RT1,N |W SRT2,2 and RT1,N |W SRT2,+.

We can conclude the following results on CN from earlier results.

Proposition 7.8 (Closed choice). CN≡W SRT1,N and CN 6≤W RT1,+.

Proof. The first statement follows from Proposition 3.4 since CN≡W limN by [7, Propo-
sition 3.8], and the second statement follows from the fact that CN is countably ir-
reducible by [7, Fact 3.2] (since every strong fractal is a fractal and hence countably
irreducible), but CN≤W RT1,k for some k ≥ 1 is impossible by Proposition 7.5 since
KN≤W CN. �

Altogether, we have justified the way choice problems are displayed in Figure 1.
Finally, we provide the following reduction that can be derived from earlier results.

Theorem 7.9 (Jumps of compact choice). K
(n)
N
≤W SRTn,N for all n ≥ 2.

Proof. By Propositions 3.4 and 4.1 and since jumps are monotone with respect to

≤sW we obtain K
(n)
N
≡sW BWT

(n−1)
N

≤sW CRT
(n−1)
1,N ≤sW CSRTn,N≤W SRTn,N. �

The special case for n = 2 can be seen as the uniform version of a theorem of
Cholak, Jockusch and Slaman [12], see also [22, Theorem 6.89], which states that
SRT

2
<∞ proves BΣ0

3 over RCA0. In light of Corollary 7.6 and Theorem 7.9 there
is quite some gap in between SRT2,+ and SRT2,N. The diagram summarizes our
calibration of choice problems by Ramsey’s theorem.

SRT2,N

RT2,N

RT1,N

RT2,2

SRT2,2

SRT1,N

SRT2,+

SRT1,+

C
′′
N K

′′
N C

′
N K

′
N CN KN

Figure 5. Closed and compact choice on natural numbers calibrated
with Ramsey’s theorem in the Weihrauch lattice.

Further questions could be studied along these lines. We mention the following
question. The first part of this question is related to [22, Theorem 6.85] and the
second part to [22, Open Question 6.92].

Question 7.10 (Jump of closed choice). Does C′
N
≤W RT2,2 hold? Does C′′

N
≤W RT2,N

hold?

In light of [22, Theorem 6.85] a positive answer to the first part of this question
seems unlikely. Another natural question is how cluster point problems are related to
Ramsey’s theorem. We can say at least something.

Corollary 7.11 (Cluster point problem). CLR≤W RT3,3.



34 VASCO BRATTKA AND TAHINA RAKOTONIAINA

Proof. We recall that CLN≡W C
′
N and CL2N ≡W C

′
2N ≡W WKL

′ by [7, Theorem 9.4].
By [7, Proposition 9.15] we have CLR≡W C

′
N
×CL2N ≡W C

′
N
×WKL

′. Hence, we obtain
with Proposition 7.2, Theorem 7.9 and Corollary 3.30

CLR≡W C
′
N
×WKL

′≤W K
′′
N
×WKL

′≤W RT2,N × RT3,2≤W RT3,3.

The last mentioned reduction holds by Theorem 3.24. �

However, it is not immediately clear whether the following holds.

Question 7.12. CLR≤W RT3,2?

8. Conclusion

We have studied the uniform computational content of Ramsey’s theorem in the
Weihrauch lattice, and we have clarified many aspects of Ramsey’s theorem in this
context. Key results are the lower bound provided in Theorem 3.5, the theorems on
products (Theorem 3.24) and parallelization (Theorem 3.28), as well as the theorem
on jumps (Theorem 4.3) and the upper bounds in Corollary 4.15 derived from it. From
this tool box of key results (together with the squashing theorem, Theorem 1.7) we
were able to derive a number of interesting consequences, such as the characterization
of the parallelization of Ramsey’s theorem in Corollary 4.18 and the effect of increasing
numbers of colors in Theorem 4.22. The separation tools provided in Section 6 have
led to some further clarity. A number of important questions regarding the uniform
behavior of Ramsey’s theorem were left open. Hopefully, some future study will shed
further light on this question.
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[10] Vasco Brattka, Stéphane Le Roux, Joseph S. Miller, and Arno Pauly. Connected choice and the
Brouwer fixed point theorem. arXiv 1206.4809, 2016.

[11] Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. arXiv
1604.08348, 2016.



ON THE UNIFORM COMPUTATIONAL CONTENT OF RAMSEY’S THEOREM 35

[12] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey’s
theorem for pairs. Journal of Symbolic Logic, 66(1):1–55, 2001.

[13] Peter A. Cholak, Carl G. Jockusch, Jr., and Theodore A. Slaman. Corrigendum to: “On the
strength of Ramsey’s theorem for pairs”. Journal of Symbolic Logic, 74(4):1438–1439, 2009.

[14] Chi Tat Chong, Steffen Lempp, and Yue Yang. On the role of the collection principle for Σ0
2-

formulas in second-order reverse mathematics. Proceedings of the American Mathematical So-
ciety, 138(3):1093–1100, 2010.

[15] Chi Tat Chong, Theodore A. Slaman, and Yue Yang. The metamathematics of stable Ramsey’s
theorem for pairs. Journal of the American Mathematical Society, 27(3):863–892, 2014.

[16] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer. On
uniform relationships between combinatorial problems. Transactions of the American Mathe-
matical Society, 368(2):1321–1359, 2016.

[17] Damir D. Dzhafarov. Cohesive avoidance and strong reductions. Proceedings of the American
Mathematical Society, 143(2):869–876, 2015.

[18] Damir D. Dzhafarov. Strong reductions between combinatorial principles. Journal of Symbolic
Logic, 81(4):1405–1431, 2016.
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